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ABSTRACT 

Detecting Alzheimer’s Disease (AD) at the earliest possible stage is key in advancing AD 

prevention and treatment but is challenged by normal aging processes in addition to other 

confounding neurodegenerative diseases. Recent genome-wide association studies (GWAS) have 

identified associated alleles, but it has been difficult to transition from non-coding genetic variants 

to underlying mechanisms of AD. Here, we sought to reveal functional genetic variants and 

diagnostic biomarkers underlying AD using machine learning techniques. We first developed a 

Random Forest (RF) classifier using microarray gene expression data sampled from the peripheral 

blood of 744 participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. 

After initial feature selection, 5-fold cross-validation of the 100-gene RF classifier achieved an 

accuracy of 99.04%. The high accuracy of the RF classifier supports the possibility of a powerful 

and minimally invasive tool for screening of AD. Next, unsupervised clustering was used to 

validate and identify relationships among differentially expressed genes (DEGs) the RF selected 

revealing 3 distinct AD clusters. Results suggest downregulation of global sulfatase and 

oxidoreductase activities in AD through mutations in SUMF1 and SMOX respectively. Then, we 

used Greedy Fast Causal Inference (GFCI) to find potential causes of AD within DEGs. In the 

causal graph, HLA-DPB1 and CYP4A11 emerge as hub genes, furthering the discussion of the 

immune system’s role in AD. Finally, we used Gene Set Enrichment Analysis (GSEA) to 

determine the biological pathways and processes underlying the DEGs that were highly correlated 

with AD. Cell activation in the immune system, glycosaminoglycan (GAG) binding, vascular 

dysfunction, oxidative stress, and the neuronal apoptotic process were revealed to be significantly 

enriched in AD. This study further advances the possibility of low-cost and noninvasive genetic 

screening for AD while also providing potential gene targets for further experimentation. 
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1. INTRODUCTION 

AD is a neurodegenerative disorder affecting an estimated 6% of all people worldwide that are 

aged 65 or older [1]. It kills approximately 480,000 people each year [2] and leads to a burden of 

about $172 billion annually to the health-care system in the US alone [3]. Thus, early detection 

and treatment has become a priority for our healthcare system. 
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Due to its progressive nature, hallmarks of AD may appear up to 20-30 years before clinical onset 

[51, 52]. This makes preclinical diagnosis of AD a possibility since pathological symptoms appear 

years before clinical manifestation [4]. These pathological features include the accumulation of 

amyloid beta plaques, tau proteins, and neurofibrillary tangles [5, 6]. Despite this possibility of 

early detection, it has been difficult to develop a system for preclinical diagnosis due to 

confounding by normal aging processes and other neurodegenerative diseases, in addition to the 

biological complexity of AD. 

Genetics may be the path to a reliable system for early detection. Genetics play a large role in AD 

and explain an estimated 70% of the risk of development [8]. Currently, Genome Wide Association 

Studies (GWAS) are one of the most common methods of finding candidate genes of AD. These 

studies have revealed several genes potentially associated with AD. However, other than the four 

exceptions of APP, PS-1, PS-2, and APOE, GWAS have failed to produce reliable candidate genes 

for AD, despite more than thousands of genes being recommended as potential risk factors [9, 48]. 

This is because GWAS have several limitations. First, GWAS only reveal genes that are associated 

with a certain phenotype and fail to address which genes functionally cause AD [10]. Second, 

GWAS fail to account for epistasis, which is the phenomenon by which a complex phenotype is 

caused by more than one gene interacting. Therefore, few GWAS studies have focused on how 

genes interact and how this interaction contributes to the progression of AD [47]. For these reasons, 

GWAS have largely failed in detecting functionally relevant genes of AD. 

Recently, studies have turned towards gene expression to identify new genetic biomarkers and 

create diagnostic tools for AD [53]. These studies utilize gene expression values from the brain 

tissue in AD subjects. Overall, this means that the analysis was largely based on samples from 

biopsies or autopsies [54]. This is undesirable because these lab-based samples and analyses are 

difficult to extrapolate to a clinical setting. In addition, protein modification and RNA degradation 

postmortem makes it difficult to interpret gene expression from the brain. Instead, expression 

profiling using peripheral blood yields certain benefits [14]. 

Peripheral blood mononuclear cells (PBMCs) is easily obtainable and relatively inexpensive, 

allowing for genetic screening of peripheral blood to be part of the clinical process to assess the 

risk of AD in living patients. Additionally, changes in the brain are represented through 

mechanisms that are also expressed in blood. For example, amyloid precursor protein expression, 

deregulated cytokine secretion, and oxidative damage to DNA and RNA are all shared by AD 

brain tissue and peripheral blood [18]. Furthermore, more than 80% of the genes expressed in body 

tissue types, such as brain tissue, are also found in peripheral blood mononuclear cells (PBMCs) 

[16]. This supports the utilization of peripheral blood to understand molecular mechanisms behind 

AD. Indeed, in the past, peripheral blood has already been implemented for gene expression 

analysis for AD with promising results [15, 17]. 

Therefore, peripheral blood gene expression could be used to advance early detection of AD, both 

by yielding a diagnostic tool and easily identifiable biomarkers. Here, we revealed functional 
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genetic variants and diagnostic biomarkers underlying AD. In particular, we sought to construct a 

blood gene expression classifier of AD that could distinguish people with AD from normal control 

subjects and reveal diagnostic features. 

To do this, we first developed a Random Forest (RF) classifier using blood microarray gene 

expression data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Then, 

unsupervised clustering using Uniform Manifold Approximation and Projection (UMAP) and 

Hierarchical Density-Based Spatial-Clustering of Applications with Noise (HDBSCAN) were 

used to identify AD subclusters and reveal relationships among differentially expressed genes 

(DEGs) the RF selected. After that, causal analysis through the Greedy Fast Causal Inference 

(GFCI) search algorithm was done to find potential causes of AD within DEGs. Finally, we used 

Gene Set Enrichment Analysis (GSEA) to determine the biological pathways and processes 

underlying the DEGs. This study further advances understanding of molecular mechanisms 

underlying AD and provides potential gene targets for further experimentation. 

2. DATA 

2.1 Alzheimer’s Disease Neuroimaging Initiative 

Data used for this study was acquired from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). Throughout its lifetime, ADNI has enlisted more than 1,500 

adults, ages 55 to 90.  

For this study, we further scaled and centered the gene expression values for the 744 available 

individuals. We elected not to collapse the probe sets into individual genes as some probes may 

not have associated gene annotations, some probes (promiscuous probes) may recognize multiple 

target sequences, and some genes may have multiple probes.  We calculate gene expression by 

taking the median of the probes for a certain gene. 

2.3 Oversampling 

Training and testing of machine learning algorithms can be heavily impacted by the problem of an 

imbalanced dataset. This balancing issue arises when the dataset has a significant difference among 

the size of each class. This imbalance heavily skews the decision function and results in poor 

training and testing outcomes [20]. With a greater imbalanced ratio, the decision function of the 

model favors the larger class during classification.  

In our case, the ADNI data is clearly imbalanced. We used the diagnoses as the four classes in our 

dataset. The distribution of classes is: 260 CN, 215 EMCI, 226 LMCI, and 43 AD individuals. AD 

is underrepresented compared to other groups with only 43 samples.  

Synthetic Minority Oversampling Technique (SMOTE) was proposed to address this imbalanced 

dataset issue by generating new “synthetic” samples of underrepresented classes through 

interpolation [21]. In this method, a minority class is oversampled by joining the minority class’s 
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5 nearest neighbors in high dimensional space. This means SMOTE operates on the feature space, 

rather than the data space. We generated these synthetic samples by taking the difference between 

the feature vector (sample) and one of its 5 nearest neighbors, multiplying by a random number 

between 0 and 1, and adding it to the sample under consideration. This creates a new “synthetic” 

sample along a random point on the line in high dimensional space. Doing this forces the 

generalization of the minority class’s decision region and causes the classifier to create larger, less 

specific decision regions [21]. For our analysis, we used SMOTE from Python’s imbalanced learn 

package. The resulting dataset becomes balanced with 260 individuals for each diagnosis. 

3. METHODS 

We first developed a RF classifier using blood microarray gene expression data from 744 

participants in the ADNI cohort. Then, UMAP was used for dimensionality reduction to validate 

the DEGs, and HDBSCAN was used to identify subclusters of AD and reveal important DEGs in 

each subcluster. After that, GFCI was used to find potential causes of AD within the DEGs. Finally, 

GSEA was used to identify relevant biological processes and pathways enriched in each phenotype 

(Figure 1A). 

 

Figure 1. Workflow 

(A) Workflow shows data acquisition, preprocessing, and analysis. 
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3.1 Random Forest Classification 

RF is an ensemble learning algorithm that constructs a forest of binary decision trees learned by 

randomly sampling from the training set. These trees (the forest) can then be applied to a given 

sample to generate a class probability that reflects its similarity to a given class of the training set. 

We chose to use a RF classifier as it generally avoids overfitting because of the low correlation 

between trees. In this case, we used supervised learning to train the RF classifier on patient’s blood 

gene expression values and predict a clinical diagnosis of CN, EMCI, LMCI, or AD. The model 

was evaluated on the four categorical classes and two binary classes where the two classes 

represented AD compared to control (CN, EMCI, LMCI). For our purposes, we used an 

implementation of RF from Python package skLEARN with 1000 estimators (trees).  

We used RF classification to (1) predict if an individual had AD using their gene expression profile 

and (2) to obtain a ranked gene list of the most important features in classifying AD. First, we 

performed a feature selection step for the RF classifier. This step selected the most informative 

features from all 48,157 probe transcripts. To do this, we first trained an ‘‘outer’’ RF classifier on 

the dataset. We trained a forest with 1000 trees, using 80% of the individuals as a train set and the 

remaining 20% as a validation set. Based on the feature importance scores of the ‘‘outer’’ RF 

classifier, we then selected the top 250 most informative genes for training of the ‘‘inner’’ 

classifier. This ‘‘inner’’ classifier was further evaluated through 5-fold cross-validation. During 

cross-validation, the dataset was split into five smaller sets of which four were used to train a RF 

classifier that was tested on the remaining set. This “inner” classifier was then used to build a final 

RF classifier to compare to other popular machine learning models using only the top 25 most 

informative genes. We compared RF to neural network, support vector machine, naive bayes, and 

logistic regression. These models were implemented from Python package skLEARN with default 

parameters and compared via 5-fold cross-validation.  

Finally, we obtained a ranked gene list of the most important features in classifying AD using 

feature importance scores from the RF classifier. After training and validation, we estimated which 

variables were important in the classification using the Gini impurity metric. RF’s locally optimal 

condition is chosen based on Gini impurity. When training a tree, we computed how much each 

feature decreased the weighted impurity. Then, we averaged the Gini impurity decrease from each 

feature in the forest and assigned each feature a feature importance score based on this decrease. 

The sum of all the feature importance scores is 1 and genes with higher feature importance scores 

play a greater role in the decision trees of the RF model. To validate the feature importance 

independently we also calculated the Wilcox score of each gene and compared the gene’s p-value 

with its rank. In general, the higher a gene was ranked in the RF classifier the lower its p-value. 

3.2 Unsupervised Clustering 

We employed uniform manifold approximation graphs (UMAP) for dimension reduction and 

unsupervised clustering. UMAP is a manifold learning technique for dimension reduction and is 
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competitive with tSNE for visualization quality while preserving global structure [22]. We used 

UMAP to visualize the similarities among individuals within each class and identify sub clusters 

of AD. We selected the set of top 100 DEGs from the 250 gene RF classifier. This is because the 

first 100 DEGs contribute most to the accuracy of the RF model meaning the rest likely provide 

the little additional information. For initial dimensionality reduction, we used Principal 

Component Analysis (PCA) and selected the top 20 PCs based on the elbow plot. For UMAP 

visualization we used the package UMAP-learn in Python with 30 nearest neighbors, a minimum 

distance of 0.01, and 2000 epochs [75]. We also visualized the connectivity in the manifold by 

simplifying the intermediate topological representation of the approximate manifold down to a 

weighted graph. This helped us further visualize the relationships between clusters and individuals. 

To diagnose the validity of UMAP we utilized three diagnostic graphs: PCA, local dimension, and 

local neighborhoods. The PCA diagnostic takes the first 3 PCs, which preserve global structure, 

and convert the coordinates of each point into an RGB description of a color. By projecting the 

colors onto the UMAP embedding we can see if UMAP successfully captures the global structure. 

For local dimension, each data point’s local dimension should ideally match the embedding 

dimension. In practice, a high local dimension represents points that UMAP has difficulty 

embedding. Thus, the embedding tends to be more accurate in regions where the points have 

consistently lower local dimension. Finally, we visualized preserved local neighborhoods in terms 

of the Jaccard index. A higher Jaccard Index means the local neighborhood has been more 

accurately preserved. All three diagnostics support accurate global structure and embedding of AD 

individuals. 

Finally, we used HDBSCAN for unsupervised clustering to identify subclusters of AD and reveal 

important DEGs in each subcluster. We chose HDBSCAN as it is a hierarchical clustering 

algorithm with the ability to cluster data of varying shapes and densities. We used the Python 

implementation of HDBSCAN on UMAP space with a minimum cluster size of 30 and 5 minimum 

samples. Heatmaps with dendrograms were drawn to identify differences between clusters. The 

gene expression of top marker genes from each cluster was projected onto UMAP to identify 

cluster specific genes. 

3.3 Causal Analysis 

We used the Greedy Fast Causal Inference (GFCI) [77] algorithm to perform our causal analysis. 

For the causal search, we used continuous gene expression values for the 100 DEGs selected by 

the RF and discrete diagnosis values as our data. The diagnosis values were either binarized (0: 

AD and 1: Non-AD) or categorical (0: AD, 1: LMCI, 2: EMCI, and 3:CN)., We used the Tetrad 

interface [23] to implement GFCI with an alpha value of 0.05 to analyze potential causes within 

and across the DEGs and the phenotype.  

The GFCI algorithm requires [24]: (1) The causal Markov condition holds true. This happens if a 

variable is independent of all of its causal non-descendants when conditioned on its causal parents 
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[25]. (2) The causal faithfulness condition holds true. This condition states that all causal 

hypotheses are probabilistically dependent [26]. (3) There is no missing data. (4) There is no 

selection bias. (5) The measured variables consist of no feedback cycles. We assume the causal 

Markov and causal faithfulness conditions hold true for our data, and the rest of the conditions are 

met. 

Our implementation of the GFCI algorithm runs based on a Bayesian search algorithm that 

searches the space of directed acyclic graphs (DAGs). In particular, it starts with an empty DAG 

and then performs a search where nodes are connected until the Bayesian score cannot increase 

with the addition of an edge. Then, a backward-propagation stepping search is performed where 

edges are removed until the score can no longer increase [27]. Finally, a series of conditional 

independence tests remove edges between two variables that are evaluated to be independent [28]. 

We chose to implement the GFCI algorithm because, unlike numerous other search algorithms, it 

does not operate under the assumption that there are no latent confounders and outputs when there 

is a possibility of a latent confounder [30]. 

3.4 Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) [54] was used for functional analysis of the top 2000 DEGs 

identified by the RF classifier. We chose the top 2000 features because they have relatively high 

feature importance scores from the RF classifier (Figure 3C).  

We used the oversampled dataset with 260 samples for each diagnosis (AD, LMCI, EMCI, CN) 

and polarized the dataset by only selecting the samples that were part of the AD and the CN groups. 

This was done in hopes of avoiding confounding and allowing easier enrichment in one phenotype 

over the other.  

We ran our analysis on the C5 Gene Ontology (GO) gene sets found in the Molecular Signature 

Database (MSigDB). We used Benjamini-Hochberg adjusted p values (q values / FDR) for 

multiple testing correction [55]. Gene sets with a q<0.25 and nominal p<0.01 were considered 

significantly enriched. To screen for the upregulated and downregulated gene sets, we ran 

enrichment analysis with the following parameters: 1000 permutations, weighted enrichment 

statistic, Signal2Noise ranking metric, a maximum size of 500, and a minimum size of 3. 

GSEA also provides a ranked genes list which ranks the genes according to this Signal2Noise 

metric, which measures a gene’s correlation with the phenotype. A positive value indicates 

correlation with AD and a negative value indicates correlation with CN. 

Further, we conducted analysis to evaluate how these significantly enriched gene sets interacted 

with each other. We first created an enrichment map. The jaccard coefficient was used to 

measure the similarity between the gene sets. Gene sets with a jaccard coefficient<0.25 were 

considered correlated and connected via an edge in the Enrichment Map. We visualized the 

Enrichment Map using Cytoscape [56]. Then, AutoAnnotate [57] was used to cluster the gene 
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sets and annotate each cluster with a label. The MCL cluster algorithm was used to cluster the 

gene sets and the WordCloud adjacent words algorithm was used to label each cluster. We then 

manually adjusted each annotation to ensure it represented the biological theme and removed 

clusters with less than two gene sets.  

Finally, leading edge analysis was conducted using the GSEA software on all gene sets 

considered significantly enriched. Leading edge analysis works by analyzing which genes 

contributed most to the enrichment score (ES) of a given gene set's leading edge [58]. This was 

done in order to determine which genes have the biggest impact on the enrichment of multiple 

gene sets.  

4. RESULTS 

For the 744 ADNI samples, the average chronological age was 73.14, and the ratio of females was 

45.16%. Both ages and gender distributions did not differ significantly between AD and CN 

samples (Supplementary Table 3A). Additionally, there was no statistically significant difference 

between gender and ages between AD and non-AD (Control) samples (Supplementary Table 3B). 

 

4.1 High Sensitivity Random Forest Model is able to distinguish AD from Controls 
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Figure 2. Random Forest Classification 

(A) Heatmap depicts results of a 5-fold cross-validation of the “inner” RF classifier comprising 4 

classes for the 250-gene classifier. Individuals that fall on the diagonal are classified correctly 

(59.7% of individuals). Individuals that do not fall on the diagonal are mis-classified as a different 

diagnosis. 

(B) Confusion Matrix depicts results of a 5-fold cross-validation of the “inner” RF classifier 
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comparing AD to Control (CN, EMCI, LMCI) for the 250-gene classifier. The sensitivity of 

detecting AD (true positive rate) is 99.2%. The specificity of detecting AD (true negative rate) is 

98.97%. This data supports the high accuracy of the machine learning classifier. 

(C) Barplot shows the top 20 genes of the “inner” RF classifier ranked based on feature importance 

score.  

We created a RF classifier to classify AD from non-AD individuals and to identify the most 

important genes related to AD. We first utilized an initial feature selection step consisting of an 

“outer” RF classifier that selects the top 250 features based on feature importance. We chose the 

top 250 features because they capture a majority of the feature importance. Next, we created an 

“inner” RF classifier using the top 250 genes selected by the “outer” RF. After initial feature 

selection, 5 fold cross-validation of the 250 gene classifier achieved an accuracy of 99.04%. The 

RF classifier also achieved 99.2% sensitivity detecting AD and 98.97% specificity detecting non-

AD individuals (Figure 2B and Table 1B). The high sensitivity of the RF classifier supports the 

possibility of an accurate and minimally invasive screening tool for AD.  

A heatmap depicts the results of 5-fold cross-validation of the “inner” RF classifier composed of 

4 classes (Figure 2A). The first three classes are CN, EMCI, or LMCI. The gene expression 

signatures from peripheral blood are not only able to strongly differentiate AD from non-AD 

individuals but are also able to differentiate CN, EMCI, and LMCI, albeit at a much lower 

accuracy. The RF classifier achieves an accuracy of 59.7% when differentiating between all 4 

diagnosis groups (Figure 2A). This suggests changes in gene expression also occur during MCI 

that differ from both AD and CN. 

We ranked the top 100 features from the RF classifier based on feature importance. Figure C shows 

the top 20 genes contributing to the RF classification of the individuals. Sulfatase Modifying 

Factor 1 (SUMF1) appears as the most important feature in the RF classifier. This means SUMF1 

plays the largest role in the decision trees of the RF model and may be a significant risk factor of 

AD. Additionally, SMOX appears as the third most important feature in the RF classifier. This is 

key as SMOX is a gene that consistently surfaces in our analysis.  
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Figure 3. Random Forest Metrics 

(A) Receiver operating characteristic curve for RF, Neural Network, Support Vector Machine, 

Gaussian Naive Bayes, and Logistic Regression on the top 25 gene’s in feature importance. 

(B) Line plot shows impact of feature number on RF accuracy. At 100 features the RF model 

reaches a high accuracy while avoiding overfitting. Prior to 25 features the RF model underfits 

and achieves drastically lower accuracy.  

(C) Line plot (Left) shows each gene’s feature importance score in the “outer” RF classifier. The 

top 2000 features capture a majority of the importance in the model. Among the 2000 features 

(Right) the top 250 features capture a majority of the feature importance. 

Finally, we compared the performance of our RF model to other popular machine learning models, 
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namely: Neural Network (NN), Logistic Regression (LR), Gaussian Naive Bayes (GNB), and 

Support Vector Machine (SVM) models. The 250 gene RF classifier achieved an AUC score of 

0.99. However, this score is quite similar to other models trained on the same 250 genes with NN 

and LR actually achieving a higher AUC (Supplementary Figure 1C). RF is robust to overfitting 

compared to other models so we hypothesized that the high AUC of other models may be from 

overfitting the data. This becomes clear when comparing 25 gene models. We chose to use 25 

genes as the RF classifier is able to maintain relatively high accuracy at 25 genes (Figure 3B). Less 

features, however, substantially impacts the accuracy of the other models. When comparing the 25 

gene models, RF outperforms all other models with an AUC of 0.997 (Figure 3A). The ability of 

the RF classifier to maintain a high AUC with a low number of features suggest the possibility of 

an accurate and minimally invasive screening tool for AD with a small, robust set of genes.  

4.2 Unsupervised Clustering reveals 3 distinct AD populations 
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Figure 4. Dimension Reduction 

(A) Elbow plot shows the explained variance of each principal component. We chose the top 20 

PCs for downstream analysis. 

(B) PCA visualization of 744 individuals (points), with similar individuals positioned closer 

together. Points are color-coded by diagnosis. 

(C) Three dimensional PCA visualization of 744 individuals (points). Points are color-coded by 
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binarized diagnosis either AD or Control (CN, EMCI, LMCI). 

(D) UMAP visualization of 744 individuals (points), with similar individuals positioned closer 

together. Points are color-coded by diagnosis. 

 

After RF classification, we performed unsupervised clustering to identify subclusters of AD and 

reveal important DEGs in each subcluster. For initial dimension reduction we performed Principal 

Component Analysis (PCA) and selected the top 20 principal components for further dimension 

reduction. Even in PCA space AD individuals are relatively separated from EMCI, LMCI, and CN 

(Figure 4C). This means at a global scale AD individuals have distinct gene expression profiles. 

After initial PCA dimension reduction UMAP was employed to further reduce dimensionality. 

UMAP is able to clearly differentiate AD from non-AD individuals (Figure 4D). Dimensionality 

reduction techniques show blood microarray gene expression of AD individuals can be separated 

from normal individuals. The individuals closer to AD clusters have genetic signatures similar to 

AD individuals and may be at risk for AD. In fact, the RF classifier was more confident (higher 

classification probability) when classifying AD individuals that separated from the main 

population. This validates the genes identified by the RF classifier as viable biomarkers for AD 

screening and detection.  
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Figure 5. Unsupervised Clustering 

(A) UMAP visualization (as in Figure 4D) overlaid with clusters determined by unsupervised 

clustering. HDBSCAN clustered the individuals into 3 AD clusters and a control cluster. 
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(B) Heatmap shows the expression of the top 20 differentially expressed genes (rows) determined 

by Wilcoxon rank sums test among the HDBSCAN-defined clusters (columns). The rows and 

columns are grouped by hierarchical clustering. 

(C) Heatmap shows the expression of all 100 genes used in unsupervised clustering with 

differentially expressed genes as columns and HDBSCAN-defined clusters as rows. The rows and 

columns are grouped by hierarchical clustering. The figure confirms the heterogeneity of AD and 

the three AD subclusters identified. 

We then used HDBSCAN to cluster individuals on UMAP space. Unsupervised clustering results 

in three distinct clusters of AD-like individuals (Figure 5A and 5C). The connectivity of the 

manifold suggests that the AD clusters are still connected to the Control cluster but are 

substantially more interconnected (Supplementary Figure 2A). Specifically, AD3 is less connected 

with the main population while AD1 and AD2 are relatively connected with each other. To explore 

the relationships between these clusters we identified DEGs among the clusters. Gene expressions 

were ranked between the groups based on variance and a cluster heatmap drawn for the 20 genes 

with the highest variance. The heatmap shows distinct gene expression profiles that distinguish 

AD clusters from Control and each other. Spermine Oxidase (SMOX) appears in unsupervised 

clustering and as the third most important feature in the RF classifier (Figure 2C). This means 

SMOX likely plays a strong role in AD as it appears as an important feature in both unsupervised 

and supervised methods.  

4.3 Causal Analysis identifies potential causal factors and key hub genes 
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Figure 6. Causal Analysis 

(A) Directed Acyclic Graph from GFCI causal analysis is visualized in Cytoscape through an edge-

weighted spring embedded layout. Edge betweenness centrality is an edge centrality index. A high 
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betweenness score means the edge is crucial to preserving node connections. 

 

Finally, we conducted Causal Analysis on the DEGs selected by the RF using GFCI. This was 

done to find potential causes of AD. The resulting DAG is visualized in Cytoscape through an 

edge-weighted spring embedded layout. In the causal graph two major hub genes emerge. First, 

the Major Histocompatibility Complex, Class II, DP Beta 1 (HLA-DPB1) gene emerges as the 

largest node. It is a central hub gene because out of the 100 DEGs, HLA-DPB1 has potential direct 

causal relationships with 75 of them. Additionally, HLA-DPB1 connects to the phenotype (AD 

diagnosis) through SMOX. HLA-DPB1 also indirectly influences the second-largest node, 

CYPA411 which is then connected to AD through SUMF1 and SMOX (Figure 6A).  

Due to the high connectivity of HLA-DPB1, it is likely this gene plays a significant role in the 

molecular mechanisms underlying AD through downregulation. Second, CYP4A11 emerges as 

the next largest node having an edge count of 42. Although CYP4A11 does not have a direct causal 

relationship with the phenotype, it is a hub gene and may play some underlying role.  

In addition to the two hub genes, four direct connections with the phenotype (AD diagnosis) also 

emerge in the causal graph. SUMF1, SMOX, KCNIP, and DFFB all have causal relationships with 

AD with no latent confounder (Figure 6A). SUMF1 and SMOX have been identified as AD-related 

genes in every other method we have used. This essentially validates the causal graph and shows 

those with a direct connection to the phenotype likely are correlated with AD. 

4.4 Gene Set Enrichment Analysis reveals enriched biological processes 
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Figure 7. Gene Set Enrichment Analysis 

(A) Heatmap depicts how the top 50 genes upregulated in AD and the top 50 genes downregulated 

in AD (according to the ranked genes list) differ among the two classes (AD and CN) 

(B) Ranked Gene List Correlation Profile shows how the metric for ranking genes (Signal2Noise) 

changes based on the position a gene is in the ranked genes list. This supports that genes towards 

both extremes of the ranked genes list are highly differentially expressed. 

(C) Global Enrichment Score Histogram depicts number of gene sets across enrichment scores.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.15.426891doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426891


20 

First, the genes ranked by the Signal2Noise metric corroborate key AD genes identified by 

previous methods. For example, SUMF1, SMOX, and DFFB all emerge as having some of the 

highest absolute values of this metric (Figure 7A) (Table 1). 
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Figure 8. Enrichment Map 

(A) Enrichment Map representation of the GSEA results obtained for AD versus CN. Red 

represents enrichment in AD, whereas blue represents enrichment in CN; color intensity is 

proportional to enrichment significance. Node size represents gene set size and edge width 

represents number of shared genes. Clusters of functionally related gene-sets were labeled using 

AutoAnnotate and manually adjusted to match the overall biological theme. 

 

Further, we ran GSEA on the top 2000 DEGs to find which GO term gene sets were suggested to 

play a role in AD based on our DEGs. Among the enriched gene sets, biological processes related 

to AD pathogenesis emerge, including processes related to Cell Activation in the Immune System, 

Glycosaminoglycan (GAG) Binding, vascular dysfunction, oxidative stress, and the neuron 

apoptotic process emerge (Figure 8A). More details regarding individual gene sets can be found 

in Supplementary Figure 3. 

Cell Activation in the Immune System is suggested to play a role in AD pathogenesis. Researchers 

have shown that Aβ-reactive CD4 T cells are able to effectively target Aβ plaques in the brains of 

APP-transgenic mice [60]. Although other studies have not connected HLA-DPB1’s function to 

specifically AD, HLA-DPB1 is key in the recognition and activation of CD4 T-cells[59]. Thus, 

we hypothesize downregulation of HLA-DPB1 (a hub gene in our causal analysis) contributes to 

AD pathogenesis through lower activation of Aβ-reactive CD4 T cells which may contribute to 

the removal of these toxic plaques. 

GAG binding is another key pathway through which our DEGs play a role in AD. 

Glycosaminoglycans have already been proven to play a role in AD as the sulfate moieties of 

GAGs play a critical role in the binding to Amyloid betas and enhance Amyloid beta fibril 

formation [61].  This also reflects the role of SUMF1, the top gene in the RF classifier. The SUMF1 

gene activates sulfatases that play a role in many mechanisms of lysosomes including degradation 

of GAGs and macromolecules [31]. SUMF1 is downregulated in AD, so we hypothesize it 

progresses AD by decreasing the degradation of the GAGs. 

Another biological process that emerged in GSEA is vascular dysfunction. Some of the key 

pathways related to vascular dysfunction, including vascular growth factor receptor and 

vasculature development, are downregulated in AD. These pathways have been previously linked 

to AD pathogenesis. In fact, vascular dysfunction has been potentially shown to precede hallmarks 

of AD by contributing to parenchymal amyloid deposition, neurotoxicity, and glial activation [62]. 

This is tightly linked with CYP4A11, a major hub gene in our causal analysis. CYP4A11 produces 

20-HETE and is directly involved in vascular disfunction [35]. CYP4A11 is downregulated in AD, 

so we hypothesize it progresses AD through impaired cerebral autoregulation. 

Finally, the neuron apoptotic process emerges as a key pathway in GSEA. Plaques and 
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neurofibrillary tangles are strongly associated with massive neuronal apoptosis, especially in the 

cerebral cortex and hippocampus. This neuronal apoptosis has been evident in AD onset and 

progression [75]. Numerous genes from the causal analysis and leading-edge analysis relate to 

apoptosis, the top being DFFB. 

5. DISCUSSION 

Functional genetic biomarkers linked to AD can greatly increase timely diagnosis and intervention, 

especially in the predementia phase. Cerebrospinal fluid (CSF) biomarkers correlate well with AD 

but lumbar punctures are invasive. This means CSF is not suitable for use in large scale screening 

of AD. Similarly, positron emission tomography (PET) imaging of amyloid beta protein in the 

brain often reveals accurate prognosis, but PET imaging is expensive and impractical. On the other 

hand, blood biomarkers linked to AD are easily accessible and inexpensive allowing for large scale 

early screening. 

This study identified and evaluated a blood gene expression diagnostic classifier of AD that could 

distinguish people with AD from normal control subjects. Cross-validation results show the 

“inner” RF classifier achieved an accuracy of 99.04% and a sensitivity of 99.2% (Table 2B). The 

high accuracy and sensitivity of the model supports the possibility of powerful and minimally 

invasive tools for early clinical screening and AD prevention. This study also identifies two genes 

that have consistently been chosen as relating to AD across all our methods: SUMF1 and SMOX. 

To our knowledge, limited research has directly identified SUMF1 as a risk factor of AD.  

However, literature suggests that SUMF1 plays a key role in other neurodegenerative disorders.  

Expression of SUMF1 in brain and visceral tissues results in activation of sulfatases. In severe 

multiple sulfatase deficiency (MSD), mutations in the SUMF1 gene of astrocytes result in lower 

global sulfatase activity and defective degradation of autophagosomes [45]. Specifically, 

SUMF1−/− astrocytes have defective autophagy pathways [73]. This is prominent in both MSD 

and neurodegenerative diseases as impaired autophagy increases cytoplasmic protein aggregation 

[45]. In fact, dysfunction of the autophagy pathway in astrocytes has been linked to the 

accumulation of misfolded proteins in AD [74]. Our results theorize a prominent role of sulfatases 

through astrocyte dysfunction and impaired autophagy in AD neurodegeneration. 

Also, few existing literature identifies a correlation between SMOX and AD. Even among the 

literature that identifies a correlation, they do not expand upon SMOX’s role as a potential AD-

related gene [79][80]. We hypothesize downregulation of SMOX contributes to AD thorough 

oxidative stress.  Oxidative stress is a key hallmark of AD [64]. GSEA results suggest that this 

occurs through a downregulation in the oxidoreductase/hydrogen peroxide catabolic process which 

is the largest cluster in our enrichment map. SMOX catalyzes the oxidation of spermine [33] which 

results in the generation of hydrogen peroxide (H2O2) [65]. The imbalance of oxidants and 

antioxidants, especially reactive oxygen species (ROS) such as H2O2, is a key cause of oxidative 

stress. Severe downregulation of SMOX could cause this imbalance and progress AD pathogenesis 
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through oxidative stress. Already, the brains of patients from AD have been identified as suffering 

from a significant extent of oxidative damage where brain proteins are oxidized by free radicals, 

affecting enzymes critical to neuron and glial functions [66][67]. In fact, abnormal oxidation of 

the tau protein has been reported as a key post translational modification tau undergoes to 

aggregate into paired helical filaments (PHFs), which make up neurofibrillary tangles 

[68][69][70]. We hypothesize downregulation of SMOX may contribute to oxidative stress and 

the resulting accumulation of AD pathological hallmarks. 

Additionally, our implementation of the GFCI algorithm further reveals potential AD-related 

genes. These genes include the hub genes in our causal graph (HLA-DPB1 and CYP4A11) and 

genes that had a direct causal connection with AD with no latent confounder (SUMF1, SMOX, 

and AD). Although true causality cannot be established through our causal analysis, it does provide 

potential and hypothetical causes of AD for further research and experimentation. Additionally, 

the genes above could all be corroborated in multiple methodologies as being related to AD. Rather 

than definitively declare a genetic cause, we hope to provide genes of interest for future research 

that can be done to validate findings in the lab.  

The results of the causal analysis are already partially validated by literature searches, such as 

identifying DFFB and HLA-DPB1 as AD-related genes. DFFB has a direct causal connection with 

AD and has the top rank in GSEA’s ranked genes list. DFFB codes caspase-dependent DNase 

which triggers apoptosis through DNA fragmentation and chromatin condensation [71]. 

Previously, experimental AD models in rats have shown that glutamate antibodies, which repress 

DFFB, stabilize AD processes and decrease the intensity of the apoptotic death of neurons and 

glial cells [72]. This is consistent with our results which suggest, inversely, that upregulation of 

DFFB contributes to AD pathogenesis.  We validate these findings in addition to suggesting that 

DFFB may play an underlying role in AD in homo sapiens, not just rats. 

Additionally, previous studies have identified copy number variants (CNVs) in HLA-DPB1 in 

both the blood and brain tissue correlating with AD. HLA-DPB1’s previous association with AD 

helps to validate our model. Although HLA-DPB1 has been identified as a CNV in previous 

studies, it has not been suggested to change in expression. Our study suggests HLA-DPB1 is 

downregulated and may play a role interacting with other genes. We hypothesize HLA-DPB1 

plays a role in AD through its activation of CD4 T-Cells [78]. 

In addition to confirming previously identified genes, our causal model provides new genes of 

interest. CYP4A11 is a major hub gene in our causal analysis and a member of the CYP family, 

which produces 20-HETE [35]. 20-HETE plays a critical role in the vasculature through 

vasoconstriction, cerebral autoregulation, inflammation, and maintaining blood-brain barrier 

integrity [63]. Specifically in AD, there is a reduction in the number of micro vessels, vascular 

smooth muscle cells (VSMCs) and flattening of endothelial cells [46], suggesting AD may be 

linked to impaired cerebral autoregulation. The vessel’s ability to autoregulate with the rise and 

drop in blood pressure is achieved mainly through the myogenic response which is enhanced 
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through metabolic activators such as 20-HETE. Thus, downregulation of CYP4A11 in AD leads 

to reduced 20-HETE production and autoregulation impairment, which is a symptom of AD. Our 

study advances this with the suggestion of CYP4A11 as a potential risk factor for AD through its 

role in the creation of 20-HETE [35]. This is appropriate given our gene expression samples are 

collected from the peripheral blood. 

Next, unsupervised clustering using UMAP and HDBSCAN yielded interesting results. Clustering 

of AD individuals did not result in one cluster. Instead, the results of clustering suggest three 

separate groups of AD individuals with unique gene expression signatures. This suggests AD may 

manifest in multiple different genetic pathways. This also suggests different causes of AD, further 

supporting AD’s heterogeneity.  

The present study has some limitations regarding data and methodologies. First and foremost, our 

gene expression samples come from PBMCs and not tissue samples in the brain. This limits our 

claim that key genes identified in this study may play an underlying role in AD which is a 

neurological disorder. However, this does not detract from the main purpose of this paper which 

is to aid in the screening of AD. We provide a model and key genes in hopes that they could be 

used to develop a robust genetic screening process to detect AD early. Second, selecting genes 

based on the RF feature importance may remove correlated features. When the data has two 

features that are correlated, the RF model can not differentiate between them. Any of these 

correlated features during training and subsequent classification can be used with no concrete 

preference of a certain feature. However, this effect is reduced due to random sampling at each 

node creation. Next, the ADNI data is not equally represented and thus imbalanced. To overcome 

the imbalanced data problem, we used an oversampling technique called SMOTE. Although this 

balances the dataset, it calls into question the efficacy of the algorithm and its possibility of 

producing an overfitted model. Additionally, causal analysis can not establish true casualty as it 

only provides potential and hypothetical causes of AD for further research and experimentation. 

However, genes identified provide opportunities for further analysis in their potential role of AD. 

Finally, filtering pathways based on a nominal p-value<0.01 and an FDR<0.25 in our GSEA 

analysis does mean it is more likely for there to be false-positives due to multiple-hypothesis 

testing; however, as stated earlier, our DEGs’ function and how they play a role in AD is not the 

key takeaway. 

6. CONCLUSION 

The detection of AD at the earliest possible stage is key to support advances in AD intervention, 

prevention, and treatment. Our analysis provides a high-accuracy RF classifier that uses gene 

expression from peripheral blood to differentiate AD from normal controls with SUMF1 emerging 

as the most important feature, suggesting a role of sulfatases and astrocyte dysfunction in 

neurodegeneration. Unsupervised clustering analyzed relationships between DEGs and identified 

downregulated SMOX expression potentially playing a role in AD through a breakdown in 

regulation of polyamines. Finally, causal analysis using GFCI to analyze the DEGs’ potential 
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causal relationships with AD identified HLA-DPB1 and CYP4A11 as hub genes and DFFB as a 

potential cause of AD. HLA-DPB1 has been identified previously as a CNV associated with AD 

but our study suggests downregulation on the expression level. Additionally, repression of DFFB 

has been shown to stabilize the effects of AD, including neuron death, in rat models, but our results 

suggest it may play a role in homo sapiens as well. The genes identified in this study may play an 

underlying role in AD and neurodegeneration through their respective functions. 

This study further advances genetic screening of AD through a robust RF classifier of peripheral 

blood gene expression and provides functional genetic biomarkers and potential gene targets for 

future experimentation. In addition, the three clusters of AD individuals identified suggest AD 

may manifest in multiple different genetic pathways that can be further explored. Finally, 

integrating blood measures like proteins and metabolites along with gene expression may further 

improve biomarker identification and classification accuracy. 
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11. SUPPLEMENTARY TABLES 

 

Downregulated Upregulated 

MT1X 

TELO2 

OSBP2 

SMOX 

E2F2 

TMOD1 

SUMF1 

TMCC2 

MRTO4 

SMIM5 

DFFB 

XRCC5 

ZNF230 

AHCTF1 

FAM185A 

TGFBR1 

CNOT8 

ZNF271 

PSMD6 

RSF1 

Supplementary Table 1. GSEA Ranked Genes List  

(A) Top 10 downregulated and upregulated genes form GSEA ranked genes list 

 

Results of Random Forest Classification: 4 diagnosis groups  

  Precision Recall F1-score Support 

AD  0.969925 0.992308 0.980989 260 

CN  0.388489 0.415385  0.401487  260 

EMCI  0.518519 0.484615 0.500994  260 

LMCI  0.509881 0.496154 0.502924 260 

Macro avg  0.596703  0.597115 0.596598 1040 

Weighted avg  0.596703  0.597115  0.596598  1040 

Accuracy  NA NA 0.597115  1040 
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Results of Random Forest Classification: 2 diagnosis groups 

  Precision Recall F1-score Support 

AD  0.969925  0.992308  0.980989  260 

Control  0.997416  0.989744  0.993565  780 

Macro avg  0.983670  0.991026  0.987277  1040 

Weighted avg  0.990543  0.990385  0.990421  1040 

Accuracy  NA NA 0.990385  1040 

 

Supplementary Table 2. 250 gene Random Forest Classifier (A: Top) (B: Bottom) 

(A) Results when comparing all 4 groups: CN, EMCI, LMCI, and AD 

(B) Results when binarizing results: AD and Control 

 

  Count % Female Age 

AD  43 0.40 +/- 0.15 75.61 +/- 2.91 

EMCI  215 0.47 +/- 0.07 70.95 +/- 1.00 

LMCI  226 0.37 +/- 0.06 73.35 +/- 0.94 

CN  260 0.52 +/- 0.06 74.37 +/- 0.67 

 

 

  Count % Female Age 

AD  43 0.40 +/- 0.15 75.61 +/- 2.91 

Control  701 0.46 +/- 0.04 72.99 +/- 0.51 

 

Supplementary Table 3. ADNI Demographics (A: Top) (B: Bottom) 

(A) Demographics of all 4 groups: CN, EMCI, LMCI, and AD 
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(B) Binary Demographics: AD and Control 

 

12. SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Random Forest Metrics 
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(A) Heatmap depicts results of a 5-fold cross-validation of the 25 gene RF classifier comprising 4 

classes. Individuals that fall on the diagonal are classified according to their annotation (57.79% 

of individuals). Individuals that do not fall on the diagonal are mis-classified as a different 

diagnosis. 

 

(B) Confusion Matrix depicts results of a 5-fold cross-validation of the 25 gene RF classifier 

comparing AD to Control (CN, EMCI, LMCI). The sensitivity of detecting AD (true positive rate) 

is 96.9%. The specificity of detecting AD (true negative rate) is 97.95%. This data supports the 

high accuracy of the machine learning classifier. 

 

(C) Receiver operating characteristic curve for RF, Neural Network, Support Vector Machine, 

Gaussian Naive Bayes, and Logistic Regression on the top 250 gene’s in feature importance. 

 

(D) Line plot shows feature importance score of genes in the 250 gene RF classifier. Most of the 

feature importance is captured by the first 25 genes. 

 

(E) Line plot shows comparison of gene rank (according to feature importance) and -log10(Wilcox 

p-value). The trendline shows in general the higher the feature importance a gene has the lower its 

p-value. 
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Supplementary Figure 2. UMAP Metrics 
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(A) Connectivity visualization of UMAP (as in Figure 4D) shows connections between 

individuals. The UMAP structure was simplified down to a weighted graph and the connectivity 

in the manifold is visualized with respect to the embedding. 

(B) Edge-bundled connectivity visualization of UMAP (as in Figure 4D) shows main connections 

between individuals. Edge-bundling curves edges and groups nearby curves together to help 

convey structure. 

(C) UMAP visualization (as in Figure 4D) is overlaid with RF prediction scores. The further away 

an individual was from the main cluster the more confident RF was in its prediction of AD. These 

plots show that UMAP aligns well with the RF predictions. 

(D) UMAP visualization (as in Figure 4D) is overlaid with the relative expression levels of 

ATMIN, CREM, CVR1C, and TMCC2. These genes were identified as marker genes for the 

clusters AD1, AD2, AD3, and Control respectively using genes with the lowest p-value from 

wilcoxon rank sums test. These plots exemplify specific marker genes different among the three 

AD populations. 

(E-G) UMAP visualization (as in Figure 4D) is overlaid with diagnostics (Neighborhood Jaccard 

Index, Local Dimension, and PCA). For PCA, the first 3 PCs were converted into RGB values and 

overlaid. These plots confirm that UMAP maintains the global structure of the data.  
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Supplementary Figure 3. Enriched GO Terms 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.15.426891doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426891


40 

(A) Bar graph depicts the top 10 highly enriched pathways in AD according to the adjusted q-

value. Length of the bar represents the gene set size while the color represents its q-value. 

(B) Bar graph depicts the top 10 highly enriched pathways in CN according to the adjusted q-

value. Length of the bar represents the gene set size while the color represents its q-value. 

(C) Enrichment plots for 6 pathways downregulated (Left, Right) and 3 Pathways upregulated 

(Center) in AD. The horizontal axis are genes in order of their position in the ranked gene list and 

vertical lines represent gene hits.  
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