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Abstract 

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A 

growing number of studies have focused on immunological determinants to develop better biomarkers for 

therapies. 

Aim: The dynamics of the insurgence of immunity is at the core of the both SARS-CoV-2 vaccine 

development and therapies. This paper addresses a fundamental question in the management of the infection: 

can we describe the insurgence (and the span) of immunity in COVID-19? The in-silico model developed here 

answers this question at individual (personalized) and population levels.  

We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity 

to the ACE2 receptor and age in the artificially infected population on the course of the disease. 

Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of 

infected individuals with age-dependent varying degree of immune competence. We use a parameter setting 

to reproduce known inter-patient variability and general epidemiological statistics. 

Results: We reproduce in-silico a number of clinical observations and we identify critical factors in the 

statistical evolution of the infection. In particular we evidence the importance of the humoral response over 
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the cytotoxic response and find that the antibody titers measured after day 25 from the infection is a prognostic 

factor for determining the clinical outcome of the infection. 

  

Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of 

simulating the immune response at individual and population levels. The model developed is able to explain 

and interpret observed patterns of infection and makes verifiable temporal predictions.  

Within the limitations imposed by the simulated environment, this work proposes in a quantitative way 

that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability 

in the infecting viral load and immune competence in the population.  

In this work we i) show the power of model predictions, ii) identify the clinical end points that could be 

more suitable for computational modeling of COVID-19 immune response, iii) define the resolution and 

amount of data required to empower this class of models for translational medicine purposes and, iv) we 

exemplify how computational modeling of immune response provides an important light to discuss hypothesis 

and design new experiments. 
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1 Introduction 

The global pandemic set up by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the 

early months of the year 2020 has reached considerable proportions and, to date, does not show signs of 

slowdown when considered globally. In fact, as of 9:45am CET, 19 December 2020, there have been 

73,996,237 confirmed cases of COVID-19, including 1,663,474 deaths, reported to WHO  

(https://covid19.who.int). 

The mortality rates, of the SARS-CoV-2 greatly differ across the globe, ranging from 0.5 to 13% (Johns 

Hopkins University, https://coronavirus.jhu.edu/data/mortality), as a result of many 

factors including the ability to react to the pandemic by the various national health systems. 
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The COVID-19 disease has a quite variable clinical presentation: while the majority of individuals present 

with a very mild disease, often asymptomatic, a few patients develop a life-threatening disease requiring 

intensive care. The strongest determinant of disease severity is age, with children presenting almost exclusively 

with mild disease, while individuals over 70 years of age are much more likely to develop severe COVID-19 

(Reference?). This variation is likely due to both host and pathogen factors. Host factors may include 

differences in the immune response due to genetic determinants and immunological history. On the other hand, 

pathogen factors include transmission, entry and spread within the host, cell tropism, virus virulence and 

consequent disease mechanisms. 

To better understand what impact these factors may have in the differences observed in the host response 

to SARS-CoV-2, we set up the analysis of the dynamics generated by a computer model that considers both, 

the magnitude of the viral harm, and the subsequent innate and adaptive response set up to attempt achieving 

control of the infection. Thus we used computer simulations to create a virtual cohort of infected individuals 

to study the effects on the pathogenesis of both host and pathogen factors. Note that this approach goes beyond 

the machine learning paradigm as the knowledge is generated through a set of equations/algorithms confirmed 

by the scientific literature and by past models. The simulation allows systems-level, multi evidence analyses 

to simultaneously capture the dynamics of the major immune cell populations and the many protein mediators 

by which cells communicate, in order to sort out the determinants of disease severity. 

2 Simulating SARS-CoV-2 course of events in the host 

The simulation model that we used in this study, C-IMMSIM, is a derivation of an established software 

system for the simulation of the immune response to generic pathogens [1]. It is equipped with a fundamental 

innate immune response consisting in macrophages, dendritic cells and natural killer cells, and represents the 

adaptive immunity by B lymphocytes, plasma B antibody-producing lymphocytes, CD4 T helper and CD8 

cytotoxic T lymphocytes. It is a polyclonal model as it embodies the primary sequences of binding sites of B-

cell receptors (BCRs) and T-cell receptors (TCR), as well as the peptides and epitopes of the infectious agent 

(i.e., the SARS-CoV-2 in this case). 
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Figure 1 Diagram of the in-silico model components and accepted input. The model embodies functions 

to calculate the clonal affinity to precomputed viral peptides of the selected pathogen (defined by its primary 

sequence) with respect to a specific HLA set. The population-dynamics of the elicited lymphocytes clones, 

resulting from the infection by the SARS-CoV-2, provides a varying degree of efficiency of the immune 

response which, as it turns out, correlates with the parameters defining both the immunological competence 

(IC) of the virtual host and the virus definition. 

It represents a portion of, i) primary lymphatic organs where lymphocytes are formed and mature (i.e., 

mainly the red bone marrow and the thymus gland), ii) secondary lymphoid organs (e.g., a lymph node), which 

filters lymph, and where naïve B and T-cells are presented to antigens, and, iii) peripheral tissue which is 

dependent on the pathogen considered (in this case the lung). 

While primary organs are just the source of lymphocytes equipped with a randomly generated receptor 

(actually only its complementarity-determining region, CDR), the secondary organs and the tissue are mapped 

onto a three-dimensional Cartesian lattice. The thymus is implicitly represented by the positive and negative 

selection of immature thymocytes [2] before they enter the lymphatic system [3], while the bone marrow 

generates already immunocompetent B lymphocytes. 

C-IMMSIM incorporates several working assumptions or immunological theories, most of which are 

regarded as established mechanisms, including the clonal selection theory of Burnet [4], [5], the clonal deletion 

theory (e.g., thymus education of T lymphocytes) [2], [6], the hypermutation of antibodies [7]–[9], the 

replicative senescence of T-cells, or the Hayflick limit (i.e., a limit in the number of cell divisions) [10], [11], 

T-cell anergy [12], [13] and Ag-dose induced tolerance in B-cells [14], [15], the danger theory [16]–[18], the 

(generally unused) idiotypic network theory [19], [20]. 
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Being more a general-purpose modeling platform rather than just a model, C-IMMSIM lend itself to 

characterise the role of the immune response in different human pathologies such as viral infections (e.g., HIV 

or EBV [21], [22]), cancer immuno-prevention [23], [24], type 1 hypersensitivity [25] and the chronic 

inflammation associated to type 2 diabetes [26] as well as specific aspects of the immune dynamics such as 

lymphocytes homing in lymph nodes (Baldazzi et al. 2009), the gene regulation leading to cell differentiation 

[27], clonal dominance in heterologous immune responses [28] and also vaccination-eliciting fish immunity 

(Madonia et al. 2017). Relevant to the present study, the model has recently being used to simulate the response 

to a multi-epitope vaccine against SARS-CoV-2 [29], [30]. 

In C-IMMSIM each simulated time step corresponds to eight hours of real life. Cells diffuse randomly in 

the represented volume and interact among them. Upon specific recognition through receptor bindings, they 

perform actions which determine their functional behaviour. These actions are coded as probabilistic rules and 

define the transition of the interacting cell entities from one “condition” to another. In fact, each rule is 

executed only if the parts involved are in specific states (e.g., naïve, active, resting, antigen-presenting).  

Besides cell-cell interaction and cooperation, this model simulates the intra-cellular processes of antigen 

uptake and presentation. Endogenous antigens are fragmented and combined with MHC class I molecules for 

presentation on the cell surface to CTLs’ receptors (this is the cytosolic pathway), whereas exogenous antigens 

are degraded into small pieces, which are then bound to MHC class II molecules for presentation to T helpers’ 

receptors (this is the endocytic pathway). 

The stochastic execution of the algorithms coding for the dynamical rules, results in a sequence of 

cause/effect events culminating in the production of effector immune cells and setup of immunological 

memory. The starting point of this series of events is the injection of an antigen which, here, consists of the 

virus. This may take place any time after the simulation starts (the sequence of events of the SARS-CoV-2 

simulation is reported in Appendix A). Initially the system is “naïve” in the sense that there are neither T and 

B memory cells nor plasma cells and antibodies. Moreover, the system is designed to maintain a steady state 

of the global population of cells (homeostasis), if no infection take place.  

Besides the parameters defining the characteristics of the virus related to attachment, penetration, 

replication and assembly (i.e., its fitness), the SARS-CoV-2 virus in this model is defined as a set of B-cell 

epitopes and T-cell peptides consisting of amino acid 9-mers and defining its antigenicity. If the infection is 

stopped or becomes persistent or even kills the virtual patient it depends on the dose of the virus, its fitness, 

and the strength of the immune response aroused. All of these variables determine if, and to what degree, the 

success of the immune system requires the cooperation of both the cellular and the humoral branch, as shown 

in past simulation studies [31]. 

With respect to previous version of the model described in [32],  the most important difference is that to 

improve the peptide-prediction performance, rather than using position-specific-score-matrices (PSSM) to 

weight the binding contribution of the amino-acids composing the protein segments in the bounds [33], [34], 
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we resort to pre-computed ranked lists of T-cell epitopes calculated with the original neural network 

NetMHCpan method [35]–[37]. This feature, which is described below, follows the choice of a definite HLA 

set. 

2.1 Selecting the HLA haplotype 

The C-IMMSIM model accounts for differences in the HLA haplotype when determining which peptides 

are presented by antigen presenting cells. To this end, it takes in input a list of such peptides for each HLA 

molecule considered together with a propensity of each peptide to bind to it. This list is computed by using 

third party immunoinformatics tools as described in the next section 2.2. 

The “HLA haplotype freq search” in the “Allele Frequency Net Database” 

(http://www.allelefrequencies.net) was used in order to select two HLA-A, two HLA-B and 

two DRB alleles which are most prevalent in US population [38]. The result pointed to the following alleles: 

HLA-A*02:01, HLA-A*24:02, HLA-B*35:01, HLA-B*40:02, DRB1*07:01 and DRB1*15:01. 

2.2 Computing the peptide immunogenicity 

The strain of SARS-CoV-2 used in this study corresponds to the reference sequence NCBI Reference 

Sequence: NC_045512.2. The primary structure of these proteins have been used to identify cytotoxic T 

peptides (CTL peptides) and helper T peptides (HTL peptides). To this aim we have employed two 

immunoinformatics tools. In particular, for the definition of CTL epitopes, the “ANN 4.0 prediction method” 

in the online tool MHC-I binding prediction 

(http://tools.iedb.org/analyze/html/mhc_binding.html) of the IEDB Analysis Resource 

was used for the prediction of 9-mer long CTL peptides which had an affinity for the chosen set of HLA class 

I alleles (i.e., HLA-A*02:01, HLA-A*24:02, HLA-B*35:01 and HLA-B*40:02) [39]–[41]. The peptides were 

classified as strong, moderate and weak binders based on the peptide percentile rank and IC50 value. Peptides 

with IC50 values <50 nM were considered to have high affinity, <500 nM intermediate affinity and <5000 nM 

low affinity towards a particular HLA allele. Also, lower the percentile rank, greater is meant the affinity [39]–

[41]. The list of peptides is reported in the Appendix B. 

For what concerns the HTL peptides, the NetMHCIIpan 3.2 server 

(www.cbs.dtu.dk/services/NetMHCIIpan) was used for the prediction of 9-mer long HTL peptides 

which had an affinity for the HLA class II alleles (i.e., DRB1*07:01 and DRB1*15:01) used in this study [42]. 

The predicted peptides were classified as strong, intermediate and non-binders based on the concept of 

percentile rank as given by NetMHCII pan 3.2 server with a threshold value set at 2, 10 and >10% , 

respectively. In other words, peptides with percentile rank ≤2 were considered as strong binders whereas a 

percentile rank between 2 and 10% designate moderate binders; peptides with percentile score >10 are 
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considered to be non-binders [42]. The list of CTL and HTL peptides and the relative affinity score is reported 

in the Appendix C. 

2.3 Quantifying the immunological competence 

It is widely accepted that ageing is accompanied by remodelling of the immune system. With time, there 

is a decline in overall immune efficacy, which manifests itself as an increased vulnerability to infectious 

diseases, a diminished responses to antigens (including vaccines), and a susceptibility to inflammatory 

diseases. The most important age-associated immune alteration is the reduction in the number of peripheral 

blood naïve cells, accompanied by a relative increase in the frequency of memory cells. These two alterations, 

are extensively reported in the literature and account for the immune repertoire reduction [43], [44]. Along 

with the process called "inflamm-aging", the reduction of immune repertoire is considered the hallmark of 

immunosenescence [45]. 
To model the reduction of immune efficacy we first defined the parameter “immunological competence” 

IC∈(0,1] and assumed it in a simple linear relationship with the age. Specifically we set 𝐼𝐶 ≡ 𝐼𝐶(𝑎𝑔𝑒) = −𝛼 ∙

𝑎𝑔𝑒 + 1 with the value of the parameter 𝛼 = 45 ∙ 10!" determined using epidemiological data as described 

below. Given the age, the parameter IC is then used to modulate both innate and adaptive immunity as follows: 

i) the phagocytic activity of macrophages and dendritic cells, represented by a probability to capture a viral 

particle, is rescaled respectively as 𝑝# = 𝐼𝐶 ∙ 𝑢 and 𝑝$% = 𝐼𝐶 ∙ 𝑣, where 𝑢~𝑈[',)] and 𝑣~𝑈[+×',+×)] are two 

random variables uniformly distributed in the ranges [𝑎, 𝑏] and 	[5 ∙ 𝑎, 5 ∙ 𝑏] with 𝑎 = 25 × 10!" and  𝑏 =

10!-; ii) as for the adaptive immunity it is adjusted according to the immunological competence parameter IC 

by decreasing the lymphocyte counts (hence B, Th and Tc) to reflect a reduction in the repertoire of “naïve” 

cells with immunological history due to accumulation of memory cells filling the immunological compartment. 

In particular, the number of white blood cells 𝑁 is computed as 𝑁~𝐼𝐶 ∙ 𝒩(𝜇, 𝜎-) = 𝒩(𝐼𝐶 ∙ 𝜇, 𝐼𝐶- ∙ 𝜎-) where 

𝒩(𝜇, 𝜎-) is a normal distribution with average 𝜇 and standard deviation 𝜎 (for each lymphocyte type B, Th 

and Tc) chosen to reflect the reference leukocyte formula for an average healthy human adult (see Figure 2) 

[46]. 
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Figure 2 Modified lymphocytes counts by age class. Given the chosen value of 𝛼, the immunological 

competence is less than one, therefore by increasing the age, the cell numbers are drawn by a normal 

distribution with reduced mean value 𝜇 ∙ 𝐼𝐶(𝑎𝑔𝑒) and reduced variance (𝜎 ∙ 𝐼𝐶(𝑎𝑔𝑒))!.  

2.4 Adapting the model to SARS-CoV-2 characteristics 

The infection and the dynamical features of the SARS-CoV-2 viral strain has been characterised by two 

parameters: i) 𝑉. corresponding to the infectious viral load at time zero, and, ii) the affinity of the virus spike 

protein to the ACE2 receptor on target cells, called 𝑝/. In particular, 𝑉.~𝑈[0!,1!] has been taken randomly in 

the interval [𝑐2 = 5, 𝑑2 = 5 ∙ 10+], while 𝑝/~𝑈[0",1"] in the interval [𝑐- = 10!3, 𝑑- = 10!2]. 

Upon choice of the age class determining the immunocompetence value IC(age) hence pA and pDC as well 

as the lymphocyte counts, the simulations depict the immune-virus competition eventually culminating in a 

successful, or not, virus-clearing response controlling its growth. Sometimes this control is not perfectly 

efficient. In those cases the result is a longer viral persistence possibly going much beyond the length of the 

observation period of 30 days (cf. Figure 4). 

The sequence of events from viral infection leading to a full fledged immune response is detailed in the 

Appendix A. At each time step of the simulation C-IMMSIM dumps all variables allowing for a detailed analysis 

of the dynamics. A full output example of a simulation is reported and described in the Appendix D. 

3 Modeling a representative cohort of infected individuals 

We have simulated a large number of infections by varying the parameters identifying both the viral 

characteristics and the individual immunological competences. The seven age classes considered were 0-9, 

10-39, 40-49, 50-59, 60-69, 70-79 and 80+. As already mentioned, the age class determines the 

immunocompetence parameter 𝐼𝐶 which, in turn, sets 𝑝#  and 𝑝$%  as well as the lymphocytes counts in the 
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in-silico individual, we can characterize each simulation by the set of parameters (𝐼𝐶(𝑎𝑔𝑒), 𝑉., 𝑝/	). 

Moreover, due to the stochasticity of the model depending on the random number realisations, each simulation 

corresponds to a different trajectory in the space of the variables. It follows that each simulation coincides with 

an in-silico patient with variable immunological characteristics (𝐼𝐶) and, at the same time, infected by a 

slightly different viral burden (𝑉. and 𝑝/). 

The intervals within which these parameters vary have been chosen to reproduce the age-class incidence 

of disease severity of infected individuals. The age-class incidence varies wildly among regions mostly due to 

a different definition of COVID-19 related deaths. Moreover, due to the lack of confirmation of the causes of 

death in many cases in periods of high emergency as that of March/April 2020 in Italy, these rates should not 

be considered strictly but rather indicative of the negative exponential-like relationship of the death incidence 

with age. Reference values we used were the fatality rates from the the Chinese Center for Disease Control 

and Prevention (CDC) as of 17th February, the Spanish Ministry of Health as of 24th March, the Korea Centers 

for Disease Control and Prevention (KCDC) as of 24th March, and the Italian National Institute of Health, as 

presented in the paper by Onder et al. (2020) as of 17th March [47], [48]. 

To reproduce this age-related incidence of in-silico cases we linked the simulated viral load at a certain 

time to the clinical status (clinical endpoint). This has been done according to the rationale that a patient whose 

viral load is still quite high after thirty days from infection can be considered at very high risk of death. In fact 

in most mild cases, the clinical signs and symptoms (mostly fever and cough) have been reported to resolve 

within 3 weeks from the diagnosis (which translates in approximately 30 days from infection). Instead after 3 

weeks several authors have described severe cases with progressive deteriorating multi-organ dysfunction with 

severe acute respiratory dyspnea syndrome, refractory shock, anuric acute kidney injury, coagulopathy, 

thrombocytopenia, and death [49]. 

3.1 Stratifying the in-silico cohort of patients 

The analogy of some simulation variable to a realistic clinical endpoint allow us to stratify the in-silico 

patients for a more concrete interpretation of the results. We were able to classify the virtual patients on the 

basis of the viral load observed at day thirty (indicated by 𝑉3.) and a threshold 𝜃 in one of the three classes:  

• Critical: if 𝑉3. > 𝜃, namely, the viral load at day 30 is still high; this class includes weak and late 

responders;  

• Partially recovered: those who are still positive but have a low viral load, meaning that the immune 

response is controlling the viral replication (i.e., 0 < 𝑉3. ≤ 𝜃); note that this class includes the asymptomatic;  

• Fully recovered (or just Recovered): those who have cleared the virus (i.e., 𝑉3. = 0).  

According to this definition by choosing the cutoff 𝜃 =120 viral particles per micro-litre of simulated 

volume, we obtain the stratification of the virtual individuals shown in panel A of Figure 3. Altogether, i.e., of 

all in-silico individuals, we get 4.3% of critical cases (broken down in age-classes in panel A), 46.8% of 
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partially recovered (panel B), and 48.8% recovered cases (panel C). These figures sound very much in line 

with current epidemiological statistics when considering that the recovered cases here simulated include 

asymptomatics [48].   

 

  

Figure 3 Age incidence of stratified in-silico patients (𝜃 = 120 virions per micro liter). Percentages of critical 

cases are in agreement with [48]. 

This results shows an interesting and surprisingly high fraction of in-silico patients in the partially 

recovered class. This class, in fact, includes patients that, at the end of the simulated period of thirty days, are 

still positive albeit manifesting an active immune response, regardless being asymptomatic or not. This 

question is discussed below. 

These special cases can be better examined in Figure 4, which shows four distinct exemplifying runs with 

different outcomes. In the panel A the viremia is shown as a function of time. Red lines correspond to 

individuals who reach the critical condition 𝑉3. > 𝜃 thus falling in the class critical. The green line corresponds 

to a viral clearance corresponding to a fully recovered case, and the blue line shows a situation in which the 

virus is not completely cleared but stays below the threshold value 𝜃. This case corresponds to one of what we 

call partially recovered as it represents virtual individuals that produce an immune response (cf. same figure, 
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panel B showing the corresponding antibody titers) which turns out to be insufficient to clear the virus. These 

“unresolved infections” include asymptomatic cases and are worth the further analysis described below. 

To note that the two examples of critical outcome (red curves) originate from a quite different initial viral 

load. Also to note that the fully recovered (green) case starts with a viral load that is higher than one critical 

case, still the immune response manage to control the infection. The blue curve shows a partially recovered 

case which greatly decrease the viral load (inset plot of panel A) but does not clear it completely.  

  

Figure 4 Examples of four in-silico cases with different outcome. Panel A shows the viral load while panel 

B the corresponding antibody titers. Red lines show critical cases; blue a partially recovered case; green a 

fully recovered case. 

3.2 How the model explains symptoms 

It is worth to clarify that the term “symptom” has no meaning in the in-silico framework until we specify 

the link between model variables and possible clinical endpoints. Also we should note that we have no concept 

of comorbodity here that would help in defining the “status” of the virtual patient. To overcome this limitation, 

besides the viral load at day 30, we think up the following quantities (or variables) as clinical endpoints: (a) 

the damage in the epithelial compartment, namely, percent of virus-target cells that are dead at the time of 

observation as surrogate marker of vascular permeability; (b) the concentration of pyrogenic cytokines as a 

surrogate marker of fever, i.e., Prostaglandins TNFa, IL-1 and IL-6 causes fever people get varying degree of 

severity with COVID-19. 
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Figure 5 Distribution of epithelial damage 𝜙 of the cohort cases classified in critical and non-critical. A 

delimiting value 𝜙" = 0.63 separates well the two classes. 

Of these two potential surrogate marker of criticality, the first appear more appropriate. In fact, while the 

amount of pyrogenic cytokines (surrogate clinical endpoint b.) correlates with the severity of the disease, the 

most striking difference in the critical cases versus the non critical (i.e., recovered plus partially recovered) is 

seen when comparing the accumulated damage in the epithelial compartments (𝜙) computed as the fraction of 

depleted epithelial cells due to the immune cytotoxicity of SARS-CoV-2 infected cells during the whole 

observation period (surrogate clinical endpoint a.),  

𝜙 = 1 −
1

𝑇 ∙ 𝐸(0)
L𝐸(𝑡)𝑑𝑡
4

.

 (1) 

where 𝐸(𝑡) is the epithelial count per micro litre of simulated volume and T is the time horizon of 30 days 

(note that 𝜙 ∈ [0,1]). Indeed, when we plot the distribution of 𝜙 for the cases in the critical and non critical 

(i.e., partially recovered plus fully recovered)  classes separately we obtain what shown in Figure 5. The plot 

clearly shows that for critical in-silico patient the damage is much more pronounced than for non critical ones. 

This prompt us to use the threshold 𝜙0 = 0.63 to set apart patients which have mild infections (about 80% as 

in reality [50]–[52]) to those having severe disease (15% with dyspnoea, hypoxia, lung changes on images 

[53]) or critical illness (5%, respiratory failure, shock, multi organi dysfunction, cytokine storm syndrome 

[54]), that is, we label patients with 𝜙 ≥ 𝜙0 as symptomatic while those with 𝜙 < 𝜙0 asymptomatic. 

According to this further stratification patients who are still positive (i.e., 0 ≤ 𝑉3. < 𝜃) and have no symptoms 

(i.e., 𝜙 < 𝜙0) account for about 44% of the simulations which is in line with current estimates of asymptomatic 

incidence (Italian Ministry of Health Report, in Italian 
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoC

oronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=4998). 
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3.3 A high viral load carries a serious risk 

We tested the correlation between the antigen abundance (or infective viral load V0) and the severity of the 

infection. The Mann-Whitney-Wilcoxon (MWW) test shows significant (i.e., p-value< 10!3) difference 

between infecting viral load V0 in the three classes critical, partially recovered, recovered. In particular we 

find that a higher V0 is a strong correlate of disease severity [55]. Of interest is the fact that there is no 

significant difference among age groups, that is, V0 is not predictive of the disease severity with respect to the 

age [56] (MWW test p-value>0.05). 

3.4 IL-6 correlates with disease severity but youngers generate more 

Significantly, in most critically ill patients, SARS-CoV-2 infection is associated with a severe clinical 

inflammatory picture based on a severe cytokine storm that is mainly characterised by elevated plasma 

concentrations of interleukin 6 [57]. In this scenario, it seems that IL-6 owns an important driving role on the 

cytokine storm, leading to lung damage and reduced survival [58].   

   

Figure 6 IL-6 concentration (log-scale) correlates positively with the viral load measured at the peak (i.e., 

its maximum value during the simulated period). The correlation is positive for all groups, critical, partially 
recovered and recovered with no significant difference in the degree of correlation. 

The simulation agrees on this finding as the plot in Figure 6 shows. Plotting the peak value of the viral 

load (i.e., the maximum value attained in the observed period) versus the logarithm of the integral of IL-6 over 

the whole period (cf. eq(2) in next section 3.5), we see a positive correlation no matter the outcome (recovered, 

partially recovered, critical).  
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For all age-classes, a critical clinical course is associated to a significantly higher concentration of pro-

inflammatory cytokine IL-6. Panel B of Figure 7 shows the same information for all age-classes lumped 

together and the difference is statistically significant. The cytokine concentration on the y-axis is calculated as 

the integral over the whole simulated period (definition in eq(2) of section 3.5). The positive correlation 

between inflammation and severity of the clinical course is a consequence of the struggle of the immune system 

to cope with the infection. However what panel A of Figure 6 reports is a generic higher production of IL-6 in 

younger individuals compared to elders. The explanation of this outcome becomes visible following the line 

of consequences starting from a stronger cytotoxic activity (see panel B of Figure 12 below) that killing 

infected cells cause a stronger release of danger signal to which macrophages respond by secreting IL-6. Since 

younger have a higher immunological competence (IC), they respond with both stronger cytotoxic response 

and better innate (i.e., macrophage) activity. The result is the somehow counterintuitive observation that while 

younger individuals are more inflammed, they have a smaller propensity to experience severity of the disease.  

  

Figure 7 IL-6 with respect to age and severity of the disease. Inflammation correlates positively with 

severity of the disease (MWW test, p-value< 10#$) [59]. Here IL-6 is the area under the curve, as defined in 

section 3.5. 

3.5 Younger individuals deal with the virus producing more 
cytokines 

What observed in the production of IL-6 in younger individuals extends to all cytokines produced during 

the response to the inflammation. In fact we find that, in general, cytokines’ cumulative production during the 

whole simulated period correlates inversely with the age. Calling 𝑐5 the concentration of cytokines x in the 

simulated volume, where x is one of IL-6, D, IFNg and IL-12, we define 
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𝜎5 = L 𝑐5(𝑡)𝑑𝑡
4

.
 

(2) 

the cumulative value of cytokines in the whole observation period. Figure 8 shows 𝜎678, 𝜎$, 𝜎69:;, and	𝜎672- 

with respect to age.  What Figure 8 shows is that there is a clear reduction of cytokines’ production with age. 

This, similarly to what discussed in the previous section, is due to the reduced immune activity which indeed 

is determined by a reduced immunological competence with the age [60]. To justify the apparent contrast of 

this finding with the fact that elder acute infected individuals are more prone to experience a cytokine storm 

we should openly regard to one of the limitation of the model, namely, the lack of further cytokine feedbacks 

that are activated during the course of an extended pneumonia.  

 

 

Figure 8 Cytokines. Shown IL-6, Danger signal, IFNg and IL-12 per each age class. All showing the same 

reduction with respect to increased age. 

3.6 IFNg concentration is higher in milder courses of the infection  

The expression of IFNg by CD4 tended to be lower in severe cases than in moderate cases as shown in 

panel A of Figure 9 and agrees with [61].   

(A) (B) 

(C) (D) 
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Figure 9 Severe cases are associated to a lower concentration of IFNg. IFNg is measured as the area 

under the curve (i.e., the integral in the simulation time window).  

The inverse correlation of interferon-gamma (IFNg) with disease severity is observed in all age groups 

(panel A and also in panel C when summing all ages-classes). Interestingly, recovered and partially recvovered 

do not show a meaningful difference when compared to the critical cases (panel C).  

IFNg is released by natural killer (NK) cells upon bystander stimulation by danger signals (Rule n.5 in 

Appendix A) which, in turn, is released by infected/injured epithelial cells upon viral infection (Rule n.3) and 

when killed by cytotoxic cells (Rule n.18). This analysis lead us to state that a prompt activation of NK cells 

in younger individuals due to a higher immunological competence, and a stronger cytoxic response killing 

infected cells, controls the “acute” production of danger signal impacting on the production of IFNg.  
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3.7 Cytokine storm goes with symptoms 

If we use the cumulative value of inflammatory cytokines as variable, namely, 𝜎69:< + 𝜎678 + 𝐷 + 𝜎4:9' 

(i.e., the sum of the integrals) and we use the accumulated damage in the epithelial compartments, that is, the 

fraction of depleted epithelial cells due to the immune cytotoxicity 𝜙 defined in eq(1) (cf. section 3.2) as the 

discriminating criteria  between symptomatic and asymptomatic, we observe what is shown in Figure 10. 

  

Figure 10 Compare the “cytokine storm” in the two groups asymptomatic 𝜙 < 𝜙" and symptomatic 𝜙 ≥ 𝜙". 

Panel A shows the histogram, panel B compares the wiskers. The difference is statistically significant (p-

value< 10#$).   

Compared with asymptomatic cases, the symptomatic ones more frequently have a markedly higher levels 

of inflammatory cytokines. The difference of the virtual patients in the two classes is statistically significant 

(MWW test, p-value< 10!3), which is in line with the clinical finding that show higher inflammatory level in 

severe disease progressions [61]. This result seems to contrast what stated in section 3.5, namely that younger 

individuals produce more cytokines but have a less-severe course of the disease. However the explanation 

provided by the simulation is that those who deal with the infection more rapidly (those including 

asymptomatics) produce, overall, a smaller amount of cytokines, thus are at lower risk of having a “cytokine 

storm”. On the other hand, an inconclusive immune response chronicisizing the inflammation results in 

pronounced symptoms (e.g., extended epithelial damage) and ultimately in a cytokine storm. 

3.8 Why the immune response is quicker in younger individuals 

It has been suggested that in younger individuals several factors contribute to the lower numbers of patients 

obseved with severe disease, namely: lower number of ACE receptors, overlapping immunity against 

coronaviruses and a more efficient intact immune system. 
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Figure 11 Panel A shows for each age class, the days elapsed from infection until the viral load starts to 

decrease. This is indicated as 𝑡%!"# = max
&
{𝑉(𝑡)} since it means the distribution of the time when the antigen 

reaches the peak. It is a measure of how quick the immune defences are mobilised, hence its speed. Panel B 

shows the corresponding distribution of 𝑡' = min
&
{𝑉(𝑡) ≤ 𝜃}, namely the time it takes for the immune response 

to bring the viral load to fall below 𝜃. It is a measure of the efficiency of the immune response in clearing the 

infection. 

Indeed Figure 11 shows that the immune response is quicker in younger virtual individuals compared to 

elder ones. The speed of the immune response is calculated in terms of the time (in days) the viral load 𝑉(𝑡) 

reaches its maximum (indicated 𝑡𝑉𝑚𝑎𝑥 where 𝑡: 𝑉(𝑡) = 𝑉()* and 𝑉()* = max
&
𝑉(𝑡)) and starts to decline due to 

the immune response. Panel A of Figure 11 shows the distribution of 𝑡𝑉𝑚𝑎𝑥 for each age class. Clearly, younger 

individuals develop a faster response and consequently the virus is cleared earlier. This is shown in panel B 

which plots the distribution of the time (in days) it takes the immune response to decrease the viral load below 

the threshold 𝜃 whenever this happen (the cases for which 𝑉(𝑡) > 	𝜃, ∀𝑡, are not counted in this statistics). 

Panel B is in line with the fact that younger individuals mount a quicker immune response that is generally 

more efficient than those in elder people thus eradicating the virus in a shorter time.  

3.9 The key role of the humoral response 

Figure 12 shows that younger individuals have a higher production of antibodies when compared to elder 

individuals. This is evidente for both critical and recovered (partial or fully recovered) individuals. However 

the most striking observation when considering the difference between recovered and critical cases is the gap 

in antibody titers present in virtually all age classes (panel A). This indicates a strong protective role of the 

humoral response making a split between recovered and critical patients. 

Panel B of Figure 12 shows the corresponding statistics for the cytotoxic T cell (peak value) count per age-

class and critical status. This plot consistently evidences that youngers have a stronger response than elders. 

(A) (B) 

𝑡>&'( 𝑡? 
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Interestingly, in contrast to the humoral response, in all age classes the cytotoxic response in critical individuals 

is higher than in recovered ones revealing the attempt of the immune system to counterbalance the unefficacy 

of the humoral response. 

  
Figure 12 The relationship between magnitude of the immune response and age is maintained also when 

looking at antibodies and cytotoxic cells. Panel A shows the antibody titers for all age classes comparing 
recovered with critical patients. Panel B panel shows cytotoxic cell (Tc) counts (peak values).  

Moreover, a further view at the antibody titers reveals that its peak value (i.e., 𝑉@'5 = max
A
𝑉(𝑡)) 

correlates inversely with the clearance time (𝑡?), that is, faster response are obtained with a lower production 

of antibodies (cf. Figure 13). This is in line with the hypothesis that asymptomatic individuals develop a rapid 

but mild response which clears the infection [62]. 

 

Figure 13 The peak value of antibody titers correlates inversely with the time-to-clear-virus 𝑡'.  
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It should be noted, however, that there are still substantial uncertainties on the data available due to the 

variable diagnostic accuracy of different serological tests for COVID-19, therefore more well designed large 

clinical studies are warranted to address this matter ([63], [64]). Interestingly, the same can not be said when 

cosidering peak values of Tc counts, that is, the cytotoxic response does not correlate, either positively or 

negatively, with time-to-clearance (not shown). 

3.10 Antibody titers have a prognostic values after day 25  

We have used a logistic regression classification to see if by measuring the antibody titers and the CTL 

counts at day 𝑡 < 30 we are able to infer the outcome at the end of the simulated period of 𝑡 = 30 days. We 

call 𝑉(𝑡 = 30) = 𝑉3. the viral load at day 30 after the infection. 

Formally, the logistic regression classifier uses the data set {(𝑥B , 𝑦B)}BC2…@ where 𝑥B = (𝑥B
(2), 𝑥B

(-)) is the 

feature vector consisting in the normalised cytotoxic T-cell lymphocytes count, 𝑥B
(2) = 𝑇𝑐(𝑡) and the antibody 

titers at day t,  𝑥B
(-) = 𝐴𝑏(𝑡). While 𝑦B = 0 if the corresponding run has 𝑉3. ≤ 𝜃 and 𝑦B = 1 if the 

corresponding runs has 𝑉3. > 𝜃. 

Panel A of Figure 14 show the features xi corresponding to the recovered cases (i.e., 	𝑦B = 0) represented 

as yellow circles and the critical cases (i.e., 𝑦B = 1) corresponding to black daggers. This panel shows the best 

separation curve found after training a logistic regression model on the training sample 𝑥B =

(𝑇𝑐(25), 𝐴𝑏(25)), namely, Tc count and antibody titers measured at day 25 from infection. 

  
Figure 14 Sørensen-Dice coefficient (F1 score) of a logistic regression ML model to predict outcome 

(recovered/critical) from 𝑇𝑐(𝑡) and 𝐴𝑏(𝑡) at various days. The analysis shows that starting from day 25 from 

infection, the couple cytotoxic T cell counts, antibody titers is informative for predicting the outcome.  

Panel A shows the data set after the classification in recovered and critical and the separation curve. In the 

figure the data set corresponds to the observation at day 30 while the analysis has been conducted at different 
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time points. Panel B shows how the classification accuracy increases with the passing of time. In this panel we 

plot the Sørensen-Dice coefficient (most know as the F1 score [65]) which increases when the assessment is 

made by using features (i.e., Tc and Ab measurements) later in time as the infection and corresponding immune 

response develops. Interestingly, before day 10 after the infection it is not possible to find a meaningful 

classification criteria which predicts the outcome, while the Sørensen-Dice coefficient increases to a high value 

already at day 25 indicating that 25 days after infection the level of immune activation represented by the 

antibody titers and cytotoxic counts is predictive of the clinical outcome.   

4 Discussion and conclusions 

The immunological correlates of COVID-19 are far from being clearly elucidated in clinical studies. 

Simulation studies can help disentangling the importance of factors such as a reduced ability to mount an 

efficient (i.e., not off target) immune response due to age or the infective viral load determining the initial viral 

burden.  

We have set up a computational model that simulates the infection with a varying dosage of the virus and 

with a slightly different affinity to the ACE2 receptor of target cells, in individuals with different 

immunological competence. 

The results of a large number of simulations that we call virtual or in-silico cohort, demonstrates that the 

great variability observed in the real pandemic can be the mere result of such diversity in both viral and human 

characteristics. 

The computational model used is able to explain a number of clinical observations of SARS-CoV-2 

infection and to evidence the importance of the humoral response in discriminating an efficient from a poor 

immune response failing to completely clearing the infection and, in some cases, bringing the viral load down 

below a threshold value and, at the same time, without showing markers of symptoms. 

The model has been tuned for parameters able to reproduce the relationship of age with the disease severity 

(cf. Figure 3). Starting from that, any other observation revealed an emergent property of such complex 

simulation environment. In particular we observe the correlations among infective viral load 𝑉. and severity, 

among immunological (in)competence (thus age) and severity, among the overall cytokine levels and 

symptoms (i.e., a virtual cytokine storm), and, finally, the key role of the humoral response in clearing the 

infection yet sustained by the cytotoxic activity (cf. Figure 12). Importantly, we have identified day 25 after 

infection (which we can roughly associate to about day 15th-18th after the appearance of the symptoms) as the 

time for a predictive measurements of the antibody response to assess the risk of developing a severe form of 

the diseases. Before that time, our data suggest that the prediction is not statistically meaningful. 

The model is restricted in a number of aspects. It simplifies reality and works with a limited number of 

mechanisms and a reduced diversity. Moreover, it does not reproduce diverse organs and tissues and therefore 

we cannot observe site-specific pathological problems, including the spatial extension of pneumonia. 
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Nevertheless the analysis conducted in the present work accounts for such limitations and the results obtained 

can be reasonably considered independent of such restrictions. 

Of course there are some cases reported in the literature in which the course of infection has been extremely 

long, expecially in severly immunocompromised patients. However, the very complex and lenghty dynamics 

taking place in those cases are beyond the scope of our simulations, which instead represent at large the 

majority of observed cases. 

 Finally, we should consider that the clinical ground of observation inevitably starts much later than in our 

model, as people ask for medical attention only after developing symptoms or after knowing of accidentally 

having been in contact with patients/carriers. Therefore the window of observation we consider in this paper 

is recapitulating more precisely the infection dynamics of the early days. 

Despite the extraordinary complexity of the immune system dynamics, the progress of simulation 

platforms suggests that a more intense interaction between clinicians and researchers in computational model 

could bring these models to the desidered quality for deployment in the medical field. 
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Appendices 

Appendix A. The sequence of events from virus infection to immune 

response 

The system is in a stable state (apart from random flucuations due to natural cell death/birth of cells) until 

an antigen is injected. In this case the virus SARS-CoV-2 is applied at day 0. It follows a sequence of stochastic 

events promoting cells duplication, cytokine secretion and eventually culminating in the humoral and cellular 

immune response. Due to the high degree of details of the angorithms enacting such events, an agent-based 

model is not described by means of mathematical formulas but rather by Rules expressed in natural language 

without sacrifycing rigor.  The Rules of the automaton accounting for the main part of the C-IMMSIM ABM of 

the immune response to SARS-CoV-2 are listed below. Each rule corresponds to a more-or-less complex 

algorithm whose details are here neglected because less relevant to the purpose of the present article (more can 

be found in previous publications of the model). 

 
1. Infection: An infection dose V(0)=V0 is injected into the simulated volume  

2. Endocytosis: the virus enters epithelial cells (EP)  

3. Biosynthesis: the viral RNA and viral proteins are made and assembled into new virions that are released by 

budding (exocytosis) from infected cells (SARS-CoV-2 follows a lysogenic cycle, that is, it does not kill the host). 

At this stage, infected/injured EP  

• DAMPs release: release danger signal (D) (generally indicating interferon, cytokines, DAMPs = damage 

associated molecular patterns)  

• Inflammation: release IL-6  

• Endocytic presentation: process the viral proteins leading to their presentation on class I HLA molecules  

4. B phagocytosis: B cells phagocyte, internalise, process and present viral peptides on class II HLA 

5. Response to Danger:  

• NK response: Natural killer cells (NKs) release IFNg upon bystander stimulation by danger  

• M response: Macrophages (M) respond to danger (e.g., DAMPs) via TLR4 releasing TNFa and IL-6  

6. M activation: macrophages become activated by IFNg (activated M have a greater phagocytic activity)  

7. Active M  
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• M phagocytosis: M internalise, process and present viral peptides on class II HLA; in presence of IFNg they 

release IL-12; they also release TNFa  

• DC activation: M release TNFa which activate dendritic cells (DC)  

8. DC phagocytosis & endocytosys: DC phagocyte, internalise, process and present viral peptides on class II HLA 

(exocytic pathway) but also on class I HLA (endocytic pathway)  

9. Th activation: in presence of danger signal, resting T helper lymphocytes are activated by interaction with peptide-

bound HLAs on professional antigen presenting cells (M and DC, mainly DC) surface by means of specific 

interaction with their T-cell receptors (TCR); if no danger is present, the Th cells becomes anergic upon interaction 

of its TCR with the HLApepide complex  

10. Th stimulation by APCs: activated Th interacting with antigen presenting cells (M, DC)  

• Th duplication: start clone expansion; part of the clones become memory cells  

• Th cells release IL-2 

• M release IL-6  

• Th1 release IFNg  

• Th2 release IL-4  

• release IL-12 in presence of high local concentration of IFNg  

• Treg release TGFb and IL-10  

11. Th stimulation by B: activated Th interacting with B cells  

• B duplication: stimulate B cells to start clone expansion; part of the clone become memory  

• Th duplication: start clone expansion; part of the clones become memory cells  

• release IL-2, IL-12  

• Th1 release IFNg  

• Th2 release IL-4  

• Treg release TGFb and IL-10  

12. Th differentiation: depending on the local concentration of IFNg, IL-10, IL-4, IL-6, IFNb, IL-12, IL-18, IL-2, TGFb 

and IL23, active T helper cells undergo class switch into Th1 and Th2 

13. B differentiation: B cells differentiate to antibody-secreting plasma B cells (PLB) 

14. Isotype switch: B cells perform immunoglobulin class switching, that is, change production of immunoglobulin 

from the isotype IgM to the isotype IgG 

15. Antibodies production: Plasma cells secrete antibodies  
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16. Humoral response: antibodies inhibit viral particles by opsonization; the result are the immuno-complexes that are 

eventually cleared by macrophages 

17. Tc activation: in presence of IL-2, resting cytotoxic T cells (Tc) are activated by the interaction of their TCR with 

DC presenting on class I HLA the viral peptides but only in presence of IL-2 

18. Tc duplication: activated Tc interact with infected EP cells presenting viral peptides on class I HLA molecule  

• Cytotoxic response: kill infected EP (this will further release danger signal)  

• Tc start duplication  

Appendix B. HLA class I peptide list 

Each column reports the peptides relative to the allele indicated in the first row. Each entry of the table 

shows the peptide, the rank score and the relative amino acid position. The relative rank score is used to directly 

compute the probability to successful bind the peptide to the HLA molecule thus presenting the HLA-peptide 

complex to the cell surface. 

 
A0201 A2402 B3501 B4002 

FLAFVVFLL   5.26  20-28 NYMPYFFTL   6.81  2167-2175 FPFTIYSLL   19.41  9-17 AEWFLAYIL   7.64  2325-2333 

SLVKPSFYV   9.11  50-58 YYTSNPTTF   11.58  1536-1544 MGYINVFAF   24.08  1-9 RELHLSWEV   9.9  5484-5492 

VLLFLAFVV   21.72  17-25 VYMPASWVM   12.54  3653-3661 YINVFAFPF   26.67  3-11 AELAKNVSL   16.15  2618-2626 

FLLVTLAIL   39.95  26-34 TYACWHHSI   13.91  6147-6155 VPFWITIAY   2.43  3136-3144 REFLTRNPA   17.56  5820-5828 

SVLLFLAFV   44.91  16-24 TYASALWEI   17.94  4090-4098 LPSLATVAY   2.57  3641-3649 HEGKTFYVL   18.08  1613-1621 

YIDIGNYTV   10.59  73-81 WSMATYYLF   22.74  900-908 FAVDAAKAY   3.29  4272-4280 QEYADVFHL   18.48  5266-5274 

FLEYHDVRV   36.35  108-116 LYENAFLPF   30.99  3606-3614 FAIGLALYY   5.25  5614-5622 HEVLLAPLL   19.05  1141-1149 

YVVDDPCPI   40.67  31-39 TYKPNTWCI   31.59  2002-2010 LVAEWFLAY   5.66  2323-2331 GEFKLASHM   19.24  912-920 

HLVDFQVTI   28.82  3-11 YYRSLPGVF   33.09  3010-3018 NVLEGSVAY   5.78  2937-2945 YELQTPFEI   19.31  249-257 

FLAHIQWMV   2.45  3122-3130 FFASFYYVW   42.38  2386-2394 LVYAADPAM   6.16  4764-4772 GEAANFCAL   19.34  1705-1713 

FLLPSLATV   2.81  3639-3647 MYASAVVLL   43.63  3684-3692 FVSLAIDAY   6.89  5250-5258 YENAFLPFA   20.53  3607-3615 

ILFTRFFYV   3.15  2332-2340 EWFLAYILF   44.08  2326-2334 MVMCGGSLY   6.96  5058-5066 LEMELTPVV   22.16  1012-1020 

SMWALIISV   3.32  3732-3740 SYYSLLMPI   45.86  4628-4636 YPNASFDNF   7.22  1920-1928 FENKTTLPV   25.51  6494-6502 

YLDAYNMMI   3.6  6418-6426 IYLYLTFYL   47.7  3108-3116 YPGQGLNGY   8.31  1329-1337 GEYSHVVAF   26.1  3072-3080 

FLLNKEMYL   3.7  3183-3191 QYIKWPWYI   13.22  1208-1216 VAVKMFDAY   8.52  2586-2594 VELKHFFFA   32.03  4827-4835 

TLMNVLTLV   3.75  3710-3718 VYSTGSNVF   19.05  635-643 HVGEIPVAY   9.36  110-118 KENSYTTTI   32.41  1869-1877 

VLFSTVFPL   4.5  4707-4715 NYNYLYRLF   28.87  448-456 YVNTFSSTF   9.47  2594-2602 HEFCSQHTM   32.67  5201-5209 

YLNTLTLAV   4.53  6850-6858 YFPLQSYGF   41.54  489-497 LVSDIDITF   10.85  1270-1278 EETGLLMPL   33.84  725-733 

LLLDDFVEI   4.97  6748-6756 VYFLQSINF   47.43  112-120 MPYFFTLLL   11.75  2169-2177 KEILVTYNC   35.25  4535-4543 

ALLADKFPV   4.99  6244-6252 LYLYALVYF   49.63  106-114 YIFFASFYY   12.11  2384-2392 VEYCPIFFI   38.62  3763-3771 

TMADLVYAL   5  4515-4523 SYFIASFRL   27.75  94-102 YVMHANYIF   12.44  7019-7027 IELKFNPPA   41.96  1686-1694 

YLATALLTL   5.07  1675-1683 YFIASFRLF   48.15  95-103 HSIGFDYVY   12.47  6153-6161 FELEDFIPM   42.48  6714-6722 

KLIEYTDFA   5.37  2901-2909  QVVDMSMTY   12.59  1582-1590 TERLKLFAA   45.15  5450-5458 

MMISAGFSL   5.47  6424-6432  TPAFDKSAF   12.87  6352-6360 RELKVTFFP   46.3  1953-1961 

VLWAHGFEL   5.78  6108-6116  LPGVYSVIY   13.23  3101-3109 YENFNQHEV   47.17  1135-1143 

NLIDSYFVV   5.93  4456-4464  VPWDTIANY   13.33  2133-2141 HEHEIAWYT   48.55  234-242 

WMVMFTPLV   6.06  3128-3136  MSNLGMPSY   13.57  2254-2262 FEYVSQPFL   16.77  168-176 

WLMWLIINL   6.6  2363-2371  TVLCLTPVY   13.78  3090-3098 SEFRVYSSA   25.84  155-163 

KLSYGIATV   6.77  5469-5477  LPVNVAFEL   14.41  6500-6508 FELLHAPAT   41.23  515-523 
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YMPYFFTLL   7.12  2168-2176  VPFVVSTGY   14.57  4730-4738 SELVIGAVI   43.47  136-144 

LLFLMSFTV   7.19  3083-3091  FPLTSFGPL   14.72  4713-4721  

YTMADLVYA   7.34  4514-4522  FVVEVVDKY   14.91  4863-4871  

YLTNDVSFL   7.42  3115-3123  LPLTQYNRY   16.09  3199-3207  

FLARGIVFM   7.71  3753-3761  FSAVGNICY   16.33  2889-2897  

ALWEIQQVV   7.85  4094-4102  MADQAMTQM   16.41  4004-4012  

FVNEFYAYL   8.24  5132-5140  WVYKQFDTY   18.56  6433-6441  

ILHCANFNV   8.64  4699-4707  LPFKLTCAT   18.64  2738-2746  

AIFYLITPV   8.72  2785-2793  LPSYAAFAT   19.53  3951-3959  

KLNVGDYFV   9.02  5541-5549  IAMSAFAMM   19.56  3619-3627  

LVLSVNPYV   9.08  5364-5372  LAKDTTEAF   19.63  3900-3908  

FLNRFTTTL   9.14  3482-3490  NPHLMGWDY   19.87  5003-5011  

NLSDRVVFV   9.53  6100-6108  NAAISDYDY   21.38  4839-4847  

LMIERFVSL   9.68  5245-5253  QAWQPGVAM   21.65  6800-6808  

QLFFSYFAV   10.01  2348-2356  FCLEASFNY   22.36  2209-2217  

RIMTWLDMV   10.03  3662-3670  LASHMYCSF   22.93  916-924  

LLSAGIFGA   10.09  1148-1156  VVYRGTTTY   23.66  5532-5540  

LLLTILTSL   10.2  3583-3591  FSSTFNVPM   24.37  2598-2606  

FVDGVPFVV   10.2  4726-4734  NPPALQDAY   25.39  1691-1699  

LLADKFPVL   11.11  6245-6253  KPVETSNSF   25.51  2017-2025  

FLPRVFSAV   11.73  2884-2892  HVASCDAIM   26.09  6192-6200  

FVAAIFYLI   11.96  2782-2790  VVIPDYNTY   26.32  4072-4080  

YLASGGQPI   11.96  4283-4291  FVSDADSTL   27  6900-6908  

VMVELVAEL   12.28  84-92  MGIIAMSAF   27.34  3616-3624  

ILTSLLVLV   12.61  3587-3595  YVFCTVNAL   27.98  5678-5686  

LMWLIINLV   13.29  2364-2372  FVLTSHTVM   31.42  5548-5556  

VLAWLYAAV   13.4  3467-3475  FVVSTGYHF   34.54  4732-4740  

VLSFCAFAV   13.64  4266-4274  NALDQAISM   35.01  3725-3733  

LLMPILTLT   14.16  4632-4640  LATNNLVVM   35.31  590-598  

RLIDAMMFT   14.25  579-587  LIISVTSNY   37.11  3736-3744  

VMCGGSLYV   14.27  5059-5067  LPFAMGIIA   38.16  3612-3620  

GLNDNLLEI   14.57  445-453  LMNVLTLVY   38.72  3711-3719  

FLGRYMSAL   14.93  1642-1650  TVAYFNMVY   39.68  3646-3654  

KLMPVCVET   15.05  1387-1395  FAWWTAFVT   39.78  6984-6992  

FVMMSAPPA   15.07  1804-1812  MVTNNTFTL   41.13  807-815  

YVWKSYVHV   15.2  2392-2400  YGQQFGPTY   44.09  1590-1598  

TQWSLFFFL   15.7  3598-3606  FVNLKQLPF   44.48  6360-6368  

MLDMYSVML   15.97  5290-5298  LAVFDKNLY   45.24  1175-1183  

YLNSTNVTI   17.19  2270-2278  YVLGLAAIM   45.87  2339-2347  

TLIGDCATV   17.61  6907-6915  VVVNAANVY   45.93  1056-1064  

KLWAQCVQL   17.72  3886-3894  CTDDNALAY   46.96  4163-4171  

NLLKDCPAV   18.8  4480-4488  YLVQQESPF   47.27  1796-1804  

QLMCQPILL   18.97  2563-2571  DASGKPVPY   48.47  2924-2932  

IIWFLLLSV   19.01  2230-2238  LAAIMQLFF   49.25  2343-2351  

LLTNMFTPL   19.31  3026-3034  LALYNKYKY   49.28  3208-3216  

QMAPISAMV   19.63  2373-2381  IPFAMQMAY   2.99  896-904  

FLNGSCGSV   19.67  3403-3411  FAMQMAYRF   5.03  898-906  

SLAIDAYPL   20.82  5252-5260  LGAENSVAY   6.31  699-707  

FLMSFTVLC   23.05  3085-3093  SANNCTFEY   7.78  162-170  

MQLFFSYFA   23.12  2347-2355  WPWYIWLGF   8.91  1212-1220  

ILGTVSWNL   23.63  1367-1375  VASQSIIAY   8.93  687-695  

LLDDFVEII   23.67  6749-6757  LPFNDGVYF   9.15  84-92  

KLKDCVMYA   23.81  3678-3686  FVSNGTHWF   17.28  1095-1103  

SLPGVFCGV   24.07  3013-3021  LPPLLTDEM   25.98  861-869  

TLGVYDYLV   24.56  3807-3815  LPPAYTNSF   26.5  24-32  

WLPTGTLLV   24.8  6885-6893  AALQIPFAM   26.99  892-900  
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SLLSVLLSM   25.87  3913-3921  FVFKNIDGY   28.18  192-200  

TLSEQLDFI   26.42  214-222  MIAQYTSAL   28.51  869-877  

ILLLDQALV   27.11  2569-2577  NATRFASVY   32.3  343-351  

LQLGFSTGV   27.69  6031-6039  FPREGVFVS   35.75  1089-1097  

AIMTRCLAV   28.95  6198-6206  YSSANNCTF   38.72  160-168  

MLWCKDGHV   29.26  6781-6789  LPFFSNVTW   39.55  56-64  

FLALCADSI   29.8  685-693  CVADYSVLY   40.54  361-369  

KMFDAYVNT   30.2  2589-2597  CPDGVKHVY   25.7  67-75  

SLIYSTAAL   30.84  2242-2250  LATCELYHY   30.47  12-20  

VLLSVLQQL   32.87  3871-3879  IPIQASLPF   3.4  35-43  

ILSPLYAFA   33.74  529-537  VAAGLEAPF   21.19  97-105  

FMCVEYCPI   33.94  3760-3768  FLCWHTNCY   41.02  146-154  

FTVLCLTPV   34.4  3089-3097  YANRNRFLY   16.49  39-47  

AMQTMLFTM   34.53  4028-4036  VATSRTLSY   31.18  170-178  

MMILSDDAV   35.14  5146-5154  FAYANRNRF   38.08  37-45  

YLITPVHVM   35.35  2788-2796  TPSGTWLTY   4.73  325-333  

KLNEEIAII   36.42  468-476  LPAADLDDF   10.96  395-403  

KLVNKFLAL   36.64  680-688  LPNNTASWF   14.87  45-53  

VMAYITGGV   37.8  597-605  FAPSASAFF   29.99  307-315  

MLFTMLRKL   37.82  4032-4040  KAYNVTQAF   32.16  266-274  

GLALYYPSA   37.83  5617-5625    

TLVPQEHYV   38.21  5562-5570    

SLENVAFNV   38.77  6452-6460    

KMVSLLSVL   39.75  3910-3918    

SQLGGLHLL   40.62  6694-6702    

VLLAPLLSA   40.78  1143-1151    

YLYLTFYLT   41.51  3109-3117    

NMLRIMASL   41.52  5020-5028    

FLRDGWEIV   42.13  641-649    

FLKKDAPYI   42.2  1278-1286    

NTFSSTFNV   43.65  2596-2604    

FLPGVYSVI   43.7  3100-3108    

MLSDTLKNL   44.66  6093-6101    

GLFKDCSKV   45.87  5930-5938    

KLNIKLLGV   46.87  3839-3847    

TLGVLVPHV   48.05  103-111    

YVFCTVNAL   48.78  5678-5686    

SLPSYAAFA   48.84  3950-3958    

YLQPRTFLL   5.36  269-277    

FQFCNDPFL   9.18  133-141    

FIAGLIAIV   10.29  1220-1228    

SIIAYTMSL   13.54  691-699    

RLQSLQTYV   16.66  1000-1008    

FTISVTTEI   25.37  718-726    

LLFNKVTLA   25.41  821-829    

HLMSFPQSA   26.36  1048-1056    

VLNDILSRL   33.57  976-984    

KIADYNYKL   36.12  417-425    

VVFLHVTYV   36.56  1060-1068    

RLDKVEAEV   38.95  983-991    

FVFLVLLPL   41.68  2-10    

KLFIRQEEV   31.81  85-93    

YLYALVYFL   2.67  107-115    

LLYDANYFL   3.06  139-147    

ALSKGVHFV   7.25  72-80    

ALLAVFHSA   17.03  51-59    
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TVYSHLLLV   28.4  89-97    

ALVYFLQSI   37  110-118    

GLMWLSYFI   3.87  89-97    

KLLEQWNLV   7.57  15-23    

FVLAAVYRI   16.52  65-73    

SMWSFNPET   19.09  108-116    

FLFLTWICL   32.26  26-34    

FLWLLWPVT   32.54  53-61    

TLACFVLAA   33.11  61-69    

FIASFRLFA   46.41  96-104    

LLLDRLNQL   14.81  222-230    

 

Appendix C. HLA class II peptides 

Each column reports the peptides relative to the HLA indicated in the first row. Each entry of the table 

shows the peptide and the relative rank score. The relative rank score is used to directly compute the probability 

to successful bind the peptide to the HLA molecule thus presenting the HLA-peptide complex to the cell 

surface. 
DRB1_0701 DRB1_1501 

PFTIYSLLL   1.70 LLLCRMNSR   1.20 

YVYSRVKNL   0.25 IYSLLLCRM   1.40 

LAILTALRL   0.40 LAILTALRL   0.20 

FYVYSRVKN   0.70 FYVYSRVKN   0.50 

TLAILTALR   1.90 TLAILTALR   1.00 

IITTVAAFH   1.10 YVYSRVKNL   1.90 

LIIMRTFKV   0.04 IHFYSKWYI   0.40 

FQVTIAEIL   0.25 IITTVAAFH   0.60 

IIKNLSKSL   1.10 LIIMRTFKV   0.01 

YIINLIIKN   1.80 LLIIMRTFK   0.17 

FYLITPVHV   0.04 YIINLIIKN   1.00 

YFVLTSHTV   0.06 IIKNLSKSL   1.30 

FKHLIPLMY   0.08 INLIIKNLS   1.40 

FRYMNSQGL   0.12 FHLYLQYIR   0.02 

FTRSTNSRI   0.12 AYYFMRFRR   0.02 

FSASTSAFV   0.12 FYAYLRKHF   0.03 

AYYFMRFRR   0.17 FLAYILFTR   0.05 

FVVSTGYHF   0.20 YLQYIRKLH   0.06 

FVKHKHAFL   0.20 FMRFRRAFG   0.06 

ARYMRSLKV   0.20 YYFMRFRRA   0.09 

FHLYLQYIR   0.20 CLLNRYFRL   0.12 

VRSIFSRTL   0.25 FLHFLPRVF   0.12 
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CLLNRYFRL   0.25 FCLLNRYFR   0.15 

FLAHIQWMV   0.25 IFYLITPVH   0.15 

LRKHFSMMI   0.30 LAYYFMRFR   0.17 

FYAYLRKHF   0.30 FVKHKHAFL   0.20 

FLALCADSI   0.30 FFKLVNKFL   0.25 

LRANSAVKL   0.40 MMCYKRNRA   0.25 

YYFMRFRRA   0.40 LYLQYIRKL   0.25 

FLLNKEMYL   0.40 IIQFPNTYL   0.25 

FLHFLPRVF   0.40 FKHLIPLMY   0.25 

YRGTTTYKL   0.40 YWFFSNYLK   0.30 

FFKLVNKFL   0.40 YLALYNKYK   0.30 

YLNTLTLAV   0.40 IFFITGNTL   0.30 

ICYTPSKLI   0.40 YYVWKSYVH   0.30 

FNYLKSPNF   0.40 IMASLVLAR   0.30 

YVMHANYIF   0.40 YNRYLALYN   0.30 

YFYTSKTTV   0.40 FLAHIQWMV   0.30 

LRLIDAMMF   0.40 WFFSNYLKR   0.30 

IYSTAALGV   0.40 ILAYCNKTV   0.30 

YRVTKNSKV   0.40 YFMRFRRAF   0.40 

IFFITGNTL   0.50 FYLITPVHV   0.40 

WFFSNYLKR   0.50 LALYYPSAR   0.40 

YFVVKRHTF   0.50 KVKYLYFIK   0.40 

LRIMASLVL   0.50 VMYMGTLSY   0.40 

FCSQHTMLV   0.50 FYYVWKSYV   0.40 

YDKLVSSFL   0.50 TMLFTMLRK   0.50 

FAVSKGFFK   0.50 FYWFFSNYL   0.50 

FFITGNTLQ   0.60 LRIMASLVL   0.50 

YLQYIRKLH   0.60 FFLYENAFL   0.50 

YWFFSNYLK   0.60 LILMTARTV   0.50 

FKLTCATTR   0.60 IVKFISTCA   0.50 

YLKLRSDVL   0.60 VFHLYLQYI   0.50 

FKLVNKFLA   0.60 LLQLCTFTR   0.60 

YCALAPNMM   0.70 FKLVNKFLA   0.60 

YRRLISMMG   0.70 VNEFYAYLR   0.60 

LSVLQQLRV   0.70 FLLNKEMYL   0.60 

FVNLDNLRA   0.70 ISAMVRMYI   0.60 

FLAYILFTR   0.70 FYFYTSKTT   0.60 

LKLFAAETL   0.80 LRLIDAMMF   0.60 

YYVWKSYVH   0.80 LHLLIGLAK   0.60 

FYFYTSKTT   0.80 IICISTKHF   0.60 

YIICISTKH   0.80 ARYMRSLKV   0.60 
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YMRSLKVPA   0.80 YFVLTSHTV   0.60 

YVRNLQHRL   0.80 VLYYQNNVF   0.60 

IIQFPNTYL   0.80 ILSLLSKGR   0.70 

WNVVRIKIV   0.80 LFLLPSLAT   0.70 

IERFVSLAI   0.80 IERFVSLAI   0.70 

FYYVWKSYV   0.80 LRKHFSMMI   0.70 

NYVFTGYRV   0.80 FAVSKGFFK   0.70 

LVLSVNPYV   0.80 NYVFTGYRV   0.70 

LKTLATHGL   0.90 MLRIMASLV   0.70 

LFAAETLKA   0.90 LVLSVNPYV   0.70 

IFYLITPVH   0.90 LKLFDRYFK   0.70 

VHFISNSWL   0.90 IKNFKSVLY   0.70 

YLNSTNVTI   0.90 FRYMNSQGL   0.70 

SLSHRFYRL   0.90 VRSIFSRTL   0.70 

IICISTKHF   0.90 YIICISTKH   0.70 

TYFTQSRNL   1.00 YFVVKRHTF   0.80 

HVISTSHKL   1.00 VHFISNSWL   0.80 

IMASLVLAR   1.00 FVVSTGYHF   0.80 

FNSVCRLMK   1.00 LISMMGFKM   0.80 

FAYTKRNVI   1.00 AMMFVKHKH   0.80 

FYWFFSNYL   1.00 FAMMFVKHK   0.80 

FSYFAVHFI   1.00 FFSNYLKRR   0.80 

VKILNNLGV   1.10 YLYFIKGLN   0.80 

YFIKGLNNL   1.10 LSVLQQLRV   0.80 

FMRFRRAFG   1.10 LMPILTLTR   0.80 

YYRSLPGVF   1.10 ILRVYANLG   0.80 

YVLMDGSII   1.10 LLILMTART   0.80 

YLITPVHVM   1.10 MMFVKHKHA   0.80 

MLRIMASLV   1.10 VLLILMTAR   0.90 

LLKSIAATR   1.10 IAIILASFS   0.90 

LILMTARTV   1.10 LYKMQRMLL   0.90 

IQLSSYSLF   1.10 LHFLPRVFS   0.90 

YLDAYNMMI   1.10 LYFIKGLNN   1.00 

FCLLNRYFR   1.10 YKVYYGNAL   1.00 

HFISNSWLM   1.10 IIAMSAFAM   1.00 

ILAYCNKTV   1.10 FSNYLKRRV   1.00 

FYILPSIIS   1.10 YMRSLKVPA   1.00 

KFLTENLLL   1.10 LFAYTKRNV   1.00 

IISVTSNYS   1.10 FKMFYKGVI   1.00 

FFLYENAFL   1.20 LLIGLAKRF   1.10 

YKVYYGNAL   1.20 FGLFCLLNR   1.10 
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FVFPLNSII   1.20 MVYMPASWV   1.10 

ALYYPSARI   1.20 LNRYFRLTL   1.10 

IKNFKSVLY   1.20 YVMHANYIF   1.10 

PIQLSSYSL   1.30 LYVNKHAFH   1.10 

LYLQYIRKL   1.30 YRRLISMMG   1.10 

YNRYLALYN   1.30 YNLWNTFTR   1.20 

FYLTNDVSF   1.30 YVRITGLYP   1.20 

NYMLTYNKV   1.30 LYYQNNVFM   1.20 

LREVRTIKV   1.30 YKHYTPSFK   1.20 

FFSNYLKRR   1.30 YRLYLDAYN   1.20 

SLLSKGRLI   1.30 LSTFISAAR   1.20 

CQYLNTLTL   1.30 ILTLTRALT   1.20 

LRVESSSKL   1.30 CLAYYFMRF   1.20 

LIYSTAALG   1.30 FYILPSIIS   1.20 

YKRNRATRV   1.40 IIFLEGETL   1.20 

IQITISSFK   1.40 LKLFAAETL   1.30 

YFTQSRNLQ   1.40 YIKWDLLKY   1.30 

FYTSKTTVA   1.40 ILLLDQALV   1.30 

FKLSYGIAT   1.40 FSYFAVHFI   1.30 

YYRYNLPTM   1.40 IISVTSNYS   1.30 

VCGVSAARL   1.40 LIINLVQMA   1.30 

FSNYLKRRV   1.40 VKILNNLGV   1.40 

FTTVDNINL   1.40 AIRHVRAWI   1.40 

FISTCACEI   1.40 FVNLDNLRA   1.40 

FCLEASFNY   1.50 VVQLTSQWL   1.40 

YFMRFRRAF   1.50 ISQYSLRLI   1.40 

LFYSYATHS   1.60 IQLLKSAYE   1.40 

IVKFISTCA   1.60 TFFKLVNKF   1.40 

LTLTRALTA   1.60 TCLAYYFMR   1.50 

FIKGLNNLN   1.60 LTSMKYFVK   1.50 

YVRITGLYP   1.60 ALYYPSARI   1.50 

FYRLANECA   1.60 YVRNLQHRL   1.60 

IPLTTAAKL   1.60 SLSHRFYRL   1.60 

YVDNSSLTI   1.60 CVSFCYMHH   1.60 

INIVGDFKL   1.60 VRRSFYVYA   1.60 

TRVLSNLNL   1.70 IIKTIQPRV   1.60 

LKLTDNVYI   1.70 YYRYNLPTM   1.70 

ISQYSLRLI   1.70 LFCLLNRYF   1.70 

YFNSVCRLM   1.70 VYSFLPGVY   1.70 

MMCYKRNRA   1.70 VNSFSGYLK   1.70 

YMSALNHTK   1.70 LVASIKNFK   1.70 
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HMVVKAALL   1.70 LLKSIAATR   1.70 

KQLIKVTLV   1.70 FNSVCRLMK   1.70 

LSTFISAAR   1.70 WMVMFTPLV   1.70 

LSVVNARLR   1.80 VAYRKVLLR   1.70 

LLQLCTFTR   1.80 YFIKGLNNL   1.80 

GISQYSLRL   1.80 LLTILTSLL   1.80 

FSSTFNVPM   1.80 IQITISSFK   1.80 

LIINLVQMA   1.80 IYLYLTFYL   1.80 

VMYMGTLSY   1.80 FLALCADSI   1.80 

LRGTAVMSL   1.90 LTSFGPLVR   1.80 

VRETMSYLF   1.90 FVMMSAPPA   1.80 

HFIETISLA   1.90 LSLLSKGRL   1.90 

VRIKIVQML   1.90 LALYNKYKY   1.90 

MHAASGNLL   1.90 RYLALYNKY   1.90 

YLAVFDKNL   1.90 FFSYFAVHF   1.90 

FKLNEEIAI   1.90 IVQMLSDTL   1.90 

IYQTSNFRV   0.06 MMGFKMNYQ   1.90 

FQTLLALHR   0.08 VNKFLALCA   1.90 

FAMQMAYRF   0.12 FQTLLALHR   0.09 

FASVYAWNR   0.20 NYLYRLFRK   0.17 

YLQPRTFLL   0.40 FAMQMAYRF   0.20 

YRLFRKSNL   0.50 ITRFQTLLA   0.20 

IAQYTSALL   0.60 YNYLYRLFR   0.25 

FNATRFASV   0.60 IYQTSNFRV   0.40 

ITRFQTLLA   0.60 FASVYAWNR   0.40 

FTISVTTEI   0.70 YRLFRKSNL   0.50 

FCTQLNRAL   0.80 LLALHRSYL   0.60 

RFQTLLALH   1.10 IAQYTSALL   0.70 

FFSNVTWFH   1.10 VYAWNRKRI   0.80 

NYLYRLFRK   1.20 IIAYTMSLG   1.00 

LALHRSYLT   1.20 FFSNVTWFH   1.00 

LLFNKVTLA   1.40 YLYRLFRKS   1.10 

VFRSSVLHS   1.50 LLFNKVTLA   1.30 

YNYLYRLFR   1.50 RFQTLLALH   1.30 

FGAGAALQI   1.70 VTWFHAIHV   1.30 

FGAISSVLN   1.80 VLSFELLHA   1.60 

IDRLITGRL   1.80 LALHRSYLT   1.70 

FRVQPTESI   1.90 ITLCFTLKR   1.40 

INITRFQTL   1.90 VYQLRARSV   1.60 

FRVYSSANN   1.90 VKHVYQLRA   1.90 

CVLGQSKRV   1.90 FLQSINFVR   0.30 
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VYQLRARSV   0.50 VTFFIYNKI   0.30 

FVTVYSHLL   0.06 INFVRIIMR   0.40 

FLQSINFVR   0.17 FVTVYSHLL   0.60 

YNSVTSSIV   0.20 YFLQSINFV   0.70 

VFHSASKII   0.40 VYFLQSINF   0.80 

YYQLYSTQL   0.60 LVYFLQSIN   0.80 

YFLQSINFV   0.80 LFVTVYSHL   1.00 

INFVRIIMR   0.90 LLFVTVYSH   1.10 

YQLYSTQLS   0.90 VRIIMRLWL   1.30 

YFTSDYYQL   1.10 TFFIYNKIV   1.50 

WQLALSKGV   1.10 NFVRIIMRL   1.60 

LALSKGVHF   1.10 FMRIFTIGT   1.80 

FVRATATIP   1.20 LSYFIASFR   0.03 

VRATATIPI   1.40 FAAYSRYRI   0.08 

LFVTVYSHL   1.40 FRLFARTRS   0.10 

VYFLQSINF   1.70 SYFIASFRL   0.15 

SYFIASFRL   0.05 FIASFRLFA   0.17 

FVLAAVYRI   0.05 IASFRLFAR   0.20 

FAAYSRYRI   0.08 FVLAAVYRI   0.25 

FRLFARTRS   0.15 LLQFAYANR   0.40 

LSYFIASFR   0.17 VILRGHLRI   1.20 

YKLGASQRV   0.60 CFVLAAVYR   1.50 

ITVATSRTL   0.80 RFLYIIKLI   1.70 

IASFRLFAR   0.90 YYRRATRRI   1.50 

FIASFRLFA   1.00 QVILLNKHI   1.70 

LLQFAYANR   1.40  

LTYTGAIKL   0.20  

YYRRATRRI   0.20  

YRRATRRIR   1.20  

 

Appendix D. Example readout of a simulation 

Figure 15 shows in panel A how the viral load 𝑉(𝑡) (both soluble, meaning outside infected cells,  and 

proviral, meaning inside infected cells, and the sum of the two), varies with time: the viral particles of SARS-

Cov-2 injected at day 0, peaking at about day 5 and start to decline after that and in correspondance to the 

appearance of antibody producing plasma cells (panel B of Figure 16). In the same panel the immunoglobulins 

titers are plotted (split in IgM and IgG, further split in IgG1 and IgG2) together with the immunocomplexes 

(IC) that are antibodies bound to viruses (i.e., opsonised viruses). This plots shows a humoral response surging 
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at abouty day 12 and clearing the virus in about five days. It also shows that the antibody levels remains high 

for some time after the simulation ends at day 30. 

Panel (B) plots in arbitrary scale the cytokine concentrations for interleukins, interferon and danger signal  

(inset plot of the same panel). In particular this run shows a high level of IFNg, IL-6, IL-2 and IL-12 elicited 

by the infection besides a moderate production of danger signal (D, in the inset plot of panel B). Release of 

cytokines follows from the dynamical rules characterising the agent’s behaviour reported in Appendix A.  

  
Figure 15 Viral load 𝑉(𝑡), immunoglobulins (IgM and IgG) and the immunocomplexes (IC) are shown in 

panel A. The same panel shows the viral particles of SARS-Cov-2 injected at day 0, peaking at about day 5 

and start to decline after that and in correspondance to the appearance of antibody producing plasma cells 

(panel B of Figure 16). Panel B shows the cytokines generated during the immune response (see text for 

details). 

Panel A of Figure 16 shows the total counts of the B-cells in all phenotypes, that is, memory and not 

memory, and the three isotypes IgM, IgG1 and IgG2 (i.e., cells that will become plasma B cells producing IgM 

or IgG antibodies).  

Panel B shows the count of antibody-generating plasma cells subdivided in the three classes IgM, IgG1 

and IgG2.  

Panel C gets into the details of the ABM simulation model by showing the counts of B-cells subdivided 

according to the internal state assemed. Worth to note that the cells enter the duplication state only after day 

10 and until day 20 because besides presenting the viral peptides on their HLA molecules, they need to be 

stimulated by stimulated cognate helper T cells bearing the “correct” cell receptor (panel D of same Figure 

16). Note also that upon clearance of the virus (cf. panel A of Figure 15) the B-cell population switches back 

to the “active” state and terminates the presentation of the viral proteins. 

Panel D shows cell counts for CD4 T-cell population (total number, memory cells, not memory). Some 

days after the infection and upon successful interaction with antigen presenting cells, T helper lymphocytes 

start to duplicate and differentiate into memory. They also foster cytotoxicity (cf. panel A and B of Figure 17) 

and humoral response (cf. panel B of Figure 16) through secretion of cytokines (panel B of Figure 15). As for 

(D) 

(A) (B) 
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B cells in panel A, panel E shows Th counts specifying the internal state of the lymphocyte thus revealing the 

“activation” phase starting quite soon before day 5 and the duplication phase starting immediately after and 

ending at about day 20. Of note, some cell become anergic around day 15 for lack of “danger” (second) signal 

upon activation (Rule n.9 in Appendix A).  

  

  

 

 

Figure 16 This figure shows details of the population dynamics of B-cells (panel A and C), plasma B cells 

(PLB in panel B) and helper T lymphocytes (panel D and E).  

   

(B) 

(D) (C) 

(A) 

(E) 
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Panel A of Figure 17 plots the cell counts for CD8 T-cell population (total number, memory cells, not 

memory). Panel B shows the counts per internal cell state revealing a limited number of anergic cells (numbers 

on the y2-axis), the early activation of a large number from day 3 (and corresponding decrease of resting cells) 

entering a duplication phase peaking ad day 5 but progressing through about day 18. 

Panels C and D show the total number and the breakout counts for antigen presenting cells DC (denritic 

cells in panel C) and MA (that we also indicated as M, macrophages, in panel D). In particular the presentation 

activity following the internalization of the virus by macrophages terminates at about day 20. Similar behaviour 

is shown in panel E for dendritic cells. Interestingly more macrophages are activated following Rule n.6 (in 

Appendix A) due to the high level of IFNg released by natural killer cells (cf. Rule n.5 in Appendix A) upon 

bystander stimulation by danger signals (or damage associated molecules, cf. panel B of Figure 15) segreted 

by infected cells. 

   

  
  

Figure 17 Here we plot the cell counts and detailed intra-cellular state numbers of cytotoxic T cells (panel 

A and B) and of antigen presenting cells DC and M (respectively in panels C and D). Further details in the text.  

(A) (B) 

(C) (D) 
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