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Abstract1

Two commonly used approaches to study interactions among neurons are spike count corre-2

lation, which describes pairs of neurons, and dimensionality reduction, applied to a population3

of neurons. While both approaches have been used to study trial-to-trial correlated neuronal4

variability, they are often used in isolation and have not been directly related. We first es-5

tablished concrete mathematical and empirical relationships between pairwise correlation and6

metrics of population-wide covariability based on dimensionality reduction. Applying these in-7

sights to macaque V4 population recordings, we found that the previously reported decrease8

in mean pairwise correlation associated with attention stemmed from three distinct changes in9

population-wide covariability. Overall, our work builds the intuition and formalism to bridge10

between pairwise correlation and population-wide covariability and presents a cautionary tale11

about the inferences one can make about population activity by using a single statistic, whether12

it be mean pairwise correlation or dimensionality.13
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Introduction14

A neuron can respond differently to repeated presentations of the same stimulus. These variable15

responses are often correlated across pairs of neurons from trial to trial, measured using spike16

count correlations (rsc, also referred to as noise correlation; Cohen and Kohn, 2011). Studies have17

reported changes in spike count correlation across various experimental manipulations and cognitive18

phenomena, including attention (Cohen and Maunsell, 2009; Mitchell et al., 2009; Herrero et al.,19

2013; Gregoriou et al., 2014; Ruff and Cohen, 2014b; Snyder et al., 2018), learning (Gu et al., 2011;20

Jeanne et al., 2013; Ni et al., 2018), task difficulty (Ruff and Cohen, 2014a), locomotion (Erisken21

et al., 2014), stimulus drive (Maynard et al., 1999; Kohn and Smith, 2005; Smith and Kohn, 2008;22

Miura et al., 2012; Ponce-Alvarez et al., 2013; Ruff and Cohen, 2016b), decision-making (Nienborg23

et al., 2012), task context (Bondy et al., 2018), anesthesia (Ecker et al., 2010), adaptation (Adibi24

et al., 2013), and more (Fig. 1a). Spike count correlation also depends on timescales of activity25

(Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Mitchell et al., 2009; Runyan26

et al., 2017), neuromodulation (Herrero et al., 2013; Minces et al., 2017), and properties of the27

neurons themselves, including their physical distance from one another (Lee et al., 1998; Smith28

and Kohn, 2008; Smith and Sommer, 2013; Ecker et al., 2014; Solomon et al., 2015; Rosenbaum29

et al., 2017), tuning preferences (Lee et al., 1998; Romo et al., 2003; Kohn and Smith, 2005;30

Huang and Lisberger, 2009), and neuron type (Qi and Constantinidis, 2012; Snyder et al., 2016).31

Theoretical work has posited that changes in correlations affect neuronal computations and sensory32

information coding (Zohary et al., 1994; Shadlen and Newsome, 1998; Abbott and Dayan, 1999;33

Averbeck et al., 2006; Moreno-Bote et al., 2014; Sharpee and Berkowitz, 2019; Rumyantsev et al.,34

2020; Bartolo et al., 2020). Given such widespread empirical observations and theoretical insight,35

spike count correlation has been and remains instrumental in our current understanding of how36

neurons interact.37

Most studies compute the average spike count correlation over pairs of recorded neurons for38

different experimental conditions, periods of time, neuron types, etc. A decrease in this mean39

correlation is commonly attributed to a reduction in the size (or gain) of shared co-fluctuations40

(Shadlen and Newsome, 1998; Rabinowitz et al., 2015; Lin et al., 2015; Ecker et al., 2016; Huang41

et al., 2019; Ruff et al., 2019b), e.g., a decrease in the strength of “common input” that drives42

each neuron in the population. However, other distinct changes at the level of the entire neuronal43

population can manifest as the same decrease in mean pairwise correlation (Fig. 1b). For example,44

a common input that drives the activity of all neurons up and down together could be altered to45

drive some neurons up and other neurons down. Alternatively, that first common input signal might46

remain the same, but a second input could be introduced that drives some neurons up and others47

down. It is difficult to differentiate these distinct possibilities using a single summary statistic, such48

as mean spike count correlation.49

Distinguishing among these changes to the population-wide covariability might be possible by50

considering additional statistics that measure how the entire population of neurons co-fluctuates to-51

gether. In particular, one may use dimensionality reduction to compute statistics that characterize52

multiple distinct features of population-wide covariability (Cunningham and Yu, 2014). Dimen-53

sionality reduction has been used to investigate decision-making (Harvey et al., 2012; Mante et al.,54

2013; Kiani et al., 2014; Kaufman et al., 2015), motor control (Churchland et al., 2012; Gallego55

et al., 2017), learning (Sadtler et al., 2014; Ni et al., 2018; Vyas et al., 2018), sensory coding (Mazor56

and Laurent, 2005; Pang et al., 2016), spatial attention (Cohen and Maunsell, 2010; Rabinowitz57

et al., 2015; Snyder et al., 2018; Huang et al., 2019), interactions between brain areas (Perich et al.,58

2018; Ruff and Cohen, 2019a; Ames and Churchland, 2019; Semedo et al., 2019; Veuthey et al.,59

2020), and network models (Williamson et al., 2016; Mazzucato et al., 2016; Recanatesi et al.,60
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Figure 1 (previous page): How do spike count correlations between pairs of neurons (i.e.,
pairwise metrics) relate to how the entire population co-fluctuates (i.e., population metrics)?
a. Four example experiments in which mean spike count correlation (rsc mean) has been observed to change
between experimental conditions. These include spatial attention (macaque visual area V4; Cohen and
Maunsell, 2009; Mitchell et al., 2009; Gregoriou et al., 2014; Luo and Maunsell, 2015; Snyder et al., 2018),
perceptual learning (macaque dorsal medial superior temporal area; Gu et al., 2011), locomotion (mouse
visual area V1; Erisken et al., 2014), and stimulus drive (rat anterior piriform cortex; Miura et al., 2012).
b. The same change in rsc mean (from 0.2 to 0.1 between conditions 1 and 2) could correspond to multiple
distinct changes in the activity of the population of neurons. Condition 2, left: a decrease in rsc mean
could correspond to some neurons becoming anti-correlated with others in the population; in this case, some
neurons that were previously positively correlated are now anti-correlated with the rest of the population
(bottom rows of raster plot). Condition 2, middle: a decrease in rsc mean could correspond to a decrease in
how strongly neurons co-fluctuate together; in this case, neurons covary as in condition 1 but each neuron
does not co-fluctuate with other neurons as strongly. Condition 2, right: a decrease in rsc mean could
correspond to the introduction of another ‘mode’ of covariation (i.e., an increase in the dimensionality of
population activity); in this case, neurons in the top half of the raster covary as in condition 1, but neurons
in the bottom half of the raster covary in a manner independent from those in the top half. c. Pairwise (rsc)
and population (dimensionality reduction) metrics both arise from the same spike count covariance matrix,
but the precise relationship between these two sets of metrics remains unknown. Top row: Each element of
the spike count covariance matrix corresponds to the covariance across responses to repeated presentations
of the same stimulus for two simultaneously-recorded neurons (e.g., neurons i and j, left inset). Bottom
row: Pairwise metrics (left) typically summarize the distribution of spike count correlation with the mean
(rsc mean); in this work, we propose additionally reporting the standard deviation (rsc s.d.). Population
metrics (right) of the spike count covariance matrix are identified by applying dimensionality reduction to
the population activity (e.g., gray plane depicts a low-dimensional space describing how neurons covary).
By understanding the relationship between pairwise and population metrics, we can better interpret how
changes in pairwise statistics (e.g., experiments in a) correspond to changes in population metrics, and
vice-versa.
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2019), among others. As with mean spike count correlation, the statistics computed from dimen-61

sionality reduction can also change with attention (Rabinowitz et al., 2015; Huang et al., 2019),62

stimulus drive (Churchland et al., 2010; Cowley et al., 2016; Snyder et al., 2018), motor output63

(Gallego et al., 2018), learning (Athalye et al., 2017), and anesthesia (Ecker et al., 2014). However,64

unlike mean spike count correlation (henceforth referred to as a “pairwise metric”) which averages65

across pairs of neurons, the statistics computed from dimensionality reduction (henceforth referred66

to as “population metrics”) consider the structure of population-wide covariability (Fig. 1c). An67

example of a commonly reported population metric is dimensionality (Yu et al., 2009; Rabinowitz68

et al., 2015; Cowley et al., 2016; Williamson et al., 2016; Mazzucato et al., 2016; Gao and Ganguli,69

2015; Gallego et al., 2017; Stringer et al., 2019a; Recanatesi et al., 2019). Dimensionality is used to70

assess whether the number of population co-fluctuation patterns (possibly reflecting the number of71

common inputs) changes across experimental conditions (Fig. 1b, condition 1 versus condition 2,72

right panel). Thus, population metrics could help to distinguish among the distinct ways in which73

population-wide covariability can change, especially those that lead to the same change in mean74

spike count correlation (Fig. 1b).75

Both pairwise and population metrics aim to characterize how neurons covary, and both can be76

computed from the same spike count covariance matrix (Fig. 1c). Still, studies rarely report both,77

and the relationship between the two is not known. In this study, we establish the relationship78

between pairwise metrics and population metrics both analytically and empirically using simula-79

tions. We find that changes in mean spike count correlation could correspond to several distinct80

changes in population metrics including: 1) the strength of shared variability (e.g., the strength of81

a common input), 2) whether neurons co-fluctuate together or in opposition (e.g., how similarly a82

common input drives each neuron in the population), or 3) the dimensionality (e.g., the number of83

common inputs). Furthermore, we show that a rarely-reported statistic–the standard deviation of84

spike count correlation–provides complementary information to the mean spike count correlation85

about how a population of neurons co-fluctuates. Applying this understanding to recordings in area86

V4 of macaque visual cortex, we found that the previously-reported decrease in mean spike count87

correlation with attention stems from multiple distinct changes in population-wide covariability.88

Overall, our results demonstrate that common ground exists between the literatures of spike count89

correlation and dimensionality reduction and provides a cautionary tale for attempting to draw90

conclusions about how a population of neurons covaries using one, or a small number of, statis-91

tics. Our framework builds the intuition and formalism to navigate between the two approaches,92

allowing for a more interpretable and richer description of the interactions among neurons.93

Results94

Defining pairwise and population metrics95

We first define the metrics that we will use to summarize 1) the distribution of spike count correla-96

tions (i.e., pairwise metrics) and 2) dimensionality reduction of a population covariance matrix (i.e.,97

population metrics). For pairwise metrics, we consider the mean and standard deviation (s.d.) of98

rsc across all pairs of neurons, which summarize the rsc distribution (Fig. 1c, bottom left panel). For99

population metrics, we consider loading similarity, percent shared variance (abbreviated to %sv),100

and dimensionality (described below and in more detail in Methods). These metrics each describe101

some aspect of population-wide covariability and thus represent natural, multivariate extensions of102

rsc.103

To illustrate these three population metrics, consider the activity of a population of neurons over104

time (Fig. 2a, spike rasters). If the activity of all neurons goes up and down together, we would find105

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.04.383604doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.383604


neuron 1
neuron 2

time

latent 1

latent 2

decrease loading similarity c increase dimensionality

0

-1

1

loading
value

loading

a

b

1 2

d

latent
co-fluctuation

co-fluctuation
pattern

high-d population
activity space

co-fluctuation
pattern

rotate
axis

loadings
changed
from
panel a

added
new
pattern

new
dimension

decrease percent
shared variance

smaller amplitude than in panel a

dimension
from panel a

Figure 2: Intuition about population metrics: loading similarity, percent shared variance
(%sv), and dimensionality. a. Population activity (population raster, where each row is the spike train
for one neuron over time) is characterized by a latent co-fluctuation (blue) and a co-fluctuation pattern made
up of loadings (green rectangles). Each neuron’s underlying firing rate is a product of the latent and that
neuron’s loading (which may either be positive or negative). One may also view population activity through
the lens of the population activity space (right plot), where each axis represents the activity of one neuron
(n1, n2, n3 represent neuron 1, neuron 2, and neuron 3). In this space, a co-fluctuation pattern corresponds
to an axis whose orientation depends on the pattern’s loadings (right plot, blue line). b. Population activity
with a lower loading similarity than in panel a. The loadings have both positive and negative values (i.e.,
dissimilar loadings), leading to neurons that are anti-correlated (compare top rows with bottom rows of
population raster). Changing the loading similarity will rotate a pattern’s axis in the population activity
space (bottom plot, ‘rotate axis’). c. Population activity with a lower %sv than in panel a. The latent
co-fluctuation shows smaller amplitude changes over time than in panel a, which leads to a lower %sv.
Changing %sv leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in panel
a). d. Population activity with a dimensionality of 2, compared to a dimensinality of 1 in panel a. Adding
a new dimension leads to a new latent co-fluctuation (orange line) and a new co-fluctuation pattern (‘new
dimension’). Each neuron’s underlying firing rate is expressed as a weighted combination of the latents,
where the weights correspond the neuron’s loadings in each co-fluctuation pattern. Here, each dimension
corresponds to a distinct subset of neurons (top rows vs. bottom rows); in general, this need not be the case,
as each neuron typically has nonzero weights for both dimensions. In the population activity space (bottom
plot), the activity varies along the two axes (i.e., a 2-d plane) defined by the two co-fluctuation patterns.
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the pairwise spike count correlations between all pairs of neurons to be positive. A more succinct106

way to characterize this population activity is to identify a single time-varying latent co-fluctuation107

that is shared by all neurons (Fig. 2a, blue line). The way in which neurons are coupled to this108

latent co-fluctuation is indicated by a loading for each neuron. In this example, because the latent109

co-fluctuation describes each neuron’s activity going up and down together, the loadings have the110

same sign (Fig. 2a, green rectangles). We refer to the latent co-fluctuation’s corresponding set of111

loadings as a co-fluctuation pattern. A co-fluctuation pattern can be represented as a direction in112

the population activity space, where each coordinate axis corresponds to the activity of one neuron113

(Fig. 2a, right panel).114

The first population metric is loading similarity, a value between 0 and 1 that describes to what115

extent the loadings differ across neurons within a co-fluctuation pattern. A loading similarity close116

to 1 indicates that the loadings have the same sign and are of similar magnitude (Fig. 2a, green117

rectangles). A loading similarity close to 0 indicates that many of the loadings differ, either in118

magnitude, sign, or both (Fig. 2b, green and pink squares). In this case, some neurons may have119

positive loadings and co-fluctuate in the same direction as the latent co-fluctuation (Fig. 2b, top120

rows of neurons show high firing rates when blue line is high and low firing rates when blue line is121

low), whereas other neurons may have negative loadings and co-fluctuate in the opposite direction122

as the latent co-fluctuation (Fig. 2b, bottom rows of neurons show low firing rates when blue line123

is high and high firing rates when blue line is low). One can view changing the loading similarity124

as rotating the direction of a co-fluctuation pattern in population activity space (Fig. 2b, bottom125

plot).126

The second population metric is percent shared variance or %sv, which measures the percentage127

of spike count variance explained by the latent co-fluctuation. This percentage is computed per128

neuron, then averaged across all neurons in the population (Williamson et al., 2016). A %sv close129

to 100% indicates that the activity of each neuron is tightly coupled to the latent co-fluctuation,130

with a small portion of variance that is independent to each neuron (Fig. 2a). A %sv close to131

0% indicates that neurons fluctuate almost independently of each other and their activity weakly132

adheres to the time course of the latent co-fluctuation (Fig. 2c). By changing %sv, one does not133

change the co-fluctuation pattern in population activity space (Fig. 2, blue lines are the same in134

panels a and c) but rather the strength of the latent co-fluctuation (Fig. 2c, blue line has smaller135

amplitude than in panel a).136

The third population metric is dimensionality. We define dimensionality as the number of co-137

fluctuation patterns (or dimensions) needed to explain the shared variability among neurons (see138

Methods). The variable activity of neurons may depend on multiple common inputs, e.g., top-down139

signals like attention and arousal (Rabinowitz et al., 2015; Cowley et al., 2020) or spontaneous and140

uninstructed behaviors (Stringer et al., 2019b; Musall et al., 2019). Furthermore, these common141

inputs may differ in how they modulate neurons. This may result in two or more dimensions of the142

population activity (Fig. 2d, blue and orange latent co-fluctuations). For illustrative purposes, each143

dimension might correspond to a single group of tightly-coupled neurons (Fig. 2d, neurons in top144

rows have non-zero loadings for pattern 1, whereas neurons in bottom rows have non-zero loadings145

for pattern 2). However, in general, each neuron can have non-zero loadings for multiple patterns.146

In population activity space, adding a new dimension adds a new axis along which neurons covary147

(Fig. 2d, orange line). We use the term dimension to refer either to a latent co-fluctuation or its148

corresponding co-fluctuation pattern, depending on context.149
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Varying population metrics to assess changes in pairwise metrics.150

Given that both pairwise and population metrics are computed from the same spike count covariance151

matrix (Fig. 1c), a connection should exist between the two. We establish this connection by152

deriving mathematical relationships and carrying out simulations. In simulations, we assessed how153

systematically changing one of the population metrics (e.g., increasing loading similarity, Fig. 3a),154

changes the spike count covariance matrix (Fig. 3b), and the corresponding rsc distribution (Fig. 3c),155

which we summarized using its mean and standard deviation (Fig. 3d). The covariance matrix was156

parameterized in a way that allowed us to create covariance matrices with specified population157

metrics (see Methods). Thus, our simulation procedure does not simulate neuronal activity, but158

rather creates covariance matrices which are consistent with the specified population metrics.159

Loading similarity has opposing effects on rsc mean and s.d.160

We first asked how the loading similarity of a single co-fluctuation pattern (i.e., one dimension)161

affected rsc mean and s.d. Intuitively, a high loading similarity indicates that the activity of all162

neurons increases and decreases together (Fig. 2a), resulting in values of rsc that are all positive163

and similar in value. Indeed, in simulations, we found that high loading similarity corresponded to164

large rsc mean and rsc s.d. close to 0 (Fig. 3e, green dots near horizontal axis). On the other hand,165

a low loading similarity indicates that when some neurons increase their activity, others decrease166

their activity (Fig. 2b), resulting in some positive rsc values (for pairs that change their activity in167

the same direction) and some negative rsc values (for pairs that change their activity in opposition).168

In simulations, a low loading similarity indeed corresponded to an rsc mean close to 0 and a large169

rsc s.d. (Fig. 3e, blue dots near vertical axis). By varying the loading similarity, we surprisingly170

observed an arc-like trend in the rsc mean versus rsc s.d. plot (Fig. 3e). In Supplementary Math171

Note A, we derive the analytical relationship between loading similarity and rsc. In Supplementary172

Math Note B, we show mathematically why the rsc mean versus rsc s.d. relationship follows a173

circular arc.174

Decreasing %sv reduces rsc mean and s.d.175

We next asked how %sv, which measures the percentage of each neuron’s variance that is shared176

with other neurons in the population, is related to rsc mean and s.d. Intuitively, one might expect177

%sv and rsc mean to be closely related because rsc measures the degree to which the activity of178

two neurons is shared (Cohen and Kohn, 2011). We investigated this in simulations and found179

that how closely %sv and rsc mean were related depended on the loading similarity. When loading180

similarity was high (Fig. 3f, green dots), there was a direct relationship between %sv and rsc mean181

(specifically, %sv equals rsc mean). However, when loading similarity was low (Fig. 3f, blue dots),182

the relationship between %sv and rsc mean was less direct. Namely, rsc mean remained close to183

zero regardless of %sv. This illustrates that rsc mean and %sv are not the same. It is possible for a184

population of neurons with high %sv (e.g., Fig. 3f, blue dots in outer arc) to have smaller rsc mean185

than a population with lower %sv (e.g., Fig. 3f, green dots in inner arc).186

These relationships that we have shown through simulation can be captured mathematically.
First, if we have knowledge of the loading weights in the co-fluctuation pattern, the rsc between
a pair of neurons can be expressed in terms of the %sv and loading values of the two neurons
(Supplementary Math Note A):

ρij =
√
φiφj sign(wiwj) (1)

where ρij is the rsc between neurons i and j, φi and φj are the %sv of each neuron (expressed187

as a proportion per neuron, in contrast to %sv in Fig. 3f which shows the average %sv across all188

neurons), and wi and wj are the loadings of the neurons in the co-fluctuation pattern. The rsc189
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mean is the average of ρij values across all neuron pairs. From equation (1), we observe that when190

loading similarity is high (i.e., most loading weights have the same sign), %sv and rsc mean are191

directly related (i.e., ρij =
√
φiφj). However, when loading similarity is low (i.e., some loading192

weights are positive and others are negative), rsc mean is small regardless of %sv because some193

pairs have sign(wiwj) = +1 and others have sign(wiwj) = −1.194

Second, if we have information about the rsc s.d. (instead of loading weights), we can establish
the following relationship between %sv, rsc mean, and rsc s.d. (Supplementary Math Note B):

%sv ≈
√

(rsc mean)2 + (rsc s.d.)2

In other words, in the rsc mean versus rsc s.d. plot, %sv is reflected in the distance of a point from195

the origin (Fig. 3f ). This relationship holds regardless of the loading similarity. The intuition is196

that the %sv corresponds to the magnitude of rsc values (i.e., the |ρij | from equation (1)).197

These findings highlight the pitfalls of considering a single statistic (e.g., rsc mean) on its own198

and the benefits of considering multiple statistics (e.g., both rsc mean and s.d.) when trying to draw199

conclusions about how neurons covary. By considering rsc mean and s.d. together, one can gain200

insight into the loading similarity (Fig. 3e) and the %sv (Fig. 3f ) of a neuronal population. Thus201

far, we have only considered the specific case where activity co-fluctuates along a single dimension202

in the firing rate space. We next considered how pairwise metrics change in the more general case203

where neuronal activity co-fluctuates along multiple dimensions.204

Adding more dimensions tends to reduce rsc mean and s.d.205

We sought to assess how dimensionality (i.e., the number of co-fluctuation patterns) is related206

to pairwise metrics. In simulations, we increased the number of co-fluctuation patterns (com-207

pare Fig. 2a to d ; see Methods), while sweeping loading similarity and fixing the total %sv. We208

found that increasing dimensionality tended to reduce rsc mean and s.d. (Fig. 3g, dots for larger209

dimensionalities lay closer to the origin than dots for smaller dimensionalities).210

It seems counterintuitive that adding a new way in which neurons covary reduces the magnitude211

of rsc. The intuition is that if multiple distinct (i.e., orthogonal) dimensions exist, then a neuron212

pair interacts in opposing ways along different dimensions. For example, consider two neurons213

with loadings of the same sign in one co-fluctuation pattern, and opposite sign in the second214

pattern. If only the first dimension exists, the two neurons would go up and down together and be215

positively correlated. If only the second dimension exists, the two neurons would co-fluctuate in216

opposition and be negatively correlated. When both dimensions exist, the positive correlation from217

the first dimension and the negative correlation from the second dimension offset, and the resulting218

correlation between the neurons would be smaller than if only the first dimension were present.219

We formalize the above intuition in Supplementary Math Note C. We also show analytically that220

increasing dimensionality tends to move points closer to the origin in the rsc mean versus rsc s.d.221

plot (i.e., decrease rsc mean and s.d.; Supplementary Math Note D).222

However, we note that an increase in dimensionality does not imply that both rsc mean and223

rsc s.d. necessarily decrease. For example, in the case where the first co-fluctuation pattern has224

high loading similarity, adding more dimensions means it is less likely for rsc s.d. to be 0 (Fig. 3g,225

compare dot closest to horizontal axis for ‘1 dim.’ to that for ‘2 dims.’). The intuition is that if226

the first co-fluctuation pattern has a loading similarity of 1, the loading weights for all neurons227

are the same and thus rsc values between all pairs are the same, resulting in rsc s.d. of 0. Adding228

an orthogonal dimension to this pattern necessarily means adding a pattern with low loading229

similarity (Supplementary Math Note E), making it less likely for rsc across all pairs to be the230

same. Therefore, rsc s.d. is unlikely to be 0 for two dimensions (Fig. 3g, the smallest rsc s.d. for231

‘2 dims.’ is around 0.2). Still, in Figure 3g the dots for ‘2 dims.’ are closer to the origin than the232
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Figure 3: Relationship between population metrics and pairwise metrics. Panels a-d describe
the simulation procedure to assess how systematic changes in population metrics lead to changes in pairwise
metrics. a. We first systematically varied one of the population metrics while keeping the others fixed. For
example, we can increase the loading similarity from a low value (left, blue) to a high value (right, green),
while keeping %sv and dimensionality fixed. b. Then, we constructed covariance matrices corresponding to
each value of the population metric in panel a (see Methods), without generating synthetic data. c. For
each covariance matrix from panel b, we directly computed the correlations (i.e., the rsc distributions). d.
We computed rsc mean and rsc s.d. from the rsc distributions in panel c and then assessed how the change
in a given population metric from panel a changed pairwise metrics. In this case, the increase in loading
similarity increased rsc mean and decreased rsc s.d. (blue dot to green dot). e. Varying loading similarity
with a fixed %sv of 50% and dimensionality of 1. Each dot corresponds to the rsc mean and rsc s.d. of one
simulated covariance matrix with specified population metrics (dots are close together and appear to form
a continuum). The color of each dot corresponds to the loading similarity (see Methods), where a value of
1 indicates that all loading weights have the same value. f. Varying %sv. The same setting as in panel e,
except we consider two different values of percent shared variance (50% and 30%). g. Varying dimensionality
(i.e., number of co-fluctuation patterns) while sweeping loading similarity between 0 and 1 and keeping %sv
fixed at 50%. In this simulation, the relative strengths of each dimension uniform across dimensions (i.e.,
flat eigenspectra; see Methods).

dots for ‘1 dim’, implying that even if rsc s.d. increases with an increase in dimensionality, the rsc233

mean must decrease to a larger extent (Supplementary Math Note D).234

The relative strength of each dimension impacts pairwise metrics.235

In the previous simulation (Fig. 3g), we assumed that each dimension explained an equal pro-236

portion of the overall shared variance (e.g., for two dimensions, each dimension explained half of237

the shared variance; see Methods). However, it is typically the case for recorded neuronal activity238

that some dimensions explain more shared variance than others; in other words, neuronal activity239

co-fluctuates more strongly along some patterns than others (Sadtler et al., 2014; Williamson et al.,240

2016; Mazzucato et al., 2016; Gallego et al., 2018; Huang et al., 2019; Stringer et al., 2019a; Ruff241

et al., 2019b). We sought to assess the influence of the relative strength of each dimension on242
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Figure 4: Relative strengths of dimensions affect rsc distributions. With dimensionality of 2, we
systematically varied the relative strengths of the two dimensions with a fixed total %sv of 50%. We con-
sidered two scenarios: 1) one dimension has high loading similarity and the other dimension has low loading
similarity (panel a) and 2) both dimensions have low loading similarity (panel b). Each dot represents one
simulated covariance matrix and rsc distribution. The color of the dots indicate different relative strengths
between the two dimensions, and numbers next to each cloud of dots indicate the ratio between the relative
strength associated with each dimension. For example, in panel a, red dots correspond to the high loading
similarity dimension being 19 times stronger (95:5) than the low loading similarity dimension. Black dots
correspond to the low loading similarity dimension being 19 times stronger (5:95) than the high loading
similarity dimension. In panel b, since both patterns have low loading similarity, clouds for 80:20 and 95:5
are very similar to clouds for 20:80 and 5:95 respectively and are thus omitted for clarity.

pairwise metrics.243

We reasoned that stronger dimensions would play a larger role than weaker dimensions in deter-244

mining the rsc distribution and pairwise metrics. Extending equation (1) to multiple dimensions,245

we show that the rsc between a pair of neurons can be expressed as the sum of a contribution from246

each constituent dimension (Supplementary Math Note C). The stronger a dimension, the larger247

the magnitude of its contribution to rsc, and thus the larger its impact on rsc mean and s.d.248

To test this empirically, we performed a simulation with two dimensions, while systematically249

varying the relative strength of each dimension. We considered two scenarios: (1) one dimension has250

a pattern with high loading similarity and one dimension has a pattern with low loading similarity251

(Fig. 4a), and (2) both dimensions have patterns with low loading similarity (Fig. 4b). Note that252

both dimensions cannot have patterns with high loading similarity because they would not be253

orthogonal (Supplementary Math Note E).254

In scenario (1) where one dimension’s pattern has high loading similarity and the other has low255

loading similarity, rsc mean and rsc s.d. reflects the loading similarity of the dominant dimension256

(Fig. 4a). When the dimension with a high loading similarity pattern dominated, rsc mean was257

large and rsc s.d. was small (Fig. 4a, red dots are close to horizontal axis). When the dimension258

with a low loading similarity pattern dominated, rsc mean was small and rsc s.d. was large (Fig. 4a,259

black dots are close to vertical axis). When the two dimensions were of equal strength (i.e., neither260
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dimension dominated), rsc mean and rsc s.d. were both intermediate values (Fig. 4a, light gray dots261

are between red and black dots). Thus, the dimensions along which neuronal activity co-fluctuates262

most strongly have a greater influence on pairwise metrics.263

In scenario (2) where both dimensions have patterns of low loading similarity, rsc mean was low264

and rsc s.d. was high (Fig. 4b), similar to when there is one dimension with low loading similarity265

(Fig. 3e, blue dots). When we made one dimension stronger than the other, rsc mean remained266

low and rsc s.d. remained high (Fig. 4b, light gray dots and black dots are both close to vertical267

axis) because both patterns had low loading similarity. However, the radius of the arc increased268

(Fig. 4b, black dots farther from the origin than light gray dots), and was close to the arc that269

would have been produced with a single dimension (Fig. 3g, ‘1 dim.’). Thus, whereas changing270

the number of dimensions causes discrete jumps in the arc radius (Fig. 3g), changing the relative271

strength of each dimension allows for rsc mean and rsc s.d. to vary continuously between the arcs for272

different dimensionalities. Put another way, changing the relative strength of each dimension varies273

the “effective dimensionality” of population activity in a continuous manner. Neuronal activity for274

which one dimension dominates another (Fig. 4b, black dots) has a lower effective dimensionality275

than when both dimensions have equal strength (Fig. 4b, light gray dots).276

Reporting only a single statistic provides an incomplete description of population277

covariability278

Figure 5 summarizes the relationships that we have established between pairwise metrics and279

population metrics. Rotating a co-fluctuation pattern from a low loading similarity to a high280

loading similarity increases rsc mean and decreases rsc s.d. along an arc (Fig. 5, arrow outside pink281

arc). Decreasing %sv decreases both rsc mean and s.d. (Fig. 5, arrow pointing toward origin), and282

increasing dimensionality also tends to decrease rsc mean and s.d. (Fig. 5, pink to yellow shaded283

regions).284

These results provide a cautionary tale that using a single statistic on its own provides an285

opaque description of population-wide covariability. For example, a change in rsc mean could286

correspond to changes in loading similarity, %sv, dimensionality, or a combination of the three.287

Likewise, reporting dimensionality on its own would be incomplete because the role of a dimension288

in explaining population-wide covariability depends how much shared variance it explains and the289

loading similarity of its co-fluctuation pattern. For example, consider a decrease in dimensionality290

by 1. This would have little impact on population-wide covariability if the removed dimension291

explains only a small amount of shared variance, whereas it could have a large impact if the292

removed dimension explains a large amount of shared variance.293

Considering multiple statistics together provides a richer description of population-wide covari-294

ability. For example, in the case where population activity co-fluctuates along a single dimension,295

rsc mean and rsc s.d. can be used together to approximate %sv (using distance from the origin) and296

deduce whether loading similarity is low (rsc s.d. > rsc mean) or high (rsc mean > rsc s.d.), whereas297

rsc mean alone would not provide much information about %sv or loading similarity (cf. Fig. 5).298

In the next section, we further demonstrate using neuronal recordings how relating pairwise and299

population metrics using the framework we have developed (Fig. 5) provides a richer description of300

how neurons covary than using a single statistic (e.g., rsc mean) alone.301

Case study: V4 neuronal recordings during spatial attention302

When spatial attention is directed to the receptive fields of neurons in area V4 of macaque visual303

cortex, rsc mean among those neurons decreases (Cohen and Maunsell, 2009; Mitchell et al., 2009;304
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Figure 5: Summary of relationship between pairwise and population metrics. A change in rsc
mean and rsc s.d. may correspond to changes in loading similarity, %sv, dimensionality, or a combination
of the three. Shaded regions indicate the possible rsc mean and rsc s.d. values for different dimensionalities;
increasing dimensionality tends to decrease rsc mean and rsc s.d. (shaded regions for larger dimensionalities
become smaller). Within each shaded region, decreasing %sv decreases both rsc mean and s.d. radially
toward the origin. Finally, rotating co-fluctuation patterns such that the loadings are more similar (going
from low to high loading similarity) results in moving clockwise along an arc such that rsc mean increases and
rsc s.d. decreases. We also note two subtle trends. First, there are more possibilities for loading similarity
to be low than high (Supplementary Math Note E), suggesting that rsc s.d. will generally tend to be larger
than rsc mean if neuronal activity varied along a randomly chosen co-fluctuation pattern (shading within
each region is darker near the vertical axis than the horizontal axis). Second, this effect becomes exaggerated
for higher-dimensional neuronal activity as many dimensions can have low loading similarity but only one
dimension can have high loading similarity (Supplementary Math Note E). Thus, it becomes progressively
unlikely for rsc s.d. to be 0 as dimensionality increases (shaded regions for larger dimensionalities lifted off
the horizontal axis).

Gregoriou et al., 2014; Snyder et al., 2016, 2018). This decrease has often been attributed to a305

reduction in shared modulations among the neurons. However, we have shown both mathematically306

and in simulations that several distinct changes in population metrics (e.g., decrease in loading307

similarity, decrease in %sv, or an increase in dimensionality) could underlie this decrease in rsc308

mean (Fig. 5). Here, we sought to assess which aspects of population-wide covariability underlie,309

and how each of them contribute to, the overall decrease in rsc mean.310

We analyzed activity recorded simultaneously from tens of neurons in macaque V4 while the311

animal performed an orientation-change detection task (Fig. 6a; previously reported in Snyder et al.,312

2018). To probe spatial attention, we cued the animal to the location of the stimulus that was more313

likely to change in orientation. As expected, perceptual sensitivity increased for orientation changes314

in the cued stimulus location (Fig. 6a inset, red dot above black dot). ‘Attend-in’ trials were those315

in which the cued stimulus location was inside the aggregate receptive fields (RFs) of the recorded316

V4 neurons, whereas ‘attend-out’ trials were those in which the cued stimulus location was in the317
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opposite visual hemifield.318

For pairwise metrics, rsc mean decreased when attention was directed into the RFs of the V4319

neurons (Fig. 6b, left panel), consistent with previous studies (Cohen and Maunsell, 2009; Mitchell320

et al., 2009; Gregoriou et al., 2014; Snyder et al., 2016, 2018). We further found that rsc s.d. was321

lower for attend-in trials than for attend-out trials, an effect not reported previously (Fig. 6b, right322

panel; also see Supplementary Fig. 1 for session-by-session pairwise metrics).323

The decrease in both rsc mean and rsc s.d. could arise from several different types of distinct324

changes in population-wide covariability (Fig. 5). To compute the population metrics, we applied325

factor analysis (FA) separately to attend-out and attend-in trials (see Methods). FA is the most326

basic dimensionality reduction method that characterizes shared variance among neurons (Cun-327

ningham and Yu, 2014), and is consistent with how we created covariance matrices in Figures 3328

and 4. We found three distinct changes in population metrics. First, neuronal activity during329

attend-in trials had lower %sv than during attend-out trials (Fig. 6c, left), consistent with previous330

interpretations that attention reduces the strength of shared modulations (Rabinowitz et al., 2015;331

Ecker et al., 2016; Huang et al., 2019; Ruff et al., 2019b). Second, we also found lower loading332

similarity for attend-in trials than attend-out trials for the dominant dimension (i.e., the dimension333

that explains the largest proportion of the shared variance; Fig. 6c, middle). This implies that,334

with attention, neurons in the population co-fluctuate in a more heterogeneous manner (i.e., more335

pairs of neurons co-fluctuate in opposition, and fewer pairs co-fluctuate together). Third, we found336

that dimensionality was slightly lower for attend-in than attend-out trials (Fig. 6c, right). Thus,337

on average, a smaller number of distinct shared signals were present when attention was directed338

into the neurons’ RFs. The small change in dimensionality is consistent with the relative strength339

of each dimension (i.e., eigenspectrum shape) being similar for attend-in and attend-out (Supple-340

mentary Fig. 2). Taken together, this collection of observations of both pairwise and population341

metrics leads to a more refined view of how attention affects population-wide covariability.342

The pairwise (Fig. 6b) and population (Fig. 6c) metrics are computed based on the same343

recorded activity and each represents a different view of population activity. The central contribu-344

tion of our work is to provide a framework by which to understand these two perspectives and five345

different metrics in a coherent manner. Using the relationships between pairwise and population346

metrics we have established in the rsc mean versus rsc s.d. space (Fig. 5), we can decompose the347

decrease in rsc mean and s.d. into: 1) a small decrease in dimensionality (Fig. 6d, small dashed348

arrow), 2) a decrease in loading similarity (Fig. 6d, medium dashed arrow), and 3) a substantial349

decrease in %sv (Fig. 6d, large dashed arrow). Overall, this analysis demonstrates the insufficiency350

of any one measure of correlated variability, and the value in considering pairwise and population351

metrics together, with a bridge that allows one to navigate between the two.352

Discussion353

Coordinated variability in the brain has long been linked to the neural computations underlying354

a diverse range of functions, including sensory encoding, decision making, attention, learning, and355

more. In this study, we sought to relate two major bodies of work investigating the coordinated356

activity among neurons: studies that measure spike count correlation between pairs of neurons357

(rsc) and studies that use dimensionality reduction to measure population-wide covariability. We358

considered three population metrics and established analytically and empirically that: 1) increasing359

loading similarity corresponds to increasing rsc mean and decreasing rsc s.d., 2) decreasing percent360

shared variance (%sv) corresponds to decreasing both rsc mean and s.d., and 3) increasing dimen-361

sionality tends to decrease rsc mean and s.d. Applying this understanding to recordings in macaque362
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Figure 6 (previous page): An observed decrease in rsc mean of macaque V4 neurons during a
spatial attention task corresponds to changes in multiple population metrics. a. Experimental
task design. On each trial, monkeys maintained fixation while Gabor stimuli were presented for 400 ms
(with 300-500 ms in between presentations). When one of the stimuli changed orientation, animals were
required to saccade to the changed stimulus to obtain a reward. At the beginning of a block of trials, we
performed an attentional manipulation by cuing animals to the location of the stimulus that was more likely
to change for that block (dashed circle denotes the cued stimulus and was not presented on the screen).
The cued location alternated between blocks. Animals were more likely to detect a change in stimulus at
cued rather than uncued locations (inset in bottom right, p < 0.002 for both animals; data for monkey 1
is shown). During this task, we recorded activity from V4 neurons whose receptive fields (RFs) overlapped
with one of the stimulus locations. b. rsc mean (left panel) and rsc s.d. (right panel) across recording
sessions for two animals. Black denotes ‘attend-out’ trials (i.e., the cued location was outside the recorded
V4 neurons’ RFs), and red denotes ‘attend-in’ trials (i.e., the cued location was inside the RFs). Data was
pooled across both animals to compute p-values reported in titles for comparison of attend-out (black) and
attend-in (red). For individual animals, rsc mean was lower for attend-in than attend-out (p < 0.001 for
each animal). rsc s.d. was also lower for attend-in than attend-out (p < 0.05 for monkey 1, and p = 0.148
for monkey 2). c. Population metrics identified across recording sessions for two animals (same data as in
b). Black denotes attend-in trials, red denotes attend-out trials. Data was again pooled across animals to
compute p-values reported in titles for comparing attend-out and attend-in. %sv was lower for attend-in
than attend-out (p < 0.001 for monkey 1 and p < 0.02 for monkey 2). Loading similarity was lower for
attend-in than attend-out (p < 0.001 for monkey 1 and p = 0.162 for monkey 2). Dimensionality was lower
for attend-in than attend-out (p = 0.113 for monkey 1 and p = 0.174 for monkey 2). In panels a-c, dots
indicate means and error bars indicate 1 s.e.m., both computed across recording sessions. d. Summary of
the real data results. Attention decreases both rsc mean and rsc s.d. (black dot to red dot). These decreases
in pairwise metrics correspond to a combination of decreases in %sv, loading similarity, and dimensionality
(dashed arrows).
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V4, we found that the previously-reported decrease in mean spike count correlation associated with363

attention stemmed from a decrease in %sv, a decrease in loading similarity, and decrease in dimen-364

sionality. This analysis revealed that attention involves multiple changes in how neurons interact365

that are not well captured by a single statistic alone. Overall, our work demonstrates that com-366

mon ground exists between the literatures of spike count correlation and dimensionality reduction367

approaches, and builds the intuition and formalism to navigate between them.368

Our work provides a cautionary tale for attempting to summarize population-wide covariability369

using one, or a small number of, statistics. For example, reporting only rsc mean is incomplete370

because several distinct changes in population-wide covariability can correspond to the same change371

in rsc mean. In a similar vein, reporting only dimensionality is incomplete because it does not372

indicate how strongly the neurons covary, nor their co-fluctuation patterns. For this reason, we373

recommend reporting several different pairwise and population metrics (e.g., the five used in this374

study along with the eigenspectrum of the shared covariance matrix), as long as they can be375

reliably measured from the data available. This not only allows for a deeper and more complete376

understanding of how neurons covary, but also it allows one to make tighter connections to previous377

literature that uses the same metrics. Future work may seek to revisit previous results of correlated378

neuronal variability that are based on a single statistic (e.g., rsc mean), and reinterpret them within379

a framework that considers multiple perspectives and statistics of population-wide covariability,380

such as that presented here.381

There are some situations where it is not feasible to reliably measure population statistics, such382

as recording from a small number of neurons in deep brain structures (Nevet et al., 2007; Liu et al.,383

2013). In such situations, the rsc can be measured between pairs of neurons recorded in each session384

and then averaged across sessions to obtain the rsc mean (Supplementary Fig. 3). Based on our385

findings, we recommend that studies which report rsc mean also report rsc s.d. because the latter386

provides additional information about population-wide covariability. For example, in the special387

case of one latent dimension (typically not known in advance for real data), measuring rsc mean388

and rsc s.d. allows one to estimate the loading similarity and %sv (cf. Fig. 3e-f ). In general,389

even when there is more than one latent dimension in the population, rsc s.d. provides value in390

situating the data in the rsc mean versus rsc s.d. plot (cf. Fig. 5). Changes in rsc mean and s.d.391

can then inform changes in population metrics based on the relationships established in this work392

(cf. Fig. 6d).393

We considered three population metrics — dimensionality, percent shared variance (%sv), and394

loading similarity — that summarize the structure of population-wide covariability and are rooted395

in well-established concepts in existing literature. First, dimensionality has been used to describe396

how neurons covary across conditions (i.e., an analysis of trial-averaged firing rates; Churchland397

et al., 2012; Rigotti et al., 2013; Mante et al., 2013; Cowley et al., 2016; Kobak et al., 2016; Sohn398

et al., 2019), as well as how neurons covary from trial to trial (Yu et al., 2009; Santhanam et al.,399

2009; Sadtler et al., 2014; Rabinowitz et al., 2015; Mazzucato et al., 2016; Williamson et al., 2016;400

Bittner et al., 2017; Athalye et al., 2017; Williams et al., 2018; Stringer et al., 2019a; Recanatesi401

et al., 2019). We focused on the latter in our study to connect with the rsc literature, which402

also seeks to understand the shared trial-to-trial variability between neurons. To focus on the403

shared variability among neurons, we used factor analysis (FA) to measure dimensionality. Another404

commonly-used dimensionality reduction method, principal components analysis (PCA), although405

appropriate for studying trial-averaged activity, does not distinguish between variability that is406

shared among neurons and variability that is independent to each neuron. Second, investigating407

the loading similarity has provided insight about whether shared variability among neurons arises408

from a shared global factor which drives neurons to increase and decrease their activity together409

(Ecker et al., 2014; Okun et al., 2015; Lin et al., 2015; Rabinowitz et al., 2015; Williamson et al.,410
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2016; Huang et al., 2019) or whether the co-fluctuations involve a more intricate pattern across the411

neuronal population (Snyder et al., 2018; Insanally et al., 2019; Cowley et al., 2020). Understanding412

how loading similarity and these patterns of shared variability interact with (e.g., align with or413

are orthogonal to) patterns of stimulus encoding and downstream readouts will be important to414

understand how the brain perceives and computes (Averbeck et al., 2006; Moreno-Bote et al.,415

2014; Kohn et al., 2016; Ni et al., 2018; Ruff and Cohen, 2019a; Cowley et al., 2020; Rumyantsev416

et al., 2020; Bartolo et al., 2020). Third, we have previously reported %sv for area V1 (Williamson417

et al., 2016), area M1 (Hennig et al., 2018), and network models (Williamson et al., 2016; Bittner418

et al., 2017). Conceptually, %sv and rsc mean are both designed to capture the strength of shared419

variability in a population of neurons. Thus, we might initially think that there should be a one-420

to-one correspondence between the two quantities. Indeed, if the population activity is described421

by one co-fluctuation pattern with a high loading similarity, there is a direct relationship between422

%sv and rsc mean (Fig. 3f ). However, in general, %sv and rsc mean do not have a one-to-one423

correspondence between them (Fig. 3f, moderate or low loading similarity).424

Although pairwise correlation and dimensionality reduction have most commonly been com-425

puted based on spike counts, several studies have also computed these metrics on neuronal activity426

recorded using other modalities, such as calcium imaging (Harvey et al., 2012; Ahrens et al., 2012;427

Dechery and MacLean, 2018; Stringer et al., 2019a; Rumyantsev et al., 2020). The relationships428

that we established here between pairwise and population metrics are properties of covariance ma-429

trices in general and do not rely on or assume recordings of neuronal spikes. Thus, the intuition430

built here can be applied to other recording modalities.431

Our work here focused on studying interactions within a single population of neurons. Techno-432

logical advances are enabling recordings from multiple distinct populations simultaneously, includ-433

ing neurons in different brain areas, neurons in different cortical layers, or different neuron types434

(e.g., Ahrens et al., 2013; Jiang et al., 2015; Jun et al., 2017). Studies are dissecting the interactions435

between these distinct populations using pairwise correlation (Smith et al., 2012; Pooresmaeili et al.,436

2014; Oemisch et al., 2015; Zandvakili and Kohn, 2015; Ruff and Cohen, 2016a; Snyder et al., 2016)437

and dimensionality reduction (Semedo et al., 2014; Buesing et al., 2014; Bittner et al., 2017; Perich438

et al., 2018; Semedo et al., 2019; Ames and Churchland, 2019; Ruff and Cohen, 2019a; Veuthey439

et al., 2020; Cowley et al., 2020). As we have shown here for a single population of neurons,440

considering a range of metrics from both the pairwise correlation and dimensionality reduction441

perspectives, and understanding how they relate to one another, will provide rich descriptions of442

how different neuronal populations interact.443

Data and code availability444

Relevant data and analysis code used to generate the results are available upon request from the445

authors.446
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Methods719

Spike count covariance matrix720

Both pairwise metrics and population metrics are computed directly from the spike count covariance721

matrix Σ of size n × n for a population of n neurons. Each entry in Σ is the covariance between722

the activity of neuron i and neuron j:723

Σij = cov(xi, xj) = E[(xi − µi)(xj − µj)] (2)

where xi and xj represent the activity of neurons i and j, respectively, and µi and µj represent the724

mean activity of neurons i and j, respectively. The variance of the ith neuron is equal to Σii.725

Pairwise metrics726

We computed the spike count correlation (rsc) between neurons i and j directly from the spike727

count covariance matrix:728

ρij =
Σij√
ΣiiΣjj

(3)

We then summarized the distribution of rsc values across all pairs of neurons in the population729

with two pairwise metrics: the rsc mean and rsc standard deviation (s.d.).730

Population metrics731

The metrics we use for characterizing population-wide covariability are based on factor analysis (FA;732

Santhanam et al., 2009; Yu et al., 2009; Churchland et al., 2010; Harvey et al., 2012; Williamson733

et al., 2016; Bittner et al., 2017; Athalye et al., 2017; Huang et al., 2019), a dimensionality reduction734

method. We chose FA because it is the most basic dimensionality reduction method that explicitly735

separates variance that is shared among neurons from variance that is independent to each neuron.736

This allows us to relate the population metrics provided by FA to spike count correlation, which is737

designed to measure shared variability between pairs of neurons. One might consider using principal738

component analysis (PCA), but it does not distinguish shared variance from independent variance.739

Thus, FA is more appropriate than PCA for studying the shared variability among a population of740

neurons.741

Decomposing the spike count covariance matrix742

FA decomposes the spike count covariance matrix Σ into a low-rank shared covariance matrix, which743

captures the variability shared among neurons in the population, and an independent variance744

matrix, which captures the portion of variance of each neuron unexplained by the other neurons745

(Fig. 7a):746

Σ = Σshared + Ψ (4)

where Σshared ∈ Rn×n is the shared covariance matrix for n neurons, and Ψ ∈ Rn×n is a diagonal747

matrix containing the independent variance of each neuron. The low-rank shared covariance matrix748

can be expressed using the eigendecomposition as (Fig. 7a):749

Σshared = UΛUT (5)
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Figure 7: Decomposition of the spike count covariance matrix and defining population metrics.
a. We use factor analysis to decompose the spike count covariance matrix Σ into the sum of a low-rank
shared covariance matrix Σshared and a diagonal independent variance matrix Ψ. The ith diagonal entry of
Σshared (si) corresponds to the spike count variance that neuron i shares with other neurons in the population
(i.e., shared variance), while the ith diagonal entry of Ψi corresponds to spike count variance of neuron i that
cannot be explained by the other neurons (i.e., independent to neuron i). We can further decompose Σshared

via an eigendecomposition to extract the co-fluctuation patterns (i.e., the eigenvectors) and the strength of
each latent co-fluctuation (i.e., the eigenvalues). b. The population metrics used in this study are loading
similarity, percent shared variance (%sv), and dimensionality.
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where U ∈ Rn×d and Λ ∈ Rd×d, with d < n. The rank (i.e., dimensionality) of the shared750

covariance matrix, d, indicates the number of latent variables. Each column of U is an eigenvector751

and represents a co-fluctuation pattern containing the loading weights of each neuron (i.e., how752

much each neuron contributes to that dimension). The matrix Λ is a diagonal matrix where each753

diagonal element is an eigenvalue and represents the amount of variance along the corresponding754

co-fluctuation pattern (e.g., in Fig. 2 panel a has larger eigenvalue than panel c).755

Based on this matrix decomposition, we defined the three metrics that describe the population-756

wide covariability:757

• Loading similarity: the similarity of loading weights across neurons for a given co-fluctuation758

pattern. Scalar value between 0 (the weights are maximally dissimilar, defined precisely be-759

low) and 1 (all weights are the same).760

• Percent shared variance (%sv): the percentage of each neuron’s variance that is explained761

by other neurons in the population. Percentage between 0% and 100%.762

• Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer value.763

We give the precise definitions of these population metrics below and in Fig. 7b.764

Loading similarity765

We sought to define loading similarity such that, for a given co-fluctuation pattern, if the weights766

for all neurons are the same, we would measure a loading similarity of 1. When the weights767

are as different as possible, we would measure a loading similarity of 0. We define the loading768

similarity based on the variance across the n weights (for n neurons) in a co-fluctuation pattern769

uk. The smallest possible variance is 0; the largest possible variance, for a unit vector uk, is 1/n770

(Supplementary Math Note F). Thus, we define loading similarity for a co-fluctuation pattern771

uk ∈ Rn as:772

loading similarity(uk) = 1− var(uk)

maxvk
var(vk)

= 1− var(uk)

1/n
(6)

where the loading similarity is computed on unit vectors (i.e., uk has a norm of 1). The notation773

var(uk) denotes that the variance is being taken across the n elements of the vector uk. The774

denominator of equation (6) acts as a normalizing factor, bounding the loading similarity value775

between 0 and 1.776

The loading similarity distinguishes between a co-fluctuation pattern along which all neurons in777

the population have the same weight in which case they change their activity up and down together778

(Fig. 2a; loading similarity of 1), from one in which weights are different and some neurons increase779

their activity when others decrease their activity (Fig. 2b; loading similarity of 0). The loading780

weights we use here are closely related to ‘population coupling’ (Okun et al., 2015) and ‘modulator781

weights’ (Rabinowitz et al., 2015). For some types of shared fluctuations, these weights are similar782

across neurons in a population (i.e., high loading similarity; Okun et al., 2015; Rabinowitz et al.,783

2015; Huang et al., 2019). For other types of shared fluctuations, the weights vary substantially784

across neurons in the population (i.e., low loading similarity; Snyder et al., 2018; Cowley et al.,785

2020).786

We show in Supplementary Math Note E why, if one dimension has high loading similarity, the787

other dimensions must have low loading similarity. The reason is that co-fluctuation patterns are788

defined to be mutually orthogonal. If one co-fluctuation pattern has all weights close to the same789
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value (i.e., high loading similarity), then all other co-fluctuation patterns must have substantial790

diversity in their weights (i.e., low loading similarity) to satisfy orthogonality.791

Percent shared variance792

The percent shared variance (%sv) measures the percentage of each neuron’s spike count variance793

that is explained by other neurons in the population (Williamson et al., 2016; Bittner et al., 2017;794

Hennig et al., 2018). Equivalently, we can think of %sv in terms of latent co-fluctuations. Because795

latent co-fluctuations capture the shared variability among neurons, the %sv measures how much796

of each neuron’s variance is explained by the latent co-fluctuations. The activity of neurons may797

be tightly linked to the latent co-fluctuation (e.g., Fig. 2a), in which case a large percentage of798

each neuron’s variance is shared with other neurons, or may only be loosely linked to the latent799

co-fluctuation (e.g., Fig. 2c), in which case a small percentage of each neuron’s variance is shared800

with other neurons. Mathematically, we define the %sv for a neuron i:801

%sv for neuron i =
Σshared,ii

Σii
· 100% =

si
si + ψi

· 100% (7)

where si is the ith entry along the diagonal of the shared covariance matrix (Fig. 7a, Σshared), and802

ψi is the ith entry along the diagonal of the independent covariance matrix (Fig. 7a, Ψ). A %sv803

of 0% indicates that the neuron does not covary with (i.e., is independent of) other neurons in the804

population, whereas a %sv of 100% indicates that the neuron’s activity can be entirely accounted805

for by the activity of other neurons in the population. To compute %sv for an entire population of806

neurons, we averaged the %sv of the individual neurons. All %sv values reported in this study are807

the %sv for the neuronal population.808

Dimensionality809

Dimensionality refers to the number of latent co-fluctuations needed to describe population-wide810

covariability. For example, the population-wide covariability can be described by one latent co-811

fluctuation (Fig. 2a) or by several latent co-fluctuations (Fig. 2d). In the population activity812

space, dimensionality corresponds to the number of axes along which the population activity varies813

(see Fig. 2d, bottom inset). Mathematically, the dimensionality is the rank of the shared covariance814

matrix (i.e., the number of columns in U , Fig. 7a).815

Creating the spike count covariance matrices with specified population metrics816

To relate pairwise and population metrics, we created spike count covariance matrices of the form817

in equation (4) with specified population metrics. Importantly, we did not simulate spike counts,818

nor fit a factor analysis model to simulated data. Rather, we created covariance matrices using (4)819

and computed pairwise correlations directly from the entries of the covariance matrix, as shown in820

(3). Across simulations (Figs. 3 and 4), we simulated with n = 30 neurons and set independent821

variances (i.e., diagonal elements of Ψ in equation (4)) to 1.822

Specifying co-fluctuation patterns to obtain different loading similarities823

Each co-fluctuation pattern uk is a vector with n = 30 entries (one entry per neuron). We generated824

a single co-fluctuation pattern by randomly drawing 30 independent samples from a Gaussian825

distribution with a mean of 2.5. We choose a nonzero mean so that we could obtain co-fluctuation826

patterns with loading similarities close to 1 when drawing from the Gaussian distribution (i.e., a827

mean of 0 would have resulted in almost all co-fluctuation patterns having a loading similarity828

close to 0). To get a range of loading similarities between 0 and 1, we used different standard829

deviations for the Gaussian. For a small standard deviation value, all entries in the co-fluctuation830
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pattern are close to 2.5, resulting in a high loading similarity. For larger standard deviations, some831

loading weights are positive and some negative, with large variability in their values, resulting in832

co-fluctuation patterns with low loading similarity. We increased the Gaussian standard deviation833

from 0.1 to 5.5 with increments of size 0.1. For each increment, we generated 50 patterns and834

normalized them to have unit norm. In total, we created a set of 2,750 random patterns.835

The following procedure describes the construction of shared covariance matrices with one co-836

fluctuation pattern. We chose a single pattern u1 ∈ R30×1 (i.e., U has only 1 column) from the837

set of 2,750. We constructed the shared covariance matrix by computing UΛUT , where Λ was838

chosen to achieve a desired percent shared variance (see below). The covariance matrix was then839

computed according to equation (4). We created a covariance matrix, yielding a spread of loading840

similarities between 0 and 1 (Fig. 3e-f ). In the next section, we describe the procedure for creating841

a covariance matrix with more dimensions.842

Specifying the percent shared variance843

To achieve a given %sv, either the independent variance or the amount of shared variability (i.e., the844

eigenvalues) of each dimension can be adjusted. In the main text, we set the independent variance845

of each neuron to Ψi = 1, and changed the total amount of shared variability by multiplying each846

eigenvalue (each diagonal element in Λ from equation (5)) by the same constant value, a. To obtain847

a specified %sv, we identified a by searching through a large set of possible values (from 10−4 to848

103 with step size 10−3). We allowed for a tolerance of ε = 10−3 between the desired %sv and the849

%sv that was achieved after scaling the eigenvalues by a. In Supplementary Figure 4, we allowed850

the independent variances to be different across neurons, and the results were qualitatively similar851

to that shown in the main text.852

Increasing dimensionality853

To assess how changing dimensionality affects pairwise metrics, we created covariance matrices854

whose shared covariance matrix comprised more than 1 dimension. To create a shared covariance855

matrix with d dimensions, we randomly chose d patterns from the set of 2750 we had generated856

above (see ‘Specifying co-fluctuation patterns to obtain different loading similarities’). We then857

orthogonalized the chosen patterns using the Gram-Schmidt process to obtain d orthonormal (i.e.,858

orthogonal and unit length) co-fluctuation patterns U ∈ R30×d. We formed the shared covariance859

matrix using UΛUT , where Λ ∈ Rd×d is a diagonal matrix containing the eigenvalues (i.e., the860

strength of each dimension; see ‘Specifying the relative strengths of each dimension’ below). We861

repeated this procedure to produce 3,000 sets of d orthonormal patterns (i.e., 3,000 different U862

matrices), each of which was used to create a shared covariance matrix. The spike count covariance863

was computed according to equation (4).864

Specifying the relative strengths of each dimension865

In simulating shared covariance matrices with more than one dimension, we chose the relative866

strength of each dimension by specifying the eigenspectrum (diagonal elements of Λ in equation867

(5)). We worked with three sets of eigenspectra. First, a flat eigenspectrum had eigenvalues that868

were all equal (Fig. 3g). Second, for two dimensions, we varied the ratio of the two eigenvalues869

between 95:5, 80:20, 50:50, 20:80, and 5:95 (Fig. 4). Third, we considered an eigenspectrum in870

which each subsequent eigenvalue falls off according to an exponential function (Supplementary871

Fig. 5). Only the relative (and not the absolute) eigenvalues (i.e., the shape of the eigenspectrum)872

affect the results, because the eigenspectrum was subsequently scaled to achieve a desired %sv (see873

‘Specifying the values of percent shared variance’).874
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Analysis of V4 neuronal recordings from a spatial attention task875

Electrophysiological recordings876

We analyzed data from a visual spatial attention task reported in a previous study (Snyder et al.,877

2018). Briefly, we implanted a 96-electrode “Utah” array (Blackrock Microsystems; Salt Lake City,878

UT) into visual cortical area V4 of an adult male rhesus macaque monkey (data from two monkeys879

were analyzed; in our study, monkey 1 corresponds to “monkey P” and monkey 2 corresponds to880

“monkey W” from Snyder et al. (2018)). After recording electrode voltages (Ripple Neuro.; Salt881

Lake City, UT), we used custom software to perform off-line spike sorting (Kelly et al., 2007, freely882

available at https://github.com/smithlabvision/spikesort). This yielded 93.2 ± 8.9 and 61.9883

± 27.4 candidate units per session for monkey 1 and 2, respectively.884

To further ensure the isolation quality of recorded units, we removed units from our analyses885

according to the following criteria. First, we removed units with a signal-to-noise ratio of the spike886

waveform less than 2.0 (Kelly et al., 2007). Second, we removed units with overall mean firing887

rates less than 1 Hz, as estimates of rsc for these units tends to be poor (Cohen and Kohn, 2011).888

Third, we removed units that had large and sudden changes in activity due to unstable recording889

conditions. For this criterion, we divided the recording session into ten equally-sized blocks and890

for each unit computed the difference in average firing rate between adjacent blocks. We excluded891

units with a change in average firing rate greater than 60% of the maximum firing rate (where892

the maximum is taken across the ten equally-sized blocks). Fourth, we removed an electrode from893

each pair of electrodes that were likely electrically-coupled. We identified the coupled electrodes by894

computing the fraction of threshold crossings that occurred within 100 µs of each other for each pair895

of electrodes. We then removed the fewest number of electrodes to ensure this fraction was less than896

0.2 (i.e., pairs with an unusually high number of coincident spikes) for all pairs of electrodes. Fifth,897

we removed units that did not sufficiently respond to the visual stimuli used in the experiment.898

Evoked spike counts (i.e., a neuron’s response after stimulus presentation) were taken between 50 ms899

to 250 ms after stimulus onset, and spontaneous spike counts (i.e., a neuron’s response during a900

blank screen) were taken in a 200 ms window that ended 50 ms before stimulus onset. For each901

unit, we computed a sensitivity measure d′ between evoked and spontaneous activity:902

d′ =
µevoked − µspontaneous√
1
2(σ2

evoked + σ2
spontaneous)

for mean spike counts µevoked and µspontaneous and spike count variances σ2
evoked and σ2

spontaneous. We903

removed units with d′ < 0.5 from analyses, as these units had spontaneous and evoked responses904

that were difficult to distinguish.905

After applying these five criteria, 44.5 ± 11.3 and 18.8 ± 6.7 units per session (mean ± s.d.906

over sessions) remained for monkeys 1 and 2, respectively. Although these remaining units likely907

contained both single-unit and multi-unit activity, we refer to each unit as a neuron for simplicity.908

Visual stimulus change-detection task909

Animals were trained to perform a change-detection task with a spatial attention cue to the location910

of the visual stimulus that was more likely to change (Snyder et al., 2018). In the visual change-911

detection task (Fig. 6a), animals fixated a central dot while Gabor stimuli were presented in two912

locations on a computer screen. One location was chosen to be within the aggregate receptive913

fields (RFs) of the recorded V4 neurons (mapped prior to running the experiment), and the other914

location was placed at the mirror symmetric location in the opposite hemifield. Animals maintained915

fixation while a sequence of Gabor stimuli were presented. Each drifting Gabor stimulus (oriented916

at either 45◦ or 135◦) was presented for 400 ms, followed by a blank screen presented for a random917
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interval (between 300 and 500 ms). The sequence continued, with a fixed probability for each918

presentation, until one of the two stimuli changed orientation when presented (i.e., the ‘target’).919

Upon target presentation, animals were required to make a saccade to the target to earn a juice920

reward. We manipulated spatial attention in the experiment by cueing the more probable target921

location in blocks. At the beginning of each block, the cue was denoted by presenting only one922

Gabor stimulus at the more probable target location (90% likely), and requiring animals to detect923

orientation changes at this location for 5 trials. Consistent with the results of previous studies,924

we found that animals had greater perceptual sensitivity for orientation changes at the cued (i.e.,925

attended) location than the uncued location (Fig. 6a, inset in the bottom right) and shorter reaction926

times (Snyder et al., 2018).927

Data processing and computing spike counts928

We first separated the trials into two groups: (1) “attend in” trials, for which the cued stimulus929

was inside the recorded neurons’ RFs and (2) “attend out” trials, for which the cued stimulus930

was outside the RFs. Since the initial orientation of the stimulus at the cued location could be931

one of two values (i.e., 45◦ or 135◦), we further divided trials, resulting in a total of 4 groups of932

trials per session (attend in & 45◦, attend out & 45◦, attend in & 135◦, attend out & 135◦). Each933

combination of cued location and stimulus orientation was treated as an independent sample. The934

same neurons were used for each of the 4 groups within each session, ensuring a fair comparison935

between the attend-in and attend-out conditions.936

We analyzed all stimulus presentations for which the target stimulus did not change. For each937

stimulus presentation, we took spike counts in a 200 ms window starting 150 ms after stimulus938

onset. For each of the 4 groups, we formed a spike count matrix X ∈ Rn×t, containing the spike939

counts of the n recorded neurons for the t trials belonging to that group. These spike count matrices940

were then used to compute both the pairwise and population metrics (described below). For all941

analyses (Fig. 6), we excluded recording sessions with fewer than 10 neurons. Additionally, because942

population metrics depend on the number of trials (Williamson et al., 2016), for each session we943

equalized the number of trials across the 4 groups by randomly subsampling from groups with944

larger numbers of trials.945

Computing pairwise metrics for V4 spike counts946

We computed pairwise metrics on each combination of attention state (‘attend in’ and ‘attend947

out’) and stimulus orientation. We computed the correlation matrix for X as described above in948

‘Pairwise metrics’ and then computed rsc mean and rsc s.d. For each attention state, we averaged949

the rsc mean and rsc s.d. over sessions and different stimulus orientations.950

Computing population metrics for V4 spike counts951

We fit the parameters of a factor analysis model (see Fig. 7a) to each spike count matrix X (as952

described above) using the expectation-maximization (EM) algorithm (Dempster et al., 1977). For953

each session, this was performed separately for each attention state and stimulus orientation. Using954

the FA parameters, we then computed the three population metrics (Fig. 7b). For dimensionality,955

we first found the number of dimensions d that maximized the cross-validated data likelihood.956

We fit an FA model with d dimensions, and then found the number of dimensions required to957

explain 95% of the shared variance, termed dshared (Williamson et al., 2016). We report dshared958

because it tends to be a more reliable estimate of dimensionality than the number of dimensions959

that maximizes the cross-validated data likelihood. We computed %sv as described by equation960

(7). We report the loading similarity as defined in equation (6) for the co-fluctuation pattern that961

explained the most shared variability (i.e., the eigenvector with the largest eigenvalue), since it962

contributes most to describing the population-wide covariability. For ‘attend in’ and ‘attend out’963
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conditions, we averaged the population metrics across sessions and stimulus orientations.964

Statistics965

We employed paired permutations tests for all statistical comparisons of pairwise metrics and966

population metrics between ‘attend-in’ and ‘attend-out’ conditions (Fig. 6b-c). First, for a given,967

metric we computed the average difference between attend-in and attend-out. Then, we computed968

a null distribution by randomly permuting attend-in and attend-out labels and recomputing the969

average difference in the permuted data. We ran 10,000 permutations to obtain a null distribution970

of 10,000 samples. We computed p-values as the proportion of samples in the null distribution that971

were more extreme than the average difference in the data, corresponding to p < 0.0001 as the972

highest attainable level of significance in our statistical analyses.973
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Supplementary Math Notes974

A Relationship between correlation, loading similarity, and %sv (one latent975

dimension)976

We establish here the mathematical relationship between rsc, loading similarity, and %sv. This977

will provide the formalism for understanding why decreasing %sv decreases both rsc mean and s.d.978

(Fig. 3f ), that a high loading similarity corresponds to large rsc mean and low rsc s.d. (Fig. 3e),979

and that a low loading similarity corresponds to small rsc mean and large rsc s.d. (Fig. 3e).980

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector981

[w1, w2, ..., wn]T ∈ Rn×1), λ ∈ R+ be the strength of the co-fluctuation pattern (i.e., eigenvalue982

of the shared covariance matrix), and Ψ ∈ Rn×n be a diagonal matrix specifying the independent983

variance of each neuron (ψ1, ψ2, ..., ψn). Then the covariance matrix of the population activity is984

(see Methods and Fig. 7):985

Σ = Σshared + Ψ = wλwT + Ψ

From this, we observe that Σij = Σshared,ij = λwiwj on the off-diagonal entries (i.e., if i 6= j).986

Along the diagonals, Σshared,ii = λw2
i and Σii = λw2

i + ψi. The correlation (i.e., rsc if Σ is a spike987

count covariance matrix) between neurons i and j can be written as:988

ρij =
Σij√
ΣiiΣjj

=
λwiwj√

(λw2
i + ψi)(λw2

j + ψj)

=

√
λw2

i

λw2
i + ψi

√
λw2

j

λw2
j + ψj

sign(wiwj)

=
√
φiφj sign(wiwj)

(8)

where φi and φj represent the %sv (as proportions) for neurons i and j, respectively, and sign(wiwj) =989

+1 if wiwj > 0 or −1 if wiwj < 0. The last line follows from the fact that %sv is defined in equation990

(7) as:991

φi =
Σshared,ii

Σii
=

λw2
i

λw2
i + ψi

(9)

Equations (8) and (9) provide a basis for understanding the relationships between rsc, %sv, and992

loading similarity. The rsc mean and s.d. are computed across all pairs of neurons ρij , for i < j.993

For establishing a relationship between pairwise metrics and %sv, consider decreasing the overall994

%sv of the population, while keeping the loadings wi fixed. This corresponds to decreasing λ in995

equation (9), which implies φi for each neuron decreases, and thus the product
√
φiφj decreases for996

all pairs. The magnitude of each ρij decreases (i.e., each ρij moves closer to 0). As such, decreasing997

%sv of the population decreases the distance of a point from the origin in the rsc mean versus rsc998

s.d. plot, all else being equal (Fig. 3f ).999

For establishing a relationship between pairwise metrics and loading similarity, consider two1000

extreme cases: 1) when loading similarity is 1 (as high as possible) 2) when it is 0 (as low as1001

possible). We first assume that each neuron has the same independent variance ψi for simplicity, as1002

we did in Figure 3. A loading similarity of 1 corresponds to each wi = + 1√
n

or each wi = − 1√
n

. In1003

either case, sign(wiwj) is always +1. Furthermore, φi is the same for every neuron and
√
φiφj = %sv1004
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(i.e., the %sv of the population, expressed as a proportion) for every pair of neurons. Thus, all1005

ρij = %sv for all pairs of neurons i and j. In this case, rsc mean = %sv and rsc s.d. = 0. If the1006

independent variances ψi are different across neurons, we can still get each sign(wiwj) = +1 and1007

each φi to be the same by setting each wi = +
√
ψi or each wi = −

√
ψi. This would also result in1008

ρij = %sv for all pairs of neurons i and j, and thus rsc mean = %sv and rsc s.d. = 0. In this case,1009

the loading similarity is still high (all wi are the same sign; we can show that load. sim.> 0.5), but1010

not equal to 1.1011

Now, consider a scenario in which half the loadings are + 1√
n

and the other half are − 1√
n

(and1012

assume again that ψi are the same for every neuron). This is one way to obtain a loading similarity1013

of 0. In this case, φi are still the same for every neuron, so
√
φiφj = %sv for all pairs. However,1014

sign(wiwj) = −1 for
(
n
2

)2
= n2

4 pairs, and sign(wiwj) = +1 for 2 ×
(
n/2
2

)
= n2

4 −
n
2 pairs. We1015

can show that rsc mean = −%sv
n−1 and, by using equation (10) from Supplementary Math Note B1016

below, rsc s.d. = %sv
√

1− 1
(n−1)2

. Thus, for a large number of neurons n, this case (where loading1017

similarity=0) corresponds to small negative rsc mean (close to 0), and large rsc s.d. (close to the1018

%sv). As an example, for 30 neurons and %sv=50%, this corresponds to rsc mean = -0.0172 and1019

rsc s.d. = 0.4997.1020

With this analysis, we have established that for one latent dimension:1021

• Decreasing %sv decreases the magnitudes of correlations (i.e., each ρij closer to 0). rsc mean1022

and s.d. both decrease (as seen empirically in Fig. 3f ).1023

• Starting from a loading similarity near 1, a decrease in loading similarity involves flips in1024

the signs of some correlations (i.e., some ρij become −ρij). rsc mean decreases but rsc s.d.1025

increases (as seen empirically in Fig. 3f ).1026

• Both rsc mean and %sv measure shared variance among neurons, but they are not always1027

equal. Equations (8) shows that the two quantities are equal if all sign(wiwj) are the same1028

(i.e., when loading similarity is high). However, in general rsc mean and shared variance (%sv)1029

are not the same—e.g., when loading similarity is low, or when there are multiple dimensions1030

(Supplementary Math Note C).1031

In this section, we consider the extremes of loading similarity. In the next section, we analyze how1032

gradual changes in loading similarity affect rsc mean and s.d. for a fixed %sv.1033

1034

B Circular arc in rsc mean versus rsc s.d. plot for one latent dimension and1035

fixed %sv1036

We establish here mathematically that gradually varying the loading similarity for one latent di-1037

mension and fixed %sv results in an arc-like relationship between rsc mean and rsc s.d., and that1038

the radius of the arc is approximately equal to the %sv (Fig. 3e-f ).1039

We use the same notation as in Supplementary Math Note A. Let E[.] and V ar(.) denote the1040

mean and variance across all neurons or all pairs of neurons, depending on context. In particular,1041

we are interested in E[ρ] = rsc mean,
√
V ar(ρ) = rsc s.d., where the expectation and variance are1042

computed across ρij for all pairs of neurons in a given population (i.e., the upper triangle of the1043

correlation matrix, ρij for i > j).1044

Let c be the distance of a point (corresponding to one instance of the population activity covari-1045

ance matrix) from the origin in the rsc mean versus rsc s.d. plot (i.e., c =
√

(rsc mean)2 + (rsc s.d.)2).1046

We want to know whether c is the same for all population activity covariance matrices with one1047
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latent dimension and fixed %sv. This would correspond to point being equidistant from the origin,1048

and thus a circular arc. We can write c as:1049

c2 = (rsc mean)2 + (rsc s.d.)2

= E [ρ]2 + V ar (ρ)

= E [ρ]2 + E
[
ρ2
]
− E [ρ]2

= E
[
ρ2
]

Thus, the squared distance (i.e., squared radius) is equal to E
[
ρ2
]
, the mean of ρ2

ij across all pairs1050

in the population. Let m be the number of pairs (i.e., m =
(
n
2

)
= n(n−1)

2 ). Now, using equations1051

(8) and (9) derived in Supplementary Math Note A:1052

E
[
ρ2
]

=
1

m

n−1∑
i=1

n∑
j=i+1

ρ2
ij

=
1

m

n−1∑
i=1

n∑
j=i+1

(λw2
i )(λw

2
j )(

λw2
i + ψi

) (
λw2

j + ψj

)
=

1

m

n−1∑
i=1

n∑
j=i+1

φiφj

where φi and φj are the %sv of neurons i and j (expressed as proportions), as defined in Sup-1053

plementary Math Note A. We can show that 2
∑n−1

i=1

∑n
j=i+1 φiφj =

∑n
i=1

∑n
j=1 φiφj −

∑n
i=1 φ

2
i .1054

Intuitively, if we have a symmetric matrix Φ with entries Φ(i, j) = φiφj , and we want to find the1055

sum of the off-diagonal elements (2
∑n−1

i=1

∑n
j=i+1 φiφj), then we can take the sum of all elements1056

and subtract the diagonal elements (
∑n

i=1

∑n
j=1 φiφj−

∑n
i=1 φ

2
i ). Using this equivalence, it follows:1057

E
[
ρ2
]

=
1

m

n−1∑
i=1

n∑
j=i+1

φiφj

=
1

2m

 n∑
i=1

n∑
j=1

φiφj −
n∑
i=1

φ2
i


=

1

2m

 n∑
i=1

φi

n∑
j=1

φj −
n∑
i=1

φ2
i


=

1

2m

(
n2E [φ]2 −

n∑
i=1

φ2
i

)

=
1

n− 1

(
nE [φ]2 − E

[
φ2
])

=
1

n− 1

(
nE [φ]2 − V ar (φ)− E [φ]2

)
=

1

n− 1

(
(n− 1)E [φ]2 − V ar (φ)

)
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= E [φ]2 − 1

n− 1
V ar (φ)

= (%sv)2 − 1

n− 1
V ar (φ) (10)

This provides an equation for the squared radius (i.e., squared distance from the origin) of a point1058

in the rsc mean versus rsc s.d. plot. In the above derivation, E [φ] and V ar (φ) are taken across the1059

percent shared variance of each neuron in the population φi. Thus, E [φ] is equal to our population1060

metric %sv. Now, we will bound V ar (φ), which by definition is greater than or equal to 0. Since1061

0 ≤ φi ≤ 1, one instance where the maximum variance occurs is when there are an equal number1062

of φi = 0 and φi = 1 (and E [φ] = 0.5). Then,1063

V ar (φ) =
1

n

n∑
i=1

(φi − 0.5)2

=
1

n

(n
2

(1− 0.5)2 +
n

2
(0− 0.5)2

)
=

1

n
(0.25n)

= 0.25

So 0 ≤ V ar (φ) ≤ 0.25. For a small number of neurons n, the second term is non-negligible. For1064

example, for a model with 6 neurons and %sv = 50%, the radius of the data points may vary1065

between 0.4472 and 0.5. As the number of neurons increases, the second terms becomes negligible,1066

and data points lie approximately along an arc with radius equal to %sv. For example, for 301067

neurons as in our simulations and a %sv of 50%, the radius only varies between 0.4913 and 0.5.1068

To summarize, equation (10) computes the distance from the origin of a point for a given1069

population of neurons. For a fixed %sv, V ar (φ) can be the same or differ across many simulation1070

runs. If V ar (φ) = 0 or is the same across runs, then the points will lie perfectly along an arc, with1071

radius specified by equation (10). However, if V ar (φ) is different across runs, the distances of each1072

point from the origin will differ slightly, so they will lie close to, but not exactly along, an arc.1073

With this analysis, we have shown that in the case of one latent dimensions:1074

• A point (i.e., corresponding to a given population of neurons, simulated or real) on the rsc1075

mean versus rsc s.d. plot has distance from the origin (i.e., radius) less than or equal to %sv.1076

• If the %sv for individual neurons (φi) are all the same (see Supplementary Math Note A),1077

then the radius equals %sv.1078

• As the number of neurons increases, the radius becomes asymptotically closer to %sv.1079

C Relationship between correlation, loading similarity, and %sv (multiple la-1080

tent dimensions)1081

In Supplementary Math Note A, we established a mathematical relationship between rsc, loading1082

similarity, and %sv in the case of one latent dimension. Here, we generalize equation (8) to include1083

multiple dimensions in order to better understand the relationship between rsc and dimensionality.1084

We demonstrate here that the general relationships between rsc, %sv, and loading similarity for1085

one latent dimension also hold true for multiple latent dimensions. For multiple latent dimensions,1086

the relative strengths of each dimension is an important consideration—a stronger dimension plays1087

a bigger role in determining the rsc distribution. Finally, we consider the relationship between1088
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dimensionality itself and rsc. We will discover below that increasing dimensionality tends to decrease1089

the magnitude of rsc values.1090

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let w1091

be the co-fluctuation pattern (i.e., loading vector [w1, w2, ..., wn]T ∈ Rn×1) with eigenvalue λw, let1092

v be another pattern orthogonal to w ([v1, v2, ..., vn]T ∈ Rn×1; v ⊥ w), with eigenvalue λv, and let1093

Ψ ∈ Rn×n be a diagonal matrix specifying the independent variance of each neuron (ψ1, ψ2, ..., ψn).1094

Then the covariance is Σ = Σshared+Ψ = Σw+Σv+Ψ = wλwwT +vλvv
T +Ψ. On the off-diagonals1095

entries (i.e., if i 6= j), Σij = λwwiwj + λvvivj . Along the diagonals, Σshared,ii = Σw,ii + Σv,ii =1096

λww
2
i + λvv

2
i and Σii = λww

2
i + λvv

2
i + ψi.1097

Because the shared covariance matrix Σshared can be expressed as a sum of two component1098

matrices Σw + Σv, we can express the %sv of neuron i (φi) as1099

φi =
Σshared,ii

Σii
=

Σw,ii

Σii
+

Σv,ii

Σii

=
λww

2
i

λww2
i + λvv2

i + ψi
+

λvv
2
i

λww2
i + λvv2

i + ψi

= φ
(w)
i + φ

(v)
i

where φ
(w)
i is the %sv variance of neuron i explained by dimension w and φ

(w)
i is the %sv variance1100

of neuron i explained by dimension v.1101

With this decomposition of φi, and following similar steps as in equation (8):1102

ρij =

√
φ

(w)
i φ

(w)
j sign(wiwj) +

√
φ

(v)
i φ

(v)
j sign(vivj) (11)

where %sv values (φ) are represented as proportions. Equation (11) relates rsc, %sv, and loading1103

similarity for the case of two latent dimensions. Next, we compare these relationships for one versus1104

two latent dimensions.1105

We will show that, for two latent dimensions, the relative strength of each dimension (i.e., the1106

ratio λw : λv) is an important consideration. For two latent dimensions, decreasing the overall %sv1107

by decreasing both φ(w) and φ(v) equally (e.g., λw = λv and both decrease equally) pushes each1108

ρij closer to 0–rsc mean and s.d. will decrease. This is similar to what happens for one latent1109

dimension when %sv is decreased. On the other hand, even if the overall %sv is held constant, but1110

φ(w) increases relative to φ(v) (i.e., increase the strength of w relative to v), pairwise correlations1111

could change. Each ρij will largely be determined by φ(w) and w—rsc mean and s.d. will be more1112

similar to what they would be if only w existed (Fig. 4a). In other words, each ρij for two latent1113

dimensions is the sum of the ρij that would have been produced by each of the two constituent1114

dimensions on their own. The dimension with larger relative strength λ will have larger φ; the1115

stronger dimension will play a larger role in determining each value of ρij and thus the resulting1116

rsc distribution.1117

Using this logic, we can deduce that increasing the loading similarity of one of the dimensions1118

would increase rsc mean and decrease rsc s.d. for the same reasons as for one latent dimension1119

(Supplementary Math Note A). Doing so for a relatively stronger dimension would result in larger1120

changes in rsc than doing so for a relatively weaker dimension.1121

We have shown how having multiple latent dimensions can affect the relationship between rsc,1122

%sv, and loading similarity. Now, we show that dimensionality itself and rsc are related—larger1123

dimensionality tends to decrease rsc mean and s.d. To see this, we can generalize equation (11) for1124

d < n orthogonal latent dimensions u1, . . . ,ud ∈ Rn.1125
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ρij =
d∑

k=1

√
φ

(uk)
i φ

(uk)
j sign(ukiukj )

Considering the sign of one term, ρij could have the same sign for sign(ukiukj ) across all dimensions1126

u1, . . . ,ud; in this case, larger dimensionality acts to increase the correlation between neurons i and1127

j (ρij) above the level corresponding to a single dimension. However, because the loading vectors1128

u1, . . . ,ud are orthogonal, a pair of neurons i and j is likely to have many sign(ukiukj ) of opposite1129

sign across dimensions; in this case, larger dimensionality pushes the correlation between neurons1130

i and j (ρij) closer to 0. Thus, we would expect the magnitude of correlations to decrease as more1131

dimensions are added (i.e., a tendency for rsc mean and s.d. to decrease; Fig. 3g). In the next1132

section, we show this relationship mathematically.1133

D Increasing dimensionality decreases arc radius1134

We establish here that increasing dimensionality results in a decrease in the radius of the arc in1135

the rsc mean versus rsc s.d. plot (Fig. 3g). We extend the math for an arc for one latent dimension1136

(Supplementary Math Note B) to multiple latent dimensions. We will refer to the one latent1137

dimension as the ‘1-d case’ and multiple (k) latent dimensions as the ‘k-d case’.1138

We use the same notation as in Supplementary Math Note C. Consider the distance c of a1139

point (corresponding to one instance of the population activity covariance matrix) from the origin1140

in the rsc mean versus rsc s.d. plot. From Supplementary Math Note B, c2 = E[ρ2]. For this 2-d1141

case, the correlation between neurons i and j is ρij =
Σij√
ΣiiΣjj

=
λwwiwj+λvvivj√

(λww2
i +λvv2i +ψi)(λww2

j+λvv2j +ψj)
.1142

Thus we can write ρ2
ij as:1143

ρ2
ij =

(λwwiwj + λvvivj)
2(

λww2
i + λvv2

i + ψi
) (
λww2

j + λvv2
j + ψj

)
=

λ2
ww

2
iw

2
j + λwλv2wiwjvivj + λ2

vv
2
i v

2
j(

λww2
i + λvv2

i + ψi
) (
λww2

j + λvv2
j + ψj

)
= φiφj −

λwλv

(
w2
i v

2
j − 2wiwjvivj + w2

j v
2
i

)
(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

)
= φiφj −

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

)
where the % shared variance of neuron i in this 2-d case is φi =

Σshared,ii

Σii
=

λww2
i +λvv2i

λww2
i +λvv2i +ψi

.1144

Then letting m is the number of pairs in the population, and following similar steps to (10) in1145

Supplementary Math Note B, we arrive at:1146
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E[ρ2] =
1

m

n−1∑
i=1

n∑
j=i+1

ρ2
ij

= (%sv)2 − 1

n− 1
V ar (φ)− 1

m

n−1∑
i=1

n∑
j=i+1

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

) (12)

Not including the negative sign in front, note that this final term is non-negative (given that λw1147

and λv are non-negative, as for any covariance matrix). Thus, comparing the final line in equation1148

(12) to the final line from equation (10), we observe that the distance of the point for the 2-d case1149

in the rsc mean versus rsc s.d. plot is necessarily smaller than or equal to the distance for the1150

corresponding 1-d case.1151

More generally, for a k-dimensional case we can show that:1152

E[ρ2] =(%sv)2 − 1

n− 1
V ar (φ)

− 1

m

∑
w,v

[n−1∑
i=1

n∑
j=i+1

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

)] (13)

where the sum
∑

w,v is taken over all unique pairs of loading vectors (w, v). Indeed, as more1153

latent dimensions are subsequently added, the radius of the rsc mean versus rsc s.d. plot decreases1154

(Fig. 3g). Intuitively, this final term accounts for how population activity covaries along many1155

different dimensions in the high-d firing rate space. As more orthogonal dimensions are added,1156

population activity is further pulled in different directions in the high-d space, more interaction1157

terms come into play, and the magnitude of correlations is further decreased. This tends to decrease1158

both rsc mean and rsc s.d., explaining why the radius of the arc in the rsc mean versus rsc s.d. plot1159

tends to decrease as dimensionality increases.1160

We note that rsc mean and rsc s.d. do not necessarily both need to decrease. For example,1161

consider a pattern with a loading similarity of 1; loading weights for all neurons would have the same1162

value, rsc across all pairs would be the same value, and thus rsc s.d. would be 0 (see Supplementary1163

Math Note A). When a second pattern of necessarily low loading similarity (see Supplementary1164

Math Note E) is added, rsc values across pairs of neurons would differ, and rsc s.d. would be larger1165

than 0. Therefore, rsc s.d. can increase when going from the 1-d case to the 2-d case. However,1166

the corresponding decrease in rsc mean would be larger in magnitude than the increase in rsc s.d.,1167

resulting in an overall decrease in arc radius (Fig. 3g, 1 to 2 dimensions, data points closest to the1168

horizontal axis).1169

The third term in equation (13) can also help explain variability of the radius (E[ρ2]) across1170

different random instantiations with the same population metrics (Figs. 3g and 4). Consider a fixed1171

%sv. For the 1-d case, the radius is determined by the first two terms of the above equation, and1172

any variability in radius will be caused by different values of V ar(φ) across different instantiations.1173

For the 2-d case, the third term also plays a factor in determining the radius, and this term varies1174

across different random instantiations, typically to a larger degree than the second term for large1175

numbers of neurons n (see Supplementary Math Note B). Thus, the 2-d and k-d cases have greater1176

variability in E[ρ2] than 1-d cases (Fig. 3g, Fig. 4). Other subtle factors can affect the variability of1177

E[ρ2]. For example, variability in E[ρ2] can increase or decrease depending on the relative strengths1178

of each dimension and their corresponding loading similarities (Fig. 4 and Supplementary Fig. 5).1179
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This can be explained by the third component of equation (13), in particular by the terms involving1180

λw and λv.1181

1182

E Properties of loading similarities across different co-fluctuation patterns1183

We asked whether there was a relationship between the loading similarities of different co-fluctuation1184

patterns in the same model. In our simulations and V4 data analysis, we ensured that we obtain1185

unique co-fluctuation patterns by constraining dimensions to be orthogonal. Thus, we might con-1186

jecture that if one pattern has high loading similarity (e.g., [1, . . . , 1]), then another pattern in the1187

same model necessarily has low loading similarity (e.g., [1,−1, 1,−1, . . . ,−1, 1]). Indeed, this is1188

true because the sum across the loading similarities of each pattern in a model is at most 1. We1189

show this property of loading similarity here.1190

Let w and v be vectors representing two co-fluctuation patterns in the same model. We use the1191

notation w · v to refer to the element-wise product between w and v, resulting in a vector that is1192

the same size as w and v. Furthermore, we use E[w], V ar(w), and Cov(w) as shorthand to refer1193

to computations across the elements of a vector (and not as operations on a random variable): e.g.,1194

E[w] = 1
n

∑n
i=1wi, and Cov[w,v] = E[w ·v]−E[w]E[v] = 1

n

∑n
i=1wivi−

(
1
n

∑n
i=1wi

) (
1
n

∑n
i=1 vi

)
.1195

Also, in this section we refer to the loading similarity of vector w as ls(w) for shorthand.1196

We first show a constraint on loading similarities for a model with two co-fluctuation patterns1197

(i.e. loading vectors for each dimension). Let n be the number of neurons and let w,v ∈ Rn be two1198

loading vectors. As in our simulations and data analysis (see Methods), w and v are orthogonal1199

unit vectors:
∑n

i=1w
2
i = 1,

∑n
i=1 v

2
i = 1, and

∑n
i=1wivi = 0. Then, using these constraints,1200

Cov(w,v) = E[w · v]− E[w]E[v]

=
1

n

n∑
i=1

wivi − E[w]E[v]

= −E[w]E[v]

V ar(w) = E[w ·w]− E[w]2

=
1

n

n∑
i=1

w2
i − E[w]2

=
1

n
− E[w]2

(14)

Because correlation is bounded between -1 and 1, we know that |Cov(w,v)| ≤
√
V ar(w)V ar(v).1201

It follows that:1202

Cov2(w,v) ≤ V ar(w)V ar(v)

E[w]2E[v]2 ≤
(

1

n
− E[w]2

)(
1

n
− E[v]2

)
0 ≤ 1

n2
− 1

n

(
E[w]2 + E[v]2

)
nE[w]2 + nE[v]2 ≤ 1

ls(w) + ls(v) ≤ 1

(15)
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The last step follows from the definition of loading similarity:1203

ls(w) ≡ 1− V ar(w)

1/n
= 1−

1
n − E[w]2

1/n
= nE[w]2

The final inequality in equation (15) proves the intuition provided at the beginning of this1204

section–if ls(w) is large, then ls(v) must be small (at most 1− ls(w)). More strongly, if ls(w) = 1,1205

then ls(v) = 0.1206

Generally, for a model with d dimensions and patterns u1, . . . ,ud ∈ Rn, we can show that1207 ∑d
i=1 ls(ui) ≤ 1. To see this, we can construct a matrix C with entries cij = Cov(ui,uj) =1208

−E[ui]E[uj] for i 6= j, and cii = V ar(ui) = 1
n − E[ui]

2 (derived from the constraints in equation1209

(14)). Note that C ∈ Rd×d, with variances on the diagonal and covariances on off-diagonals, is a co-1210

variance matrix, which implies det(C) ≥ 0. For a 3-d model, det(C) = 1
n2

(
1− nE[u1]2 − nE[u2]2 − nE[u3]2

)
≥1211

0, which implies ls(u1) + ls(u2) + ls(u3) ≤ 1. In general, for a d-dimensional model (with d ≤ n):1212

det(C) =
1

nd−1

(
1−

(
d∑
i=1

nE[ui]
2

))
≥ 0

d∑
i=1

ls(ui) ≤ 1

(16)

Equation (16) has several implications:1213

• If one knows the loading similarities of all dimensions u1, . . . ,ud in a model, then the maxi-1214

mum possible loading similarity of any new dimension is 1−
∑d

i=1 ls(ui). It follows that two1215

dimensions with high loading similarity cannot co-exist in the same model.1216

• If one dimension has ls = 1, then all other dimensions in the model (or that would be added1217

to the model) necessarily have ls = 0. Note that there is only one possibility for a pattern1218

to have ls = 1 (i.e., u = [ 1√
n
, . . . , 1√

n
]T , such that V ar(u) = 0). This implies that there are1219

many possibilities for a pattern to have ls(u) = 0. More loosely, there are relatively few ways1220

for a pattern to have high loading similarity, but many more ways for a pattern to have low1221

loading similarity.1222

F Maximum variance of a unit vector1223

We defined loading similarity for a co-fluctuation pattern u (normalized to have norm 1) of n1224

neurons to be 1 − var(u)
1/n , where the variance is computed along the elements of u. This value lies1225

between 0 and 1 because the maximum variance across the elements of u is 1/n. We now show this1226

mathematically.1227

Let u ∈ Rn be a unit vector. Because u is a unit vector,
∑n

i=1 u
2
i = 1. Using these facts:1228

V ar(u) = E[u2]− E[u]2

=
1

n

n∑
i=1

u2
i − E[u]2

=
1

n
− E[u]2

≤ 1

n
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This holds with equality when E[u] = 0 (i.e., when the mean across the elements in a co-fluctuation1229

pattern is 0). This implies that the smallest loading similarity is 0 (when V ar(u) = 1/n), and the1230

largest loading similarity is 1 (when V ar(u) = 0).1231
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Supplementary Figures1232

0 0.05 0.1 0.15
0

0.05

0.1

0.15
monkey 1

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25
monkey 2

attend in
attend out

s.d.

mean mean

mean

s.d.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0 0.05 0.1 0.15
0

0.05

0.1

0.15attend in
attend out

t ∞

t=400

in
cr
ea
si
ng

nu
m
be
ro
ft
ria
ls

40%

larger session-to-session overlap in recorded neuronsb

90% 100%

a

s.d.

Supplementary Figure 1: Session-to-session variability in pairwise metrics can be accounted
for by finite trial counts and neuron sampling.

We sought to understand to what extent the average pairwise correlations reported in Figure 6b varied from
session to session, and the possible sources for this across-session variability. Here, we consider two possible
sources: 1) the number of recorded trials, and 2) the overlap in recorded neurons across sessions. Although
we likely recorded from many of the same neurons across sessions, the population of neurons recorded on each
session was not identical due to recording instability (sometimes referred to as electrode drift), a well-known
property of electrophysiological recordings.

(continued on next page...)
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Supplementary Figure 1: (continued from previous page...)

a. In V4 recordings, we observed substantial session-to-session variability in pairwise metrics. Each gray
arrow, corresponding to an individual session, begins at rsc mean and s.d. values for ‘attend-out’ (light gray
dots) and ends at rsc estimates for ‘attend-in’ (light red dots). The average change in rsc mean and s.d
(black arrow, black dot, solid red dot) correspond to the values we report in Figure 6b.

b. Using simulations, we assessed how varying the number of trials and overlap of neurons across sessions
contribute to the across-session variability of rsc mean and s.d.

The simulation procedure is described as follows. We first considered the setting of a large number of trials
with varying amounts of neuron overlap. We created covariance matrix using factor analysis (equation 4) for
2,500 neurons and computed rsc mean and s.d. from this matrix. Since we had access to the true covariance
matrix, we considered this setting as having an “infinite” number of trials (top row). For each simulated
recording session, we sampled 50 neurons from the set of 2,500 neurons. To mimic the effects of recording
different neurons on different sessions, we sampled neurons such that a percentage of neurons were the same
as those in the previous session (e.g., with 50 neurons in a session, a 40% overlap corresponds to 20 neurons
being common with the previous session from two sessions, whereas 100% corresponds to having the same
50 neurons on all sessions). To simulate ‘attend in’ and ‘attend out’ trials, we chose FA parameters to be
similar to those estimated from the V4 data (attend in: load. sim.=0.45, %sv=15%, dim.=3; attend out:
load. sim.=0.5, %sv=20%, dim.=3).

We found that as the percentage of neuron overlap between sessions increased, the across-session variability
in the rsc estimates decreased (moving left to right in top row). This indicates that if different neurons are
recorded in different sessions, one should expect differences in estimates of pairwise metrics across sessions.

We then considered how the number of recorded trials influences the across-session variability. We used
the same simulation procedure as described above, except for one key difference. Instead of using the true
covariance matrix to directly compute rsc, we instead simulated trials of “neuronal activity” from that
covariance matrix. We simulated 400 trials because that was, on average, the number of trials we recorded
per condition per session (i.e., each light-colored dot in panel a is computed from 400 trials). We then
estimated the spike count covariance matrix based on these 400 trials. We found that the level of across-
session variability did not substantially differ for 400 trials (bottom row) versus an infinite number of trials
(top row), except in the case of 100% overlap, i.e. no recording instability.

Using these simulations as a reference, it appears that much of the across-session variability in our reported
V4 pairwise metrics (panel a) can be accounted for by neural recording instability and finite trial sampling.
Additional across-session variability in the V4 results may be due to other cognitive factors, such as across-
session differences in the animal’s motivation level.
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Supplementary Figure 2: Eigenspectra for V4 population activity in ‘attend in’ and ‘attend
out’ conditions.

Although we observed only a modest change in dimensionality with attention (Fig. 6c), our simulations
showed that the relative strength of each dimension (i.e., shape of the shared eigenspectrum) could alter the
“effective dimensionality” of population activity and have large effects on pairwise metrics (Fig. 4a). Here,
we asked whether the relative strengths of each dimension changed with attention.

The eigenspectra were computed in the following way. We decomposed the V4 spike count covariance
matrix into shared and independent components using factor analysis (see Methods). We then computed
the eigendecomposition of the shared covariance matrix (Fig. 7, Σshared = UΛU). We found that eigenvalues
(diagonal of Λ) tended to increase linearly with the number of neurons recorded; therefore, in order to
combine across sessions, we normalized the eigenvalues by dividing by the number of neurons recorded in
each session. After normalizing, we computed the eigenspectrum averaged across sessions and stimulus
orientations. Because the dimensionality identified by cross-validation differed across sessions, there were a
different number of sessions that contributed to each average. We did not plot mean eigenvalues when there
were fewer than 5 sessions to average (i.e., dimensions ≥ 6 for monkey 1; dimensions ≥ 4 for monkey 2).
Error bars indicate standard error. Data points have been jittered horizontally for visual clarity.

We found that the shape of the eigenspectra was qualitatively similar for ‘attend in’ and ‘attend out’
conditions (red and black curves have similar shape). In both conditions, the eigenvalues of the shared
covariance matrix decayed (dot for each subsequent dimension was below dot for the previous dimension),
indicating that a small number of dimensions were needed to explain the population-wide covariability.

When comparing eigenspectra (i.e., the amount of shared variance explained by each dimension), one also
needs to consider the firing rates under each condition. Mean firing rates tend to be higher for attend-
in than attend-out trials. Higher firing rates typically correspond to higher spike count variance due to
the Poisson-like firing of neurons. All else being equal, the higher mean firing rates imply higher levels of
both shared variance and independent variance (Churchland et al., 2010). Thus, a direct comparison of the
eigenspectra should be done with caution. Nonetheless, we plotted attend-in and attend-out together to
relate our results to previous reports (Huang et al., 2019; Ruff et al., 2019b). Consistent with these studies,
we found that attention decreased the strength of the strongest dimension (red below black dot for dimension
index 1), though the magnitude of the decrease we observed was more consistent with Ruff et al. (2019b)
than Huang et al. (2019). Had we been able to equalize the mean firing rate across the two conditions, we
likely would have observed an even greater difference between attend-in and attend-out. We note that the
caveat described here for comparison of eigenspectra (i.e., the amount of shared variance) does not apply to
comparisons of %sv (Fig. 6c) because %sv is normalized by the overall spike count variance.
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Supplementary Figure 3: Pairwise metrics can be estimated equally well by either sampling
pairs of neurons over many sessions or simultaneously sampling many neurons.

Many studies that report rsc mean measured the activity of one, or a few, pairs of neurons in each recording
session, and combined rsc across separate recording sessions. We wondered if our estimates of pairwise
metrics may change if we could only sample random pairs of neurons, instead of simultaneously sampling
a population of neurons using a Utah array (as in our V4 recordings). This “sequential pairwise sampling”
is often done out of necessity due to physiological restrictions (e.g., recordings in deep brain structures) or
technological limitations (e.g., recording with pairs of single recording electrodes, or a single tetrode). More
recent studies often use multi-electrode array recording technologies, such as Utah arrays, that simultaneously
record the activity of tens of neurons. We term this “electrode array sampling”; it is the type of sampling we
considered in our main text simulations and V4 recordings. Here, we asked whether 1) sequential pairwise
sampling and electrode array sampling provide similar estimates when computing pairwise statistics and 2)
whether each type of sampling reflects the pairwise statistics of a larger neuronal population.

(continued on next page...)
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Supplementary Figure 3: (...continued from previous page)

a. To address these questions in simulation, we created, we created a large ‘ground truth’ covariance matrix
of population activity, and then simulated recording sessions by sampling entries from this matrix using
either a sequential pairwise or electrode array approach. We created a covariance matrix for a population of
1000 neurons using one co-fluctuation pattern (i.e., one latent dimension), a loading similarity of 0.2, and a
%sv of 30% (Fig. 7). We also tried other values for the population metrics and obtained similar results to
that shown below. From the covariance matrix, from which we computed a 1, 000×1, 000 correlation matrix
(left, black upper triangle). The rsc mean and s.d. of this correlation matrix were deemed to be the ground
truth values that we aimed to estimate using sequential pairwise or electrode array sampling. To simulate
an electrode array recording, we randomly sampled 30 neurons to obtain a 30× 30 covariance matrix (top,
red triangle). To simulate sequential recordings of pairs of neurons, we randomly sampled 30 entries of the
population correlation matrix (bottom, random red squares). We repeated each type of sampling 1,000 times
(i.e., 1,000 bootstrap runs), and for each run we computed rsc mean and rsc s.d. This procedure provided
us with sampling distributions of the rsc mean and s.d.

b. For both array sampling (top row) and sequential pairwise sampling (bottom row), we compared the
estimates of rsc mean and s.d. on each run with the ground truth values. To assess whether either metric
was consistently under or overestimated, we took the difference between the mean of the sampling distribution
(red triangles) and ground truth values (black triangles). We also considered how consistent/replicable the
estimates were, quantified by the spread of the sampling distribution (red bars, 90% confidence interval).

For rsc mean (left column), both array sampling (top row) and sequential sampling (bottom row) resulted in
little to no statistical bias (red triangles and black triangles are closely aligned), and both types of sampling
showed similar replicability (red bars are of similar lengths). We note that array sampling resulted in few
negative rsc mean estimates because the 30× 30 correlation matrix obtained with array sampling must be a
positive semi-definite matrix, limiting the range of possible rsc mean values and making negative rsc means
unlikely.

For rsc s.d. (right column), both array sampling (top row) and sequential sampling (bottom row) slightly
underestimated the ground truth value (red triangle lies to the left of black triangle). This underestimation
bias was small relative to the larger variance in estimates of rsc s.d. (red bars).

Overall, we found that both sequential pairwise sampling and electrode array sampling provide similar
answers for rsc mean and rsc s.d. Also, both types of sampling provide reasonably good estimates of rsc
mean and rsc s.d. of a larger population, given a reasonable sampling of neurons (30 neurons for electrode,
or 30 pairs for pairwise sampling here) relative to the larger population (1000 neurons here). This implies
that it is still possible to gain insight into a larger population of neurons and use the intuitions provided in
the main text of this work even in cases where one can only record sequentially from pairs of neurons over
multiple recording sessions. Note that the results here assume the covariance matrix is accurately estimated
using a large number of trials.
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Supplementary Figure 4: Relationship between pairwise and population metrics shows little
dependence on distribution of independent variances.

(continued on next page...)
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Supplementary Figure 4: (...continued from previous page)

In our simulations (Figs. 3 and 4), we fixed the independent variance for each neuron to be the same value.
However, we found that for real data, the independent variance differed across neurons. To account for this,
we re-performed our simulations using a distribution of independent variances that was similar to that of
the real data. We found the same trends, suggesting that different distributions of independent variances
lead to similar conclusions about the relationship between pairwise and population metrics.

a. We applied factor analysis to V4 population activity recorded during a spatial attention task (see Fig. 6
and Methods) and estimated each neuron’s independent variance (Fig. 7a, gray diagonal entries). Indepen-
dent variances between neurons differed (dashed line denotes histogram).

b. In the main text (Figs. 3 and 4), our simulations used a fixed independent variance of 1 for all neurons
(dahsed gray line). Here (c-e), we re-performed the same simulations but drawing independent variances
from an exponential distribution (solid black line) which approximates the distribution of the real data
(compare solid black line here to that in in a). We used an exponential distribution with a mean of 3.

c. Varying %sv and loading similarity while keeping the dimensionality fixed at 1. Same conventions as in
Fig. 3f. We set %sv by scaling the eigenvalue of the one dimension (see Methods). With changing %sv,
exponentially-distributed independent variances led to similar changes in radius of the arcs as when indepen-
dent variances were all 1 (compare to Fig. 3f ). However, here the arc lengths were smaller than in Figure 3f
because small values of rsc s.d. were unlikely with different independent variances. However, an rsc s.d. of 0
is still possible under special conditions that are not likely to be encountered in practice (i.e., if the loading
for each neuron is set to be the square root of its independent variance; see Supplementary Math Note A).

d. Varying dimensionality and loading similarity while keeping %sv fixed at 50%. Same conventions as in
Fig. 3g. We found that as dimensionality increases, rsc mean and rsc s.d. decrease, consistent with our
simulations in Fig. 3g.

e. Varying the relative strengths of two dimensions. Same conventions as in Fig. 4. We observed similar
trends whether the independent variances were all fixed to 1 (Fig. 4) or drawn from an exponential distri-
bution. However, here with exponentially-distributed independent variances, covariance matrices for which
the pattern of the dominant dimension (i.e., the dimension with the largest eigenvalue) had a high loading
similarity (left panel, 95:5, red dots) yielded a higher rsc s.d. than when independent variances were the
same for each neuron. This is for the same reasons as noted in panel c.

51

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.04.383604doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.383604


1 2 3 4 5
dimension

ei
ge

nv
al
ue

s
(s
ha

re
d
va
ria

nc
e)

1

a b

0 0.1 0.2 0.3 0.4

0.1

0

0.2

0.3

0.4

0.5

0.5

5432

0 0.1 0.2 0.3 0.4 0.5

dimension

ei
ge

nv
al
ue

s
(s
ha

re
d
va
ria

nc
e)

3 dims

5 dims

1 dim.
2 dims.

3 dims.
4 dims.

5 dims.

s.d.

3 dims

5 dims

Supplementary Figure 5: Relationship between pairwise and population metrics does not de-
pend on relative strengths of dimensions.

In Fig. 3g, we varied dimensionality and assessed the changes to pairwise metrics. For that simulation, we
assumed that each dimension had equal strength (i.e., a flat eigenspectrum for the shared covariance matrix).
Here, we asked if our simulation results held when we changed the shape of the shared covariance eigenspec-
trum such that it was no longer flat (i.e., some dimensions explained more shared variance than others). We
found similar trends, suggesting that a different eigenspectrum shape leads to similar relationships between
pairwise and population metrics as those found in the main text.

a. Results for flat eigenspectra (reproduction of Fig. 3g, here with inset). Each dimension of the shared
covariance matrix had the same eigenvalue (top right inset), and thus each dimension explained the same
amount of shared variance. Note that models with different dimensionalities had different eigenvalues (inset,
3-dim. has larger eigenvalues than those for 5-dim.), because we scaled the eigenvalues (while keeping fixed
each neuron’s independent variance) to enforce the %sv to be the same across models of different dimension-
alities (inset, the sum of eigenvalues is equal for 3-dim. and 5-dim.).

b. In neuronal recordings, the shape of eigenspectra curves estimated from recorded neuronal activity is
usually not flat (see Supplementary Fig. 2). We sought to understand how the shape of the eigenspectrum
affects the relationship between pairwise and population metrics. We re-performed the simulations in Fig-
ure 3g except here with the eigenspectra curves were exponentially decaying according to λi = e−

2
3 i (inset).

The overall trend held true: an increase in dimensionality led to an overall decrease in the radius of the arc
(yellow dots closer to origin than purple dots).

(continued on next page...)
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Supplementary Figure 5: (...continued from previous page)

We also observed two subtle differences from Figure 3g. First, an exponentially-decaying eigenspectrum
tended to have a higher rsc mean and rsc s.d. compared to its corresponding flat eigenspectrum (e.g., yellow
dots for 5 dims are further from origin here than in panel a). This occurs because, for an exponentially-
decaying eigenspectrum, an added dimension explains relatively little shared variance (right side of the curves
in inset). Thus, the added dimension results in only small changes in rsc mean and rsc s.d. On the other
hand, adding a dimension to the flat eigenspectrum affects rsc mean and rsc s.d. as much as any other
dimension, leading to larger changes in rsc mean and rsc s.d. than in the case of an exponentially-decaying
eigenspectrum.

The second difference was, for a given dimensionality, a greater radial and angular spread for exponentially-
decaying eigenspectra compared to flat eigenspectra (e.g., yellow dots for 5 dims are more spread out in the
radial direction here than in panel a; yellow dots are also more spread out parallel to the dashed lines). This
occurs because, when the eigenspectra are not flat, there is greater diversity in how the co-fluctuation patterns
of different dimensions can contribute to rsc. In other words, switching the eigenvalues of two dimensions
with equal eigenvalues (i.e., both dimensions explain the same amount of shared variance) results in the same
model and same covariance matrix—yielding the same values for rsc mean and rsc s.d. However, switching
the strengths of two dimensions with different eigenvalues is likely to result in a different covariance matrix
and thus different values of rsc mean and rsc s.d. Thus, for non-flat eigenspectra, the greater diversity by
which co-fluctuation patterns can contribute to the shared covariance matrix leads to greater spread in the
rsc s.d. vs rsc mean plots. The mathematical details about the spread of dots in the radial direction are
provided in Supplementary Math Note D.

An implication of this analysis is that it is important to report the eigenspectrum shape whenever one reports
dimensionality. For example, consider population activity described by 5 dimensions with an exponentially-
decaying eigenspectrum (panel b, yellow dots). Because of 1) low shared variance in the last 2 dimensions, and
2) greater diversity in how dimensions contribute to the shared covariance matrix, the activity might closely
resemble that described by 3 dimensions with a flat eigenspectrum (a, pink dots). Thus, considering both
dimensionality and the eigenspectrum curve, instead of dimensionality alone, will lead to a more complete
picture of the structure of population activity.
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