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ABSTRACT 

 

Tumor stratification, which aims at clustering tumors into biologically meaningful subtypes, is the key step 

towards personalized treatment. Large-scale profiled cancer genomics data enables us to develop computational 

methods for tumor stratification. However, most of the existing approaches only considered tumors from an 

individual cancer type during clustering, leading to the overlook of common patterns across cancer types and 

the vulnerability to the noise within that cancer type. To address these challenges, we proposed cancerAlign to 

map tumors of the target cancer type into latent spaces of other source cancer types. These tumors were then 

clustered in each latent space rather than the original space in order to exploit shared patterns across cancer 

types. Due to the lack of aligned tumor samples across cancer types, cancerAlign used adversarial learning to 

learn the mapping at the population level. It then used consensus clustering to integrate cluster labels from 

different source cancer types. We evaluated cancerAlign on 7,134 tumors spanning 24 cancer types from TCGA 

and observed substantial improvement on tumor stratification and cancer gene prioritization. We further 

revealed the transferability across cancer types, which reflected the similarity among them based on the somatic 

mutation profile. cancerAlign is an unsupervised approach that provides deeper insights into the heterogeneous 

and rapidly accumulating somatic mutation profile and can be also applied to other genome-scale molecular 

information. 

 

Keywords: Tumor stratification, somatic mutation, adversarial learning 

Availability: https://github.com/bowen-gao/cancerAlign 

1  Introduction 

Tumor stratification aims at dividing a heterogeneous collection of tumors into biologically meaningful and 

clinically actionable subtypes based on the similarity of molecular profiles, such as gene expression and somatic 

mutation[1]. Owing to the substantial heterogeneity of cancers, tumor stratification paves the path for 

personalized treatment, moving away from the conventional one-size-fits-all approach[2]. To better understand 

cancer heterogeneity, large-scale cancer genomics projects, such as the Cancer Genome Atlas (TCGA), the 

International Cancer Genome project, and the Memorial Sloan Kettering-Integrated Mutation Profiling project 

have systematically profiled thousands of tumors, holding the promise to realize personalized treatment[3–6]. 

Among the collected genome-scale omics data, somatic mutation profiles have been used to discover causal 

drivers of tumors[7–13] and further reveal informative cancer subtypes[14,15]. In pursuit of this vision, 

computational approaches have been developed to stratify tumors according to high-dimensional, noisy and 

sparse somatic mutation profiles[1,16–21]. 

 

Existing computational approaches mainly exploited two machine learning techniques to advance tumor 

stratification: dimensionality reduction[22–27] and network-based aggregation of individual mutations[1,17–

19,28,29]. For example, NBS used molecular networks to aggregate individual gene mutation into higher level 
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functions and structures in cancer cells[1]. Wang et al. further extended this framework by exploiting mutual 

exclusivity to construct a stringent molecular network for propagation[16]. Despite the encouraging 

performance of these methods, none of them has considered analyzing tumor samples from multiple cancer 

types simultaneously, inevitably overlooking shared mutation patterns across cancer types. Such mutation 

patterns, including network modules and signaling pathways, have been discovered through pan-cancer 

analysis, and further reveal the similarities and differences across cancer types[30]. Moreover, signals from 

mutations that are rare in one cancer type might be boosted from functionally similar mutations from other 

cancer types. 

 

Nevertheless, jointly analyzing tumors from two or more cancer types is challenging due to the incomparable 

somatic mutation profiles across cancer types. Tumors are wildly heterogeneous across cancer types, and 

different cancer types are known to be driven by different genes and pathways[31]. Simply selecting features 

of common genes across cancer types might produce clusters that are biased to across-cancer-type signals rather 

than within-cancer-type signals. A plausible solution is to learn a nonlinear mapping between mutation profiles 

of two cancer types[32]. The nonlinear mapping does not presume that two cancer types share the exact same 

driver genes or pathways, thus better modeling the heterogeneous across cancer types. However, supervised 

alignment approaches cannot be adopted to learn this mapping due to the lack of aligned tumor samples across 

cancer types.   

 

In this paper, we propose cancerAlign, an unsupervised approach to stratify tumors through learning tumor 

alignment across cancer types. The key idea of cancerAlign is to learn a shared latent space between the somatic 

mutation profile of a target cancer type and a source cancer type. Tumors of the target cancer type are then 

clustered in this shared latent space so that common patterns across cancer types can be exploited to assist the 

stratification. Due to the absence of annotated aligned tumor samples across cancer types, cancerAlign learns 

the mapping at the population level using adversarial learning. Moreover, cancerAlign automatically selects 

source cancer types according to the silhouette score between tumor samples in the shared latent space and  

tumor samples in the original space. We evaluated cancerAlign on 7,134 tumors spanning 24 cancer types from 

TCGA[33]. cancerAlign obtained substantial improvement against the method that only considers a single 

cancer type in both tumor stratification and cancer gene prioritization. Our method further reveals the similarity 

and transferability across cancer types, presenting new opportunities for personalized treatment and drug 

repurposing[34]. 

2  Problem definition 

2.1  Problem definition of conventional tumor stratification 

 

The input of tumor stratification is a binarized somatic mutation matrix 𝑋𝑡 = [𝑥𝑡
(1)
, 𝑥𝑡

(2)
, 𝑥𝑡

(3)
, . . . , 𝑥𝑡

(𝑛𝑡)]𝑇 ∈

𝑅𝑛𝑡×𝑑 of a particular cancer type 𝑐𝑡, where 𝑛𝑡 is the number of tumors in the dataset, and 𝑑 is the number of 

genes. The goal is to cluster these 𝑛𝑡 tumors into 𝑘 clusters based on the binarized somatic mutation matrix. 

The output is the cluster label vector 𝑙𝑡 ∈ 𝑅𝑛𝑡, which would be evaluated by the difference of survival rates 

among clusters.  

 

2.2 Problem definition of cancerAlign 

 

Different from conventional tumor stratification methods that only consider a single cancer type, cancerAlign 

leverages multiple source cancer types to assist the clustering of the target cancer type. In particular, cancerAlign 

consists of a mapping step and a clustering step. In the mapping step, the input is the binarized somatic mutation 

matrices of m source cancer types {𝑋𝑠1, 𝑋𝑠2, …, 𝑋𝑠𝑚} where 𝑋𝑠𝑖 ∈ 𝑅𝑛𝑠𝑖×𝑑𝑠𝑖  and the target cancer types 𝑋𝑡 ∈

𝑅𝑛𝑡×𝑑𝑡 . We aim at learning a mapping 𝐺𝑡→𝑠𝑖 from the target cancer type 𝑡 to each source cancer type 𝑠𝑖. For 
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patient 𝑗 in the target cancer type t, 𝐺𝑡→𝑠𝑖(𝑥𝑡
(𝑗)
) is in the same feature space as 𝑋𝑠𝑖. The output of the mapping 

step is then a mapped matrix 𝑋𝑡→𝑠𝑖 = [𝑥𝑡→𝑠𝑖

(1)
, 𝑥𝑡→𝑠𝑖

(2)
, 𝑥𝑡→𝑠𝑖

(3)
, . . . , 𝑥𝑡→𝑠𝑖

(𝑛𝑡) ]𝑇 ∈ 𝑅𝑛𝑡×𝑑𝑠𝑖 . In the clustering step, 

cancerAlign clusters tumors using the mapped mutation matrix 𝑋𝑡→𝑠 instead of the original matrix 𝑋𝑡 . 
cancerAlign then obtains a cluster label vector 𝑙𝑡→𝑠𝑖 ∈ 𝑅𝑛𝑡 by mapping to each source cancer type 𝑠𝑖. We then 

integrate these cluster label vectors to obtain the final cluster label vector 𝑙𝑡 ∈ 𝑅𝑛𝑡. 

 

 

3 Methods 

Supervised approaches cannot be used to align tumors between two cancer types due to the lack of annotated 

aligned tumors. The incomparable feature space among different cancer types also poses difficulty to jointly 

analyze them. To address these problems, cancerAlign uses an adversarial learning method to perform 

unsupervised alignment between two cancer types, which does not require aligned samples or same features 

space between two cancer types. Tumors are then clustered in this aligned space and cluster label vectors from 

multiple source cancer types are further integrated to provide a robust clustering result (Fig. 1). 

 

3.1 Unsupervised alignment via adversarial learning 

We proposed to use adversarial learning to map tumor samples between cancer types. Adversarial learning has 

been widely used in various machine learning fields, such as computer vision[35], natural language 

processing[36], and computational biology[37]. Our adversarial learning framework aims at training a generator 

and a discriminator. The generator aims at generating corresponding samples in the source caner type given a 

sample in the target cancer type. The discriminator aims at classifying samples in the source cancer type space 

into generated samples or real samples. A good generator should make the classification of the discriminator 

difficult, while a good discriminator would make the generation of samples more challenging. Consequently, 

the generator and the discriminator iteratively advance each other in a competition mode, and the resulsted 

generator would be used to map tumors from the target cancer type to the source cancer type.  

The generator is the mapping function 𝐺𝑠𝑖 consisting of an encoder and a decoder. Given the input data 𝑋𝑡 =

[𝑥𝑡
(1)
, 𝑥𝑡

(2)
, 𝑥𝑡

(3)
, . . . , 𝑥𝑡

(𝑛𝑡)]𝑇 of a particular cancer type 𝑐𝑡, where each 𝑥𝑡
(𝑖)

∈ 𝑅𝑑 representing the feature vector 

of tumor i. The encoder transforms the original input vector 𝑥𝑡
(𝑖)

 into a low-dimensional vector 𝑧𝑡
(𝑖)

∈ 𝑅𝑘. Then 

this low-dimensional vector is used by the decoder to generate the output vector 𝑥𝑡→𝑠
(𝑖)

 that shares the same 

feature space as cancer type s. The output matrix by mapping tumors in cancer type t to cancer type s is thus 

𝑋𝑡→𝑠 = [𝑥𝑡→𝑠
(1)

, 𝑥𝑡→𝑠
(2)

, 𝑥𝑡→𝑠
(3)

, . . . , 𝑥𝑡→𝑠
(𝑛𝑡)]𝑇.  

We also trained a discriminator 𝐷 to discriminate between feature vectors from 𝑋𝑠 and from 𝑋𝑡→𝑠. Given the 

input data 𝑥(𝑖) ∈ 𝑅𝑑, the discriminator is a binarized classifier 𝐷:𝑅𝑑 → {0,1}, where 1 means that 𝑥(𝑖) is from 

𝑋𝑠 and 0 means that 𝑥(𝑖) is from 𝑋𝑡→𝑠. 

The discriminator 𝐷 is optimized to correctly classify whether the input tumor sample is from 𝑋𝑠 or 𝑋𝑡→𝑠, while 

the generator 𝐺 is optimized to generate tumor samples that can fool the discriminator. Thus the discriminator 

and the generator form a two-player minimax game with a value function 𝑉(𝐷, 𝐺): 

                                                                   (1)                                        

In the training stage, we updated the parameters of the generator and the discriminator iteratively. Each one has 

its own loss function. 

Discriminator objective: Let 𝜃𝐷 be the parameters of the discriminator. The learning objective of the 
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discriminator is to successfully decide whether the input vector is from the source cancer type, or generated by 

the mapping function. We treated 𝑃𝜃𝐷(𝑟𝑒𝑎𝑙 = 1|𝑥) as the probability that a vector 𝑥 is from the real source 

cancer, rather than the generator. Then the loss for discriminator is: 

                                            (2)        

Generator objective: The learning objective for the generator is to fool the discriminator. We wanted to train 

the 𝐺 such that the discriminator cannot correctly classify whether the input tumor sample is from 𝑋𝑠 or 𝑋𝑡→𝑠. 

Then the loss for the generator is: 

                                            (3) 

3.2 Selecting source cancer types 

Our method considered multiple source cancer types and learnt a mapping function from target cancer type to 

each source cancer type. However, due to the heterogeneity across cancer types, many source cancer types may 

not align well with the given target cancer type, thus introducing additional noise to the clustering step. To 

increase the signal-to-noise ratio, we proposed to only consider source cancer types that are indistinguishable 

with the target cancer type after the mapping. 

In particular, we used the Silhouette score to measure whether tumors in the mapped target cancer space are 

indistinguishable with tumors from the original cancer type space. Silhouette score has been widely used to 

evaluate the accuracy of clustering results[38,39]. A larger score indicates a better clustering result. We first 

treated 𝑋𝑡 and 𝑋𝑡→𝑠 as two different clusters, then calculated the Silhouette score between these two clusters, 

corresponding to the similarity between tumor samples in the mapped target cancer space and tumor samples in 

the original cancer type space. Source cancer types that had closer to zero Silhouette scores were in favor since 

it indicated that the generated feature vectors of cancer type 𝑋𝑡→𝑠 was indistinguishable from the target cancer 

type 𝑋𝑡. Since there were multiple source cancer types, we only considered the top five cancer types that had 

the closest to zero Silhouette scores for the next step consensus clustering. 

Due to the lack of a single objective loss function, it is challenging to know how well a generator has been 

trained[40]. The discriminator and the generator are trained in a competitive mode, which further makes it 

difficult to determine convergence. We selected the number of iterations based on the number of patients in the 

smallest cluster. Let 𝑞𝑒 be the number of patients in the smallest cluster based on the cluster label vector in the 

epoch 𝑒. We found that 𝑞𝑒 tends to become substantially small (e.g., less than 5) after a large number of 

iterations by iteratively training the generator and the discriminator. A well-known issue in the adversarial 

training is model collapse, which means the generator producing similar samples (partial collapse) or in the 

worst case repetitively generating the same sample (complete collapse)[41]. In this case, we regarded such a 

small 𝑞𝑒 as the signal of the model collapse of GAN[42] and leading to trivial clusters. In order to avoid the 

trivial cluster results, we used the epoch that has the largest 𝑞𝑒. 

3.3 Consensus clustering across selected source cancer types 

We used K-means as the base clustering algorithm to cluster tumors based on the mapped mutation profile 𝑋𝑡→𝑠. 

Due to the high dimensionality of the feature vectors, we first used principal component analysis (PCA) to 

reduce the dimensionality before clustering. By considering different source cancer types, we could obtain 

multiple cluster label vectors. We then aggregated these different label vectors using consensus clustering to 
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obtain the final cluster label vectors. Consensus clustering assesses the consensus among multiple existing 

clustering results to obtain a more robust clustering result[43]. Specifically, we first obtained individual cluster 

label vector 𝑙𝑡
(𝑠𝑖) for clustering tumors of cancer type t in the feature space of each source cancer type 𝑐𝑠𝑖. Then 

we used the label vector to get the connectivity matrix 𝐶𝑀(𝑠𝑖). Each 𝐶𝑀(𝑠𝑖) is an 𝑛𝑡 × 𝑛𝑡 matrix, with rows and 

columns representing patients of the target cancer type. The entries in this matrix are defined as: 

                                                                                      (4) 

Then we defined the consensus matrix W, where each entry (𝑢, 𝑣) inside the consensus matrix represents the 

frequency that patient 𝑢 and patient 𝑣 are within the same clusters according to 𝑙𝑡
(𝑠𝑖).  

                                                                                                                              (5) 

We used W as our new feature matrix for K-means to obtain the final clustering result. 

 
Fig. 1. Flowchart of cancerAlign. cancerAlign first maps the somatic mutation profile of tumors from the 

target cancer type to different source cancer types. It then clusters these tumors in the latent space of each source 

cancer type. As a result, cancerAlign obtains an individual cluster label vector for each source cancer type. 

These cluster label vectors are then aggregated together by consensus clustering to get the final tumor 

stratification result. 

 

4 Results 

4.1 Somatic mutation and patient survival data 

We downloaded somatic mutation profiles of tumors in The Cancer Genome Atlas (TCGA) from GDAC 

Firehose website (http://gdac.broadinstitute.org, 11th February 2016). In total, we collected somatic mutation 

profiles of 7,134 tumors belonging to 24 different cancer cohorts, including BRCA, BLCA, CESC, CHOL, 

COAD, DLBC, GBM, HNSC, KICH, KIRC, LGG, LIHC, LUAD, LUSC. OV, PAAD, PRAD, READ, SARC, 

STES, TFCT, THCA, UCEC, UVM. These cancer types contain different numbers of tumors, ranging from 35 

to 974, with an average of 297 tumors. The number of genes in each cancer type is between 1,305 and 16,859, 

with an average of 10,234 genes. There are in total 18,022 unique genes across all 24 cancer types. We also 

obtained the survival data from the TCGA dataset for these tumors. We used the survival data and known cancer 

genes to evaluate the performance of the tumor stratification. The known cancer genes we used are obtained 

from Iorio et al.[44]. It contains cancer genes for different cancer types, and only high confidence genes are 

considered. Those cancer types have different numbers of cancer genes, ranging from 8 to 62, with an average 
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of 29.33 cancer genes. 

 

4.2 Experimental setting 

To train our adversarial learning framework, we followed the standard training process from previous work[45]. 

We made samples in each mini-batch either all from the target cancer type, or all from the mapped target cancer 

type. As a result, no batch contained mixed samples. We trained the model for 100 epochs. For the Adam 

optimizer, we set the starting learning rate, the exponential decay rate for the first moment estimates, and the 

exponential decay rate for the second moment estimates to 2e-5, 0.9, 0.999, respectively.  

We compared cancerAlign with two comparison approaches. The first one, named as clustering without 

alignment, is the conventional tumor stratification on an individual cancer type. K-means clustering algorithm 

is directly applied to the original binarized data of target cancer type (i.e., 𝑋𝑡). We compared our method with 

clustering without alignment to study the importance of jointly considering multiple cancer types. The second 

one, named as Pan-Cancer clustering, combined tumors from all cancer types and then performed the 

clustering. In particular, given the target cancer type 𝑐𝑡 that we aimed to stratify and another source cancer type 

𝑐𝑠𝑖, we jointly clustered tumors from these two cancer types using common genes between 𝑐𝑡 and 𝑐𝑠𝑖 as features. 

We then extracted the cluster label vector of tumors in 𝑐𝑡 and applied the consensus clustering method described 

in 3.3 to ensemble different cluster label vectors generated by using different 𝑐𝑠𝑖. We compared our method 

with Pan-Cancer clustering to investigate the effect of learning a nonlinear mapping between cancer types. 

We evaluated the clustering performance based on survival rates among different clusters. We used the log-

rank test[46], where a small p-value indicates that the survival rates are significantly different among clusters. 

Let the number of clusters be 𝑘. We thoroughly examined different 𝑘 across from 2 to 6. For each target cancer 

type, we also selected the best results from experiments of different 𝑘. We also investigated whether our model 

can identify cancer genes by comparing differentially mutated genes to a list of known cancer genes. We used 

the chi-squared test to identify cancer genes based on the cluster label vectors from our method. Specifically, 

for each gene 𝑖 in cancer type t, we obtained two equal-sized vectors. The first vector is the output of cancerAlign 

𝑙𝑡 ∈ 𝑅𝑛𝑡, where each entry represents the cluster label of a tumor. The second vector is the mutation vector 𝑔𝑖, 

where 𝑔𝑖
(𝑗)

= 1 if gene 𝑖 is mutated in tumor 𝑗, otherwise 𝑔𝑖
(𝑗)

= 0. We then applied chi-squared test on 𝑙𝑡 and 

𝑔𝑖 and obtained a p-value for gene i. We created the cancer genes list of our method according to these p-values. 

AUROC was used to evaluate the performance of cancer gene identification.  

To investigate which source cancer type s is most helpful to the target cancer type t in tumor stratification, we 

directly clustered tumors using each 𝑋𝑡→𝑠 without performing consensus clustering. To find novel cancer genes, 

we first selected cancer types that have the good AUROC scores using our method. For each cancer type, we 

identified the top 10 genes with the lowest p-values and determined the ones that are not in the known cancer 

gene list as novel cancer genes. To map across more than two cancer types, we sequentially considered these 

cancer types. For example, to map cancer type t to s and then to r, we first learnt a mapping between 𝑋𝑡 and 𝑋𝑠 

and obtained the mapping 𝐺𝑡→𝑠. We then learnt another mapping between 𝑋𝑠 and 𝑋𝑟. Tumors in cancer type t 

were finally clustered using 𝐺𝑡→𝑠→𝑟(𝑋𝑡). 
 

4.3 cancerAlign improves tumor stratification 

We first sought to investigate whether cancerAlign can improve tumor stratification by using source cancer 

types to assist the clustering of tumors in the target cancer type. To this end, we compared cancerAlign with 

clustering without alignment on 24 cancer types across the number of cluster k from 2 to 6. We found that 

cancerAlign substantially outperformed clustering without alignment on a large number of cancer types (Fig. 

2a,b,c). Overall, cancerAlign obtained significant clustering for 8 cancer types, whereas clustering without 

alignment only has significant clustering for 6 cancer types (p-value<0.01 log-rank test) (Fig. 2a). Moreover, 

cancerAlign obtained improved clustering results for 8 out of 10 cancer types which obtained significant p-
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value by at least one method. For example, cancerAlign obtained a log-rank survival association p-value less 

than 4e-4 for KIRC when 𝑘 = 3, which is much more significant than the p-value of 0.2 by clustering without 

alignment (Fig. 2b, Fig. 3a). The consistent superior performance of cancerAlign across different numbers of 

clusters demonstrates the effectiveness of using source cancer types to assist the clustering of a specific target 

cancer type. 

 
Fig. 2, Comparison between our method and comparison approaches on tumor stratification. Each dot 

represents one of 24 cancer types. x-axis shows the survival association p-value by using our method, while y-

axis shows the survival association p-value of the comparison approach. a,b,c, Scatter plot showing the 

comparison of our method with clustering without alignment using the best clustering result across k from 2 to 

6(a), k=3(b), k=5(c). d,e,f, Scatter plots showing the comparison of our method with Pan-Cancer clustering 

using the best clustering result across k from 2 to 6(d), k=3(e), k=5(f).  

 

Next, we compared cancerAlign with Pan-Cancer clustering, which also clustered tumors using multiple cancer 

types. We found that cancerAlign also greatly improved Pan-Cancer clustering (Fig. 2d,e,f). Among 24 cancer 

types, cancerAlign obtained a significant p-value for 8 cancer types, which is still larger than the 6 cancer types 

of Pan-Cancer clustering (Fig. 2d). Out of the 9 cancer types that obtained significant p-value by at least one of 

the methods, cancerAlign achieved improved clustering results on 7 of them. For instance, cancerAlign obtained 

a log-rank survival association p-value<2e-4 for LGG when 𝑘 = 3, which is substantially better than the p-

value of 0.9 by Pan-Cancer clustering (Fig. 2f, Fig. 3b). The superior performance of cancerAlign indicates the 

importance of learning a nonlinear mapping to align two cancer types rather than a simple combination between 

them. We further noticed that the performance of Pan-Cancer clustering is in general better than clustering 

without alignment, which raises our confidence about leveraging other cancer types to assist tumor stratification. 

4.4 cancerAlign improves cancer gene identification 

Next, we studied whether our method can also improve the cancer gene identification. We first compared 

cancerAlign with clustering without alignment on cancer gene identification for 24 cancer types (Fig. 4a). We 

observed that cancerAlign achieved AUROCs greater than 0.80 for 8 cancer types, whereas none of the 24 

cancer types had an AUROC larger than 0.80 by using clustering without alignment. Our method achieved an 

average of 0.74 AUROC, which is 40% better than the 0.53 AUROC of clustering without alignment. We then 

compared cancerAlign with Pan-Cancer clustering and again observed that cancerAlign outperformed the Pan-

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387860doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387860


  

8 

Cancer clustering method in cancer gene identification (Fig. 4b). All AUROCs of 24 cancer types were less 

than 0.80 by using Pan-Cancer clustering. In contrast, 8 out 24 cancer types had an AUROC greater than 0.80 

by using cancerAlign. Overall, cancerAlign Pan-Clustering obtained an average of 0.59 among all cancer types, 

which is much lower than the 0.74 AUROC value achieved by our method. The superior performance against 

two comparison approaches demonstrates the effectiveness of using other cancer types to assist the cancer gene 

identification of a specific cancer type. 

 

 
Fig. 3, Kaplan-Meier (KM) survival plots using cancerAlign. a, KM survival plots for KIRC using 

cancerAlign when the number of clusters equal to 3. b, KM survival plots for LGG with cancerAlign when the 

number of clusters equal to 3. 

 

 
Fig. 4, Comparison between our method and comparison approaches on cancer gene identification. Each 

dot represents one of 24 cancer types. x-axis shows the AUROC by using our method, while y-axis shows the 

AUROC of the comparison approach. a, Scatter plot showing the comparison between our method and 

clustering without alignment. b, Scatter plot showing the comparison between our method and Pan-Cancer 

clustering. 

 

 

We then examined the novel cancer genes identified by cancerAlign and found that many of them can be verified 

by existing literature. For example, cancerAlign found that TTN is important for tumor straticiotan in READ(p-

value<2e-06), which is not in the known cancer gene list. A recent study showed that the mutation count of 
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TTN had a large correlation coefficient with the tumor mutation burden, which is an emerging biomarker in 

colorectal cancer[47]. TTN mutation was enriched in samples possessing high immunostimulatory signatures, 

partially reflecting the association between large mutation load and high TMB status. We also found that 

CALN1 might be a novel cancer gene for GBM, which obtained a p-value<0.01 by our method. Lu et al. found 

that GBM patients with overexpressed CALN1 had better overall survival, which suggests that CALN1 might 

be a potential biomarker for identifying high-risk patients with GBM[48]. 

 

4.5 cancerAlign identify transferable cancer types 

 

Motivated by the improved performance of cancerAlign in tumor stratification and cancer gene identification, 

we then examined which two cancer types could produce a good mapping that leads to superior tumor 

stratification. We summarized the cancer type pairs that have the best tumor stratification result in Table 1. We 

observed a great improvement of our method on these cancer types. For example,  by mapping Kidney Renal 

Clear Cell Carcinoma (KIRC) to Kidney Chromophobe (KICH), cancerAlign obtained a p-value of 3e-4, which 

is more significant than the comparison approach. We found that some of these cancer type pairs can be 

supported by literature. For example, a recent immune genes analysis[49] showed that LGG and KIRC had the 

largest numbers of prognostic immune genes (PIGs) among 22 analyzed cancer types. Moreover, they found 

that the number of risk PIGs (hazard ratio > 1) was significantly higher than that of protective PIGs for both 

KIRC and LGG. By learning a nonlinear mapping between cancer types, cancerAlign identified transferable 

cancer types, which presents new opportunities for cancer drug development and repurposing.  

 

Table 1, Cancer type pairs that have the most prominent tumor stratification improvement using 

cancerAlign. Given a target cancer type, the source cancer type that leads to the best tumor stratification 

result is shown. The p-values of our method and clustering without alignment are also shown. 

 

Target cancer Best source cancer Number of clusters P-value of comparison approach P-value of our method 

UVM LUSC 4 3.60E-01 1.11E-06 

LGG LUSC 4 1.62E-01 1.11E-06 

LGG KIRC 3 3.05E-01 2.76E-06 

BLCA OV 3 2.11E-03 8.59E-05 

KIRC KICH 3 1.80E-01 3.09E-04 

OV GBM 3 8.77E-03 3.49E-04 

HNSC GBM 6 1.81E-01 5.32E-03 

SARC KICH 3 6.95E-01 6.06E-03 

 

 

Finally, we explored whether our method can be used to sequentially align more than two cancer types. As a 

proof-of-concept, we illustrated two examples where sequentially aligning three cancer types had better 

performance than only aligning two cancer types (Table 2). For example, mapping SARC to BRCA can improve 

the tumor stratification result from p-value of 1.96e-1 to p-value of 1.88e-2 when clustering tumors into 4 

subtypes. By further mapping from BRCA to COAD, the tumor stratification result is further enhanced to a p-

value of 4.62e-3. In HNSC, cancerAlign improved the clustering result by mapping HNSC to LGG and obtained 

a p-value of 5.17e-3. By further mapping these tumors to LUSC, the p-value improved to 6.14e-4. The observed 

improvement of sequentially mapping multiple cancer types suggests the possibility to further improve 

cancerAlign by automatically determining the cancer mapping sequence and provide novel insights into cancer 
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research.    

 

 

 

Table 2, Comparison among clustering without alignment, clustering by aligning two cancer types, and 

clustering by aligning three cancer types on tumor stratification. We show different results for k (number 

of clusters) from 2 to 6, and the best clustering results for k across 2 and 6. Best and significant p-values for 

each number of cluster are shown in bold. 

 

Cancer type sequence k=2 k=3 k=4 k=5 k=6 Best among different k 

SARC without alignment 2.20e-01 6.95e-01 1.96e-01 6.48e-01 8.80e-01 1.96e-01 

SARC→BRCA 3.39e-01 1.92e-02 1.88e-02 5.22e-02 2.45e-02 1.88e-02 

SARC→BRCA→COAD 5.24e-01 3.18e-01 4.62e-03 4.70e-03 3.03e-02 4.62e-03 

HNSC without alignment 2.29e-01 1.91e-01 1.11e-01 1.02e-01 1.02e-01 1.02e-01 

HNSC→LGG 2.04e-01 4.69e-02 4.48e-02 5.17e-03 1.11e-02 5.17e-03 

HNSC→LGG→LUSC 5.67e-01 3.97e-03 6.14e-04 3.12e-02 1.11e-03 6.14e-04 

 

5  Conclusion and discussion 

In this paper, we have presented cancerAlign, a novel computational method that stratifies tumors through 

jointly aligning multiple cancer types. We used adversarial learning to map tumors from the target cancer type 

to multiple source cancer types. We then applied consensus clustering to integrate clustering based on different 

source cancer types. We observed substantial improvement against clustering without alignment and Pan-

Cancer clustering in tumor stratification and cancer gene prioritization. 

 

Our method is inspired by the recent progress in unsupervised machine translation and single cell integration. 

Conventional machine translation relied on supervised training using parallel data between two languages. 

Recently, unsupervised machine translation has become feasible by exploring the shared latent space across 

word-occurrence patterns across languages[36]. In addition to also performing unsupervised alignment between 

cancer types, we further integrated information from multiple source cancer types and proposed to select source 

cancer types based on clustering agreement. Another line of the exciting progress is in single cell integration, 

where methods such as Scanorama[50] have been proposed to integrate single cell datasets without known 

aligned samples. We found that adversarial learning resulted in better alignment, partially due to the 

incomparable feature spaces among cancer types.  

 

While cancerAlign obtained substantial improvement here, there are still several potential future directions we 

would like to investigate. Currently, we only considered somatic mutation data. We plan to jointly align somatic 

mutations with other genomics data such as gene expression profiles. Other than tumors, cell lines[44] and 

patient-derived tumor xenograft[51] models are also in pressing needs for cancer research. We would also like 

to incorporate them into our current framework. Finally, molecular networks might further advance cancerAlign 

through grouping sparse mutations into high-level modules[1]. 
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