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Abstract  355 

Background: Evidence for aspirin’s chemopreventative properties on colorectal cancer (CRC) is 356 

substantial, but its mechanism of action is not well-understood. We combined a proteomic approach 357 

with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk.  358 

Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable 359 

isotope labelling with amino acids in cell culture (SILAC) based proteomics approach identified 360 

altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N=3,301) and 361 

expression QTLs (eQTLs) from the eQTLGen Consortium (N=31,684) were used as genetic proxies for 362 

protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was 363 

performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer 364 

Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of 365 

Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls).  366 

Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, 367 

RRM2 and ARFIP2 expression and MR analysis showed that a standard deviation increase in 368 

mRNA/protein expression was associated with increased CRC risk (OR:1.08, 95% CI:1.03-1.13, 369 

OR:3.33, 95% CI:2.46-4.50 and OR:1.15, 95% CI:1.02-1.29, respectively).  370 

Conclusion: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to 371 

increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin 372 

cytoskeletal regulation indicating a possible role in aspirin’s reduction of metastasis.   373 

Impact: Our approach has shown how laboratory experiments and population-based approaches can 374 

combine to identify aspirin-targeted proteins possibly affecting CRC risk.  375 

  376 
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Introduction 377 

Colorectal cancer (CRC) is the fourth most common cancer worldwide (1). Observational studies as 378 

well as randomized controlled trials (RCTs) using aspirin for the prevention of vascular events have 379 

shown that aspirin use is associated with a decrease in CRC incidence and mortality (2–5). This was 380 

primarily thought to be through the acetylation of the cyclooxygenase (COX) enzymes thereby 381 

inhibiting their action (6). These enzymes are involved in the COX/prostaglandin E2(PGE2) signalling 382 

pathway which is frequently upregulated in CRC, driving many of the hallmarks of cancer (7,8). 383 

Evidence for COX-independent mechanisms have also emerged, such as the prevention of NFκB 384 

activation, inhibition of the extracellular-signal-regulated kinase (ERK) signalling pathway, cell cycle 385 

progression inhibition and possible induction of autophagy (7,9). An aspirin derivative that does not 386 

inhibit COX reduced the mean number of aberrant crypt foci (an early lesion in colorectal 387 

carcinogenesis) in a mouse model of CRC more than aspirin itself (10). Furthermore, aspirin was able 388 

to inhibit proliferation and induce apoptosis in COX-2 negative colon cancer cell lines as well as 389 

reducing angiogenesis in 3D assays where COX-inhibitors showed no effect (11–13). Clinically, aspirin 390 

has been shown to reduce tumour recurrence in phosphatidylinositol-4,5-bisphosphate 3-kinase 391 

catalytic subunit alpha (PIK3CA) mutant cancer whereas rofecoxib (a COX-2 selective inhibitor) 392 

showed no effect (14) and has also been shown to improve survival in patients with human 393 

leukocyte antigen (HLA) class I antigen expression, regardless of COX-2 expression (15). There is now 394 

a significant number of studies that indicate the mechanism behind the action of aspirin on CRC risk 395 

is still not fully understood and that multiple mechanisms are involved (16). 396 

In conventional epidemiological studies it is often difficult to determine causality due to limitations 397 

of confounding and reverse causation. While RCTs can overcome these limitations, they are 398 

generally limited to assessing the causal role of health interventions or pharmaceutical agents on 399 

disease outcomes, rather than understanding biological mechanisms. Furthermore, in the context of 400 

cancer, RCTs for cancer primary prevention are not always feasible, as they require long-term follow-401 

up for the cancer to develop. Mendelian randomization (MR) is an epidemiological method which 402 
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applies a similar notion of randomization as in the RCT to evaluate causality. In MR, genetic variants 403 

(most commonly single nucleotide polymorphisms (SNPs)) are used to proxy an exposure of interest 404 

(17). As genetic variants are randomly assorted at conception, an individual’s genetic makeup is 405 

unlikely to be influenced by exposures later on in life, thus reducing the possibility of confounding 406 

and reverse causation (18).  407 

More recently, the increase in genome-wide association studies for molecular traits has identified 408 

SNPs that are associated with protein and mRNA expression levels, thereby providing protein 409 

quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) (19,20), which may be 410 

used to investigate the causal mechanism of drug targets on disease risk (21).Such methods can 411 

complement laboratory experiments to better understand the mechanism of action of drugs on 412 

cancer growth and progression.   413 

Due to evidence showing that aspirin may prevent adenoma formation (22) and adenomas being the 414 

precursors of most colorectal cancers (23), we focused on a colorectal adenoma cell line (RG/C2) in 415 

this study and identified altered protein expression in relation to aspirin treatment. Findings were 416 

then taken forward into an MR analysis to investigate which proteins targeted by aspirin may be 417 

causally implicated in reducing risk of CRC incidence, thereby providing insight into alternative 418 

mechanisms/pathways for the action of aspirin. 419 

  420 
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Methods 421 

Cell culture experiments 422 

The S/RG/C2 (referred to as RG/C2 henceforth whereby the prefix “S” denotes that they are from a 423 

sporadic tumour) (RRID:CVCL_IQ11) colorectal adenoma cell line was derived in the Colorectal 424 

Tumour Biology group and is described in detail elsewhere (24). These cells express RG/C2 cells 425 

express WT full length APC (251) as well as wild type KRAS and PIK3CA (252) but express mutant 426 

TP53 (25–27) .RG/C2s were cultured in Dulbecco’s Modified Eagles Medium (DMEM) (Life 427 

Technologies, Paisley, UK) and supplemented with 20% foetal bovine serum (FBS)(Life Technologies, 428 

Paisley, UK), L-glutamine (2mM)(Life Technologies, Paisley, UK), penicillin (100 units/ml) (Life 429 

Technologies, Paisley, UK), streptomycin (100 ug/ml) (Life Technologies, Paisley, UK) and insulin (0.2 430 

units/ml) (Sigma-Aldrich, Poole, UK). Cells were mycoplasma tested (Mycoalert Plus mycoplasma 431 

detection kit; Lonza Group, Basal, Switzerland) and experiments performed within 10 passages. 432 

Aspirin (Sigma-Aldrich) was dissolved in fresh growth medium and diluted to form concentrations of 433 

2mM and 4mM.  434 

Generation of proteomic data - SILAC approach 435 

A stable isotope labelling with amino acids in cell culture (SILAC) approach was carried out on RG/C2 436 

cells treated with 0mM, 2mM and 4mM aspirin for 24 hours. Control cells (0mM aspirin) were 437 

cultured with an L-arginine and L-lysine (light labelling), 2mM were cultured with 2H4-lysine and 13C6-438 

arginine (medium labelling) and 4mM were cultured with 15N2
13C6-lysine and 15N4

13C6-arginine (heavy 439 

labelling) (Cambridge Isotope Laboratory, Massachusetts, United States). These methods were based 440 

on the SILAC-based mass spectrometry approach by Trinkle-Mulcahy et. al (2008) (28). 441 

Cells were cultured with aspirin and the isotopes for 24 hours before extracting protein lysates. This 442 

experiment was carried out in duplicate. Lysates from the three conditions were pooled in a 1:1:1 443 

ratio, separated by SDS-PAGE and then subjected to in-gel tryptic digestion.  The resulting peptides 444 

were analysed by liquid chromatography mass spectrometry using an LTQ Orbitrap Velos mass 445 

spectrometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and the mass spectral data 446 
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analysed using Proteome Discoverer software v1.4 (Thermo). Details of SILAC labelling and 447 

proteomics have been previously published (29). To determine proteins whose expression is altered 448 

due to aspirin treatment, we applied a threshold of a 1.4 fold change between 4mM/control and 449 

2mM/control, as suggested previously (30). Results were also limited to a variability of <100% and a 450 

peptide count of at least 2.  451 

Statistical analyses 452 

Two-sample MR 453 

To assess the effect of protein/mRNA expression of aspirin targets on risk of CRC, we used a two-454 

sample MR approach. Firstly, SNPs were identified to proxy for protein/mRNA expression of the 455 

proteins shown to be altered in cell culture. Genetic association estimates with protein/mRNA 456 

expression levels (pQTLs/eQTLs) (sample 1) were integrated with genetic association estimates with 457 

CRC risk (sample 2).   458 

Genetic predictors for protein and gene expression 459 

Protein quantitative trait loci (pQTLs) were obtained from the INTERVAL study which comprises 460 

about 50,000 individuals within a randomised trial evaluating the effect of varying intervals between 461 

blood donations and how this affects outcomes such as quality of life (31). Relative protein 462 

measurements were taken using SOMAscan assays for 3,622 plasma proteins in a subset of 3,301 463 

participants, randomly chosen. Genotyping and imputation (using a combined 1000 Genomes Phase 464 

3-UK10K as the reference panel) of these individuals provided measures for 10,572,814 variants that 465 

passed quality control and were taken forward in a GWAS analysis to identify pQTLs for the 466 

measured proteins (details of quality control are mentioned elsewhere (19)). pQTLs identified 467 

represent a standard deviation (SD) change in protein expression (19).To adjust for multiple testing, 468 

a Bonferroni correction (0.05/10,572,814=4.72x10-9) was applied and pQTLs below this P-value 469 

threshold were used to proxy for protein expression in our analysis (32).   470 

In the absence of a relevant pQTL for the protein of interest, an equivalent mRNA expression GWAS 471 

was used instead. Expression quantitative trait loci (eQLTs) were extracted from the eQTLGEN 472 
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consortium consisting of 31,684 individuals from 37 datasets, of which 26,886 samples were from 473 

blood and 4798 from peripheral blood mononuclear cells (PBMCs). Due to the differing methods for 474 

genotyping between the studies, variants for each transcript ranged between 2,337-31,684 variants 475 

(20). For this reason, a Bonferroni correction threshold was adjusted depending on the number of 476 

variants measured for each transcript (0.05/number of variants) (32). eQTLs were standardized and 477 

meta-analysed through a Z-transformation, therefore eQTL effect sizes are reported as standard 478 

deviation (SD) changes (20). 479 

In this analysis, both cis (within 1 Mb of the gene transcription start sit) and trans QTLs were used to 480 

proxy for expression. Once suitable pQTLs/eQTLs were identified, linkage disequilibiurm (LD) 481 

clumping at an R2 of 0.001 was carried out to remove SNPs that are inherited together and so that 482 

only the SNP most strongly associated with the mRNA/protein expression within a 10,000kb window 483 

was used. 484 

Genetic association for colorectal cancer 485 

Genetic association summary statistics for CRC, comprising 55,168 colorectal cancer cases and 486 

65,160 controls, were obtained from the Colon Cancer Family Registry (CCFR), Colorectal 487 

Transdisciplinary (CORECT) and Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia 488 

and UK Biobank (33–35). Quality control procedures have been described elsewhere (33). Ethics 489 

were approved by respective institutional review boards. 490 

Evaluating the association of mRNA/protein expression on colorectal cancer 491 

Analyses were carried out in R version 3.2.3 using the MR-Base TwoSampleMR R package 492 

(github.com/MRCIEU/TwoSampleMR) (36), which allows the formatting, harmonisation and analysis 493 

of summary statistics. The package reassigns alleles so that the effect allele has a positive association 494 

with the exposure and so represents an increase in protein/mRNA expression. In turn, allele 495 

harmonization ensures that the same allele (that predicts increased expression) is the effect allele in 496 

the outcome dataset as well. In the case of palindromic SNPs (represented by either A/T or G/C on 497 

both the forward and reverse alleles) these were also harmonized where possible based on allele 498 
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frequencies. If allele frequencies for the effect allele and the other allele were similar, thus making 499 

harmonization difficult, these SNPs were dropped from the analysis (36).  500 

Separate MR analyses were carried for cis and trans pQTLs as well as cis and trans eQTLs. For 501 

proteins with just one pQTL or eQTL, Wald ratios (SNP-outcome estimate ÷ SNP-exposure estimate) 502 

were calculated to give a causal estimate for risk of CRC per SD increase in mRNA/protein 503 

expression. Where more than one QTL was available as a proxy for the exposure (mRNA/protein 504 

levels), a weighted mean of the ratio estimates weighted by the inverse variance of the ratio 505 

estimates (inverse-variance weighted (IVW) method) was used (37).  506 

When one genetic variant used to proxy for an exposure is invalid e.g. due to horizontal pleiotropy 507 

(where a genetic variant affects the outcome through an alternative exposure/pathway of interest) 508 

(17), then the estimator from the IVW method becomes biased (38). As a sensitivity analysis, 509 

alternative MR methods were used when more than 2 SNPs were available as instruments for 510 

mRNA/protein expression (MR Egger, simple mode, weighted mode, and weighted median) 511 

(36,39,40). Unlike the IVW method, the MR Egger method is not constrained to pass through an 512 

effect size of 0, thereby allowing the assessment of horizontal pleiotropy through the y intercept. 513 

(38,41). The weighted median approach is useful as it allows a consistent estimate even if 50% of the 514 

SNPs proxying protein/mRNA expression are invalid instruments (40) and the mode estimate also 515 

provides a consistent causal effect estimate even if the majority of the instruments are invalid, as 516 

the estimate depends on the largest number of similar instruments (39).  517 

Results 518 

Mendelian randomization of gene/protein expression and risk of colorectal cancer 519 

identified in aspirin treated human adenoma cells 520 

In order to investigate the early changes that could reduce cancer risk, we investigated the 521 

proteome of aspirin treated adenoma derived cells to identify new targets of aspirin that may alter 522 

the risk of CRC by combining these proteomic results with an MR analysis. After applying a filtering 523 

threshold based on fold change and variability in expression, we identified 125 proteins whose 524 
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expression appeared to be regulated by aspirin treatment (Figure 1) (S1 Table), although 5 were 525 

uncharacterised from mass spectrometry and therefore excluded from the analysis. 526 

 Of the 120 proteins, expression of 28 proteins was measured in the INTERVAL study, of which 12 527 

proteins had pQTLs that were below the Bonferroni significance threshold (0.05/10,572,814 = 4.73 528 

x10-9). From these 12 proteins, cis pQTLs were available for 3 proteins and trans pQTLs for 10 529 

proteins (S2 Table). In the absence of available pQTLs, eQTLs for the transcripts of the identified 530 

proteins were used instead. Of the 108 proteins with no pQTLs available, expression of 89 mRNAs 531 

were measured in the eQTLGen consortium, of which 77 proteins had eQTLs that were below the 532 

Bonferroni significance threshold. From these 77 proteins, cis eQTLs were available for 71 proteins 533 

and trans eQTLs were available for 37 proteins (S3 Table). In total, there were 318 unique SNPs 534 

proxying for protein and mRNA expression, of which outcome summary statistics were available for 535 

305 SNPs to test for association between 99 mRNA/proteins against risk of CRC.  536 

Two-sample MR analysis using the Wald ratio or IVW method was conducted to test the effect of 537 

increased mRNA/protein expression on the risk of CRC incidence using cis and trans pQTLs (S4 Table) 538 

as well as cis and trans eQTLs (S5 Table). In total, 99 proteins were tested for association with CRC 539 

incidence. To correct for multiple testing, a Bonferroni adjusted threshold of significance was applied 540 

(0.05/99= 5.05x10-4) but we also considered associations of a nominal significance (P value<0.05). 541 

Overall, 1 protein with cis eQTLs and 2 with trans eQTLs were associated with CRC incidence at P< 542 

5.05x10-4 and a further 3 proteins with cis eQTLs, 1 with a trans eQTL and 1 instrumented by a trans 543 

pQTL were associated with CRC incidence at a P value < 0.05.  544 

Increased mRNA expression of Human Leukocyte Antigen A (HLA-A) and mini chromosome 545 

maintenance 6 (MCM6) instrumented by cis eQTLs was found to be associated with an increased risk 546 

of CRC incidence (OR 1.28, 95% CI:1.04-1.58, P value: 0.02 and OR 1.08, 95% CI: 1.03-1.13, P value: 547 

9.23x10-4 per SD increase in mRNA expression, respectively). An SD increase in mRNA expression of 548 

fatty acid desaturase 2 (FADS2) and DNA polymerase delta subunit 2 (POLD2) instrumented by cis 549 

eQTLs was associated with a decrease in risk of CRC incidence (OR 0.94, 95% CI: 0.90-0.97, P value: 550 
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2.50x10-4 and OR 0.84, 95% CI: 0.75-0.94, P value: 1.17x10-3, respectively) (Figure 2, Table 1). For 551 

FADS2 and POLD2, results were consistent using other MR methods (weighted median, weighted 552 

mode and simple mode) and the MR Egger test shows no evidence of pleiotropy (S6 Table, 553 

Supplementary Figure 1). From the cis eQTL analysis, only results for FADS2 survived the Bonferroni 554 

significance threshold.  555 

Proteins instrumented by trans eQTLs include ribonucleoside-diphosphate reductase subunit M2 556 

(RRM2), stathmin-1 (STMN1) and lipin 1 (LPIN1). An increase in RRM2 was estimated to increase the 557 

risk of cancer incidence (OR 3.33, 95% CI: 2.46-4.50, P value: 6.25x10-15 per SD increase in mRNA 558 

expression) whereas an increase in STMN1 and LPIN1 was associated with decreases in the risk of 559 

CRC incidence (OR 0.72, 95% CI: 0.54-0.97, P value: 0.03 and OR 0.40, 95% CI: 0.32-0.50, P value: 560 

5.50x10-16 per SD increase in mRNA expression, respectively). From the trans eQTL analysis, results 561 

for RRM2 and LPIN1 both survived the Bonferroni significance threshold.  562 

For proteins instrumented by pQTLs, ADP ribosylation factor interacting protein 2 (ARFIP2) proxied 563 

using a trans pQTL conferred an increased risk of CRC incidence (OR 1.15, 95% CI: 1.01-1.29, P value: 564 

0.03 per SD increase in protein expression).  565 

Overall, the directions of effects between HLA-A, MCM6, RRM2 and ARFIP2 and CRC risk obtained 566 

from our MR analysis concur with those anticipated given the protective role of aspirin on CRC and 567 

the effect of aspirin treatment on expression of these proteins. Aspirin reduces the protein 568 

expression of HLA-A, MCM6, RRM2 and ARFIP2 (fold change in protein expression with 4mM aspirin 569 

treatment compared to control: 0.55, 0.65, 0.36 and 0.69, respectively, Table 1) and aspirin intake is 570 

associated with a decreased risk of CRC (2–4). Our MR analysis shows that increased expression of 571 

these proteins is associated with an increased risk of CRC incidence. Taken together, our results 572 

indicate that a possible mechanism through which aspirin decreases the risk of CRC incidence is 573 

through the downregulation of HLA-A, MCM6, RRM2 and ARFIP2. The direction of effect was less 574 

consistent for the other 4 proteins (FADS2, POLD2, STMN1 and LPIN1) showing opposite results to 575 

what we would expect based on the proteomic results (Table 1).  576 
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 577 

 578 

Figure 1- Flow diagram of SNP selection. 5886 proteins were identified using the SILAC proteomic approach. After applying 579 

a threshold, 125 proteins appear to be regulated by aspirin treatment, of which 5 were uncharacterised proteins and were 580 

therefore excluded from the analysis. In total, 12 proteins and 77 mRNAs had been quantified and had pQTLs/eQTLs below 581 
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the Bonferroni significance threshold. Overall, summary statistics for 353 pQTLs and eQTLs were available, of which 582 

summary statistics for 305 of the SNPs was also present in the CCFR, CORECT and GECCO consortia.  583 

 584 

585 

Figure 2- Forest plot of mRNA/protein associations with CRC incidence at a P value of <0.05. The upper box presents results 586 

using cis eQTLs, followed by trans eQTLs and finally trans pQTLs. Each dot on the plot represents the change in OR of CRC 587 

incidence per SD increase in mRNA/protein expression and the horizontal lines either side of the dot represent the 95% 588 

confidence intervals. The dotted line represents a null association between expression and cancer incidence. The number 589 

of SNPs used as instruments as well as the OR, the method and P value of association are also reported. Abbreviations: N 590 

SNP, number of SNPs; OR, odds ratio; CI, confidence intervals; IVW, inverse-variance weighted; WR, Wald ratio. 591 
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 2 

Table 1- MR results of the 8 proteins associated with CRC incidence 3 

   

 

 

Association of predicted expression with CRC risk 

Fold change of protein expression in 

response to aspirin 

Gene Instrument N SNP 

Variance 

explained R
2
 

(%) 

Method OR LCI UCI P value Effect 

2mM vs 

Control 

4mM vs 

Control 

Effect 

FADS2 cis eQTL 6 2.29 IVW 0.94 0.90 0.97 2.5x10
-4 

� 0.61 0.26 � 

MCM6 
cis eQTL 2 3.85 IVW 1.08 1.03 1.13 9.23x10

-4 
� 

 

0.59 0.65 � 

POLD2 cis eQTL 3 0.05 IVW 0.84 0.75 0.94 1.73x10
-3 

� 0.54 0.35 � 

HLA-A cis eQTL 1 5.95 WR 1.28 1.04 1.58 0.02 � 0.55 0.64 � 

LPIN1 trans eQTL 1 0.08 WR 0.40 0.32 0.50 5.50x10
-16

 � 0.65 0.64 � 

RRM2 trans eQTL 1 0.19 WR 3.33 2.46 4.50 6.52x10
-15

 � 0.33 0.36 � 

STMN1 trans eQTL 1 0.04 WR 0.72 0.54 0.97 0.03 � 0.47 0.61 � 

ARFIP2 trans pQTL 1 0.09 WR 1.15 1.01 1.29 0.03 � 0.67 0.69 � 

The table shows the inverse-variance weighted (IVW) or Wald ratio (WR) results for the 7 proteins associated with CRC incidence. The results indicate the change in OR of CRC incidence per 4 

unit increase in mRNA or protein expression (z-score or standard deviation, respectively). Results that are consistent with aspirins’ effect on protein expression are in bold font. Abbreviations: 5 

N SNP, number of SNPs; OR, odds ratio; LCI, lower confidence interval; UCI, upper confidence interval; SE, standard error; IVW, inverse-variance weighted; WR, Wald ratio. 6 
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 597 

Discussion 598 

Evidence for the use of aspirin in the prevention of CRC is increasing (2–5). However, the mechanism 599 

through which it functions is still not fully understood. By combining both a proteomic-based 600 

approach as well as an MR analysis, our results provide mechanistic insights into how aspirin could 601 

decrease the risk of CRC.  602 

Using a SILAC-based proteomics approach, 120 proteins appear to be regulated at 24 hours by 4mM 603 

and 2mM aspirin treatment. Genetic variants (pQTLs and eQTLs) were identified and used to proxy 604 

for protein and mRNA expression levels of the identified proteins to test for evidence of a causal 605 

effect on CRC incidence. When no pQTL was available for a protein, eQTLs were used instead.  606 

Overall, 4 cis eQTLs, 3 trans eQTLs and 1 trans pQTL were associated with cancer incidence at a P 607 

value < 0.05. Increased expression of HLA-A and MCM6 proxied by cis eQTLs were associated with an 608 

increase in the risk of CRC incidence and an increase in RRM2 and ARFIP2 (proxied by a trans eQTL 609 

and trans pQTL, respectively) also conferred an increased risk. Therefore, suppressing the expression 610 

of these four proteins could decrease the risk of CRC. As the proteomic results showed that aspirin 611 

treatment decreases the expression of these proteins, this could be a potential mechanism by which 612 

aspirin reduces the risk of CRC. However, only results for RRM2 survive the Bonferroni significance 613 

threshold, indicating that further studies are required to verify these results.   614 

The proteins MCM6 and RRM2 are both involved in repair of DNA damage. MCM6 is part of a 615 

helicase complex involved in unwinding DNA and is involved in repair of double stranded breaks 616 

(DSBs) in homologous recombination through interaction with RAD51. This interaction is required for 617 

chromatin localisation and formation of foci for DNA damage recovery (42). Likewise, RRM2 is part 618 

of a protein complex called ribonucleotide reductase which catalyses the biosynthesis of dNTPs and 619 

is therefore required for DNA replication and damage repair (43).  620 
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Cancer cells commonly lose the DNA damage response, which results in the accumulation of 621 

mutations that may be oncogenic (44). Because of this, tumour cells end up relying on a reduced 622 

number of repair pathways and are therefore more sensitive to inhibition of DNA damage repair 623 

pathways when compared to normal cells which have full capability of DNA repair (45). Drugs that 624 

target these other pathways have been shown to selectively kill the cancer cells which is known as 625 

synthetic lethality (46,47). It may be that by reducing the expression of DNA repair proteins, which 626 

combined with DNA damage response proteins that are already mutated during tumour progression, 627 

aspirin can induce cell death in the developing tumour cells reducing the risk of developing cancer.  628 

The MR results for the proteins ARFIP2 and HLA-A also concur with our SILAC proteomic results. 629 

ARFIP2 is a protein previously shown to play a role in membrane ruffling and actin polymerization, 630 

therefore regulating the actin cytoskeleton (48). The remodelling of the actin cytoskeleton is known 631 

to be involved in cancer metastasis (49). This is of particular interest as aspirin reduces the odds of 632 

colorectal adenocarcinoma metastasis by 64% (OR:0.36 (95% CI: 0.18-0.74)) (50) and this may be 633 

through the reduction in ARFIP2 expression. With regards to HLA-A expression and cancer risk, 634 

results from a cohort study showed that aspirin was more chemopreventative in tumours that 635 

expressed HLA  class I antigen (which includes HLA-A, HLA-B and HLA-C) (rate ratio (RR) 0.53, 95% CI: 636 

0.38-0.74) and this association was no longer apparent in tumours that lacked expression of this 637 

protein (15). Our MR analysis showed that an increase in HLA-A was associated with increased CRC 638 

risk, and that aspirin may reduce this risk through a reduction in HLA-A expression, however further 639 

investigation is required before any conclusions can be drawn.  640 

Our MR analysis results also showed that increased mRNA expression of FADS2, POLD2, LPIN1 and 641 

STMN1 all decreased the risk of CRC, indicating that decreased expression increases the risk of 642 

cancer. Our proteomic results showed that aspirin decreases the expression of these proteins and 643 

aspirin is known to decrease cancer risk. The exact meaning behind the inconsistencies in direction 644 

of effect is unclear but may be related to the dosage used in this study. A randomized trial of aspirin 645 

to prevent adenomas showed that lower doses reduced adenoma risk more than higher doses, 646 

suggesting that lower doses of aspirin may affect mRNA/protein expression differently than higher 647 
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doses (51,52). Furthermore, the genetic instruments used to proxy for POLD2, LPIN1 and STMN1 648 

explain little of the variance in mRNA expression (0.05, 0.08 and 0.04%, respectively) indicating that 649 

SNPS that explain more of the variance are required before any conclusions can be made.  650 

Further limitations also exist in our analysis. Firstly, the exact correlation between eQTLs and pQTLs 651 

has not been fully determined. Secondly, it is difficult to interpret results using trans eQTLs and 652 

pQTLs without clear confirmation that these SNPs directly influence the gene/protein expression. It 653 

may be that they indirectly influence expression, for example, trans eQTLs may regulate gene 654 

expression by affecting expression of a nearby cis gene which is in fact a transcription factor that is 655 

regulating the expression of the trans gene (53). Thirdly, both the pQTL and eQTL associations were 656 

carried out using blood samples or PBMCs (19,20), therefore these SNPs estimate changes in gene 657 

and protein expression in circulating immune cells only. As found by the Genotype-Tissue Expression 658 

(GTEx) study, cis eQTLs are either shared across tissues or are specific to a small number of tissues 659 

(54). Therefore, the use of these eQTLs and pQTLs measured in the blood may not be fully suitable 660 

as proxies for mRNA and protein expression in the epithelium of the colon and rectum. Furthermore, 661 

the units for the eQTLs and pQTLs represent SD changes in expression, making interpretation of the 662 

results difficult. However, we can interpret the direction of effect as well as the statistical 663 

significance of the association (P values) for these analyses. Moreover, pQTLs and eQTLs could not 664 

be identified for 20 of the proteins found to be regulated by aspirin in our proteomic approach, 665 

therefore we could not test the association of their expression with CRC risk. Finally, apart from the 666 

association of FADS2 with CRC incidence, the other associations proxied by cis eQTLs found by our 667 

study are not below the Bonferroni threshold of significance (P value ≤ 4.63x10-4).  668 

MR is commonly used to proxy for a drug’s effect on risk of various outcomes after identification of 669 

its target. Genetic variants that predict lower function of 3-hydroxy-3-methylglutaryl coenzyme A 670 

(HMG-CoA) reductase are commonly used to investigate the effect of lowering LDL cholesterol via 671 

the use of statins on outcomes such as ovarian cancer, Alzheimer’s disease or coronary heart disease 672 

(55–57). These studies involve investigation of a drug’s effect via a known target on an outcome. 673 

However, this approach would be difficult to apply in the case of drugs with pleiotropic targets such 674 
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as aspirin. Therefore, in order to identify all possible targets of aspirin, a proteomic approach was 675 

firstly applied and targets that may affect risk of cancer were identified through using MR. To our 676 

knowledge, this is the first study that combines basic science and MR to generate hypotheses of a 677 

drug’s mechanism of action in cancer. 678 

Further experiments need to be conducted to confirm the effect of aspirin on gene and protein 679 

expression and the consequent effect this may have on hypothesised pathways such as DNA repair 680 

before definitive conclusions can be made. However, the potential of this unbiased approach to gain 681 

mechanistic insight is clear, allowing hypothesis driven research will better inform the clinical use of 682 

aspirin for the prevention of CRC. 683 
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