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Abstract 

Introduction: Volumetric estimates of subcortical and cortical structures, extracted from T1-weighted 

MRIs, are widely used in many clinical and research applications. Here, we investigate the impact of the 

presence of white matter hyperintensities (WMHs) on FreeSurfer grey matter (GM) structure volumes and 

its possible bias on functional relationships. 

Methods: T1-weighted images from 1077 participants (4321 timepoints) from the Alzheimer's Disease 

Neuroimaging Initiative were processed with FreeSurfer version 6.0.0. WMHs were segmented using a 

previously validated algorithm on either T2-weighted or Fluid-attenuated inversion recovery (FLAIR) 

images. Mixed effects models were used to assess the relationships between overlapping WMHs and GM 

structure volumes and overal WMH burden, as well as to investigate whether such overlaps impact 

associations with age, diagnosis, and cognitive performance. 

Results: Participants with higher WMH volumes had higher overalps with GM volumes of bilateral 

caudate, cerebral cortex, putamen, thalamus, pallidum, and accumbens areas (P < 0.0001). When not 

corrected for WMHs, caudate volumes increased with age (P < 0.0001) and were not different between 

cognitively healthy individuals and age-matched probable Alzheimer’s disease patients. After correcting 

for WMHs, caudate volumes decreased with age (P < 0.0001), and Alzheimer’s disease patients had lower 

caudate volumes than cognitively healthy individuals (P < 0.01). Uncorrected caudate volume was not 

associated with ADAS13 scores, whereas corrected lower caudate volumes were significantly associated 

with poorer cognitive performance (P < 0.0001). 

Conclusions: Presence of WMHs leads to systematic inaccuracies in GM segmentations, particularly for 

the caudate, which can also change clinical associations. While specifically measured for the Freesurfer 

toolkit, this problem likely affects other algorithms. 

Keywords: White matter hyperintensities, grey matter segmentation, FreeSurfer, Alzheimer’s disease 
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INTRODUCTION 

White matter hyperintenesities (WMHs) are defined as areas of increased signal on T2-weighted (T2w) and 

Fluid-attenuated inversion recovery (FLAIR) magnetic resonance images (MRIs) (Raman et al., 2016). 

WMHs are associated with a variety of underlying pathologies, such as amyloid angiopathy, 

arteriosclerosis, axonal loss, blood-brain barrier leakage, degeneration, demyelination, gliosis, 

hypoperfusion, hypoxia, and inflammation (Abraham et al., 2016). WMHs are commonly present in the 

otherwise asymptomatic aging population but are at higher prevalence in many diseases such as 

Alzheimer’s disease (AD), diabetes, frontotemporal dementia, HIV, lewy body dementia, mild cognitive 

impairment (MCI), obesity, Parkinson’s disease, and vascular dementia (Appelman et al., 2009; Debette 

and Markus, 2010; Caroppo et al., 2014; Dadar et al., 2018b; Gouw et al., 2008; Kandiah et al., 2013; Sudre 

et al., 2017; Barber et al., 1999). 

On T1-weighted (T1w) MRI sequences, WMHs appear hypointense with respect to the normal-appearing 

white matter, with intensities that can be very similar to cortical and subcortical grey matter (GM) (Dadar 

et al., 2017a). The T1w intensity of WMHs is also associated with severity of damage to the tissue, with 

areas of higher damage appearing more hypointense (Dadar et al., 2019). 

As T1w images are the most commonly used structural MRI sequences in clinical and neuroscience 

applications, especially for purposes of segmentation and estimation of volumes for all or specific structures 

of interest (Mateos-Pérez et al., 2018), the similarity in T1w intensity profiles of WMHs and GM gives rise 

to an important methodological question: can T1w MRI-based GM structure segmentation differentiate 

between WMHs and GM? If not, how much of WMHs will be tagged as GM in their segmentation 

estimates, and if so, is this error systematic enough to bias results? 

To answer this question, we propose our study of WMHs segmentation bias in subcortical and cortical GM 

structures. More specifically, we investigated 1) whether there was any systematic overlap between WMHs 

and GM segmentations, and therefore volumetric biases; and 2) whether this overlap affected clinical 

findings (i.e. associations with cognitive scores). To these ends we used two segmentation tools, the first 

being FreeSurfer, one of the most commonly used publicly available brain segmentation tools (Fischl, 

2012), and a previously validated tool for WMHs segmentation on multi-contrast MRIs (Dadar et al., 

2017b), both applied on longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database.  
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METHODS 

Participants 

We used longitudinal data from 1077 participants (4321 individual images from various timepoints) from 

the ADNI-1, ADNI-2, and ADNI-GO database (adni.loni.usc.edu) that had T1w and either T2w/PDw or 

FLAIR MRIs available. The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, 

positron emission tomography, other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and early AD. The study was approved by the 

institutional review board of all participating sites and written informed consent was obtained from all 

participants before inclusion in the study.   

MRI acquisition and preprocessing 

Table 1 summarizes MR imaging parameters for the data used in this study.  

Table 1 – Scanner information and MRI acquisition parameters for ADNI1, and ADNI2/GO datasets. 

 Sequence T1w T2w/PDw FLAIR 

ADNI1 

Slice thickness 1.2 mm 3 mm  

No. of slices 160 56  

Field of view 192×192 cm2 256×256 cm2  

Scan Matrix 192×192 cm2 256×256 cm2  

Repetition time (TR) 3000 ms 3000/3000 ms  

Echo time (TE) 3.55 ms 95.2/10.5 ms  

ADNI2/GO 

Slice thickness 1.2 mm  5 mm 

No. of slices 196  42 

Field of view 256×256 cm2  256×256 cm2 

Scan Matrix 256×256 cm2  256×256 cm2 

Repetition time (TR) 7.2 ms  11000 ms 

Echo time (TE) 3.0 ms  150 ms 

 

GM Segmentations 

All T1w images were identically processed using FreeSurfer version 6.0.0 (recon-all -all). 

FreeSurfer is an open source software (https://surfer.nmr.mgh.harvard.edu/) that provides a full 

processing stream for structural T1w data (Fischl, 2012). The final segmentation output (aseg.mgz) 

was then used to obtain structure masks and volumes based on the look up table available at 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT.  
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WMH Segmentations 

T1w, T2w/PDw, and FLAIR scans were pre-processed as follows: (a) image denoising (Manjón et al., 

2010); (b) intensity inhomogeneity correction; and (c) intensity normalization to a 0-100 range. For each 

subject, the T2w, PDw, or FLAIR scans were then co-registered to the structural T1w scan of the same 

timepoint using a 6-parameter rigid registration and a mutual information objective function (Dadar et al., 

2018a). We used a previously validated WMH segmentation method that employs a set of location and 

intensity features in combination with a random forests classifier to detect WMHs using either T1w+FLAIR 

or T1w+T2w/PDw images. The training library consisted in manual, expert segmentations of WMHs from 

100 subjects from ADNI (not included in the current sample) (Dadar et al., 2017c, 2017b, 2018b). WMHs 

were automatically segmented at all timepoints and then co-registered to the T1w images using the obtained 

rigid registrations, in order to assess overlaps between WMHs and GM segmentations. 

Cognitive Evaluations 

All subjects received a comprehensive battery of clinical assessments and cognitive testing based on a 

standardized protocol (adni.loni.usc.edu) (Petersen et al., 2010). At each visit, participants underwent a 

series of assessments including the Alzheimer's Disease Assessment Scale-13 (ADAS13) (Mohs and 

Cohen, 1987), which was used to assess cognitive performance. 

Statistical Analyses 

Overlaps between GM and WMH segmentations were calculated (number of overlapping voxels in mm3) 

for each subcortical and cortical GM region. The following mixed effects models were used to assess 

whether the WMH-GM overlaps were associated with overall WMH burden, controlling for age and sex. 

GM-WMH Overlap ~1 + WMH + Age + Sex + (1|Subject) + (1|Scanner Model) + (1|Field Strength) (eq.1) 

Mixed effects models were also used to assess the relationships between GM volumes and age and 

diagnostic cohort, and GM volumes and cognition, once using the GM volume estimates obtained directly 

from the FreeSurfer segmentation, and once after removing the regions overlapping with the WMH 

segmentations.  

GM volume ~ 1 + Age + Sex + Cohort + (1|Subject) + (1|Scanner Model) + (1|Field Strength)   (eq.2) 

ADAS13 ~ 1 + Age + Sex + GM volume + (1|Subject) + (1|Scanner Model) + (1|Field Strength) (eq.3) 

All volumes were normalized by the individual’s intracranial volume. Total WMH loads and WMH-GM 

overlaps were log-transformed to obtain normal distributions. All mixed effects models included Subject 

as well as Scanner Model and Field Strength as categorical random variables, to account for any potential 
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variabilities caused by contrast differences in the images from different scanners. The results were corrected 

for multiple comparisons using the false discovery rate (FDR) controlling method with a significance 

threshold of P = 0.05 (Benjamini and Hochberg, 1995). 

Data and Code Availability Statement 

Data used in this article is available at http://adni.loni.usc.edu/. FreeSurfer and the WMH 

segmentation pipeline used are also publicly available at https://surfer.nmr.mgh.harvard.edu/  and 

http://nist.mni.mcgill.ca/?p=221, respectively. 

RESULTS 

Study participants 

Preprocessed and registered images were visually assessed for quality control (presence of imaging 

artifacts, failure in registrations). WMH segmentations were also visually assessed for missing 

hyperintensities or over-segmentation. Either failures resulted in the participant being removed from the 

analyses. All MRI processing, segmentation and quality control steps were blinded to clinical outcomes. 

All cases passed co-registration QC. Figure 1 summarizes the QC information for the subjects that were 

excluded. The final sample included 1077 participants (4321 timpoints) with WMH and FreeSurfer 

segmentations. 

 

Figure 1. Flowchart of subjects in the study. 
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Segmentations 

Figure 2 shows WMH and caudate segmentations for three subjects with no overlap, some overlap, and 

high overlap as an example. 

 

Figure 2. Overlap between WMH and caudate segmentations. WMH= White Matter Hyperintensity. Blue= Caudate. Green= 

WMHs. Red= The overlapping voxels between caudate and WMH segmentations. 

 

Segmentation overlap 

Table 2 shows the average amount of overlap between WMHs and FreeSurfer segmentations for each GM 

structure, as well as their association with the overall WMH burden, controlling for age and sex (eq.1). 

Caudate segmentations had by far the highest percentage of overlapping WMHs (6% of the mean caudate 

volume). The overlapping volumes were significantly related to the overall WMH burden for bilateral 

caudate, cerebral cortex, putamen, thalamus, pallidum, accumbens area, and the right hippocampus 

(P<0.0002). Figure 2 shows the associations for the top six regions. 
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Table 2. Overlaps between WMHs and FreeSurfer GM segmentations, and their associations with overal WMH burden. The 

regions are sorted based on effect size. Significant results after FDR correction are indicated in bold font. 

Structure Name 
FreeSurfer 

Label 

Volume 

(mm3) 

Overlap with 

WMH (mm3) 

Percentage of 

Overlap (%) 

Association with WMH 

Tstat Pvalue 

Caudate - Right 50 3532.9 ± 596.2 217.2 ± 271.0 6.153 45.80 <0.0001 

Caudate - Left 11 3395.9 ± 556.4 222.9 ± 283.9 6.565 45.21 <0.0001 

Cerebral Cortex - Left 3 202864 ± 25017 73.8 ± 240.5 0.036 31.41 <0.0001 

Cerebral Cortex - Right 42 203763 ± 25182 79.8 ± 218.8 0.039 29.54 <0.0001 

Putamen - Right 51 4235.6 ± 644.1 21.9 ± 74.4 0.518 22.77 <0.0001 

Putamen - Left 12 4194.8 ± 648.3 17.4 ± 56.1 0.416 20.88 <0.0001 

Thalamus - Left 10 6598.1 ± 729.3 1.01 ± 5.72 0.015 11.94 <0.0001 

Thalamus - Right 49 6499.9 ± 711.3 0.55 ± 4.07 0.008 8.53 <0.0001 

Pallidum - Right 52 1829.0 ± 256.6 0.85 ± 3.50 0.047 8.52 <0.0001 

Accumbens Area - Left 26 405.1 ± 86.6 0.23 ± 1.96 0.057 7.67 <0.0001 

Pallidum - Left 13 1863.1 ± 255.1 0.45 ± 2.50 0.024 5.70 <0.0001 

Accumbens Area - Right 58 452.7 ± 90.7 0.17 ± 0.88 0.038 4.67 <0.0001 

Hippocampus - Right 53 3572.6 ± 600.3 0.22 ± 2.24 0.006 3.72 0.0002 

Ventral Diencephalon - Right 60 3754.9 ± 459.5 0.10 ± 1.78 0.003 1.86 0.10 

Amygdala - Right 54 1469.7 ± 319.3 0.04 ± 0.88 0.003 1.58 0.11 

Amygdala - Left 18 1275.3 ± 299.1 0.01 ± 0.23 0.0001 0.70 0.48 

Ventral Diencephalon - Left 28 3782.2 ± 473.9 0.06 ± 2.03 0.002 0.69 0.48 

Hippocampus - Left 17 3476.3 ± 564.9 0.17 ± 4.77 0.005 0.36 0.71 

 

 

Figure 3. The association between overlapping GM and WMH volumes and overall WMH burden (Table 2). 
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To better demonstrate how much the misclassification of WMHs as caudate might increase caudate volume 

estimates, we have also plotted volume overlaps for caudate without log-transformation (i.e. volumes in 

mm3) in Figure 4. In extreme cases, for individuals with very high WMH burden (log transformed value of 

11, equivalent to 50,000 mm3), caudate volume can be over-estimated by more than 1000 mm3, equivalent 

to 30% of the average caudate volume.  

 

Figure 4. The association between overlapping Caudate and WMH volumes (in mm3) and overall WMH burden. 

 

Associations 

Table 3 shows the associations between GM volumes and age (eq.2), before and after removing the voxels 

overlapping with WMHs. Uncorrected caudate volumes increased with age, and MCI and AD groups had 

slightly higher volumes than the normal aging (NA) cohort (although not significant), whereas the corrected 

caudate volumes decreased with age, and MCI and AD groups had slightly lower volumes than the NA 

group (the AD vs NA difference was significant). The uncorrected and corrected results were similar in 

terms of effect size and direction of associations for other regions, with the corrected volumes having 

slightly larger effects sizes for putamen. 
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Table 3. Associations between uncorrected and corrected GM volumes, age, and diagnostic cohort. Significant results after FDR 

correction are indicated in bold font. 

Structure Name  
Age MCI vs NA AD vs NA 

Tstat Pvalue Tstat Pvalue Tstat Pvalue 

Caudate - Right 
Uncorrected 4.24 <0.0001 0.61 0.54 0.58 0.56 

Corrected -3.77 <0.0001 -0.94 0.34 -2.46 0.01 

Caudate - Left 
Uncorrected 5.45 <0.0001 0.97 0.33 0.37 0.71 

Corrected -6.30 <0.0001 -1.19 0.23 -2.60 0.009 

Cerebral Cortex - Left 
Uncorrected -32.59 <0.0001 -6.39 <0.0001 -12.14 <0.0001 

Corrected -32.57 <0.0001 -6.41 <0.0001 -12.18 <0.0001 

Cerebral Cortex - Right 
Uncorrected -32.41 <0.0001 -6.21 <0.0001 -11.33 <0.0001 

Corrected -32.42 <0.0001 -6.22 <0.0001 -11.36 <0.0001 

Putamen - Right 
Uncorrected -18.74 <0.0001 -4.57 <0.0001 -5.88 <0.0001 

Corrected -19.46 <0.0001 -4.79 <0.0001 -6.37 <0.0001 

Putamen - Left 
Uncorrected

-15.56 

-15.56 <0.0001 -4.61 <0.0001 -7.19 <0.0001 

Corrected -16.30 <0.0001 -4.84 <0.0001 -7.59 <0.0001 

Thalamus - Left 
Uncorrected -18.84 <0.0001 -4.93 <0.0001 -7.52 <0.0001 

Corrected -18.84 <0.0001 -4.94 <0.0001 -7.52 <0.0001 

Thalamus - Right 
Uncorrected -18.68 <0.0001 -4.10 <0.0001 -6.92 <0.0001 

Corrected -18.69 <0.0001 -4.09 <0.0001 -6.92 <0.0001 

Pallidum - Right 
Uncorrected -12.75 <0.0001 -2.50 0.01 -2.43 0.01 

Corrected -12.81 <0.0001 -2.51 0.01 -2.45 0.01 

Accumbens Area - Left 
Uncorrected -19.77 <0.0001 -4.08 <0.0001 -7.10 <0.0001 

Corrected -19.83 <0.0001 -4.08 <0.0001 -7.11 <0.0001 

Pallidum - Left 
Uncorrected -13.76 <0.0001 -2.25 0.02 -2.71 0.006 

Corrected -13.78 <0.0001 -2.25 0.02 -2.72 0.006 

Accumbens Area - Right 
Uncorrected -19.77 <0.0001 -3.32 0.0002 -6.41 <0.0001 

Corrected -19.83 <0.0001 -3.34 0.0002 -6.42 <0.0001 

Hippocampus - Right 
Uncorrected -33.26 <0.0001 -11.32 <0.0001 -16.27 <0.0001 

Corrected -33.27 <0.0001 -11.32 <0.0001 -16.27 <0.0001 

Ventral Diencephalon - Right 
Uncorrected -25.30 <0.0001 -5.39 <0.0001 -6.76 <0.0001 

Corrected -25.31 <0.0001 -5.39 <0.0001 -6.76 <0.0001 

Amygdala - Right 
Uncorrected -23.92 <0.0001 -10.12 <0.0001 -15.30 <0.0001 

Corrected -23.93 <0.0001 -10.12 <0.0001 -15.30 <0.0001 

Amygdala - Left 
Uncorrected -27.29 <0.0001 -9.85 <0.0001 -16.27 <0.0001 

Corrected -27.29 <0.0001 -9.85 <0.0001 -16.28 <0.0001 

Ventral Diencephalon - Left 
Uncorrected -25.23 <0.0001 -5.24 <0.0001 -7.54 <0.0001 

Corrected -25.23 <0.0001 -5.23 <0.0001 -7.54 <0.0001 

Hippocampus - Left 
Uncorrected -32.25 <0.0001 -11.1 <0.0001 -16.92 <0.0001 

Corrected -32.25 <0.0001 -11.1 <0.0001 -16.92 <0.0001 

 

Table 4 shows the associations between ADAS13 and GM volumes, before and after removing the voxels 

overlapping with WMHs. Uncorrected caudate volumes were not significantly associated with ADAS13 

scores, whereas lower corrected caudate volumes were significantly associated with higher ADAS13 scores 
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(i.e. poorer cognitive performance). Figure 5 shows the associations between uncorrected and corrected 

caudate volumes and ADAS13 scores. The uncorrected and corrected results were similar in terms of effect 

size and direction of associations for other regions, with the corrected volumes having slightly larger effects 

sizes for putamen. 

Table 4. Associations between uncorrected and corrected GM volumes and ADAS13. Significant results after FDR correction are 

indicated in bold font. 

Structure Name 
Uncorrected Corrected 

Tstat Pvalue Tstat Pvalue 

Caudate - Right 0.51 0.62 -5.71 <0.0001 

Caudate - Left 0.66 0.50 -8.57 <0.0001 

Cerebral Cortex - Left -29.22 <0.0001 -29.23 <0.0001 

Cerebral Cortex - Right -26.54 <0.0001 -26.54 <0.0001 

Putamen - Right -13.85 <0.0001 -14.26 <0.0001 

Putamen - Left -13.24 <0.0001 -13.53 <0.0001 

Thalamus - Left -7.30 <0.0001 -7.30 <0.0001 

Thalamus - Right -7.23 <0.0001 -7.23 <0.0001 

Pallidum - Right -3.40 0.0006 -3.44 0.0005 

Accumbens Area - Left -12.27 <0.0001 -12.37 <0.0001 

Pallidum - Left -4.41 <0.0001 -4.42 <0.0001 

Accumbens Area - Right -11.11 <0.0001 -11.14 <0.0001 

Hippocampus - Right -24.36 <0.0001 -24.36 <0.0001 

Ventral Diencephalon - Right -12.42 <0.0001 -12.42 <0.0001 

Amygdala - Right -20.92 <0.0001 -20.92 <0.0001 

Amygdala - Left -24.49 <0.0001 -24.49 <0.0001 

Ventral Diencephalon - Left -13.20 <0.0001 -13.20 <0.0001 

Hippocampus - Left -25.18 <0.0001 -25.18 <0.0001 
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Figure 5. The association between uncorrected and corrected Caudate volumes ADAS13 scores. 

 

DISCUSSION 

In this study, we investigated the impact of WMHs on GM segmentations, specifically for the Freesurfer 

segmentation tool, in order to determine whether WMHs might lead to systematic segmentation errors in 

certain GM regions, and whether such errors might impact associations between GM volumes and clinical 

outcomes. We found such errors in a number of regions, and in the caudate in particular it propagated to 

the association with clinical variables. 

We found that overlapping voxel volumes between WMH and GM segmentations were significantly 

associated with overal WMH burden (Table 2), indicating higher error rates for subjects with high WMH 

loads. This affected both cortical and subcortical structures, and in particular the caudates bilaterally. 

Uncorrected, caudate volumes showed a significant increase with age, which is highly unlikely to be a real 

effect given that all regions, except the caudate, have been shown to decline in late-life cognitively healthy 

individuals (Potvin et al., 2016b, 2016a). This was further improbable given that the population of this study 

consists of not only aging individuals but also patients with MCI and AD, which are known to have 

increasing levels of atrophy across cortical areas. In contrast, the corrected caudate volumes significantly 

decreased with age, as could be expected. Given that WMHs are highly prevalent in the periventricular 

regions (i.e. white matter areas surrounding the caudate), the significant increase estimate is likely due to 

the fact that WMH burden increases with age and AD and MCI patients tend to have higher WMH loads 

and faster WMH progression. 
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Along the same line, corrected caudate volumes showed significant differences between AD and 

cognitively healthy cohorts, as well as significant associations with cognitive performance in the expected 

directions, whereas the uncorrected volumes were not significantly different and in the opposite direction. 

This again highlights the fact that if uncorrected for overlapping WMHs, estimates of caudate volumes can 

lead to incorrect or unreliable findings, particularly in populations with high prevalence of WMHs. 

While other GM regions also had overlaps with WMHs that were significantly associated with the overal 

WMH burden (e.g. cerebral cortex, putamen), the amount and percentage of these overlaps were not nearly 

as high as caudate (17, 22, 80, and 74 mm3 versus 217 and 223 mm3 or 0.4%, 0.5%, 0.04%, and 0.04% 

versus 6.1% and 6.5%), and therefore, they did not affect their overall estimates and associations with age, 

diagnosis, and ADAS13. However, this might not be the case in other populations, where WMHs are more 

prevalent, or have different distributions. 

FreeSurfer is one of the most widely used publicly available brain segmentation tools. Large databases such 

as the UK Biobank provide GM structure volumes derived from FreeSurfer to researchers. In line with our 

findings, other researchers have reported a positive association between WMH load and FreeSurfer caudate 

volumes in the UK biobank participants (Morys et al., 2020) and in another large sample of cognitively 

healthy individuals (Potvin et al., 2017a, 2017b). Studies investigating a larger age range report a U-shape 

curve for caudate volumes, decreasing from early adulthood to the 60s, and then increasing afterwards (Fjell 

et al., 2013, 2009; Goodro et al., 2012; Pfefferbaum et al., 2013; Potvin et al., 2016b; Walhovd et al., 2011). 

Given that WMHs generally occur in this same age range (i.e. after 60s), these results are also likely due to 

the segmentation errors caused by presence of WMHs in older participants.  

Specifically for this algorithm, our study emphasizes the need for correcting FreeSurfer GM volume 

estimates for WMHs, particularly for the caudate. However, it is likely that other algorithms exhibit the 

same behavior. Evidence can be found in the literature, for example in the works by Goodro et al. and 

Pfefferbaum et al. using FSL volumes (Goodro et al., 2012; Pfefferbaum et al., 2013). Developers and users 

alike should therefore be aware of the possibility of systematic bias from not taking into account WMHs in 

GM segmentation from T1w images.  

In conclusion, the presence of WMHs can lead to systematic errors in GM segmentations in certain regions, 

particularly in the caudate, which, if not corrected, can impact findings in populations with high WMH 

prevalence. 
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