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Abstract

Respiratory infections, such as the novel coronavirus (SARS-COV-2) and
other lung injuries, damage the pulmonary epithelium. In the most se-
vere cases this leads to acute respiratory distress syndrome (ARDS). Due
to respiratory failure associated with ARDS, the clinical intervention is the
use of mechanical ventilation. Despite the benefits of mechanical venti-
lators, prolonged or misuse of these ventilators may lead to ventilation-
associated/ventilation-induced lung injury (VILI). Damage caused to epithe-
lial cells within the alveoli can lead to various types of complications and in-
creased mortality rates. A key component of the immune response is recruit-
ment of macrophages, immune cells that differentiate into phenotypes with
unique pro- and/or anti-inflammatory roles based on the surrounding envi-
ronment. An imbalance in pro- and anti-inflammatory responses can have
deleterious effects on the individual’s health. To gain a greater understanding
of the mechanisms of the immune response to VILI and post-ventilation out-
comes, we develop a mathematical model of interactions between the immune
system and site of damage while accounting for macrophage polarization.
Through Latin hypercube sampling we generate a virtual cohort of patients
with biologically feasible dynamics. We use a variety of methods to analyze
the results, including a random forest decision tree algorithm and parameter
sensitivity with eFAST. Analysis shows that parameters and properties of
transients related to epithelial repair and M1 activation and de-activation
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best predicted outcome. Using this new information, we hypothesize inter-
ventions and use these treatment strategies to modulate damage in select
virtual cases.

Keywords: mathematical modeling, mechanical ventilation, immune
response, macrophages

1. Introduction1

Inflammation occurs in the lungs when an immune response is initiated2

to eliminate an insult. Types of insults include inhaled pathogens, such3

pneumonia, tuberculosis, SARS-COV-2, or other harmful particles. In the4

most severe cases this leads to acute respiratory distress syndrome (ARDS).5

Due to respiratory failure associated with ARDS, the clinical intervention6

is the use of mechanical ventilation. When individuals have a severe form7

of COVID-19, the disease caused by SARS-COV-2, the disease can lead to8

respiratory failure and death of the patients. In a recent study, two-thirds of9

patients admitted for COVID-19 required mechanical ventilation [1].10

Despite the benefits of mechanical ventilators, prolonged or misuse of11

these ventilators may lead to ventilation-induced lung injury (VILI). In this12

work we will focus on the tissue damage associated with mechanical venti-13

lation and resulting immune cell recruitment. The damage caused to alve-14

olar sacs (clusters of alveolar cells) during mechanical ventilation can lead15

to volutrauma (extreme stress/strain), barotrauma (air leaks), atelectrauma16

(repeated opening and closing of alveoli), and biotrauma (general severe in-17

flammatory response). If the trauma increases, it can lead to multi-system18

organ failure [2, 3].19

It has also been shown that the inflammatory response of the elderly is20

altered in the lungs and other areas [4, 5]. As compared to younger indi-21

viduals, increased levels of circulating inflammatory cytokines and different22

immune cell function have been reported in older patients [6]. A 2003-200823

study conducted at Bridgeport Hospital reported that 4,238 out of 9,91224

(42.8%) patients received mechanical ventilation for a median of two days.25

Mortality or discharge to extended-care facilities increased for each decade of26

age greater than 65 years [7]. Additionally, the case fatality rate for COVID-27

19 patients over 70 years old and over 80 years old was around 50.8% and28

14.8% of the total number of deaths, respectively [8]. This is in agreement29

with other studies reporting higher rates of severe outcomes in patients with30
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COVID-19 aged 65 or older [9]. The change in the inflammatory response31

with patient age combined with the increased need for ventilation and in-32

creased mortality rate among the elderly stresses the need to investigate the33

influence of aging in VILI. The framework we have built here addresses VILI34

with various parameters and initial conditions that can be narrowed in future35

studies with data from different age groups and/or insults to explore dynam-36

ics and driving factors in various diseases related to age and/or outcome.37

We used mathematical modeling to investigate the role of the pulmonary38

immune response and treatments in ventilator-induced damage. We adapted39

a model developed by Torres et al. for the innate immune response to bac-40

teria, which accounts for macrophage polarization, by including epithelial41

dynamics and stretch-induced recruitment of immune cells [10]. We use this42

model to understand the mechanisms by which the immune system responds43

to damaged epithelial cells and the sensitivity of post-ventilation outcome44

to components of this complex process. We begin this study by analyzing45

the epithelial subsystem mathematically. This allows us to understand fixed46

point stability and how various parameters affect stability for the new portion47

of the model. The full model is a large system of ordinary differential equa-48

tions with a large number of parameters and a variety of nonlinear dynamics.49

Allowing the parameters in the model to vary over biologically feasible ranges50

using Latin hypercube sampling simulates the variety of immune system dy-51

namics that may be observed in patients. We organize disease progressions52

into three categories, healthy, moderate inflammation, and severe inflamma-53

tion, based on the percentage of healthy epithelial cells. To determine what54

is driving differences in outcome, we use a variety of methods to analyze the55

resulting dynamics: 1) comparison of parameters associated with different56

outcomes, 2) random forest decision tree algorithm, which parses through57

the variety of predictors that may be particularly important in the immune58

response to VILI and 3) parameter sensitivity with eFAST, a variance-based59

method.60

1.1. Biological background61

The alveolar epithelium consists of alveolar type I and type II cells. Alve-62

olar type I cells make up about 95% of the alveolar surface and are primarily63

responsible for facilitating gas exchange. Type II cells cover the other 5%64

of the surface and are important in the innate immune response. In the65

presence of damage, these cells proliferate to repair the epithelium and can66

also differentiate to type I cells [11, 12]. The extent to which the alveolar67
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epithelium is damaged is a useful indicator of the overall effects of a lung68

insult [13].69

The immune response is divided into innate (non-specific) and adaptive70

(acquired) responses. Two of the most important innate immune cells are71

neutrophils and macrophages, which can be tissue-specific or recruited to72

the site upon damage. The innate response is always present and ready to73

defend against pathogens or other insults. On the other hand, the adaptive74

immune response includes B and T cells, which differentiate in such a way75

that they are effective at fighting specific pathogens. They are recruited by76

antigen-presenting cells, such as dendritic cells and macrophages, that are a77

part of the innate immune response.78

In this work, we concentrate on the innate immune system when mod-79

eling VILI to gain a better understanding of the epithelial and immune cell80

interactions. Lung infection may lead to the need for mechanical ventilation81

and the resulting model could be adapted in the future to study mechanical82

ventilation with infection. Initially we consider a system in which the im-83

mune response is triggered by damage associated with the ventilator without84

infection.85

One of the key components of this response is recruitment of macrophages86

from the bone marrow and bloodstream to the damaged area to support87

the population of resident alveolar macrophages. Macrophages send signals88

to other immune cells and aid in the process of eliminating dead cells and89

repairing damaged ones [14]. Phenotypes of macrophages can range from90

“pro-inflammatory” (M1) or “anti-inflammatory” (M2) based on their acti-91

vators and byproducts [15, 16]. Their pro-inflammatory behavior includes92

destroying pathogens, consuming damaged cells, and amplification of signal-93

ing. Their anti-inflammatory response, which counteracts pro-inflammatory94

behavior, promotes repair by producing anti-inflammatory cytokines and re-95

moving apoptotic neutrophils. A single macrophage may produce both pro-96

inflammatory and anti-inflammatory signals concurrently, which can make97

classification and identification of phenotype a difficult question.98

Another important type of immune cell is the neutrophil, which responds99

quickly to pro-inflammatory signals sent from damaged epithelial cells and100

other resident cells. A small amount of neutrophils are found in the lungs101

in homeostasis. Additional neutrophils are recruited from bone marrow in102

response to pro-inflammatory signals from damaged epithelial cells and resi-103

dent macrophages during an insult in large numbers [17]. Neutrophils have104

phagocytic capabilities in the presence of invading pathogens, but in the105
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case of VILI without infection neutrophils recruit other immune cells such106

as macrophages through the production of pro-inflammatory agents such as107

proteinases and cytokines and contribute to the removal of damaged or dead108

tissue. An overabundance of neutrophils and their byproducts can cause fur-109

ther unnecessary damage [18]. Neutrophils are relatively short-lived; they110

become apoptotic and are removed by macrophages [17] or become necrotic111

in an uncontrolled death resulting in the release of cytotoxic material [19].112

An imbalance in the pro- and anti-inflammatory responses can cause com-113

plications for the individual. Furthermore, an absence of immune cells can114

lead to immunodeficiency and a surplus of immune cells can result in chronic115

inflammation [17]. Thus, it is important to understand the immune response116

to lung injury and the interplay between various types of cells. It is also117

believed that macrophages play a significant role in the impact of aging on118

the immune response [6, 20, 21].119

1.2. Mathematical background120

Mathematical modeling is used to capture the complexities of the im-121

mune response to epithelial cell damage, including important feedback loops122

and nonlinearities. Analyzing the resulting model gives insight into the driv-123

ing mechanisms of this system. An in silico approach allows us to simulate124

various scenarios or new treatments, especially when in vivo and in vitro125

experiments to explore possible interventions to improve outcomes for pa-126

tients are difficult to perform. To our knowledge, no mathematical models127

have described M1/M2 interactions specific to the immune response to VILI.128

Many models have examine the immune response to bacterial and viral infec-129

tions, such as pneumonia [22–24], tuberculosis [25–27], and influenza [28–30].130

Additionally, models related to smoking and asthma [31–34], mechanical ven-131

tilation [35–42], and general inflammatory stress [4, 43] have been developed,132

but these models generally deal with the mechanics of the airways, includ-133

ing airflow, pressure, and gas exchange, and how these mechanics respond134

to inflammation and particle inhalation without accounting for the various135

cells types involved in the immune response. Models have also been devel-136

oped to understand and analyze the molecular mechanisms that govern the137

phenotype switch that macrophages undergo from pro-inflammatory to anti-138

inflammatory, as well as other important subcellular pathways [29, 44, 45].139

Common modeling approaches used in these papers include agent-based140

models [27, 31, 34], partial differential equations [42, 43], ordinary differential141

equations [22–25, 30, 32], and Boolean models [29]. Each technique has its142
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advantages and disadvantages, but we choose to model the inflammatory re-143

sponse to VILI, specifically the resulting damage to epithelial cells, using a set144

of coupled ordinary differential equations (ODEs), which we describe further145

in the following section. Systems of ODEs are ideal for modeling dynami-146

cal systems because of their ability to capture, with reasonable computation147

times, the highly nonlinear behavior of the many immune cells, epithelial148

cells and other mediators involved in the immune response to VILI. This149

allows for mathematical and sampling approaches to be used to determine150

key components of the the biological process being modeled.151

2. Methods & Model Development152

2.1. Epithelial subsystem153

The primary focus of this model is to examine the effects of damage on154

the alveolar epithelium, in particular alveolar type II cells, since they are155

responsible for restoration of the epithelium. In this section we begin with a156

simple model, concentrating on the novel aspect of incorporating epithelial157

cells and relative damage due to inflammation. We then add variables to158

more accurately model the dynamics within this system.159

We begin with a small three-dimensional system of differential equations,160

shown in Eqs (1)-(3), where Eh is the proportion of the local space filled by161

healthy cells, Ed is the proportion of the local space filled by damaged cells,162

and Ee represents dead cells or empty “space” that can be replaced/filled163

with healthy cells. Each term represents a biological event explained by164

the brackets above the term. This first model includes only the baseline165

abilities of epithelial cells to proliferate and repair themselves in the pres-166

ence of sustained damage. We do not explicitly model proliferating and167

non-proliferating cells; the parameter p is modulated to reflect the general168

mechanism by which neighboring epithelial cells renew surrounding “space”169

(tracked by Ee).170
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dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(Ee) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh (1)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh (2)

dEe

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(Ee) +

Death︷︸︸︷
bEd (3)

Damage from stretch due to mechanical ventilation is represented by the171

rate s, and causes healthy epithelial cells to become damaged. This general172

term covers over-distension for any mode of ventilation. Some damaged cells,173

depending on the severity of damage, have the ability to repair themselves,174

returning from the Ed state back to Eh, represented by a baseline repair rate175

r [46]. Damaged cells may also decay naturally at a rate b.176

The first terms in Eq (1) for Eh, and Eq (3) for Ee, account for pro-177

liferation of the healthy and damaged cells into empty space. Note that178

total local space is conserved: Ee + Eh + Ed = 1. Therefore, we can define179

Ee = 1 − (Eh + Ed) and rewrite this term, where it becomes the standard180

logistic growth with a carrying capacity of 1, associated with 100% of space181

being filled. Eliminating Ee gives rise to a two-dimensional system, Eqs182

(4)-(5).183

dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(1 − (Eh + Ed)) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh (4)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh (5)

Nearby epithelial cells and progenitor cells, stem cells that can differenti-184

ate into specific types of epithelial cells only, perform this task. These cells185

spread and replicate to fill the empty space left by dead epithelial cells [46–186

48]. In this model we do not account for the progenitor cells. Therefore, we187

only account for proliferation associated with local epithelial cells.188

Stability analysis reveals that in the absence of stretch (s = 0) and with189

all positive parameters, (0, 0) is a saddle node and (0, 1) is a stable equilib-190

rium with eigenvalues λ1 = −r − b and λ2 = −p. Given a nonzero initial191
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condition for damaged cells the epithelial cells subsystem will resolve to the192

fully repaired fixed point (0, 1).193

In the presence of sustained stretch (s > 0), the Ed nullcline switches
from a vertical line to a line with slope (r + b)/s. The second equilibrium
point changes from (0, 1) to

(E∗d , E
∗
h) =

(
s2(p− b) + ps(b+ r)

p(b2 + r2 + s2 + 2br + 2bs+ 2rs)
,

(r + b)[s(p− b) + p(b+ r)]

p(b2 + r2 + s2 + 2br + 2bs+ 2rs)

)

Therefore in the presence of damage, there no longer exists an equilibrium194

associated with full recovery.195

Exploratory simulations demonstrate that there is a bifurcation with196

respect to p, the proliferation rate of epithelial cells. A bifurcation dia-197

gram for this parameter, shown in Fig 1, has one transcritical bifurcation at198

p∗ = 0.497. The bifurcation diagrams in this manuscript were created using199

XPPAUT [49] with code included in the supplementary materials. In this200

figure, we show the proportion of space occupied by healthy epithelial cells201

as a percentage, which is Eh multiplied by 100. The second equilibrium for202

values of p below the bifurcation is not included in the diagram, since it is203

non-biological (negative Eh). For small values of p, the ability of healthy cells204

to proliferate and replace dead cells is insufficient and damage causes both205

healthy and damaged cells to approach 0%. On the other hand, for values206

of p larger than p∗, the system approaches the stable nonzero equilibrium207

(E∗d , E
∗
h), which is closer to (0, 1) for higher values of p even in the presence208

of sustained damage.209

2.2. Fixed immune response210

Next we examine the roles of immune cells, especially neutrophils and211

macrophages, by adding several terms to Eqs (1) and (2). We first focused212

on dynamics with a fixed immune response, because when we work with the213

full model (described in the next section), we only consider parameter sets214

that give rise to steady-state solutions in the absence of ventilator-induced215

damage. Therefore, we decided to start our model development by analyz-216

ing Eh and Ed with immune cells as parameters before including their full217

dynamics. The modifications are shown in Eqs (6) and (7).218
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Figure 1: The epithelial subsystem generates a transcritical bifurcation for the
parameter p. Bifurcation diagram for the proliferation parameter p for the epithelial
system with stretch and no immune response. Other parameters are set to r = 2.6, s =
0.22, and b = 0.74. The unstable equilibrium below p < p∗ = 0.497 is not included in the
figure, since it is not biologically relevant.
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dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(1 − (Eh + Ed)) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh −

Collateral damage
from neutrophils︷︸︸︷

nEh (6)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh +

Collateral damage
from neutrophils︷︸︸︷

nEh −

Removal of damaged
cells by macrophages︷︸︸︷

mEd (7)

The physical presence of immune cells, especially first-responder neu-219

trophils, causes small-scale collateral damage as they clear debris [50] and220

can be especially deleterious if the response is overzealous [18]. This biolog-221

ical event is modeled as the last term in Eq (6) with cells switching from222

a healthy to a damaged state at the rate n. M1 macrophages aid in the223

clearance of damaged cells to make room for replacement by new, healthy224

cells through subcellular signalling and phagocytosis [14, 47]. The last term225

in Eq (7) represents this loss of damaged cells.226

The stability analysis is similar to that from the model without the im-
mune response, with additional parameters m,n that can shift steepness of
the nullcline or the speed at which the system approaches or diverges from
an equilibrium. The parameter p once again plays an important role in the
stability of the two critical points, (0, 0) and

(E∗d , E
∗
h) =

(
(n+ s)[(n+ s)(p− b−m) + p(b+m+ n)]

p(b+m+ n+ r + s)2
,

(b+m+ r)[(n+ s)(p− b−m) + p(b+m+ n)]

p(b+m+ n+ r + s)2

)

There is a transcritical bifurcation when the value of p is varied; given227

its similarly to Fig 1, it is not shown here. For the same parameter values228

as in Fig 1 (r = 2.6, s = 0.22, b = 0.74) with m = 0.92 and n = 1.6 added,229

we obtain the same p∗ = 0.497. The main difference between these models is230

that the transcritical bifurcation point p∗ may be lower because of the damage231

resulting from macrophages and neutrophils, represented by m and n. The232

rate of proliferation of healthy cells may need to be higher to counteract these233

effects.234

The bifurcation diagram for scaled Eh versus n also has a transcritical235

bifurcation (see Fig 2a). For sufficiently low values of n, the nonzero critical236
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(a) (b)

Figure 2: Variations on the epithelial subsystem reveal a transcritical bifurca-
tion and two-parameter bifurcation. (a) Bifurcation diagram for epithelial subsystem
when varying n. Other parameter values are set to r = 2.6, p = 0.45, s = 0.22, b =
0.74, n = 1.6, m = 0.92. (b) Two-parameter plot showing values of p and n which cause
the subsystem to have either a zero or nonzero stable equilibrium.

point is stable, but for values above n∗ = 1.364, (0, 0) is the stable equi-237

librium. Additionally, the two-parameter stability diagram shows a curve238

which separates the p/n-space into two stability regimes (see Fig 2b). For239

high enough values of n and low enough values of p, the system goes to zero240

for both variables. Biologically, this corresponds to a situation in which the241

ability of epithelial cells to proliferate is low and there are high levels of im-242

mune cells. On the other hand, with low levels of immune cells and a higher243

proliferation rate, the system limits to the nonzero equilibrium. It should be244

noted that for a large enough p, it would take an extremely high value of n245

to overpower proliferation and make (0, 0) the stable critical point. In the246

full system the initial conditions for our simulations will have similar prop-247

erties to the type of steady state in the non-zero stable equilibrium region248

of Fig 2b. Varying levels of baseline inflammation exist given differences in249

patients’ age and past medical history.250

These simple models provide a framework for the dynamics of the ep-251

ithelium in response to damage and an introductory look into the influence252

of the immune response. However, there are many more complex, nonlinear253

interactions and events involved in VILI which we will explore in the next254

section.255
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Figure 3: Schematic describes interactions between immune system compo-
nents. Immune system components shown in this schematic are macrophages, neutrophils,
various pro- and anti-inflammatory mediators, and epithelial cells. Green boxes represent
various types of neutrophils, colored circles represent naive, M0, M1, and M2 macrophages.
White boxes represent healthy, damaged, and dead epithelial cells/empty space (Eh, Ed,
and Ee, respectively). Other colored boxes represent various types of mediators that are
produced by epithelial and/or immune cells and signal to immune cells. Unactivated im-
mune cells become activated by various mediators (pb, ab in the blood and p, a locally) and
perform either pro-inflammatory or anti-inflammatory roles which are meant to remove
debris (Ee) and promote repair of damaged epithelial cells. Dynamics between cells and
mediators in the blood (not shown) are similar to the detailed dynamics shown for local
inflammation.

2.3. Development of complete model256

By adding variables to the two-dimensional system proposed above, we257

developed a system of coupled ordinary differential equations to model the in-258

teractions between immune cells, epithelial cells, and other mediators, shown259

in Fig 3. We also utilize a two-compartment method in which resident im-260

mune cells respond to the damaged epithelial cells and nonresident immune261

cells are recruited from the bloodstream.262

A system of ODEs is ideal for modeling these interactions because of its263

ability to capture distinct nonlinearities and feedback loops with relatively264

low computational requirements. However, one of the drawbacks of an ODE265

model is that it assumes a well-mixed environment, in which all elements of266

the model are evenly distributed throughout the given space. Biologically,267
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this is not always the case. One way to include aspects of the spatial hetero-268

geneity without explicitly modeling space is to use a compartmental model.269

Each compartment represents a well mixed environment and, when biologi-270

cally appropriate, variables can move between compartments. An equation is271

developed for the component in each compartment in which it can be located.272

Here we choose to model two compartments. The first is the site of inflam-273

mation in the lungs, specifically the epithelial cells which provide a barrier274

lining the alveolar cells. The second compartment is the adjacent blood vessel275

that provides additional immune support to the site of damage. Differenti-276

ating between these two compartments allows us to determine the concen-277

trations of various immune cells and other mediators in each separate area278

and examine their movement across compartments. A two-compartmental279

model accounts for some spatial dynamics that a traditional system of ODEs280

cannot, making the model more realistic for a better understanding of the281

immune response to VILI.282

Fig 3 gives a detailed breakdown of the dynamics in the lung. The dy-283

namics are similar for those cells and mediators in the blood. Cell types284

that are tracked in each compartment are stated in Table 1. In the following285

subsections, we develop the equations for these variables. The parameters286

used in the equations are given in Table 2 with their description and range287

used during parameter sampling.288

2.3.1. Epithelial cells289

We continue with the convention of three subpopulations of epithelial290

cells, as in Eqs (6) and (7) with Ee = 1 − Eh − Ed. We add more details291

in Eqs (8), (9), and (10) to describe interactions with the immune response292

variables that we now explicitly model for a more accurate representation293

of the response to VILI. The first term in Eq (8) is still a logistic growth,294

representing epithelial cells that spread and replicate to fill Ee. This term295

appears negated in Eq (10), modeling the removal of empty space. The next296

term in Eq (8) and the first term of Eq (9) represents repair of damaged297

cells back to a healthy state. Epithelial cells are prone to self-repair [46],298

represented by a baseline rate br, and repair at a faster rate in the presence of299

repair mediators variable R, which tracks the level of mediators that promote300

epithelial repair such as fibronectin and other epithelial growth factors [48,301

51, 52]. The third term in Eq (8) and second in Eq (9) represents collateral302

damage to epithelial cells by the influx and activity of the immune system.303

This mechanism is modeled via a nonlinear term, which is dependent on304

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


Bloodstream Lung Description
Eh Healthy epithelial cells
Ed Damaged epithelial cells
Ee Dead epithelial cells/empty space

pb p Pro-inflammatory mediators
ab a Anti-inflammatory mediators
M0b M0 Unactivated macrophages
M1b M1 M1 pro-inflammatory macrophages
M2b M2 M2 anti-inflammatory macrophages
N0b Unactivated neutrophils
Nb Activated neutrophils

N Neutrophils
AN Apoptotic neutrophils
R Repair mediators

Table 1: State variables for the model. Variables in both columns represent cells or
mediators that diffuse between the two compartments.

macrophage and neutrophil levels [14, 50, 53]. We also model damage due to305

stretch induced by the ventilator as sdEh, the fourth term in Eq (8) and fifth306

term in Eq (9), in which injury occurs at a rate proportional to the amount307

of healthy epithelial cells at a given time.308
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Name Description Range used

ab∞ Relative effectiveness of ab at inhibiting M0b differentiation to M1b [0.29, 67.35]
a∞ Relative effectiveness of a at inhibiting M0 differentiation to M1 [0.13, 72.08]

bd Baseline decay of damaged cells [1.06× 10−5, 0.07]
bp Baseline self-resolving repair of epithelial cells [0, 6.20]

br Baseline repair of damaged cells [9.79× 10−3, 4.47]
da Rate of diffusion for a [0.19, 177.98]

dp Rate of diffusion for p [0.34, 2.3× 103]
dm0 Rate of diffusion for M0 [0.24, 275.55]

dm1 Rate of diffusion for M1 [2.75× 10−3, 19.8]
dm2 Rate of diffusion for M2 [0.14, 143.36]
kam1 Production rate of a by M1b & M1 [0.01, 18.01]

kam2 Production rate of a by M2b & M2 [2.43× 10−3, 1.67]
kan Rate at which neutrophils become apoptotic [0.01, 50.04]

kanm1 Rate of M1 phagocytosis of AN [1.32× 10−3, 0.69]

kanm2 Rate of M2 phagocytosis of AN [2.71× 10−3, 7.36]
kem1 Rate of phagocytosis of damaged cells by M1 [0.01, 16.03]
ken Rate of phagocytosis of damaged cells by N [0.01, 16.03]
kep Rate of self-resolving repair mediated by p [0, 4.30]

ker Rate of repair of damaged cells by R [1.47× 10−3, 1.08]

xer Regulates effectiveness of repair of damaged cells by R (Hill-type con-
stant)

[7.23× 10−3, 4.13]

km0a Rate of differentiation of M0 by a [0.01, 89.07]
xm0a Regulates effectiveness of differentiation ofM0 by a (Hill-type constant) [0.16, 136.83]
km0ab Rate of differentiation of M0b by ab [1.15, 436.59]
xm0ab Regulates effectiveness of ab differentiation of M0b (Hill-type constant) [0.16, 83.97]
km0ad Rate of recruitment of M0b by ab [0.34, 181.89]
xm0ad Regulates effectiveness of recruitment of M0b by ab (Hill-type constant) [0.01, 27.6]

km0p Rate of differentiation of M0 by p [8.99× 10−3, 37.2]

xm0p Regulates effectiveness of differentiation of M0 by p (Hill-type constant) [1.17, 1.14× 104]
km0pb Rate of differentiation of M0b by pb [0.05, 89.96]

xm0pb Regulates effectiveness of differentiation of M0b by pb (Hill-type con-
stant)

[41.51, 2.92× 104]

km0pd Rate of recruitment of M0b by pb [4.57× 10−3, 53.97]

xm0pd Regulates effectiveness of recruitment of M0b by pb (Hill-type constant) [0.24, 180.74]

km1p Rate of recruitment of M1b by pb [0.2, 92.81]

xm1p Regulates effectiveness of recruitment of M1b by pb (Hill-type constant) [9.8× 10−3, 1.69]
km2a Upregulation of M2b recruitment by a [0.1, 219.93]
xm2a Regulates effectiveness of M2b recruitment by a (Hill-type constant) [0.08, 94.84]

km2r Upregulation of M2b recruitment by R [3.61× 10−3, 20.11]
xm2r Regulates effectiveness of M2b recruitment by R (Hill-type constant) [0.01, 18.70]
kman Rate of M1 switch to M2 by AN [0.01, 27.08]

kmne Rate of collateral damage to epithelial cells by macrophages and neu-
trophils

[1.12× 10−3, 5.17]

xmne Regulates effectiveness of macrophages and neutrophils to damage ep-
ithelial cells (Hill-type constant)

[0.03, 41.06]

kn Rate of migration of Nb to lung [2.39× 10−3, 3.54]
kn0p Rate of activation of Nb by p [0.01, 5.58]
xn0p Regulates effectiveness of activation of Nb by p (Hill-type constant) [0.03, 142.56]

kpe Production rate of p by Ed [44.02, 1.12× 104]
kpm1 Production rate of p by M1 & M1b [0.24, 412.22]

kpn Production rate of p and pb by neutrophils [1.67× 10−3, 2.95]
krm2 Production rate of R by M2 [0.02, 40.97]

µa Decay rate of a [5.16× 10−4, 5.08]
µab Decay rate of ab [0.04, 12.86]

µp Decay rate of p [2.76× 10−3, 41.04]

µpb Decay rate of pb [4.79× 10−4, 3.71]

µm0 Decay rate of M0 [0.01, 42.67]

µm0b Decay rate of M0b [7.66× 10−3, 329.59]

µm1 Decay rate of M1 [8.2× 10−3, 10.16]
µm1b Decay rate of M1b [0.03, 60.32]
µm2 Decay rate of M2 [0.27, 135.37]
µm2b Decay rate of M2b [0.02, 16.51]

µnb Decay rate of Nb [2.49× 10−3, 6.03]

µn0b Decay rate of N0b [3.94× 10−6, 2.1× 10−3]

µn Decay rate of N [8× 10−3, 4.32]
µR Decay rate of R [0.72, 761.75]

sa Source rate of background ab [5.75× 10−3, 1.11]
sd Rate of damage from ventilator 0.75

sm Source rate of M0b [1.28, 1.14× 103]
sn Source rate of N0b [0.22, 225.45]

sp Source rate of background pb [6.5× 10−4, 9.4]

Table 2: Model parameters with short descriptions and ranges used in LHS.
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dEh

dt
=

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee +

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)

−

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2
mne + (M1 +N)2

)
−

Damage from
ventilator︷︸︸︷
sdEh (8)

dEd

dt
= −

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)
+

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2
mne + (M1 +N)2

)

−

Phagocytosis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Phagocytosis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Damage from
ventilator︷︸︸︷
sdEh −

Death︷︸︸︷
bdEd (9)

dEe

dt
= −

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee +

Phagocytosis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)

+

Phagocytosis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Death︷︸︸︷
bdEd (10)

M1 macrophages and neutrophils clear debris from the inflammation site309

to make room for healthy epithelial cells to divide and fill the empty space310

[17, 46, 47]. The third and fourth terms in Eq (9) represent this phago-311

cytosis of damaged cells by M1 macrophages and activated neutrophils, re-312

spectively. Regulation of M1 is modeled by the last multiplier in the term,313

representing inhibition by anti-inflammatory mediators (AIM) such as IL-314

10 [14, 48, 54]. The negative feedback loop of AIM inhibiting further pro-315

inflammatory functions occurs frequently in our model in a number of equa-316

tions described below, and we will heretofore refer to this multiplier as in-317

hibition by AIM. Depending on the compartment, the term may utilize the318
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variable ab (bloodstream) or a (local). The anti-inflammatory and regulatory319

role of M2 macrophages and the balance between M1 and M2 phenotypes320

is critical for a successful and rapid recovery [16, 48]. The last term of Eqs321

(9) and (10), bdEd, represents the death of Ed (negative in Eq 9) and the322

associated gain in the Ee population (positive in Eq 10)).323

Dead epithelial cells and “empty” space are grouped together and mod-324

eled by the variable Ee in Eq (10). In the epithelial-only model, Ee was325

modeled as 1 − Eh − Ed. Since mass in conserved in these three equations326

(the sum of terms in the epithelial differential equations is zero), Ee can be327

modeled either explicitly, as we chose in Eq (10), or in terms of Eh and Ed.328

2.3.2. Pro- and anti-inflammatory mediators329

As a signal to other immune cells, damaged epithelial cells release pro-330

inflammatory cytokines and other mediators, including TNF-α and matrix331

metalloproteinases (MMPs) [15, 46, 47]. In our equations, we group these332

pro-inflammatory mediators (PIM) into two state variables: p in the lungs333

and pb in the blood. The release of PIM by damaged epithelial cells leads334

to diffusion of PIM into the bloodstream to recruit additional immune cells335

[47]. Movement between model compartments is driven by their difference336

in concentrations in both Eqs (11) and (12). This simple diffusion term will337

be used for other variables throughout our model.338

M1 macrophages produce PIM, which upregulate the activation and mi-339

gration of macrophages to the site of injury; see the second term in Eqs (11)340

and (12) [15, 48]. The macrophage population self-regulates by releasing AIM341

such as IL-10, thus inhibiting further production of PIM [45]. Therefore the342

term includes the same inhibiting multiplier as in Eq (9). The rate of PIM343

production by M1 macrophages decreases with increased concentrations of344

ab.345

Neutrophils are also important producers of pro-inflammatory mediators346

such as TNF-α, IL-1, IL-6, LTB4, and chemokines, which stimulate the ac-347

tivation of macrophages toward an M1 phenotype [17, 18, 52, 53, 55]. Low348

levels of PIM exist in the absence of damage, accounted for by the source349

term sp, and we also model natural decay of these mediators.350
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dpb
dt

=

Diffusion︷ ︸︸ ︷
dp(p− pb) +

Production
via M1︷ ︸︸ ︷

kpm1M1b

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
+

Production via
neutrophils︷ ︸︸ ︷
kpnNb

+

Background
production︷︸︸︷
sp −

Decay︷ ︸︸ ︷
µpbpb (11)

dp

dt
= −

Diffusion︷ ︸︸ ︷
dp(p− pb) +

Production
via M1︷ ︸︸ ︷
kpm1M1

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
+

Production via
neutrophils︷ ︸︸ ︷
kpnN

+

Production via
ep. damage︷ ︸︸ ︷
kpeEd −

Decay︷︸︸︷
µpp (12)

Anti-inflammatory mediators, such as the anti-inflammatory signaling351

caused by IL-4 and IL-10 [56], are represented by Eq (13) in the blood-352

stream and Eq (14) at the site of damage. They follow the same simple353

diffusion behavior as PIM, shown by the first term in each equation below.354

AIM are released by both M1 and M2 macrophages [15, 48, 54]. Similarly to355

pb, background levels of ab are present in the absence of an immune response,356

represented by term four in Eq (13). Natural decay of AIM is accounted for357

by the last term in each equation.358

dab
dt

=

Diffusion︷ ︸︸ ︷
da(a− ab) +

Production
via M1︷ ︸︸ ︷

kam1M1b +

Production
via M2︷ ︸︸ ︷

kam2M2b +

Background
production︷︸︸︷
sa −

Decay︷ ︸︸ ︷
µabab (13)

da

dt
=

Diffusion︷ ︸︸ ︷
−da(a− ab) +

Production
via M1︷ ︸︸ ︷
kam1M1 +

Production
via M2︷ ︸︸ ︷
kam2M2 −

Decay︷︸︸︷
µaa (14)

2.3.3. Macrophages359

Undifferentiated macrophages, also called naive or unactivated, are present360

both locally and in the blood. The diffusion term, seen in Eqs (15) and (16),361

represents movement between compartments. The baseline diffusion between362

compartments is modeled in the same manner as with other variables, but363
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the rate at which this diffusion occurs is modulated by mediators. Increased364

PIM and AIM levels cause undifferentiated macrophages in the bloodstream365

to be recruited at a higher rate to the damaged site, where they become acti-366

vated and perform phagocytic, pro-inflammatory, and pro-resolving roles [15].367

This increased flux between compartments due to the presence of pb and ab is368

modeled by adding to the baseline diffusion rate (dm0). The added term is a369

Michaelis-Menten-type term to capture the increasing rate as mediators rise,370

with a maximum rate at which these cells can diffuse, (dm0 + km0pd + km0ad).371

The equations also account for early activation in the bloodstream by372

PIM and AIM given a high enough concentration of these mediators [14].373

Although there is still debate on the types of macrophages that exist in the374

bloodstream after being released from the bone marrow, there is evidence375

that populations of both M1 and M2 exist in the bloodstream before being376

recruited to the site of injury [15, 54]. Thus, we include this process in377

our equations in the second terms of Eqs (15) and (16). Undifferentiated378

macrophages in the bloodstream can change phenotype to M1 or M2 after379

interacting with PIM or AIM, respectively, modeled by a Hill-type term. This380

nonlinearity accounts for the sufficient amount of PIM or AIM necessary to381

precipitate activation as well as a saturation of this process.382

Once pro-inflammatory mediators such as TNF-α, TGF-β, and inter-383

leukins (ILs) [47] are released by damaged epithelial cells, undifferentiated384

macrophages receive these signals and differentiate into the M1 phenotype385

[57]. A pro-inflammatory response characterizes the early stages of the im-386

mune response [48, 52]. The second term in Eqs 15 and 16 represent acti-387

vation of undifferentiated macrophages to the pro-inflammatory phenotype,388

downregulated by the anti-inflammatory response through an inhibition mul-389

tiplier. In this term, M2 macrophages can also be activated directly from the390

naive phenotype by various repair and anti-inflammatory mediators involved391

in the repair of epithelial cells [47, 48].392

Using the same inhibition multiplier as previously, AIM inhibit differen-393

tiation to M1 as part of their regulatory role in the inflammatory process,394

although a complete understanding of these mechanisms is yet to be uncov-395

ered [15, 45, 47]. In the absence of injury, lungs contain a low number of396

undifferentiated macrophages which patrol the surrounding area [46]. “Pa-397

trolling” macrophages are also prevalent in the bloodstream. The third term398

in Eq (15) represents a constant source of undifferentiated macrophages from399

the circulation [48]. We also account for natural decay of all macrophage phe-400

notypes in Eqs (15) through (20).401
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dM0b

dt
=

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

− M0b

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pbp

2
b

x2
m0pb + p2

b

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aba

2
b

x2
m0ab + a2

b

)]

+
Source︷︸︸︷
sm −

Decay︷ ︸︸ ︷
µM0bM0b (15)

dM0

dt
= −

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

−M0

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pp

2

x2
m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aa

2

x2
m0a + a2

)]

−
Decay︷ ︸︸ ︷
µM0M0 (16)

Similarly to naive macrophages, M1 macrophages move between compart-402

ments. The presence of pro-inflammatory mediators, which act as recruiters,403

increases the rate of diffusion, shown in the first term of Eq (17) [15]. The sec-404

ond term represents differentiation from the naive state, as described above.405

Macrophages exhibit high plasticity, and based on the mediators and406

other immune cells they encounter, they can switch phenotype and per-407

form different or enhanced functions; this plasticity is not yet fully under-408

stood [14, 48]. M1 macrophages are primarily responsible for producing409

PIM, thereby recruiting other immune cells to the damaged area [54]. M2410

macrophages are considered pro-resolving and downregulate PIM. Both M1411

and M2 macrophages phagocytize apoptotic cells such as neutrophils [52].412

The shift from an overall pro-inflammatory phase to an anti-inflammatory413

phase in the course of the immune response is highly dependent upon a shift414

in macrophage behavior, specifically the shift from a mainly M1 response to415

a mainly M2 response [15, 47, 54].416
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One of the primary ways this shift is achieved is through the inhibition417

of M0 to M1 differentiation by anti-inflammatory mediators, as described418

previously. Additionally, when pro-inflammatory macrophages phagocytize419

apoptotic neutrophils, they shift towards a more anti-inflammatory pheno-420

type. This results in suppression of the release of pro-inflammatory mediators421

and production of pro-resolving mediators [50, 53]. We account for this shift422

by including the third term in Eq (18), proportional to apoptotic neutrophil423

phagocytosis which causes M1 macrophages to shift to the M2 phenotype.424

This term also includes inhibition of M1 function by AIM. It has been shown425

in some studies that M2 macrophages can switch to an M1 phenotype [58],426

although this idea is not currently widely accepted. Thus, we choose to427

include only the shift from M1 to M2.428

dM1b

dt
=

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+M0b

Differentiation
to M1︷ ︸︸ ︷(
km0pbp

2
b

x2
m0pb + p2

b

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
−

Decay︷ ︸︸ ︷
µM1bM1b (17)

dM1

dt
= −

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+

Differentiation
to M1 via PIM︷ ︸︸ ︷

M0

(
km0pp

2

x2
m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)

−

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Decay︷ ︸︸ ︷
µM1M1 (18)

M2 macrophages, associated with an anti-inflammatory response, can429

be activated directly from undifferentiated macrophages by specific anti-430

inflammatory signals in addition to switching phenotype from M1. They431
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diffuse between compartments as illustrated previously, shown in the first432

terms in Eqs (19) and (20). M2 macrophages produce anti-inflammatory me-433

diators which recruit and promote differentiation to more M2 macrophages,434

described in the second term of both equations. They release cytokines that435

trigger the repair phase of the immune response [15, 48]. This repair phase436

includes repair mediators (discussed below in Eq (25)), which play a direct437

role in the reconstruction of healthy epithelial cells and resolution of damage438

[48].439

dM2b

dt
=

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)

+

Differentiation
to M2︷ ︸︸ ︷

M0b

(
km0aba

2
b

x2
m0ab + a2

b

)
−

Decay︷ ︸︸ ︷
µM2bM2b (19)

dM2

dt
= −

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)
+

Differentiation
to M2︷ ︸︸ ︷

M0

(
km0aa

2

x2
m0a + a2

)

+

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Decay︷ ︸︸ ︷
µM2M2 (20)

2.3.4. Neutrophils440

Neutrophils are considered the first responders to injury [18, 47]. Gener-441

ated in the bone marrow [17], free-flowing neutrophils circulate in the vascu-442

lature at baseline levels, described as N0b and represented by the first term443

in Eq (21) [18]. In the presence of injury, neutrophils are activated and444

recruited to the damaged site through pro-inflammatory mediators such as445

TNF-α, IL-1β, and other chemokines and cytokines [18, 55]. This recruit-446

ment is represented by the first term in Eqs (21) and (22). On the other hand,447

anti-inflammatory mediators, including macrophage-produced resolvins and448

protectins, inhibit further recruitment of neutrophils [50]. Similarly to the449

differentiation of macrophages, it is assumed that a higher concentration450
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above baseline is required for neutrophils to activate, and that this activa-451

tion rate saturates. Therefore, a Hill-type term with a maximum rate of452

kn0p and a constant of xn0p is used to model activation of neutrophils by453

PIM. To model the inhibition of neutrophil activation by AIM, we include454

the same inhibition multiplier as previously described. The effectiveness of455

these AIMs to inhibit this process is controlled by ab∞. We also account for456

intrinsic decay of neutrophils in the last term of Eqs (21) through (24).457

dN0b

dt
= −

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2
n0p + p2

b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(

ab
ab∞

)2

)
+

Source︷︸︸︷
sN −

Decay︷ ︸︸ ︷
µN0b

N0b (21)

dNb

dt
=

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2
n0p + p2

b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(

ab
ab∞

)2

)
−

Migration︷ ︸︸ ︷
knNb −

Decay︷ ︸︸ ︷
µNbNb (22)

Neutrophils go through a multi-step process of rolling along and subse-458

quently adhering to the surface of the endothelium. Then neutrophils trans-459

migrate to the injury site either through or between endothelial cells [17, 18].460

This process is assumed to be driven not by a concentration difference in461

neutrophils between the compartments but rather is a direct consequence of462

activation. Therefore, neutrophil transmigration, the first term in Eq (23),463

is modeled from the bloodstream to the site of injury by a linear term with464

rate kn.465

Activated neutrophils that have transmigrated through the endothelium466

and reached the site of injury release pro-inflammatory mediators, as dis-467

cussed previously in Eq (12). During infection, neutrophils play an important468

role by phagocytizing pathogens [53], but during VILI a main role of neu-469

trophils is the recruitment of macrophages, particularly to promote a more470

pro-inflammatory environment for the clearance of damaged and dead cells471

[18].472

Neutrophils become apoptotic, modeled by the second term of Eq (23)473

[47]. In this state, they are phagocytized by M1 and M2 macrophages (second474

and third terms of Eq (24), respectively) and no longer contribute to the475

production of PIM [17, 52, 59]. Phagocytosis by M1 macrophages is inhibited476

by AIM using our standard functional form for the inhibition multiplier.477

AIM do not inhibit phagocytosis by M2 macrophages since AIM support the478
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function of anti-inflammatory cells. Intrinsic decay is described in the last479

term of Eq (23).480

dN

dt
=

Migration︷ ︸︸ ︷
knNb −

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Decay︷︸︸︷
µnN (23)

dAN

dt
=

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Phagocytosis
by M1︷ ︸︸ ︷

kanm1ANM1

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Phagocytosis
by M2︷ ︸︸ ︷

kanm2ANM2 (24)

2.3.5. Repair mediators481

The direct contribution of alveolar macrophages to the repair of epithelial482

cells is not completely understood, although macrophage involvement in the483

repair process has been widely demonstrated [48]. M2 macrophages produce484

various mediators that promote repair of epithelial cells. We do not model485

each of these explicitly, instead we group them together in one variable called486

R. These secreted mediators include prostaglandin E2, chemokines such as487

CCL2, TGF-β, fibronectin 1 and other epithelial growth factors [48, 51, 52].488

The production of R by M2 macrophages is modeled by the first term in Eq489

(25). The second term models intrinsic decay of these mediators.490

dR

dt
=

Upregulation
by M2︷ ︸︸ ︷
krm2M2 −

Decay︷︸︸︷
µRR (25)

With a system of ODEs that captures the most important aspects of491

the immune response to VILI, the following sections demonstrate how we492

analyzed the model to understand the parameter space, determine the most493

sensitive parameters and other influential predictors of model output, and494

modulate a particular case of model-generated dynamics to lessen long-term495

epithelial damage.496

2.4. Sampling method for parameters: Latin hypercube sampling497

Because of the large number of variables and parameters, mathematical498

and statistical techniques need to be used to analyze the system and find499

parameter sets that generate biologically realistic dynamics of immune cell500
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populations included in this model. Some parameters may be easily obtained501

from the literature, such as half-lives of immune cells. However, most of the502

parameters have not yet been evaluated due to the need for experimental data503

or are altogether impossible to obtain through current experimental meth-504

ods. As an initial step towards determining initial conditions and parameters505

for this model we use Latin hypercube sampling (LHS). Introduced in 1979506

[60], LHS is a sampling method which generates random, unique parameter507

sets, such that the produced parameter values are selected according to a508

distribution; in our case, a uniform distribution. For LHS with uniform dis-509

tributions assumed for each parameter, to generate n desired parameter sets,510

the algorithm splits the determined range into n evenly-spaced subintervals511

and each interval is sampled exactly once [61]. This is particularly useful for512

our exploratory simulations because the distributions of the parameters are513

unknown.514

Using MATLAB functions adapted from Kirschner et al. [62], all pa-515

rameters were sampled except the rate of damage sd due to ventilation. We516

used simulations to explore parameter space by sampling near transients as-517

sociated with different types of disease progression. We accepted parameter518

sets if they were associated with a steady state solution and defined the final519

parameters ranges based on the maximum and minimum value of the param-520

eters in the acceptable sets. See Table 2 for ranges used for each parameter.521

Using LHS with these ranges we generated 100,000 parameter sets. Future522

work could calibrate cohorts to data from different experimental or clinical523

groups and then use the analysis methods here to compare dynamics and524

parameters that drive differences between experimental or clinical groups.525

2.5. Cohorts: Healthy, Moderate Inflammation, & Severe Inflammation526

We needed to start our simulation from initial conditions associated with527

a steady state, so that when ventilation was simulated we were seeing changes528

in the dynamics only due to the ventilator. For all 100,000 parameter sets529

we ran the model for 800 hours without ventilator-induced damage (sd = 0)530

using three different initial conditions to determine if a steady-state condi-531

tion was reached in the absence of ventilation. The first initial condition was532

related to the initial simulations used to develop the sampling ranges and533

gave rise to 25,195 sets that reached steady state. Additionally, we checked534

whether parameter sets that did not reach a steady state from these initial535

conditions could reach a steady state from an initial condition with all vari-536

ables set to zero except for Eh(0) = 0.75 and Ed(0) = 0.25 (starting with537
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damaged tissue and no immune response) or initial conditions with all vari-538

ables set to zero except for M1(0) = 50 (starting with an activated immune539

response and healthy tissue). These other initial conditions added another540

1,104 sets that reached a steady state, bringing the total to 26,299. Any541

parameter sets that did not result in an equilibrium state by 800 hours from542

these three initial conditions were not simulated with ventilation. We sim-543

ulated these 26,299 parameter sets with ventilator-induced damage starting544

from their steady state levels. Simulations were run for 200 hours with venti-545

lation for the first two hours (a nonzero damage rate), a duration comparable546

with murine experiments [63, 64].547

Many of these sets had initial conditions associated with a severely in-548

flamed lung without ventilation, which did not seem biologically realistic.549

To correct for this we eliminated sets based on their initial condition for550

Ee (empty/dead cells). We performed all of the analysis below with three551

different thresholds to see whether the exclusion of these parameter sets af-552

fected the results. In this paper we focus on the 23,086 parameters sets that553

had Ee(0) < 50% and show a summary of all results for Ee(0) < 25% and554

Ee(0) < 75% in the supplementary materials. We did not find any major555

differences when varying this inclusion threshold.556

Simulations were separated into three categories of disease progression:557

1) healthy epithelial cells sufficiently cover the alveoli to functional normally558

or existence of 2) moderate or 3) severe inflammation and associated tissue559

damage. These progressions are called healthy, moderate inflammation, and560

severe inflammation, respectively.561

To quantify these three different states, we divided percentages of healthy562

epithelial cells into categories:563

• Healthy: Eh ≥ 90%564

• Moderate inflammation: 50% ≤ Eh < 90%565

• Severe inflammation: 0% ≤ Eh < 50%566

In this way, each parameter set can be classified into three different cat-567

egories based on their Eh values either before or after ventilation. Thus,568

sets are classified by their initial conditions and then again after simulation569

with ventilation. These parameter sets, their corresponding transients, and570

the outcomes they generate were used to develop a virtual cohort represent-571

ing a variety of immune system dynamics. The cohort was then used to572
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compare outcomes, transient properties, underlying parameters, and their573

corresponding biological mechanisms.574

2.6. eFAST575

We used several tools to perform a sensitivity analysis of model param-576

eters. A common method is calculating partial rank correlation coefficients577

(PRCCs), but results are only reliable for monotonic relationships between578

parameters and variables. Our model output does not fit this criteria. Marino579

et al. suggest the extended Fourier amplitude sensitivity test (eFAST), a580

variance-based method for non-linear, non-monotonic relationships [61]. The581

greatest drawback of eFAST compared to PRCC is the computation time.582

eFAST, developed by Saltelli et al. [65], Saltelli & Bolado [66], and Saltelli583

et al. [67] is the extended version of FAST, originally developed by Cukier et584

al. [68], Schaibly & Shuler [69], and Collins & Avissar [70]. Parameters are585

varied and the resulting variation in model output is calculated using statis-586

tical variance. The algorithm varies each parameter at different frequencies587

by creating a sinusoidal function, called a search curve, and then sampling588

parameter values along the function. Fourier analysis measures the influ-589

ence of the parameter’s frequency on model output. First-order sensitivity590

Si for a parameter i is calculated by varying only i and leaving the rest con-591

stant. Total-order sensitivity STi is calculated by varying i using a unique,592

higher frequency and varying the other parameters using lower non-unique593

frequencies. This total-order sensitivity captures non-linear interactions be-594

tween parameters in addition to changes in model output. We implement595

the method by Marino et al. [61] to calculate Si and ST i and determine596

their statistical significance of for each parameter. A “dummy parameter” is597

included in the parameter set and its eFAST index is compared to the other598

parameters found in the model.599

MATLAB functions by Kirschner et al. [62] are available online to per-600

form eFAST. We obtain 65 values of each parameter on a search curve and601

repeat this process for five unique search curves since different ones can gen-602

erate slightly different samples. Sensitivity can be calculated at specific time603

points for the desired variable.604

2.7. Random forest decision tree605

Aside from more conventional sensitivity analysis measures, we chose a606

few alternative methods that require less computation time and can include607

other features of the model besides parameters. One of these alternatives is608
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a random forest decision tree. A decision tree algorithm is a classification609

tool that uses the given properties of an individual or object to determine610

into which category it should fall [71, 72]. In this case, each parameter set611

in the virtual cohort has a number of predictors and outputs: parameters612

and any other characteristics from the transients that can be quantified or613

given a classification value. The algorithm takes a training set, a subset of614

the cohort about which all predictors and outputs are known, and can train615

the algorithm to classify virtual cohort members into specific categories.616

An output of the model that we are particularly concerned with predicting617

is the patient’s outcome, as described in the previous section. The decision618

tree generated from the training set makes predictions for the rest of the619

virtual cohort members about whether each one will fall into one of the three620

outcomes: healthy, moderate inflammation, or severe inflammation. The621

tree contains branches at which specific parameters are chosen to best assist622

in classification. The parameter values of each “individual” in the cohort623

determines the path along the tree until it reaches the most likely outcome624

based on the training set.625

Since a decision tree simply takes a series of values for each predictor626

and is not dependent on the model itself, measures besides just parameters627

can be used. We included supplementary predictors calculated from the628

transients, described in Table 3. Adding these predictors allowed for the629

possibility that the best classifiers of outcome could be not only parameters630

but also properties of the transients. This knowledge could provide additional631

information about metrics for experimentalists and clinicians to keep track632

of and identify early warning signs for undesirable results.633

For added robustness against overfitting [72], we use a random forest634

decision tree algorithm, in which a user-specified number of randomly chosen635

parameters are candidates at each branch; then the algorithm selects one to636

be the splitting variable from that smaller group. The rf function in R637

generates 500 decision trees as the “forest” along with several other useful638

output metrics. One metric in particular is the importance value of each639

parameter or characteristic, calculated from the Gini Index. The importance640

value is a measure of how important any given parameter was in determining641

the outcome of each parameter set in the virtual cohort. Because of the642

large number of parameters in the model, this can provide intuition on which643

parameters and other characteristics of the transients are most influential in644

determining outcomes. The R and MATLAB code used for this method are645

provided in the supplementary materials.646
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Predictor Comment, description

Maximum M1 percent

Maximum M2 percent

Minimum M1 percent

Minimum M2 percent

Maximum M1

Maximum M2

Minimum M1

Minimum M2

M1 peak time Time at which M1 peak occurs

M2 peak time Time at which M2 peak occurs

M2 percent at 10 hours

M1 peak ratio Ratio of M1 peak to M1 initial
condition

Eh difference Difference between first and last
time points of Eh

Eh ratio 0.5h Ratio of IC to Eh at 30 minutes

Eh ratio 2h Ratio of IC to Eh at 2 hours

Eh ratio 6h Ratio of IC to Eh at 6 hours

Fits t = 0 M0 data 0 = does not fit, 1 = does fit

Fits all data 0 = does not fit, 1 = does fit

Table 3: Additional predictors used in analysis of parameter space with descriptions if
necessary. These predictors were used with the random forest decision tree, correlations,
and significance testing.
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3. Results647

Our aim is to understand how recruitment of the immune response and648

its interactions with epithelial cells translate to specific outcomes and what649

dynamics are driving this process. Therefore, we developed an ODE model of650

the immune response to ventilator-induced damage, which explicitly tracks651

macrophage phenotype and epithelial cells. A fixed point and stability anal-652

ysis of the epithelial subsystem reveals the long-term stability of a simplified653

version of the system under various conditions, and how changes in those654

conditions affect stability. Using Latin hypercube sampling, we generated655

parameter sets that replicate different possible responses to VILI and cre-656

ated a virtual cohort of patients. We also perform an analysis of the large657

parameter space by comparing various techniques to determine predictors of658

outcome and/or processes that could be targeted to modulate outcome.659

3.1. Sample Transients and Cohort Breakdown660

This model can generate a variety of dynamics, similar to expected re-661

sponses of patients on a ventilator. There is significant variability between662

outcomes as well as within them. Fig 4 shows examples of these different663

dynamics for healthy epithelial cells and M0, M1, and M2 macrophages us-664

ing a case of each of the three outcomes: healthy, moderate inflammation,665

and severe inflammation. Simulations were run in MATLAB using the code666

provided in the supplementary materials.667

We generated 100,000 parameter sets using LHS with parameter ranges668

given in Table 2. Fig 5 shows the breakdown of these parameter sets based669

on whether or not the dynamics lead to a steady-state system in the absence670

of ventilation, their classification before ventilation, and the resulting state671

(healthy, moderate inflammation, and severe inflammation) after 200 hours,672

the first 2 hours being ventilation. We also rejected any parameter sets with673

Ee(0) ≥ 50%, since this would not be biologically realistic. The top number674

in each box is the total number of parameter sets in that category, and that675

number is further broken down by the category in which they start (column676

1) and end (column 2). For the first column, the number in parentheses is677

the number of sets that started in that category but ended in a different one.678

Conversely, the number in parentheses in the second column shows the sets679

that ended in a certain outcome but did not start there. These numbers680

serve as a summary of how damage may affect outcome for the variety of681

behaviors in the virtual cohort. We will analyze all 23,086 sets that reach682
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(a) (b)

(c) (d)

Figure 4: Sample simulations show the variety of model-generated dynamics.
Blue, orange, and green curves indicate healthy, moderate inflammation and severe in-
flammation outcomes, respectively. (a) Proportion healthy epithelial cells. (b) Percent
M0 macrophages. (c) Percent M1 macrophages. (d) Percent M2 macrophages.
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Total LHS runs: 100,000

Steady-state: 23,086

IC ES
H: 15,890 (438) 15,453 (1)
P: 5,090 (101) 5,319 (330)
D: 2,106 (0) 2,314 (208)

Not steady-state: 76,914

Figure 5: Results of 100,000 LHS runs grouped by disease progression. Param-
eter sets are broken down by their initial conditions (IC) and ending states (ES) and by
category healthy (H), moderate inflammation (M), or severe inflammation (S). Numbers in
parentheses in the IC columns are the number of simulations that started in the category
associated with that row and change their state after ventilation. Numbers in parentheses
in the ES columns are the number of simulations that ended in the category associated
with that row, but were not in that category before ventilation. All parameter sets are
associated with a steady-state solution with Ee(0) < 50%.

steady state (with Ee(0) < 50%) to understand the full array of responses683

that could occur. In the future, experimental data could help narrow down684

responses.685

3.2. Determining Predictors and Driving Dynamics686

Our model has 18 variables and 67 parameters. Using a variety of math-687

ematical, statistical, and computational methods, we determined the param-688

eters and other predictors that stand out, those to which output is most689

sensitive and may help differentiate or predict what is driving outcome. In690

this section we explain and compare the results of each method.691

3.2.1. Correlations and significance testing highlight specific parameters692

As an initial step towards understanding relationships between param-693

eters and model output, we calculated the correlations of parameters and694

predictors with outcome. There were some correlations between predictors695

that are very high, but are measuring similar things; for example, maximum696

M1 and minimum M1. We excluded these since they do not provide new697

or useful information. Aside from these, there are only a few correlations698

between parameters or between parameters and predictors that are higher699

than R = 0.3; notable pairs are shown in Fig 6 using random samples from700

each outcome for better visibility of the points. For kmne, the rate of collat-701

eral damage to epithelial cells by macrophages and neutrophils, parameter702
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sets that result in moderate and severe inflammation outcomes have a sig-703

nificant correlation with the Eh ratio at 0.5 hours, shown in Fig 6a. The704

Eh ratio and kmne have the following correlations for each outcome: healthy705

R = 0.1 (not shown), moderate inflammation R = 0.67, and severe inflam-706

mation R = 0.82. The br parameter, representing the baseline repair rate707

for epithelial cells, has the following correlations with the same Eh ratio for708

each type of outcome, healthy R = 0.29, moderate inflammation R = 0.41,709

and severe inflammation R = 0.37, shown in Fig 6b. Visual inspection of710

both graphs shows possible nonlinear behavior that should be investigated711

further. The only other pair with a correlation above 0.3 is sm, the source712

rate for naive macrophages, and the maximum and minimum values of M2713

macrophages over the entire simulation. The parameter sm and maximum714

M2 have the following correlations: healthy R = 0.32; moderate inflamma-715

tion R = 0.3; severe inflammation R = 0.3. Fig 6c shows these correlations;716

sm and minimum M2 is not shown but have similar results.717

We also performed hypothesis testing for predictors (excluding binary718

variables). The Kruskal-Wallis test is an alternative to ANOVA when the719

variable distributions are not normal [73]. Due to our choice of a uniform720

sampling distribution for LHS, parameter distributions for the 23,086 sets721

are roughly uniform. We categorized all parameter sets by their outcome722

(healthy, moderate inflammation, severe inflammation) and compared them.723

If any of the three groups had a statistically significant difference (p-value less724

than 0.01), a Wilcoxon test was performed on each pair (healthy and mod-725

erate inflammation, healthy and severe inflammation, moderate and severe726

inflammation) to determine which groups were different from one another.727

P-values for the Kruskal-Wallis and Wilcoxon tests were adjusted using the728

Benjamini–Hochberg procedure to control for the false discovery rate [74].729

Knowledge of which parameters and other predictors are different between730

groups based on outcome provides insight into predicting outcomes and which731

predictors might best influence the immune response to damage.732

35 out of 81 parameters and predictors returned results for a statistically733

significant difference between at least two groups and 14 gave statistically734

significant differences between all three groups. Table 4 shows a summary of735

the results from the various methods used to examine predictors’ significance736

in determining model output. Column 1 of Table 4 shows the predictors in737

which all three groups were different from one another, as determined by the738

Kruskal-Wallis and Wilcoxon tests. Results in columns 2-5 are described in739

the following sections. Box plots of a subset of predictors in which all three740
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(a) (b)

(c)

Figure 6: Scatter plot of predictors with notable correlations. Points are a random
sample of the total points. (a) Parameter kmne (rate of collateral damage to epithelial
cells by macrophages and neutrophils) versus ratio of Eh at 0.5 hours to initial Eh values.
Correlations: resolved to healthy R = 0.1 (not shown); moderate inflammation R = 0.67;
severe inflammation R = 0.82. (b) Parameter br (baseline rate of epithelial repair) versus
ratio of Eh at 0.5 hours to initial Eh values. Correlations for parameter sets in each out-
come: resolved to healthy R = 0.29; moderate inflammation R = 0.41; severe inflammation
R = 0.37. (c) Parameter sm (source rate of M0 macrophages) versus maximum M2. Cor-
relations for parameter sets in each outcome: healthy R = 0.32; moderate inflammation
R = 0.3; severe inflammation R = 0.3.
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Sig. Testing Random Forest eFAST (Ordered)
(Not ordered) (Ordered output) 0.5h 2h 6h

kmne kmne kn kn xm0a

xmne xmne µp xmne

Eh ratio 6h Eh ratio 6h xm0a ken
Eh ratio 2h xmne br
Eh ratio 0.5h ken xnup

br br br xm0a

Min M1 Min M1 µm1 sp
ken ken kam1 µp

Min M1% Min M1% kpe
kep µR

M1 peak time
kem1

M2 peak time
kan
kep
M1 peak ratio
xnup

Table 4: Summary of three different methods used to determine the most influential
predictors, including parameters and other factors. Columns 1 & 2 show results for all
23,086 parameter sets. Column 1: significance testing results for predictors in which all
three outcome groups are statistically different (p-value < 0.01). For ease of comparison
between columns, the predictor is listed next to its counterpart in the ordered random
forest list, if listed in that column. Column 2: average importance values determined by
random forest decision trees. The top ten are ordered from highest to lowest importance.
Columns 3-5: eFAST results (ordered by p-value, with p-value < 0.02) for three time
points.

groups are different are shown in Fig 7 to help visualize these differences.741

3.2.2. Parameter Sensitivity with eFAST742

Since outcome of Eh is the metric by which we determine health of the in-743

dividual, we calculated eFAST indexes for Eh at 30 minutes, two hours (end744

of ventilation), and six hours. We calculated first-order and total-order sen-745

sitivities Si and ST i, respectively. Fig 8 shows results for the parameters with746

p-value < 0.02. Parameters kn (rate of migration of Nb to lung), xmne (Hill-747

type constant for effectiveness of macrophages and neutrophils in damaging748

epithelial cells), xm0a (Hill-type constant for effectiveness of differentiation749

of M0 by a), br (baseline repair of damaged cells), and ken (phagocytosis of750

damaged cells by N) are sensitive for several time points. Comparing Si and751
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Figure 7: Predictors selected by significance testing show visible differences be-
tween disease progression groups. Subset of parameters and predictors that showed
a statistically significant difference between all three outcomes: healthy, moderate inflam-
mation, and severe inflammation, as determined by the Kruskal-Wallis and Wilcoxon tests.
Some are shown on a log scale and some outliers removed from figure for better visibility.
Black x’s are outliers.

ST i in Fig 8, it is possible that nonlinear interaction between parameters752

affects model output more at 6 hours than at 2 hours. Parameters with a753

significant Si may also be better candidates for treatment than those with a754

significant ST i because first-order sensitivity measures sensitivity of Eh based755

only on fluctuations in a single parameter. For this reason and since many of756

the same parameters are significant for first-order and total-order sensitivity,757

we show results for first-order sensitivity in Columns 5-7 of Table 4, ordered758

from lowest p-value to highest and for the three time points specified.759

3.2.3. Random forest algorithm to determine predictors760

The randomness of the decision tree algorithm means that each random761

forest generated and its resulting importance values are slightly different.762

To offset any unusual results generated by the randomness, we replicated the763

process of randomly selecting a training set and generating importance values764

from the random forest 1000 times. Fig 9 shows the average and standard765

deviations of the top ten importance values generated.766

Notice that the standard deviations are small enough so that although767

some of the top importance values may change order in different random for-768

est simulations, in general the most important predictors remained the same769

across numerous simulations. Furthermore, several of the top ten predictors770

were found to be significant by the Kruskal-Wallis Test, and br and kmne771

are shared by random forest and eFAST. (see Table 4). The consistency of772

the importance of these parameters and predictors using different methods773

supports the idea that they play a significant role in the sensitivity of model774
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(a)

(b)

Figure 8: Parameter sensitivity analysis shows which parameters most influence
model output. Parameters determined by eFAST to be most sensitive, with p-values
calculated by comparing eFAST sensitivity indexes to a dummy variable. Results are given
for each of the time points tested: 0.5 (red), 2 (blue), and 6 hours (purple). (a) First-order
sensitivity, also shown in Table 4. (b) Total-order sensitivity.

37

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


Figure 9: Random forest decision tree selects top indicators of outcome. Mean
and standard deviation of importance values for the top ten highest predictors from 1000
random forest decision trees.
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(a) (b)

Figure 10: Some parameter sets generate transients that end in a worse disease
progression after ventilation. (a) Transients of Eh that start at one state and end at a
lower one. (b) Corresponding transients of M1. Solid lines represent transients that start
healthy and end in moderate inflammation; the dotted line represents the transient that
starts in moderate inflammation and ends in severe inflammation.

output and determining or differentiating outcomes.775

3.3. Modulating recovery: a case study of select transients776

Fig 10 shows nine examples of transients that started in one disease pro-777

gression category and ended in another. We used the information gained in778

the parameter analysis to identify key targets for treatment that could mod-779

ulate damage, especially in the case of a patient starting in one state and780

ending in a different, negative outcome after ventilation. The goal is to re-781

turn the cohort member to its original steady-state earlier, since the inability782

to recover from a 2-hour vent after 200 hours or more could be detrimental783

to long-term health.784

Our analysis shows that the parameters br, the rate of self-repair of785

healthy epithelial cells, kmne, the rate of collateral damage by macrophages786

and neutrophils to epithelial cells, xmne, the Hill-type constant which regu-787

lates the effectiveness of macrophages and neutrophils in damaging epithelial788

cells, and ken, the rate of phagocytosis of damaged cells by neutrophils, are789

some of the most influential parameters and thus could inform targets for790

treatment. It is also important to note that different interventions could791

begin and end at any time during or after ventilation, so we examined inter-792

ventions at several time points (see Fig 11).793
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(a) (b) (c)

(d) (e) (f)

Figure 11: Modulating parameters based on parameter analysis improves out-
come in case study. Starting with a parameter set that gives rise to an Eh transient
that starts healthy and ends in a moderate inflammation state, we applied various treat-
ment strategies by changing three key parameters, br (rate at which healthy epithelial cells
self-repair), kmne (rate of collateral damage to epithelial cells by macrophages and neu-
trophils), and xmne (Hill-type constant which regulates the effectiveness of macrophages
and neutrophils in damaging epithelial cells). Results for various changes are shown for
healthy epithelial cells (a, b, c) and percent of M1 macrophages (d, e, f). Treatment was
started at 0, 2, or 4 hours after the start of ventilation, denoted by solid, dotted, and
dot-dashed lines, respectively, and lasted for 48 hours. The original parameter values are
br = 0.33, kmne = 0.38, and xmne = 0.92. Black transients show the original dynamics
without intervention. Orange transients represent values of each parameter that are in-
sufficient to mediate prolonged macrophage activation. Blue transients show values that
are sufficient to bring about resolution, depending on intervention time.
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We intervened in a case that starts healthy and ends in moderate inflam-794

mation. Note in Fig 11, the original Eh transient begins recovery to healthy795

after the two-hour ventilation period, but by the end of the 200-hour period,796

is at a lower Eh value. This is coupled with a transient for M1 in which the797

pro-inflammatory phenotype increases to 40-45% and stays in this range.798

Increasing br by various amounts has increasingly positive effects on long-799

term epithelial health. Lower values of br increase Eh slightly and an earlier800

intervention can generate a higher peak of Eh around five hours, but does801

not continue increasing at this rate regardless of intervention time. If br is802

increased substantially for a significant duration of treatment time, healthy803

epithelial cells reach the healthy steady-state after ventilation and do not804

decrease again. Shown in Figures 11a and 11d, doubling br to 0.66 is not805

enough to generate recovery, but increasing br by a factor of four to 1.32806

does result in a healthy outcome. For an insufficient treatment duration and807

value of br, levels of Eh will be higher until treatment ends and then decrease808

back to the same level as the original simulation. For a long enough treatment809

duration, the proportion of healthy epithelial cells will remain high even after810

treatment ends. For br = 0.66, the intervention time does not improve health811

in the long run, whereas for br = 1.32, intervention at either 0 or 2 hours is812

sufficient to bring about recovery while intervention at 4 hours is not.813

The parameter kmne has an inverse relationship with epithelial health;814

thus, decreasing the parameter provides better results. Decreasing kmne815

slightly can increase the rate of recovery slightly but not enough to change816

the outcome to resolved. However, with a significant enough decrease of817

kmne, M1 activation peaks around hour 10 and decreases back to its original818

levels. The original simulation shows M1 activation leveling off at a high819

percentage of activation (Fig 11e). The modulated return to baseline levels820

is paired with a healthy outcome for epithelial cells (Fig 11b). For higher821

values of kmne, results are about the same for any intervention time 4 hours822

or less after the beginning of ventilation. Note in Fig 11 that the time at823

which intervention begins matters somewhat for changes in br but not for824

kmne. Figures 11b and 11e show that half of the original value of kmne (0.38825

to 0.19) is not low enough to change the outcome; multiplying by a factor of826

0.1 to kmne = 0.04, on the other hand, is sufficient to change the outcome to827

healthy.828

We also increase the parameter xmne. Increasing this value causes the829

presence of macrophages and neutrophils to be less effective in damaging830

epithelial cells. Similarly to the other treatments, sufficient changes to xmne831
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bring about long-term recovery and the time at which intervention begins832

is not as important. Figures 11c and 11f show doubling xmne to 1.85 is833

insufficient to change the outcome, and increasing xmne by a factor of four834

to 3.69 is sufficient.835

Finally, we increase ken. This increases the rate at which neutrophils836

phagocytize damaged cells, making room for new, healthy cells. Interestingly,837

although ken is shown to be an important parameter in our analysis, even838

increasing the parameter by a factor of ten to 1.52 is insufficient to make any839

real changes in the epithelial and macrophage populations. Since there was840

no significant change, we do not show this treatment in Fig 11.841

We also examine the results of combination therapy that could include842

regulation of two or three parameters. Together, changes in parameter val-843

ues that would be insufficient on their own are able to regulate macrophage844

activation and bring epithelial cells back to a healthy state. Additionally,845

higher values of br and xmne and lower values of kmne precipitate a quicker846

recovery from damage. Intervention time is important for parameter val-847

ues near the threshold, but not for parameter values sufficiently above or848

below the threshold. Intervention time may make a difference in the ending849

steady-state values of Eh or M1, depending on the parameters. Many combi-850

nations could be formulated; Fig 12 shows two cases in which two parameter851

changes were insufficient to bring about recovery individually but are suffi-852

cient when combined. The orange curves show br = 0.99 and kmne = 0.19853

and the blue curves show xmne = 2.31 and ken = 1.52, which bring about854

long-term recovery for all three intervention times.855

For other cases starting in a healthy state and ending in moderate inflam-856

mation or severe inflammation, a high enough br can bring about resolution857

in some cases. In general, earlier intervention times result in a faster rate858

of recovery, but there are varied responses to changes in kmne, xmne, and859

ken. Even for transients with similar Eh and M1 dynamics, reactions to860

treatments may be different, reinforcing the uniqueness of each individual861

member of the virtual cohort.862

4. Discussion863

The spectrum of macrophage activation has been a recently growing field864

of research [10, 14, 15], and with the increase in the need for mechanical865

ventilation due to COVID-19, a better understanding of and treatment for866

VILI is of great concern. Mathematical models have studied a host of causes867
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(a) (b)

Figure 12: Treatment by combining parameter changes can result in a positive
outcome. Changes in br, kmne, xmne and ken that are insufficient on their own (Fig
11) result in a change in outcome when combined. Orange curves show a combination
treatment of br = 0.99 and kmne = 0.19 and blue curves show that of xmne = 2.31 and
ken = 1.52. Duration of treatment in each case is 48 hours, and all intervention times are
successful in a long-term recovery.

of lung inflammation, including bacterial and viral infections and allergic868

reactions. Our model combines the varied effects of macrophage activation869

with a more detailed epithelial subsystem to model ventilator-induced lung870

injury. These features help to provide a better understanding of how the871

components of immune response, including those associated with the different872

macrophage phenotypes, play a role in whether or not there is resolution after873

ventilator-induced damage.874

We account for recruitment of circulating immune cells from the blood-875

stream and their contribution to the immune response using a two- com-876

partmental model. Our model incorporates a number of factors involved in877

the immune response, including naive M0, pro-inflammatory M1 and anti-878

inflammatory M2 macrophages, three states of epithelial cells (healthy, dam-879

aged, dead), activated and unactivated neutrophils, and various mediators880

used to signal between cells. The model consists of 18 state equations and 67881

parameters. Because of its large size and the paucity of experimental data,882

we used Latin hypercube sampling to find biologically meaningful parameter883

sets, producing a total of 23,086 acceptable parameter sets. This “virtual884

cohort” produces a variety of dynamics that can be generated by the model.885

We classified parameter sets into categories of healthy, moderate inflamma-886
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tion, and severe inflammation based on the percentage of healthy epithelial887

cells at the beginning or end of the simulation. The resulting cohort simula-888

tions are used to determine the unique characteristics and properties of the889

transients that are linked to outcome and to determine candidate treatments.890

We utilized several methods to determine the most important parameters891

for model output, particularly epithelial health. Using eFAST, a sensitivity892

analysis method for non-linear, non-monotonic ODEs, we found parameters893

that, when fluctuated, caused a statistically significant difference in out-894

put than that generated by a dummy parameter. We then compared these895

results with more non-conventional and less computationally intensive meth-896

ods. The random forest decision tree algorithm generated values denoting897

the importance of parameters and other predictors on epithelial health and898

is particularly useful for large data sets, such as the parameter sets in our899

virtual cohort. Additionally, significance testing determined statistically sig-900

nificant differences in parameters grouped by outcome.901

We were able to not only include parameter values in this analysis but902

also other predictors later found to be important, including the M1 peak ratio903

and the difference between Eh initial condition and ending value. Three of904

the most important parameters were br, the rate of self-repair of epithelial905

cells, kmne, the rate at which macrophages and neutrophils cause collateral906

damage to epithelial cells, xmne, the Hill-type coefficient that regulates the907

effectiveness of that collateral damage, and ken, the rate of phagocytosis of908

damaged epithelial cells by neutrophils. These important parameters and909

predictors were confirmed by at least two of the methods used.910

Analysis showed that properties and parameters related to epithelial re-911

pair and M1 activation and de-activation were especially predictive of out-912

come. We used br, kmne, xmne, and ken to simulate treatments for a parameter913

set in the virtual cohort that started healthy and ended in a moderate inflam-914

mation disease progression. We found that modulating br is effective in most915

cases, and the other four can be helpful in some. The chosen case responded916

differently to treatments and these were paired with varied M1 activation917

dynamics, indicating that macrophage activation is tied to epithelial health918

in VILI.919

Our approach of developing a virtual cohort and selecting important pa-920

rameters is a first step in identifying the driving mechanisms behind VILI921

and how they contribute to outcomes. However, experimental data will be922

necessary to better understand the immune response to VILI and identify bio-923

logically realistic dynamics. Concentrations of macrophages and neutrophils,924
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as well as a way to experimentally measure epithelial health at multiple time925

points would be extremely beneficial. Preliminary data is currently being926

collected, which can be explored in future work.927

Another area of further study is determining why some virtual cases can928

recover with a short intervention time while others need indefinite treatment.929

We hypothesize that this has to do with patient-specific initial conditions and930

parameters but more work should be done to obtain a definite answer. This931

would help determine the risk of VILI for patients who undergo ventilation,932

since patients generally need ventilation because of a preexisting condition933

and do not begin ventilation in a completely healthy state. In fact, this model934

could be extended to include other types of injury such as a bacterial or viral935

infection to study the interactions between the different types of injury and936

how they contribute to patient outcome.937

In conclusion, our model contributes to the current understanding of the938

immune response in the lungs, and is an important first step for VILI. Our pa-939

rameter analysis using a variety of methods provides new insight into poten-940

tial interventions during and after ventilation to mediate VILI. Experimental941

data will greatly improve our ability to suggest treatments. Furthermore, the942

model can be extended to include other types of injury that create the need943

for mechanical ventilation in the first place.944
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Supplementary Material 
 
A summary of the initial sates and disease 
progression outcomes and how they change, 
depending on the maximum initial amount of Ee 
allowed (exclusion group).     

     

Initial condition criteria:  Ee(0)<75% Ee(0)<50% Ee(0)<25% 

     

Total number of sets that reached steady-state: 

   

23433 23086 22217 

     

 
Healthy 
IC: 

15890 
(438) 

15890 
(438) 

15890 
(428) 

 
Health 
ES: 15454 (2) 15453 (1) 15452 (0) 

     

Moderate inflammation IC:  5090 (101) 5090 (101) 4433 (37) 

Moderate inflammation ES:  5320 (331) 5319 (330) 4726 (330) 

     

Severe inflammation IC:  2453 (2) 2106 (0) 1894 (0) 

Severe inflammation ES:  2659 (208) 2314 (208) 2039 (145) 

     

     

Numbers in parentheses are the number of sets that leave the state and enter the state 
at the end of the simulation for initial condition (IC) and ending state (ES), respectively. 
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Top Correlations    
The parameters that have the highest correlation with parameters 
and other predictors, for each exclusion group and disease 
progression group.    

    

Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% 

 kmne, Eh ratio 0.5h 

Healthy 0.1 0.1 0.1 

Pers. inf. 0.67 0.67 0.66 

Severe inf. 0.82 0.82 0.81 

    

 br, Eh ratio 0.5h 

Healthy 0.29 0.29 0.29 

Pers. inf. 0.41 0.41 0.42 

Severe inf. 0.28 0.37 0.41 

    

 sm, max M2 

Healthy 0.32 0.32 0.32 

Pers. inf. 0.3 0.3 0.31 

Severe inf. 0.32 0.3 0.31 
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Significance Testing    
Parameters and other predictors that show a statistically 
significant difference (p-value<0.01) between all three disease 
progression groups, using Kruskal-Wallis and Wilcoxon tests.    

    

Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% 

Significant predictors: kmne kmne kmne 
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Random Forest Decision Tree    
Ten highest average importance values, as determined by 
1000 random forests.    

    

Criteria: Ee(0)<75% Ee(0)<50% Ee(0)<25% 

Top ten, in order: kmne kmne kmne 

 xmne xmne xmne 

 Eh ratio at 6h Eh ratio at 6h Eh ratio at 2h 
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