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Abstract
Immune checkpoint-inhibitory antibodies (ICIs) are well-
established immunotherapies. Despite this, the impact of ICI
therapy on non-T cell intratumoral immune cells is ill-defined,
restraining the improvement of ICI efficacy. Preclinical murine
models of human disease are infrequently validated in clini-
cal trials, impairing the identification of novel biological factors
impacting clinical ICI response. To address this barrier, we
used our previously described computational approach that in-
tegrates high-throughput single-cell RNA sequencing datasets
to identify known and novel cellular alterations induced by ICIs
that are conserved in mice and humans. We found a signature
of intratumoral natural killer (NK) cell activation that is enriched
in anti-CTLA-4 treated mouse tumors and correlates with longer
overall survival and is predictive of anti-CTLA-4 (ipilimumab) re-
sponse in melanoma patients. We demonstrate that human NK
cells express CTLA-4, which directly binds anti-CTLA-4. These
data reveal a novel role for NK cells in anti-CTLA-4 treatment
and present opportunities to enhance ICI efficacy. Importantly,
we provide a new computational tool for onco-immunology that
can identify and validate biological observations across species.

1 Introduction
Immune checkpoint receptors, such as cytotoxic T-

lymphocyte-associated protein-4 (CTLA-4) and programmed
cell death protein (PD-1), are inhibitory T cell receptors that
attenuate T cell activity. Tumor cells escape immunosurveil-
lance by expressing ligands that bind immune checkpoint recep-
tors. Immune checkpoint-inhibitory antibodies (ICIs) represent
a class of immunotherapies that have remarkable anti-tumor ef-
ficacy in several cancer types. Despite this, the clinical utility of
ICIs is limited by the lack of response in most patients (intrinsic
resistance), the emergence of resistance among those patients
who initially respond (acquired resistance), and the inability to
predict responders prior to treatment initiation. Combination
strategies, such as the administration of both anti-CTLA-4 and
anti-PD-1 antibodies, are being investigated to improve clinical
efficacy (Dammeijer et al., 2017; Tang et al., 2018), but patient

response rates remain limited (Larkin et al., 2015; Motzer et
al., 2018; Overman et al., 2018). To date, approaches to un-
derstand the molecular mechanisms that drive the therapeutic
efficacy of ICIs have largely focused on T cells. Accumulating
evidence suggests that the development of anti-tumor immunity
in response to ICI relies on other immune cell types within the
tumor microenvironment - including natural killer (NK) cells. A
better understanding of how these additional cellular popula-
tions contribute to ICI-mediated tumor regression is critical to
identifying biomarkers of response and new therapeutic strate-
gies to improve patient outcomes.

Despite being the first ICI to receive FDA approval (Hodi et
al., 2010; Robert et al., 2011), the driving mechanism of action
of anti-CTLA-4 antibodies (ipilimumab) is widely debated. Anti-
CTLA-4 causes tumor regression by enhancing T cell effector
activity by blocking CTLA-4 interactions with B7 ligands (Krum-
mel and Allison, 1996; Sutmuller et al., 2001). However, recent
studies in mice suggest that anti-CTLA-4 efficacy is dependent
on the depletion of CTLA-4 expressing regulatory T cells (Du
et al., 2018; Simpson et al., 2013). In these models, T cell
depletion is mediated by the anti-CTLA-4 antibody Fc domain
that interacts with Fc receptors expressed by many immune cell
types, such as NK cells. This results in the lysis of CTLA-4 ex-
pressing regulatory T cells (Tregs) through antibody-dependent
cellular cytotoxicity (ADCC) (Du et al., 2018; Simpson et al.,
2013). However, the importance of ADCC is also subject to de-
bate, as several publications have shown that depletion of Tregs
is not a primary mechanism of action of anti-CTLA-4 therapy in
both mice and humans (Ferrara et al., 2019; Kavanagh et al.,
2008; Quezada et al., 2006; Schmidt et al., 2009). Additionally,
while anti-CTLA-4 has been shown to bind most human Fc
receptors, giving it the theoretical capacity to induce ADCC,
a recent clinical study found that anti-CTLA-4 treatment does
not deplete Tregs in several human cancer types (Sharma et
al., 2019a). Therefore, a clear understanding of the mecha-
nisms of action underlying anti-CTLA-4 and whether the same
mechanisms are involved in mouse and human tumors remains
elusive.

Preclinical mouse models are essential tools for identifying
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potential therapies and elucidating biological mechanisms that
underlie therapeutic success. Unfortunately, the majority of
preclinical successes fail in clinical trials (Perel et al., 2007).
The inability to translate findings from mouse models to hu-
man disease remains a critical challenge in cancer research.
The emergence of single-cell RNA sequencing (scRNA-seq)
technologies has made it possible to compare high-throughput
mouse and human datasets to search for translatable features.
Previous scRNA-seq studies have attempted to characterize
conserved cell types or states in mouse and human cells by
measuring marker genes whose expression correlates with cel-
lular function (Brown et al., 2019; Crinier et al., 2018; Yu et
al., 2019; Zilionis et al., 2019). Standard clustering methods
that partition cells into discrete groupings according to their
transcriptional profile is fundamental to this analysis. However,
clustering methods typically capture predominant signals in
a dataset, thereby limiting the ability to unravel gene expres-
sion programs that dictate cell type identity (i.e., NK versus
Treg) from cell state (i.e., activated versus resting) (Kotliar et al.,
2019). In addition, when datasets are obtained from different
studies (i.e., human versus mouse), they often contain batch
effects that need to be corrected prior to meta-analyses. These
challenges are especially relevant to the complex molecular
alterations present across heterogeneous populations of cells
within the tumor immune microenvironment during ICI response
(Kiselev et al., 2019).

To address these shortcomings and improve translational
advances, we previously developed a computational framework
that utilizes two complementary machine learning methods to
translate relationships across independent datasets from dif-
ferent species. This approach first uses matrix factorization to
identify transcriptional signatures within a reference scRNAseq
dataset. In contrast to clustering methods, the transcriptional
signatures from factorization methods can simultaneously distin-
guish cell type identities and state transitions. Transfer learning
is then used to integrate the transcriptional signatures learned
from the original dataset into a new dataset to assess if the
molecular and cellular processes are conserved. In the context
of development, we have shown that this approach is able to
identify cell types and biological processes shared between
the developing retina in mice and humans (Stein-O’Brien et al.,
2019). Here, we extend this approach to identify transcriptional
alterations in intratumoral immune cells induced by ICI treat-
ment that are conserved in mice and humans. We found distinct
gene expression signatures and cellular transitions associated
with different ICIs that led to tumor progression or rejection. We
focus our analysis on a signature of NK cells that predicted the
therapeutic success or failure of anti-CTLA-4 and use molec-
ular techniques to validate computational findings and novel
mechanisms.

2 Results
CoGAPS identifies known molecular alterations in re-
sponse to immunotherapy from scRNA-seq data

In scRNA-seq, each cell’s transcriptional profile is reflective
of cell type and cell state. Clustering methods reduce all cells
in a cluster to a single shared transcriptional profile, which can
mask these biological differences. In contrast, matrix factoriza-
tion methods allow cells to associate with multiple gene expres-
sion signatures and accurately identifies signatures for both cell
type identity and cellular activity (i.e., immune activation) from
scRNA-seq data (Kotliar et al., 2019; Puram et al., 2017; Stein-
O’Brien et al., 2019). When combined with the machine learning
concept transfer learning, these signatures can be used to apply
a priori knowledge gained from one dataset to another distinct
but related dataset. We previously developed such an approach
that combines our matrix factorization method, CoGAPS, with
our transfer learning technique, projectR (Stein-O’Brien et al.,
2019). In the current study, we sought to establish whether tran-
scriptional signatures from mouse tumor models treated with
ICIs were translatable to human tumors treated with ICIs. Briefly,
we first applied CoGAPS to identify patterns of therapy-induced
alterations from a scRNA-seq dataset of a mouse tumor model.
In this context, the patterns identified by CoGAPS are reflective
of transcriptional signatures. We then used projectR to project
the mouse patterns into multiple human datasets (Fig. 1A). Im-
portantly, patterns shared between datasets are preserved in
this analysis, while patterns associated with technical artifacts
or batch effects drop out. Patterns that exhibit robust replication
across datasets represent conserved tumor biology in murine
and human tumor settings.

To determine the molecular changes induced by ICIs in a
preclinical mouse model, we first applied CoGAPS to a pub-
licly available scRNA-seq dataset of 15,000 immune cells iso-
lated from mouse sarcomas (Gubin et al., 2018). These tumors
were treated with control monoclonal antibodies, anti-PD-1, anti-
CTLA-4, or combination anti-PD-1 and anti-CTLA-4 antibodies
(Fig. 1B). A critical challenge in matrix factorization algorithms
such as CoGAPS is the selection of an appropriate dimen-
sionality, or number of patterns, to resolve biological features
from the data (Stein-O’Brien et al., 2018). Therefore, we ran
this algorithm across multiple-dimensionalities. Consistent with
previous studies, we found that different biological processes
were captured at different dimensionalities (Way et al., 2019).
Although unsupervised, when detecting 3 patterns this analy-
sis revealed a hierarchy of immune cell type specification that
distinguishes myeloid from lymphoid lineages (Supplemental
Fig. 1). When we increased the number of patterns analyzed
in this data to 21, we retained this lineage distinction and also
captured additional patterns associated with distinct immune
cell types (Fig. 1C).

To confirm the biological significance of our CoGAPS identi-
fied patterns, we assessed the transcriptional signatures iden-
tified in ICI treated mouse sarcomas for known cellular alter-
ations relevant to immunotherapy. For example, pattern 13 was
enriched in macrophages/monocytes from progressing tumors
treated with control monoclonal antibody (Fig. 1D and E) while
pattern 12 was prevalent in macrophages/monocytes from tu-
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mors treated with anti-PD-1 (Fig. 1F and G). To identify specific
attributes captured in each pattern, we performed gene set
analysis using the gene weights for each pattern as input. We
used the hallmark gene sets from the Molecular Signatures
Database (MSigB) (Liberzon et al., 2015) and the PanCancer
Immune Profiling gene panel from Nanostring Technologies to
assess enrichment of gene sets controlling well-defined biologi-
cal processes. Gene set statistics for all patterns are provided
in supplemental Table 1. Macrophages are commonly divided
into two subsets, pro-inflammatory M1 and anti-inflammatory
M2, which are generally considered to be anti-tumor and pro-
tumor, respectively (Lu et al., 2019). As expected, pattern 13
in control-treated cells was enriched for M2 macrophage polar-
ization, which promotes tumor growth and metastasis (p < 1 x
10-2, Supplemental Table 1). In contrast, pattern 12 in anti-PD-1
treated cells was enriched for M1 macrophage polarization and
interferon responses (p < 1 x 10-2, Supplemental Table 1). This
finding agrees with a recent study, which showed that anti-PD-1
treatment leads to a functional transition within the macrophage
compartment towards an immunostimulatory M1 phenotype
(Xiong et al., 2019).
CoGAPS analysis identifies a subset of activated NK cells
in mouse tumors treated with anti-CTLA-4

In addition to the known molecular and cellular pathways
that CoGAPS identified in immune cells from ICI treated mouse
tumors, we identified an unanticipated transcriptional signature
that was specific to NK cells (Fig. 2A and B). This signature
was captured by pattern 7, and the presence of high levels in
only a subset of NK cells suggested that it was related to cell
state rather than cell type. While tumors from each treatment
group contained NK cells with elevated levels of pattern 7, there
was a significant enrichment in NK cells from tumors that were
treated with anti-CTLA-4 (Fig. 2C). We next used the CoGAPS
PatternMarker statistic (Stein-O’Brien et al., 2017) to identify
genes strongly associated with each pattern. PatternMarker
analysis identified 3,195 genes associated with pattern 7. Gene
set enrichment analysis of these genes revealed an upregu-
lation of interferon-gamma and IL2-STAT5 gene sets, which
are key pathways that govern cytotoxicity and maturation in NK
cells (Supplemental Table 1, p < 1 x 10-2) (Gotthardt and Sexl,
2016).

To further explore whether pattern 7 was identifying cells
undergoing functional state changes in response to ICI, we per-
formed pseudotime analysis on intratumoral NK cells treated
with anti-CTLA-4 (Trapnell et al., 2014). This analysis enables a
quantitative estimation of cellular progression through dynamic
biological processes. The pseudotemporal ordering showed a
sequential progression in cellular trajectory during anti-CTLA-
4 treatment (Figure 2D). This pseudotemporal trajectory was
highly correlated with the pattern 7 weight identified in each cell
(0.71 spearman correlation). Notably, the trajectory revealed
a single transition state as a result of anti-CTLA-4 treatment,
with individual cells having transcriptional profiles that reflect
various points along the trajectory. Differential expression anal-

ysis across pseudotime identified 1,968 genes with significant
changes (q value < 0.01) in gene expression during exposure
to anti-CTLA-4 (Supplemental Table 2). We then looked for dif-
ferentially expressed genes over pseudotime that were strongly
associated with pattern 7 as determined by patternMarker anal-
ysis (Fig. 2E). The 148 differentially expressed genes included
markers of NK cell activation, such as perforin, granzymes, and
Ly6a (Lanier, 2000), which significantly increased in expression
during the pseudotime trajectory as a result of anti-CTLA-4
treatment (Fig. 2F). These data support recent findings that NK
cells within mouse tumors can be functionally modulated by ICI
treatment (Hsu et al., 2018; Sanseviero et al., 2019).
Preclinical NK cell activation signature is associated with
overall survival in metastatic melanoma patients

To evaluate the clinical relevance of pattern 7, the NK cell
activation signature, we used patient samples from The Cancer
Genome Atlas (TCGA) to test for an association between pat-
tern 7 and overall survival. We first used our transfer learning
method projectR (Sharma et al., 2019b) to project our 21 tran-
scriptional patterns associated with ICI treatment into RNAseq
data from 9,553 TCGA tumors representing 32 cancer types
(Cancer Genome Atlas Research Network et al., 2013). We
next fit a multiple linear regression model to estimate the as-
sociation between the projected weight of each transcriptional
pattern and overall cancer survival. When including cancer type
as a covariate in the model given its significant effect on sur-
vival, we identified pattern 7 to be the transcriptional pattern
most significantly associated with overall survival (Fig. 3A, p
< 6 x 10-5). We also found that pattern 15 was significantly
associated with overall survival (Fig. 3A, p < 5.9 x 10-4), which
was highest in a subset of mouse NK cells and proliferating lym-
phocytes similar to pattern 7 (Supplemental Fig. 2A, Fig. 2B).
When including age as a covariate in our linear model, given its
influence on overall survival, pattern 7 remains the most signifi-
cantly associated with overall survival (Supplemental Fig. 2B,
p < 1.6 x 10-4). Interestingly, when testing the relationship be-
tween the transcriptional patterns and age at diagnosis, pattern
7 was the only pattern showing a significant negative associ-
ation (Supplemental Fig. 2C, p < 6.7 x 10-3). Several studies
have reported age-related alterations in NK cell function, in-
cluding a decreased ability to proliferate and kill target cells
in older individuals (Hazeldine and Lord 2013; Gounder et al.
2018). The signature of NK cell activation appears to similarly
decrease as individuals age, which may have implications for
cancer incidence in elderly individuals.

These findings indicate that the role of NK cells in tumor
immunity needs to be reconsidered in a broader context. When
fitting separate regression models per cancer type, we found
that melanoma (SKCM) had the strongest and most significant
association between pattern 7 and overall survival (Fig. 3B,
Supplemental Fig. 2D, p < 5 x 10-3). Notably, this association
was driven entirely by the melanoma metastases samples (Sup-
plemental Fig. 2E, F), which is consistent with the role of NK
cells controlling cancer progression and metastasis (López-
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Soto et al., 2017). Pattern 7 was also able to stratify metastatic
melanoma patients within the context of a survival analysis
when comparing patients with the highest pattern 7 weights
(top 5%) to other patients (Fig. 3C). Prostate cancer (PRAD)
and breast cancer (BRCA) also had modestly significant pos-
itive associations between pattern 7 and overall survival (p
< 0.05). Importantly, these results demonstrate that transcrip-
tional patterns of ICI response are translatable across species
from preclinical to clinical data and agree with previous studies
that indicate NK cell activation is important to overall survival in
metastatic melanoma (Cursons et al., 2019).
CTLA-4 expression is positively correlated with the infil-
tration of active NK cells in immunogenic human tumors

Given that pattern 7 was associated with a subset of NK cells
from mice treated with anti-CTLA-4, we hypothesized that there
may be a correlation between CTLA-4 expression and intra-
tumoral NK cell content. To explore this hypothesis, we used
CIBERSORT to infer immune cell proportion across 6 immuno-
genic solid tumor types from TCGA, skin cutaneous melanoma
(SKCM), kidney renal clear cell carcinoma (KIRC), cervical
kidney renal papillary cell carcinoma (KIRP), squamous cell
carcinoma of the lung (LUSC), lung adenocarcinoma (LUAD),
and bladder carcinoma (BLCA). When running CIBERSORT,
we used the LM22 signature matrix designed by Newman et
al (Newman et al., 2015) to estimate the relative fraction of
22 immune cell types within input mixture samples, which in-
clude an estimation of resting and activated NK cell proportions
(Fig. 3D). Correlation analysis between CTLA-4 expression and
CIBERSORT cell type estimation revealed that the direction
of correlation in NK cells was dependent upon the activation
state (Fig. 3E, Supplemental table 3). Across several tumor
types, activated NK cells were positively correlated with CTLA-
4 expression while resting NK cells were negatively correlated.
CTLA-4 expression was negatively correlated with estimated
proportions of resting NK cells in SKCM (p < 1 x 10-4), BLCA
(p < 1 x 10-3), LUSC (p < 1 x 10-2), KIRP (p < 1 x 10-2), and
KIRC (p < 1 x 10-9). On the other hand, activated NK cells
were positively correlated with CTLA-4 expression in SKCM (p
< 1 x 10-6), BLCA (p < 1 x 10-2), LUSC (p < 0.05), KIRP (p <
0.05), and KIRC (p < 1 x 10-2). In agreement with the current
understanding of CTLA-4 biology, CTLA-4 expression was also
positively correlated with the estimated proportions of Tregs in
each tumor type (Supplemental Table 3).
Preclinical NK cell activation signature is associated with
ipilimumab response in metastatic melanoma patients

Given that anti-CTLA-4 appears to promote NK cell activa-
tion, we next investigated the relevance of the NK cell acti-
vation signature, pattern 7, to immunotherapy responses in
metastatic melanoma patients. Using the same approach we
used to project patterns into TCGA tumors, we queried the
mouse patterns in two independent scRNA-seq datasets of
metastatic melanoma patients treated with ICIs (de Andrade
et al., 2019; Sade-Feldman et al., 2018). First, we analyzed
a scRNA-seq dataset of 16,000 immune cells isolated from

melanoma metastases. Patients in this study were treated with
anti-PD-1, anti-CTLA-4, or combination anti-PD-1 and anti-
CTLA-4 antibodies, and the biopsies were taken either prior to
or during treatment (Sade-Feldman et al., 2018). We projected
this scRNAseq data into the 21 CoGAPS patterns derived
from the mouse sarcoma intratumoral immune cell data. Us-
ing the projected pattern weights and treatment outcomes, we
evaluated the ability of each pattern to distinguish signatures
associated with therapeutic response in the human dataset.
We found that in pre-treatment biopsies, pattern 7 was signifi-
cantly higher in tumors responsive to anti-CTLA-4 compared to
non-responsive tumors (p < 1 x 10-15, Supplemental Fig. 3A).
This is particularly notable given that pattern 7 was strongly
associated with NK cells treated with anti-CTLA-4 in the mouse
data. To further examine this relationship, we tested for en-
richment of pattern 7 in NK cell populations from this human
dataset. While NK cells were not annotated in the study that
produced this data (Sade-Feldman et al. 2018), we observed
that cells expressing key NK marker genes were intermixed
with T cells in the lymphocyte cluster (Supplemental Fig. 3B).
This is consistent with previous scRNA-seq studies that have
identified subpopulations of T cells that express transcripts
linked to the cytotoxic function of NK cells, such as NKT cells
(Patil et al., 2018; Smith et al., 2020). Thus, to eliminate T cells,
we performed a gene expression gating strategy that required
expression of several transcripts related to NK cell function
(NCR1, NKG7, and FCGR3A) and a lack of the T cell tran-
scripts (CD4, CD3D, and CD3G). Gating for NK cells confirmed
that pattern 7 was enriched in intratumoral NK cells isolated
from anti-CTLA-4 responsive tumors (Fig. 4A, p < 1 x 10-8).
Importantly, these cells were obtained from tumor biopsies prior
to the administration of anti-CTLA-4, which suggests that cyto-
toxic NK cell infiltration is a predictive biomarker of therapeutic
response. In patients treated with anti-PD-1, there was no sig-
nificant difference in pattern 7 weights between responders
and non-responders regardless of whether biopsies were taken
before (Fig. 4A, p > 0.05) or during (Fig. 4B, p > 0.05) treat-
ment. In contrast, pattern 7 was significantly enriched in tumors
responsive to combination anti-CTLA-4 and anti-PD-1 taken be-
fore (Fig. 4A, p < 0.05) and during (Fig. 4B, p < 0.01) treatment.
Using receiver operating characteristic curve (ROC) analysis,
we found that pattern 7 weight had a moderate ability to classify
anti-CTLA-4 response (Fig. 4C), suggesting that the NK activa-
tion signature has the potential utility to predict responsiveness
to anti-CTLA-4 from pre-treatment tumor biopsies. While this
dataset lacked data from biopsies taken during anti-CTLA-4
treatment, these findings indicate that the presence of active
NK cells within tumors is important to the clinical usage and
success of anti-CTLA-4 therapies.

Although ICI therapy can lead to durable responses in pa-
tients with metastatic melanoma, intrinsic and acquired resis-
tance remain major causes of mortality (Jenkins et al., 2018). To
determine the relationship between pattern 7 and mechanisms
of therapeutic resistance, we next projected the transcriptional
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patterns into a dataset of NK cells isolated from melanoma
metastases and matching blood samples of patients that had
progressed after immunotherapy (de Andrade et al., 2019). This
dataset included two patients that had an initial response to
ICI (acquired resistance), two patients that failed to respond
to ICI (intrinsic resistance), and one patient that was not given
ICI (untreated). We found high pattern 7 weights in a subset of
intratumoral NK cells from the two patients who had an initial
response to ICI (Fig. 4D). Consistent with our results which
indicate that pattern 7 is enriched in NK cells from anti-CTLA-4
responsive tumors, we found that the highest projected pat-
tern 7 weights were in NK cells from the patient responsive
to anti-CTLA-4 (ipilimumab). Elevated pattern 7 weights were
also found in the patient responsive to combination treatment
with anti-PD-1 and oncolytic virus (pembrolizumab + TVEC).
Notably, this observation was specific to intratumoral NK cells,
as cells with elevated pattern 7 weight were absent in NK cells
isolated from matched peripheral blood samples (Fig. 4E). This
result indicates that anti-CTLA-4 treatment leads to NK cell
activation specifically within the tumor microenvironment, con-
sistent with observations in mice (Sanseviero et al., 2019).
CTLA-4 is expressed by both human NK cell lines and
healthy human donor-derived NK cells.

In mice, NK cells express CTLA-4 when activated with IL-2
(Stojanovic et al., 2014). We hypothesized CTLA-4 is similarly
expressed by human NK cells and that anti-CTLA-4 could acti-
vate NK cells by blocking CTLA-4. To investigate this possibility,
we first assessed the expression of CTLA-4 transcripts in NK
cells from scRNA-seq data. Indeed, some intratumoral NK cells
in mice and humans express CTLA-4 as well as high levels of
cytotoxic genes (GZMB and NKG7) (Fig. 5A). This indicates
that NK cells, particularly those with an activated phenotype,
express CTLA-4. It has been previously demonstrated that NK
cells can express other immune checkpoints, such as PD-1
(Concha-Benavente et al., 2018; Hsu et al., 2018). Consistent
with this, we found a few cytotoxic NK cells that similarly express
PD-1 (Supplemental Fig. 4). Importantly, if the expression of
CTLA-4 and PD-1 is low to moderate in NK cells, these genes
could suffer from poor capture efficiency and dropout during
scRNA-seq (Chen et al., 2019). These technical limitations
could result in the observed detection in only a handful of NK
cells.

To confirm that human NK cells express CTLA-4, we di-
rectly tested four human NK cell lines (NK-92, NKL, YT, and
KHYG-1) for CTLA-4 expression at the RNA and protein level.
While all four cell lines appeared negative for CTLA-4 by flow
cytometry (Fig. 5B), all NK cell lines revealed robust CTLA-
4 expression determined by western blot and qRT-PCR (Fig.
5C and D). Previous studies have characterized two distinct
isoforms of CTLA-4, a transmembrane dimerized full-length
CTLA-4 isoform that weighs approximately 48-50 kDa, and a
soluble CTLA-4 monomeric isoform that weighs approximately
28-30 kDa (Darlington et al., 2005; Esposito et al., 2014). We
observed both the dimerized and monomeric isoforms by west-

ern blot (Fig. 5D). Since CTLA-4 is known to be expressed on
several tumor-derived human cell lines (Contardi et al., 2005;
Pistillo et al., 2003) we wanted to exclude the possibility that this
observation was specific to malignant NK cells so we assessed
CTLA-4 expression in unstimulated ex vivo CD56+ NK cells
isolated from healthy human donor PBMCs. Western blot and
rt-qPCR confirmed that NK cells from each donor constitutively
expressed CTLA-4 (Figure 5E and F). The robust expression
of CTLA-4 by human NK cells supports our hypothesis that the
activation phenotype observed in mouse and human scRNA-
seq data is the result of anti-CTLA-4 modulating NK cell activity
by directly binding to CTLA-4 on the NK cell surface.
Ipilimumab binds to CTLA-4 expressed on the NK cell sur-
face independent of CD16.

We next wanted to determine if ipilimumab specifically was
capable of binding to CTLA-4 expressed on the NK cell sur-
face. Human NK cells also express the cell surface Fc receptor
CD16 (FcRIIIA), which is capable of binding to the Fc domain of
IgG1 and IgG3 antibodies (Simmons and Seed, 1988). When
CD16-expressing NK cells recognize an Fc domain they be-
come active, release cytokines, degranulate, and lyse the target
cell. To demonstrate that ipilimumab, an IgG1 antibody, could
recognize CTLA-4 on NK cells we used the human NK cell
line NK-92, which lacks CD16 expression (Fig. 6A) to exclude
the possibility of Fc receptor binding by ipilimumab. Immunoflu-
orescence imaging demonstrated that fluorescently labeled
anti-CTLA-4, but not the IgG control, was capable of binding
to NK-92 through recognition of CTLA-4 on the surface (Fig.
6B). The specificity of the stain was confirmed using the CTLA-
4 null line PANC-1 (Supplemental Fig. 4). To the best of our
knowledge, this is the first demonstration that anti-CTLA-4 can
directly interact with human NK cells via a CD16-independent
mechanism. This suggests the NK cell activation signature ob-
served in anti-CTLA-4 responsive tumors could be mediated by
anti-CTLA-4 antibody binding to CTLA-4 expressing NK cells.
NK cells coexpress CD28 and CTLA-4

After identifying that anti-CTLA-4 binds to human NK cells in-
dependent of CD16, we hypothesized that anti-CTLA-4 induces
NK cell activation in a manner similar to CD4+ T cells activation.
In CD4+ T cells, CTLA-4 is co-expressed with CD28 and CTLA-
4 competes with CD28 for the ligands B7.1 (CD80) and B7.2
(CD86). To test if this working hypothesis could be applied to
NK cell biology, we first investigated CD28 surface expression
in multiple human NK cell lines by flow cytometry. Of the four
cell lines tested, two cell lines (NK-92 and YT) expressed CD28
on the surface and two cell lines (NKL and KHYG-1) did not
have detectable levels of CD28 on the surface (Fig. 7A). In addi-
tion to flow cytometry, we used qRT-PCR to investigate mRNA
expression levels in human NK cell lines. By qRT-PCR, three of
the four NK cell lines (NK-92, YT, and KHYG-1) had detectable
levels of CD28 mRNA (Fig. 7B). We also saw that CD56+ NK
cells isolated from healthy human donor PBMCs also expressed
CD28 by qRT-PCR (Fig. 7C). This finding confirms previous
reports that human NK cells express CD28 (Galea-Lauri et al.,
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1999).
Activated T cells co-express CD28 and CTLA-4 (Chambers

et al., 2001). To determine if NK cells also co-express CD28 and
CTLA-4, we performed a correlation analysis between the ex-
pression of CD28 and CTLA-4 in the scRNA-seq data of human
NK cells isolated from melanoma metastasis (de Andrade et al.,
2019). Indeed, we found a positive correlation (R2 = 0.33, p = 0)
between CD28 and CTLA-4 transcripts in tumor-infiltrating NK
cells from scRNA-seq data (Fig. 7D). As previously described,
NK cells that express CTLA-4 were restricted to a population of
cells with an active, cytotoxic phenotype (Fig. 5A). Thus, active
intratumoral NK cells appear to co-express CTLA-4 and CD28
at the RNA level, supporting a parallel role for these receptors
in T cells and NK cells.

Previous studies have demonstrated that human NK cells are
capable of binding to B7 expressing target cells in vitro in a man-
ner that is dependent on CD28-B7 interactions (Luque et al.,
2000; Martín-Fontecha et al., 1999; Wilson et al., 1999). How-
ever, the extent to which malignant cells express B7 remains
unclear. To assess the relevance of B7 expression in human
cancers, we used RNA-seq data to compared B7.2 (CD86)
expression in tumor versus paired normal tissue (TCGA) and
found that 14 solid tumors, including melanoma, had signif-
icantly higher B7 expression in tumors compared to normal
tissue (Fig. 7E). To rule out the possibility that the increased
tumor B7 expression was attributed to immune infiltrate present
in the bulk TCGA samples, we assessed B7 expression in RNA-
seq data from malignant cell lines and found B7 expression in
multiple cancer cell line types (Supplementary Figure 5). Of
note, melanoma cell lines had the highest B7 expression of all
solid malignancy lines. These findings are supported by pre-
vious reports of B7.1 and B7.2 expression in several mouse
tumor cell lines (melanoma and colorectal carcinomas) (Tirapu
et al., 2006) and human tumor cell lines (gastric, esophageal
and colorectal carcinomas) (Li et al., 1996) human colon pre-
neoplastic epithelial cells (Marchiori et al., 2019).

CD4+ T cells are inactivated upon CTLA-4 recognition of
B7. Since we demonstrated NK cells express CTLA-4 and tu-
mor cells express B7, we hypothesized that NK cell activation
would be inhibited by high B7 expression in tumors. To test this
hypothesis, we assessed the correlation between our CoGAPS-
identified immune cell patterns, including pattern 7, which is
indicative of activated NK cells, and B7 expression in TCGA
data. We found a negative correlation between pattern 7 and
B7 expression, which demonstrates that higher B7 expression
is associated with lower NK cell activation (Fig. 7F). Taken
together, our data support a model whereby anti-CTLA-4 anti-
bodies block CTLA-4-B7 interactions resulting in enhanced NK
cell activation (Fig. 7G).

3 Discussion
Here, we integrate state-of-the-art machine learning algo-

rithms and molecular biology approaches to identify a novel
association between NK cells and immunotherapy outcomes.

The ability of our matrix factorization algorithm, CoGAPS, to
identify continuous cell states enabled the discovery of an as-
sociation between NK cell activation and anti-CTLA-4 response
in mouse sarcomas. While Gubin et al. was previously unable
to detect this relationship using clustering methods, the authors
were able to identify marked upregulation of NK cell granzyme
expression specific to anti-CTLA-4 treatment after analyzing
paired mass cytometry (Gubin et al., 2018). Our results demon-
strate that the presence of NK cell activation in response to
anti-CTLA-4 was detectable from the scRNA-seq data alone, as
CoGAPS was able to identify this response directly, without the
need for clustering and differential expression analyses. This
highlights the advantages of CoGAPS over standard analysis
pipelines and its potential to generate previously unidentified
discoveries from publicly available scRNA-seq data. Using our
transfer learning approach, projectR, we were able to project
patterns across species into clinical data from melanoma pa-
tients to reveal cancer immunotherapy mechanisms conserved
between different species, tumor types, and which correlate
with overall survival and ICI responsiveness. Despite known dif-
ferences in mice and human NK cell surface receptors (Murphy
et al. 2012), our approach was able to identify a conserved sig-
nature of NK cell effector function relevant to clinical outcomes
by analyzing homologous genes. This supports the continued
observation that key biological roles of NK cells are shared be-
tween species (Murphy et al. 2012). Of note, this study provides
the first evidence that transfer learning can go beyond the iden-
tification of conserved developmental processes (Stein-O’Brien
et al., 2019) to elucidate complex onco-immunological biology.

A number of immune checkpoints are expressed by both T
cells and NK cells. For example, recent studies have found that
NK cells within several human and mouse tumor types express
PD-1, and that ligands for these checkpoint receptors nega-
tively regulate NK cell activity (Kim and Kim, 2018; Mariotti et al.,
2019). Consistent with this, blocking PD-1 receptors with anti-
PD-1 therapy enhances NK cell-mediated anti-tumor responses
(Hsu et al., 2018), and NK cell infiltration correlates with clinical
responsiveness to anti-PD-1 therapy (Barry et al., 2018). De-
spite growing evidence for the role of checkpoint receptors in
NK mediated anti-tumor responses, the expression of CTLA-4
by NK cells has been disputed in the literature. While mouse NK
cells inducibly express CTLA-4 in response to IL-2 (Stojanovic
et al., 2014), a recent study was unable to detect CTLA-4 on
the surface of intratumoral murine NK cells (Sanseviero et al.,
2019). An earlier study in humans also demonstrated an ab-
sence of surface CTLA-4 expression in NK cells from healthy
human donors (Lang et al., 1998). Contrary to these earlier
reports, our results demonstrate CTLA-4 is constitutively ex-
pressed by circulating healthy donor NK cells and can also be
expressed by intratumoral NK cells. One possible explanation
for why previous studies failed to identify the expression of
CTLA-4 by human NK cells is the reliance on flow cytometry
in these studies. Flow cytometry can be limited by challenges
related to the generation of antibodies and further complicated
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by the rapid surface expression dynamics of CTLA-4 (Valk et
al., 2008). In support of this explanation, we too fail to detect
intracellular or surface CTLA-4 expression when using flow cy-
tometry (Fig. 5B), even though we are able to unequivocally
demonstrate CTLA-4 expression at the RNA and protein level
by qRT-PCR and western blot in ex vivo unstimulated healthy
donor NK cells (Fig. 5E and F), as well as surface expression
using immunofluorescence (Fig. 6B).

Regardless of the reported lack of expression, several reports
highlight an interesting relationship between NK cells and anti-
CTLA-4 response in humans. In melanoma patients treated with
anti-CTLA-4, a higher percentage of circulating mature NK cells
is correlated with improved overall survival, and NK cells iso-
lated from responsive patients have increased cytolytic activity
compared to NK cells isolated from non-responders (Tallerico
et al., 2017). A very recent study also showed that an anti-
CTLA-4-EGFR immunoconjugate enhances the in vitro lysis of
breast cancer cells by NK cells (Passariello et al., 2020). In B16
melanoma models, NK cells and CD8+ T cells synergistically
clear tumors in response to anti-CTLA-4 and IL-2 treatment
(Kohlhapp et al., 2015). Furthermore, anti-CTLA-4 has been
shown to increase transcriptional markers of NK cell cytotoxic
activity in CT26 colon carcinoma tumors (Sanseviero et al.,
2019). In aggregate, those studies did not provide mechanistic
bases for the identified associations.

In contrast, the work reported here provides a mechanistic
basis for the relationship between NK cells and the anti-CTLA-4
response in humans. Specifically, we provide a rationale for
the activation of NK cells by anti-CTLA-4 molecules by demon-
strating that NK cells constitutively express CTLA-4 on their
cell surfaces and bind anti-CTLA-4. Consistent with previous
studies (Azuma et al., 1992; Galea-Lauri et al., 1999), we show
that human NK cells express CD28, a co-stimulatory receptor
that competes with CTLA-4 for the binding of B7 ligands. The
expression of B7 on tumor cells also enhances NK recognition
and lysis of tumors through CD28-B7 interactions (Azuma et al.,
1992; Chambers et al., 1996; Galea-Lauri et al., 1999; Luque
et al., 2000; Martín-Fontecha et al., 1999; Terrazzano et al.,
2002; Wilson et al., 1999). In intratumoral NK cells, CTLA-4
expression is correlated with the expression of genes associ-
ated with NK cell activation and proliferation as well as CD28.
Suggesting that CTLA-4 functions in NK cells and effector T
cells in a similar manner (Rowshanravan et al., 2018). This
model is further supported by the observation that the NK cell
activation signature, pattern 7, is present in anti-CTLA-4 re-
sponsive tumors prior to anti-CTLA-4 treatment. This suggests
that NK cells must already be activated within the tumors and
express CTLA-4 to get improved tumor clearance by the addi-
tion of anti-CTLA-4. Based on these observations, we infer that
CTLA-4 may act as an immune checkpoint in NK cells and that
anti-CTLA-4 enables sustained NK cell activation.

Beyond this novel mechanism of action, these findings have
significant implications for the role of NK cells in anti-CTLA-4
clinical outcomes. In metastatic melanoma patients, we found

that NK cell activation status prior to treatment correlates with
clinical anti-CTLA-4 response. This indicates that NK cell tran-
scriptional state has the potential to be used as a predictive
biomarker. The elevated pattern 7 signature was observed in
tumors responsive to anti-CTLA-4 alone or in combination with
anti-PD-1, suggesting that this signature of NK cell activation
is a specific response to therapies that include anti-CTLA-4.
Importantly, given that pattern 7 did not associate with response
to anti-PD-1 alone, this signature is unlikely to be due to NK
cell activation mediated by Fc receptors binding to the Fc re-
gion of antibodies. In the context of therapeutic resistance, we
detect NK cells with high expression of the activation signature
in patients that developed acquired, but not primary, resistance
to immunotherapy. This demonstrates that this signature is able
to identify patients that had an initial response to therapy. Con-
sistent with this signature being related to NK cell-mediated
anti-CTLA-4 response, we observed the highest levels of this
signature in intratumoral NK cells isolated from a patient ini-
tially responsive to anti-CTLA-4 but was absent in patients
that were unresponsive to anti-PD-1 alone or in combination
with anti-CTLA-4. Interestingly, this signature was also elevated
in a patient initially responsive to combination anti-PD-1 and
oncolytic virus. This could be due to the fact that infection of
tumors with oncolytic viruses can result in NK cell activation
that may stimulate NK-mediated anti-tumor immunity (Alvarez-
Breckenridge et al., 2012). Furthermore, since this observation
was specific to intratumoral NK cells and not circulating NK
cells, approaches to transcriptionally profile patients using pe-
ripheral blood may be limited in identifying signatures relevant
to clinical outcomes. It will be important for future studies to
determine the specific function(s) of CTLA-4 in NK cell biology
and the contribution of NK cell activation to immunotherapy
response and resistance.

In summary, this work provides first mechanistic evidence
that anti-CTLA-4 binds directly to human NK cells via recog-
nition of CTLA-4 on the NK cell surface. We found that anti-
CTLA-4 elicits a cytotoxic NK cell response conserved between
mice and humans and is associated with clinical outcomes in
metastatic melanoma. These findings suggest that NK cells
play a significant role in patient response to anti-CTLA-4 ther-
apy, and that this response is dependent on the pretreatment
transcriptional state of the NK cells within the tumor microen-
vironment. We propose that, along with T cells, NK cells also
participate in the clinical benefit of anti-CTLA-4 therapy. These
observations suggest that therapies aimed at enhancing and
recruiting NK cells within tumors may prove to have orthogonal
benefits when combined with anti-CTLA-4 by helping to support
T cell infiltration (Shimasaki et al., 2020) and/or by eliminat-
ing tumor subclones with antigen presentation defects (Nicolai
2020). This could be especially beneficial for patients whose
tumor cells have been selected for loss of MHC expression by
previous ICI treatment (Rodig et al., 2018; Sade-Feldman et
al., 2017; Zaretsky et al., 2016). Importantly, this work demon-
strates the utility of hybrid approaches combining computational
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and molecular biology to advance our understanding of cancer
immunotherapy and provides a template for future studies to in-
vestigate conserved therapeutic response mechanisms in mice
and humans for other drugs and diseases.

4 Methods
Data collection
In this study, we used three public scRNA-seq datasets gener-
ated by different groups using droplet-based profiling technolo-
gies. Read counts for each scRNA-seq dataset were obtained
from NCBI’s Gene Expression Omnibus.
For CoGAPS analysis on preclinical immunotherapy samples,
we used a scRNA-seq dataset containing 15,000 flow-sorted
CD45+ intratumoral cells from mouse sarcomas that were col-
lected during treatment with either control monoclonal antibody,
anti-CTLA-4, anti-PD-1, or combination anti-CTLA-4 and anti-
PD-1 (Gubin et al., 2018). This data was acquired with the
10x Genomics Chromium platform, using v1 chemistry. The
accession number for this dataset is GSE119352.
For transfer learning, we used two human scRNA-seq datasets
of intratumoral immune cells from metastatic melanoma pa-
tients. To first test the relationship between our preclinical Co-
GAPS patterns and clinical outcome, we used a scRNA-seq
dataset containing 16,000 flow-sorted CD45+ intratumoral cells
obtained from 48 human melanoma tumor biopsies from 32
patients at baseline or after treatment with either anti-CTLA-4,
anti-PD-1, or combination anti-CTLA-4 and anti-PD-1 (Sade-
Feldman et al., 2018). This data was acquired with Smart-seq2.
The accession number for this dataset is GSE120575.
Next, to confirm the observed relationship between our preclini-
cal NK activation signature and response to anti-CTLA-4, we
used a scRNA-seq dataset containing 40,000 flow-sorted NK
cells from matched blood and tumor samples obtained from 5
patients with melanoma metastases (de Andrade et al., 2019).
Two patients had an initial response to treatment with anti-
CTLA-4 or anti-PD-1 with oncolytic virus. Two patients failed
to respond to combination anti-CTLA-4 and anti-PD-1 or anti-
PD-1. One patient was not treated with immunotherapy. This
data was acquired with the 10x Genomics Chromium platform,
using v2 chemistry. The accession number for this dataset is
GSE139249.
In addition, bulk RNA-seq was downloaded from The
Cancer Genome Atlas (Cancer Genome Atlas Re-
search Network et al., 2013). In this case, level 3
RSEM normalized across 33 tumor types were ac-
cessed from the Broad Institute TCGA GDAC Firehose
(http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/)
and log2-transformed. CIBERSORT scores for this data were
obtained from Thorsson et al. (Thorsson et al., 2018).
These datasets were used for pattern discovery and transfer
learning as described below.
Dimensionality reduction and cell type identification
Cell type inference analyses were performed for the Gubin et
al. dataset with the standard Monocle3 workflow using pack-

age version 0.2.0. Dimensionality reduction and visualization
for scRNA-seq data were performed using Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018).
Briefly, the first 15 principal components were used as input
into the reduce_dimension function. Canonical cell type marker
genes as described in Gubin et al. were used to annotate cells
(Gubin et al., 2018).
Mouse pattern discovery and gene set analysis using Co-
GAPS
CoGAPS analysis was performed using the R/Bioconductor
package CoGAPS version 3.5.8 to analyze the mouse sarcoma
dataset from Gubin et al. (Gubin et al., 2018). Genes with a
standard deviation of zero were removed prior to analysis. The
log2 transformed count matrix of remaining genes across all
samples was used as input to the CoGAPS function. Default
parameters were used, except nIterations = 50,000, sparseOpti-
mization = True, nSets = 12. The input parameters for nPatterns
was determined empirically, by testing over a range of dimen-
sions. When the nPatterns input was set to 3 we obtained
results that identified immune cell lineage. We reasoned that
additional patterns could further identify biological processes
in the data related to treatment. We initially tested 50 patterns,
however, many of the patterns highlighted few cells, indicat-
ing an over-dimensionalization of the data. We obtained stable
results when nPatterns was set to 25, with the final CoGAPS
dataset stabilized at 21 patterns. Genes highly associated with
each pattern were identified by calculating the PatternMarker
statistic (Stein-O’Brien et al., 2017). The CalcCoGAPSStat
function was used to identify pathways significantly enriched in
each pattern for the MSigDB hallmark gene sets (Liberzon et al.,
2015) and PanCancer Immune Profiling panel from NanoString
Technologies.
Pseudotime analysis
To perform pseudotemporal ordering, the dataset was subset to
relevant cell types and treatments based on the desired analy-
sis. The root node of the trajectory was assigned by identifying
the region in the UMAP dimensional reduction with low Co-
GAPS pattern 7 weights. Pseudotime values were assigned
to cells using the order_cells function from Monocle3 version
0.2.0. Genes with significant expression changes as a function
of pseudotime were identified using the graph_test function,
using a multiple-testing corrected q-value cutoff of 0.01.
Linear modeling
TCGA expression and metadata were aggregated using the
R/Bioconductor package TCGAbiolinks version 2.14.1 (Co-
laprico et al., 2016), and was used as input for transfer learning
as described below. Samples were restricted to those that were
labeled as “Primary solid tumor” (n=9113), “Recurrent solid tu-
mor” (n=46), and “Metastatic” (n=394) in the “definition” column
of the TCGA metadata, which resulted in 9,553 total samples.
Measures of overall survival and age at diagnosis for TCGA
samples were taken from those aggregated by Liu et al. (Liu et
al., 2018). After scaling and centering the data, linear models
were run according to the following equation:
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OS - C + Pi ... Pn + A

Where OS equals overall survival, C represents cancer type
as a categorical variable, Pi...Pn represent each transcriptional
signature, or pattern, as separate continuous covariates, and
A equals age at diagnosis. Linear models fit per cancer type
were run on samples belonging to each respective cancer, and
did not include the cancer type covariate C from the equation
above. Models looking at the relationship between age and
patterns replaced OS in the equation above with A.
Survival analysis
Kaplan Meyer plots were generated in R using the survfit func-
tion from the survival package version 3.1-12, and the ggsurv-
plot function from the survminer package version 0.4.6. Sam-
ples were split into those in the top 5% of pattern 7 scores, and
those in the bottom 95% (i.e. all other samples).
Correlation analysis
To compare the expression of CTLA-4 and CIBERSORT scores
for various immune cell types across immunogenic solid tumors
from TCGA, we calculated the Spearman correlation coeffi-
cients using the cor.test function in R. For correlations between
the expression of B7 (CD80, CD86) in SKCM tumors and pat-
tern 7 weight, we used Pearson’s product moment correlation
as implemented in the cor.test function in R.
Transfer learning
To examine whether the mouse patterns corresponded to sim-
ilar immunotherapy responses in human data, we used The
R/Bioconductor package projectR (Sharma et al., 2019b) ver-
sion 1.0.0 to project the expression matrix from several datasets
into the CoGAPS pattern amplitude matrix (Stein-O’Brien et al.,
2019). The CoGAPS result object and the expression matrix
from a human dataset is used as input to the projectR function.
This algorithm returns a new pattern matrix, which estimates
the role of each pattern in each cell of the human dataset. This
comparison of pattern across species usage enabled us to
determine how each pattern defines features present in the
human dataset (i.e. cell types and immune cell activation). Ho-
mologous genes present in the mouse and human data were
retained for projection. Genes without homologs in the human
data were removed.
Pattern performance of predicting anti-CTLA-4 response
The projected pattern weights is a continuous range of values,
instead of a binary outcome. Using the individual projected
pattern weight for each cell and a binary response outcome
to anti-CTLA-4, we performed ROC curve analysis using the
ROCR package, version 1.0-7 to determine the true-positive
rates versus false-positive rates of pattern 7 weights to classify
response. The area under the ROC curve was used as the
quality metric to determine the prediction performance.
Cell lines and materials
All human NK cell lines (NK-92, NK-92-CD16v, NKL, YT, and
KHYG-1) were kindly provided by Dr. Kerry S. Campbell (Fox
Chase Cancer Center, Philadelphia, PA). The NK-92-CD16v
expressed GFP due to transduction with pBMN-IRES-EGFP

containing the FcRIIIA construct. All NK cell lines were cul-
tured as previously described (Aldeghaither et al., 2019). Fresh
healthy donor NK cells were purchased from AllCells (PB012-P).
These NK cells were positively selected from donor peripheral
blood using CD56 positivity. Donor NK cell purity was 98-99%.
CTLA-4 overexpressing Jurkat cell line was generated using
lentiviral transduction purchased from GP BIosciences (Prod-
uct ID: LYV-CTLA4, SKU: LTV0710) which contained full length
human CTLA4 gene subcloned into lentiviral expression vector
pLTC with an upstream CMV promoter with puromycin selection
marker. Jurkat cells were transduced using millipore sigma’s
spinoculation protocol. In brief, lentiviral particle solution was
added to 2 X 106 Jurkat cells at a final multiplicity of infection of
1, 5 and 10. Cells were centrifuged at 800 xg for 30 minutes at
32◦C then resuspended in complete growth medium for 3 days.
After three days, cells were resuspended in complete medium
containing 5 ug/mL puromycin overnight for selection. Selection
was performed twice.
qRT-PCR
RNA was isolated using the PureLink RNA Mini Kit (Ambion).
The RNA concentration was measured using NanoDrop 8000
(Thermo Fisher Scientific). cDNA was generated from 20-100
ng of RNA using the GoTaq 2-step RT-qPCR System (Promega).
qPCR was performed with SYBR Green on a StepOnePlus real-
time PCR system (Applied Biosystems). Gene expression was
normalized to HPRT and analyzed using 1/DCt method with
triplicates.
Primers used were:
CTLA-4: (F: CATGATGGGGAATGAGTTGACC; R: TCAGTC-
CTTGGATAGTGAGGTTC)
CD28: (F: CTATTTCCCGGACCTTCTAAGCC; R:
GCGGGGAGTCATGTTCATGTA)
HPRT: (F: GATTAGCGATGATGAACCAGGTT; R: CCTCC-
CATCTCCTTCATGACA)
Western Blot
Cells were lysed in boiling buffer with EDTA (Boston BioProd-
ucts) supplemented with 1X protease and 1% phosphatase in-
hibitor prepared following the manufacturer’s protocols (Sigma-
aldrich, Cat.No. 11697498001 and P5726). Cleared lysate con-
centrations were obtained by a DC Protein Assay (BioRad).
Lysates 30-50 ug were run on SDS-PAGE gels and transferred
to nitrocellulose membranes (GE Healthcare). Western blots
were conducted using anti-CTLA-4/CD152 (LS-C193047, LS-
bio) at concentrations of 1:1000 diluted in 5% milk in PBST.
Secondary antibody was anti-rabbit IgG, HRP linked (Cell Sig-
naling) used at 1:1000. Chemiluminescent substrate (Pierce)
was used for visualization.
Flow Cytometry
All cells were aliquoted into Eppendorf tubes, spun at 5000 rpm
for 1 minute at 4◦C, washed twice with HBSS (Fisher Scien-
tific Cat. No. SH3058801), and resuspended in 50 L of FACS
buffer (PBS plus 1% BSA) and blocked with L 1 human Fc block
(BD Biosciences, 564219) for 20 minutes at 4◦C. Labeled anti-
bodies were then added at the manufacturer’s recommended
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concentrations and incubated at 4◦C for 30 minutes, with vor-
texing at 15 minutes. Cells were then washed with FACS buffer
twice and resuspended in FACS buffer or fixative (1% PFA in
PBS). Flow antibodies included anti-human CD152 (CTLA-4)
(BD Bioscience 555853) and CD28 (Biolegend 302907). The
CD152 antibody has previously been shown to adequately
detect CTLA-4 expression on both human T and B cells (29).
Samples were run in the Georgetown Lombardi Comprehensive
Cancer Center Flow Cytometry Cell Sorting Shared Resource
using BD LSRFortessa. Analyses were performed using FlowJo
(v10.4.1).

Immunofluorescence

Ipilimumab was acquired from the Medstar Georgetown Uni-
versity Hospital. Ipilimumab was labelled with Dylight550 fluo-
rophore using the Dylight550 Conjugation Kit (Fast)- Lightning-
Link (abcam, ab201800). In short, Ipilimumab was diluted from
5 mg/mL to 2 mg/mL using sterile PBS. Human IgG (Jackson
ImmunoResearch, 009-000-003) was diluted from 11mg/mL
to 2 mg/mL using sterile PBS. 1 uL of modifying reagent was
added to 10 uL diluted ipilimumab and 10 uL diluted human
IgG. 10 uL antibody was then added to the conjugation mix and
incubated at room temperature in the dark for approximately
6 hours. 1 uL of quencher reagent was added to the labeled
ipilimumab and the antibody was stored in the dark at 4◦C.
NK-92 and PANC-1 cells were collected and washed with cold
PBS and brought to a final concentration of 1 X 106 cells/mL
in staining buffer (1% BSA in PBS) in 50 uL. 50 uL of labelled
ipilimumab or human IgG was added to cells to yield a final
concentration of 1 ug/mL antibody. Cells were incubated in the
dark at 4◦C for 1 hour. After incubation, cells were pelleted
and washed three times with cold PBS. Cells were brought to
a final concentration of 0.5 X 106 cells/mL and 100 uL was
immobilized on slides using cytospin (Cytospin 2, Shandon)
for 5 mins at 1000 rpm. Following immobilization cells were
fixed with 4% PFA for 10 minutes at room temperature then
washed three times with cold PBS. Coverslips were mounted
using VectraSheild mounting media with DAPI and sealed using
clear nailpolish and allowed to dry overnight in the dark. Analy-
ses were performed with the Leica SP8 AOBS laser scanning
confocal microscope.

TCGA and CCLE expression analysis

CD86 expression was assessed in TCGA tumor samples versus
paired normal controls using GEPIA: a web server for cancer
and normal gene expression profiling and interactive analyses
(Tang et al., 2017). CD86 expression in cancer cell lines was
assessed using cbiobortal (Cerami et al., 2012; Gao et al.,
2013) to analyze data from the cancer cell line encyclopedia
(Barretina et al., 2012).

Software availability

All code used for this analysis is available at:

https://github.com/edavis71/projectR_ICI
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Figure 1: CoGAPS identifies gene signatures related to immune cell lineage and treatment response in mouse intratumoral immune cell scRNA-seq
data. A. Schematic representation of computational pipeline. B. UMAP-dimension reduction of droplet-based scRNA-seq of intratumoral immune cells from ICI
treated mouse sarcomas(Gubin et al., 2018). Samples are colored by annotated cell types (left) and by treatment (right). C. Hierarchical clustered heatmap of
21 CoGAPS pattern weights demonstrating segregation of patterns by immune cell lineage. Rows are individual cells, with column annotations designating
cell type. Columns represent different CoGAPS patterns. D. UMAP-dimension reduction colored by CoGAPS pattern 13 weights illustrates a cell type specific
signature within the macrophages/monocytes. E. Boxplot of pattern 13 weights in individual macrophage/monocyte cells, faceted by treatment group. Pattern 13
is associated with cells treated with control monoclonal antibody. F. UMAP-dimension reduction colored by CoGAPS pattern 12 weights illustrates a cell type
specific signature within the macrophages/monocytes. G. Boxplot of pattern 12 weights in individual macrophage/monocyte cells, faceted by treatment group.
Pattern 12 is associated with cells treated with anti-PD-1.

Davis-Marcisak and Fitzgerald, et al. 2020, BioRxiv Preprint

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.31.125625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125625
http://creativecommons.org/licenses/by-nd/4.0/


BioRxiv Preprint

Figure 2: CoGAPS and pseudotime analysis reveals a dynamic state change in NK cells during ICI exposure in mouse scRNA-seq data. A. UMAP
dimension reduction colored by CoGAPS pattern 7 weights across all cells (left) and magnified view (right) showing that pattern 7 marks a population of NK cells
delineated in Fig. 1A. B. Boxplot of pattern 7 weights across each immune cell type. Cells with high pattern 7 weights are observed only in NK cells. C. Boxplot of
pattern 7 weights in individual NK cells faceted by treatment group. Anti-CTLA-4 treated NK cells have increased pattern 7 weights compared to NK cells treated
with other immunotherapies. D. Pseudotemporal trajectory of anti-CTLA-4 treated NK cells colored by CoGAPS pattern 7 weight suggesting that anti-CTLA-4
treatment results in NK cell activation. E. Heatmap of gene expression for 148 pattern markers that are differentially expressed across pseudotime. Columns
are individual cells, and column annotation designates pattern 7 weight in each cell. Rows are differentially expressed pattern markers. F. Gene expression of
selected NK cell activation associated genes differentially upregulated across pseudotime. Each dot represents a different cell and is colored by CoGAPS pattern
7 weight.
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Figure 3: Preclinical NK activation signature is associated with overall survival in human melanoma. A. The output from a multiple linear regression
model that predicts overall tumor survival from our transcriptional patterns, while also adjusting for cancer type as a covariate. Standardized coefficients (i.e. data
was scaled and centered) representing the strength and direction of association for each pattern are shown on the x-axis, with error bars representing coefficient
+- 1.96 * standard error, and point size scaled to the coefficient’s p-value. Patterns 7 and 15 are most strongly positively associated with overall survival, with
pattern 7 being most significantly positively associated (p < 1.2 x 10-4). B. The output from a multiple linear regression model that predicts overall tumor survival
from our transcriptional patterns, while also adjusting for patient age as a covariate. Pattern 7 is the most significantly positively associated with overall survival in
SKCM (p < 5 x 10-3). C. Kaplan-Meier plot of overall survival for 368 metastatic melanoma patients with the top 5D. Boxplot of CIBERSORT scores estimating
the abundance of resting and activated NK cells from TCGA RNA-seq data by tumor subtype in TCGA. E. Bar plot of Spearman correlation coefficients between
CTLA-4 and CIBERSORT cell type score for immunogenic cancers. CTLA-4 expression is positively correlated with estimation of activated NK cells from TCGA
RNA-seq data. Significant correlations for NK scores and CTLA-4 expression are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and p-values <
0.001 = ***.
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Figure 4: ProjectR recovers conserved immunotherapy response in intratumoral NK cells from independent human melanoma scRNA-seq datasets.
A. Box plot of projected pattern 7 weights across intratumoral NK cells from metastatic melanoma patients prior to ICI treatment (Sade-Feldman et al., 2018).
Cells are colored by therapy and separated by patient response. Increased pattern 7 is significantly associated with NK cells from patients responsive to
anti-CTLA-4 or combined anti-CTLA-4 and anti-PD-1. Significant differences in mean pattern 7 weight between treatment groups are indicated by asterisks where
p-values < 0.05 = *, < 0.01 = **, and p-values < 0.001 = ***. B. Box plot of projected pattern 7 weights across intratumoral NK cells from metastatic melanoma
patients after treatment with ICI. Cells are colored by therapy and separated by patient response. Increased pattern 7 is associated with NK cells from patients
responsive to combination anti-CTLA-4 + anti-PD-1. Significant differences in mean pattern 7 weight between treatment groups are indicated by asterisks where
p-values < 0.05 = *, < 0.01 = **, and p-values < 0.001 = ***. C. ROC curve for the performance of pattern 7 weights in predicting response to anti-CTLA-4 prior to
the administration of treatment. D. Box plot of projected pattern 7 weights across flow-sorted intratumoral NK cells from metastatic melanoma tumors that were
unresponsive ICI (intrinsic resistance) or developed acquired resistance after a period of initial response (de Andrade et al., 2019). The dashed line indicates the
average maximum value for pattern 7 across treatment groups. NK cells with elevated pattern 7 weights are seen in patients that had an initial response to
ICI, with the highest observed weights from a patient that responded to anti-CTLA-4. E. Box plot of projected pattern 7 weights across NK cells isolated from
peripheral blood of metastatic melanoma patients that had no response to ICI (intrinsic resistance) or developed acquired resistance after a period of initial
response. The dashed line indicates the average maximum value for pattern 7 from intratumoral NK cells across treatment groups. Elevated pattern 7 weights
are not detected in circulating NK cells, regardless of response.
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Figure 5: CTLA-4 is expressed by both human NK cell lines and healthy human donor-derived NK cells. A. UMAP dimension reduction with cells colored
by single-cell gene expression for CTLA-4 and representative immune activation genes in mouse (left) and human (right) intratumoral NK cells. The pattern of
CTLA-4 expression is consistent with the reduced ability of scRNA-seq to capture low to moderately expressed genes. B. Flow cytometry for surface expression of
CTLA-4 in positive control (Jurkat-CTLA4) and NK cell lines (NK-92, NKL, YT, KHYG-1). C. Quantitative real-time PCR (qrt-PCR) analysis of CTLA-4 expression
in a CTLA-4 null line (PANC-1), T cell lines (Jurkat, CEM, HuT78), NK cell lines (NK-92, NKL, YT, KHYG-1). D. Western blot demonstrating CTLA-4 expression in
human NK cell lines. E. qrt-PCR demonstrating CTLA-4 expression in CD56+ selected ex vivo unstimulated NK cells derived from healthy human donors. Graphs
are representative of 4 donors. F. Western blot of CTLA-4 expression in CD56+ selected ex vivo unstimulated NK cells derived from healthy human donors. Blots
are representative of 4 donors.

Figure 6: Ipilimumab binds to the NK cell surface independent of FcR. A. Flow cytometry demonstrating NK-92 does not express CD16. Positive control
was the NK-92 line that had been transfected with a CD16 expressing plasmid, NK-92-CD16v. B. Immunofluorescent images of NK-92 cells stained with
Dylight550-labelled ipilimumab demonstrating that ipilimumab binds to NK cell surface. Blue staining indicates DAPI. Shown are representative images of a
single field of view taken via confocal microscopy (magnification, 63X, zoom, 3X).
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Figure 7: CD28 and CTLA-4 are coexpressed in circulating and tumoral NK cells. A. Flow cytometry for surface expression of CD28 in NK cell lines (NK-92,
NKL, YT, KHYG-1). B. qRT-PCR analysis of CD28 expression in a CD28 null line (PANC-1), T cell lines (Jurkat, CEM), NK cell lines (NK-92, NKL, YT, KHYG-1).
C. qRT-PCR demonstrating CD28 expression in CD56+ selected ex vivo unstimulated NK cells derived from PBMCs from healthy human donors. D. scRNAseq
data demonstrating positive correlation (R2 = 0.33, p = 0) between CD28 gene expression and CTLA-4 gene expression in human natural killer cells. E. B7.2
(CD86) mRNA expression levels in primary tumors versus paired normal (TCGA). Red asterisk (*) indicates cancer types with significantly overexpressed CD86
in tumor compared to normal tissue. F. Pan-cancer TCGA data demonstrating a negative correlation between pattern 7 weight and B7.2 expression. Significant
correlation coefficients are indicated by a red asterisk (*). G. Schematic demonstrating proposed mechanism by which anti-CTLA-4 antibodies may enhance NK
cell-mediated tumor clearance.
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Supplemental Figure 1: CoGAPS identifies immune cell lineage at low dimensionality. When CoGAPS is performed at low dimensionality, here being 3
patterns, the identified signatures segregate cells by immune cell lineage. Pattern 3 is relatively flat across all cells, while 1 and 2 define myeloid and lymphoid
lineage cells, respectively.
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Supplemental Figure 2: Effect sizes of pattern associations with TCGA tumor survival. A. Boxplot of pattern 15 weights across each immune cell type
from mouse sarcomas. Cells with the highest pattern 15 weights are observed in NK cells and Mki67hi proliferative lymphocytes. B. The output is shown from a
multiple linear regression model that predicts overall tumor survival from our transcriptional patterns, while also adjusting for cancer type and patient age as
covariates. Standardized coefficients (i.e. data was scaled and centered) representing the strength and direction of association for each pattern are shown on the
xaxis, with error bars representing coefficient +- 1.96 * standard error, and point size scaled to the coefficient’s p-value. Patterns 7 and 15 are most strongly
positively associated with overall survival, with pattern 7 being most significantly positively associated (p < 2.7 x 10-4). C. The output is shown from a multiple
linear regression model that predicts age of diagnosis from our transcriptional patterns, while also adjusting for cancer type as a covariate. (p < 0.017) D. The
output is shown from a multiple linear regression model that predicts overall tumor survival in SKCM from our transcriptional patterns, while also adjusting for
patient age as a covariate. Pattern 7 is the most significantly positively associated with overall survival in SKCM (p < 0.005). E. The output is shown from a
multiple linear regression model that predicts overall tumor survival in SKCM primary tumors from our transcriptional patterns, while also adjusting for patient age
as a covariate. Pattern 7 is not associated with overall survival in primary SKCM (p > 0.05). F. The output is shown from a multiple linear regression model that
predicts overall tumor survival in SKCM metastases from our transcriptional patterns, while also adjusting for patient age as a covariate. Pattern 7 is the most
significantly positively associated with overall survival in SKCM metastases (p < 0.016).
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Supplemental Figure 3: NK cell activation signature is associated with anti-CTLA-4 response. A. Box plot of projected pattern 7 weights across
intratumoral immune cells from metastatic melanoma patients prior to ICI treatment (Sade-Feldman et al., 2018). Cells are colored by therapy and separated by
patient response. Increased pattern 7 is associated with immune cells from patients responsive to anti-CTLA-4. B. UMAP dimension reduction with cells colored
by single-cell gene expression for representative NK and T cell marker genes. C. UMAP dimension reduction with cells colored by single-cell gene expression for
PD-1 in mouse (left) and human (right) intratumoral NK cells. Activated NK cells are known to express PD-1, demonstrating that the observed pattern of PD-1
expression is consistent with the reduced ability of scRNA-seq to capture low to moderate expressed genes.
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Supplemental Figure 4: Ipilimumab does not bind CTLA-4 null line PANC-1 Immunofluorescent images of PANC-1 cells stained with Dylight550-
labelled ipilimumab. Blue staining indicates DAPI. Shown are representative images of a single field of view taken via confocal microscopy (magnification,
63X).

Supplemental Figure 5: CD80 expression in malignant cell lines. Data derived from CCLE RNAseq (Barretina et al. 2012; Gao et al. 2013).
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