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Abstract 

Even within healthy aging, vascular risk factors can detrimentally influence cognition, with 

executive functions (EF) particularly vulnerable. Fronto-parietal white matter (WM) connectivity 

in part, supports EF and may be particularly sensitive to vascular risk. Here, we utilized 

structural equation modeling in 184 healthy adults (aged 20-94 years of age) to test the 

hypotheses that: 1) fronto-parietal WM microstructure mediates age effects on EF; 2) higher 

blood pressure (BP) and white matter hyperintensity (WMH) burden influences this association. 

All participants underwent comprehensive cognitive and neuropsychological testing including 

tests of processing speed, executive function (with a focus on tasks that require switching and 

inhibition) and completed an MRI scanning session that included FLAIR imaging for semi-

automated quantification of white matter hyperintensity burden and diffusion-weighted imaging 

for tractography. Structural equation models were specified with age (as a continuous variable) 

and blood pressure predicting within-tract WMH burden and fractional anisotropy predicting 

executive function and processing speed. Results indicated that fronto-parietal white matter of 

the genu of the corpus collosum, superior longitudinal fasciculus, and the inferior frontal 

occipital fasciculus (but not cortico-spinal tract) mediated the association between age and EF. 

Additionally, increased systolic blood pressure and white matter hyperintensity burden within 

these white matter tracts contribute to worsening white matter health and are important factors 

underlying age-brain-behavior associations. These findings suggest that aging brings about 

increases in both BP and WMH burden, which may be involved in the degradation of white 

matter connectivity and in turn, negatively impact executive functions as we age.  
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1. Introduction   

One major research focus in investigations of age-related declines in cognitive 

performance is in the domain of executive function (EF; Goh, An, & Resnick, 2012). EF, an 

umbrella term encompassing a wide range of higher-order cognitive abilities associated with 

planning, flexibility/switching, updating, and inhibition that are engaged during complex and 

novel tasks (Goldstein, Naglieri, Princiotta, & Otero, 2014; McKenna, Rushe, & Woodcock, 

2017; Shallice, 1988; Stuss, 1992), declines precipitously with advanced age (Lustig & Jantz, 

2015; Spreng, Shoemaker, & Turner, 2017). Given the abundance of cognitive processes 

attributed to EF, various models have been developed to identify and isolate unique aspects of 

EF to better understand performance differences observed in aging. Component analyses and 

structural modeling are often employed to create separation and specificity among cognitive 

tasks measuring a broad range of EF constructs. However, the reliability and replicability of this 

work across studies has been questioned, particularly regarding the influence of processing speed 

(PS), and how delays in reaction or response time measures are entangled with measures of EF 

(Salthouse, 1991, 1993, 2005; Salthouse & Madden, 2013), and are difficult to disentangle from 

within a single cognitive assessment test (Salthouse, 2011). Variance in speeded tasks is often 

shared with aspects of flexibility, shifting, inhibition, decision making, and updating; factor 

models have been an effective way of teasing apart these confounding measures (Bettcher et al., 

2016; Genova, DeLuca, Chiaravalloti, & Wylie, 2013; Henninger, Madden, & Huettel, 2010).  

Despite these challenges, research has consistently highlighted the importance of brain 

health in maintaining high levels of EF performance. For years, research into the effects of 

lesions and damage to the frontal lobes have pointed to the significance of the prefrontal cortex 
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in EF performance (Alvarez & Emory, 2006; Goldberg, 2002; Jurado & Rosselli, 2007; Lezak, 

Howieson, Loring, & Fischer, 2004; Miller & Cohen, 2001; Stuss & Alexander, 2000; Stuss & 

Benson, 1984). However, as pointed out by Stuss (2011), the frontal lobes are large and 

composed of a diverse set of architectonically unique regions, all of which demonstrate structural 

and functional connectivity with one another and across the entire cortex (Stuss, 2011). With the 

advent of more advanced neuroimaging techniques, allowing for in vivo exploration of the inter-

connections within the prefrontal and among the more distal parietal and subcortical brain 

regions, the mechanisms responsible for successful EF processing can be more clearly 

elucidated. 

A considerable body of functional neuroimaging research illustrates that while frontal 

lobe regions activate during specific EF tasks, a larger network of parietal regions are recruited 

depending on task demands (Buchsbaum, Greer, Chang, & Berman, 2005; Collette & Van der 

Linden, 2002; Kim, Cilles, Johnson, & Gold, 2012; Owen, McMillan, Laird, & Bullmore, 2005; 

Ravizza & Carter, 2008; Simmonds, Pekar, & Mostofsky, 2008; Swick, Ashley, & Turken, 

2011). Additionally, temporal, occipital, and subcortical regions can play a role in EF, 

particularly in tasks that rely heavily on working memory, language, motor, or visual processes 

(Jurado & Rosselli, 2007; Kennedy & Raz, 2009a; Lewis, Dove, Robbins, Barker, & Owen, 

2004; Monchi, Petrides, Strafella, Worsley, & Doyon, 2006; Swick et al., 2011). Using resting 

state functional measures, network-like properties have been identified across many of these 

same regions found in task-based neuroimaging studies of EF (Cole et al., 2013; Damoiseaux et 

al., 2006; Madden et al., 2017; Niendam et al., 2012; Nyhus & Barceló, 2009; Reineberg & 

Banich, 2016; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012; S. Zhang & Li, 2012). 

Structural correlates of EF performance have also been reported, most notably, in the frontal and 
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parietal regions of the brain, corroborating task-based functional patterns of activation  

(Burzynska et al., 2012; H. R. Smolker, Friedman, Hewitt, & Banich, 2018; Weise, Bachmann, 

Schroeter, & Saur, 2019; Yuan & Raz, 2014).   

Given the broad range of functional and morphologic associations, as well as the 

network-like organization, particularly between frontal and parietal regions, efficient EF 

performance is hypothesized to be dependent upon the health of connections within and between 

the frontal and parietal white matter. In fact, there is evidence that white matter volume and 

diffusion measures represent the majority of the age-related variance attributed to EF 

performance when combined as part of a multi-modal component analysis, leading Fjell and 

coauthors to the conclusion that “the major part of the age-related reductions in executive 

function can be attributed to micro- and macrostructural alterations in brain connectivity” (Fjell, 

Sneve, Grydeland, Storsve, & Walhovd, 2016). Additional support for the role of white matter-

derived associations with EF are found throughout the diffusion imaging literature, emphasizing 

the importance of white matter connecting frontal and parietal regions via the superior 

longitudinal fasciculus (SLF; Gallen, Turner, Adnan, & D'Esposito, 2016; Sasson, Doniger, 

Pasternak, Tarrasch, & Assaf, 2013; H. Smolker, Depue, Reineberg, Orr, & Banich, 2015; H. R. 

Smolker et al., 2018; J. Zhang et al., 2019), the corpus callosum (Bettcher et al., 2016; Kennedy 

& Raz, 2009a; Voineskos et al., 2012; J. Zhang et al., 2019), inferior frontal occipital fasciculus 

(IFOF; H. Smolker et al., 2015), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), 

fornix (Sasson et al., 2013), and various other pathways defined using functional or structural 

ROIs (Charlton et al., 2006; Grieve, Williams, Paul, Clark, & Gordon, 2007; Kennedy & Raz, 

2009a; Shen et al., 2019). However, given the inherent complexity in tasks measuring EF, white 

matter pertaining to the fornix, UF, posterior corpus callosum, and ILF contribute the most when 
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memory, motor, and language-based tasks of EF are employed (Kennedy & Raz, 2009a; Sasson 

et al., 2013; J. Zhang et al., 2019). Additionally, reduction in PS is also linked to white matter 

health in many of these same regions, and covaries with EF performance (Bucur et al., 2008; 

Deary et al., 2006; MacPherson et al., 2017; Madden et al., 2004; Sullivan, Adalsteinsson, & 

Pfefferbaum, 2005; Tuch et al., 2005), highlighting the importance of accounting for PS in the 

study of white matter and EF (Genova et al., 2013).   

There is overwhelming evidence that white matter health underlies cognitive performance 

differences across the lifespan. However, vascular components, such as hypertension and 

cerebral small vessel disease, evidenced by leukoaraiosis or white matter hyperintensities 

(WMH), contribute significant variance in explaining the extent and longitudinal progression of 

these brain-behavior associations (Debette & Markus, 2010), particularly in aging (Raz, 

Rodrigue, Kennedy, & Acker, 2007). Not only do overall increases in WMH contribute to poorer 

overall cognitive and EF ability (Au et al., 2006; de Groot et al., 2001; Gunning-Dixon & Raz, 

2000; Kloppenborg, Nederkoorn, Geerlings, & van den Berg, 2014; Meier et al., 2014; Nordahl 

et al., 2006; Rizvi et al., 2020), but the association is regionally specific where WMH location is 

predictive of specific declines in EF, over and above total WMH burden (Biesbroek, Weaver, & 

Biessels, 2017; Lampe et al., 2019; Smith et al., 2011). Moreover, some researchers propose that 

detrimental effects on cognition are specifically due to the vascular nature of WMH, in particular 

differences in underlying blood pressure, or a more direct influence of increased blood pressure 

on the health of white matter tracts, as exhibited through associations with white matter diffusion 

properties (Anstey & Christensen, 2000; Kennedy & Raz, 2009b; Madden, Bennett, & Song, 

2009; Maillard et al., 2013; Rizvi et al., 2020; Smith et al., 2011; Vernooij et al., 2008; 

Waldstein, Giggey, Thayer, & Zonderman, 2005). Thus, it is essential to quantify regional white 
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matter hyperintensities and include blood pressure measurements in the study of white matter 

and cognitive aging. 

Much of the current literature attempts to assess the significance of each of the 

aforementioned factors using separate, univariate regressions. This approach is restrictive in that 

it fails to account for the interconnectedness of the brain and the myriad of health factors that 

may influence cognitive outcomes. Given the complex interplay of both brain and health factors 

that influence cognition in aging, a multitude of variables must be accounted for and modeled 

with appropriate specificity to elucidate underlying mechanisms. A multivariate statistical 

modeling technique such as structural equation modeling, can be used to demonstrate how a 

“disconnection” can emerge if estimates of brain health are shown to mediate and account for the 

variance in cognitive differences in aging. As discussed above, differences in white matter 

diffusion likely reflect altered communication efficiency between the frontal and parietal 

interconnecting fiber pathways, and could thus lead to a disconnection of cortical communication 

and poorer cognitive performance in aging adults. Disconnection models have previously shown 

that efficient communication among higher-order cognitive centers is required for optimal 

cognitive processing with aging (Antonenko & Flöel, 2014; Bartzokis et al., 2004; Bennett & 

Madden, 2014; Fjell et al., 2016; Madden et al., 2017; O’Sullivan et al., 2001). To test for white 

matter tract type specificity, the projection fibers comprising the corticospinal tract is contrasted 

with frontal white matter association tracts. Projection fibers develop early and are last to show 

effects of aging, whereas frontal and posterior parietal white matter have the most protracted 

development and earliest aging vulnerability. This notion has been referred to as a retrogenesis 

of white matter regions during the course of aging (Raz, 2000; Salat et al., 2004). Combined, this 

statistical and conceptual framework of modeling disconnection allows for variance among a 
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large set of variables to be attributed to specific pathways, leading to a more refined 

conceptualization of the neural mechanisms involved in cognitive aging than what is currently 

understood. 

The current study sought to investigate these ideas in an aging sample by modeling 

variable estimates of EF, PS, white matter diffusion, white matter hyperintensity burden, and 

blood pressure. Utilizing a structural equation framework, we hypothesized that: 1) The relation 

between age and EF is mediated by the anisotropy of white matter fibers connecting the frontal 

and parietal lobes, and as a control comparison, not by fibers in the corticospinal tracts, 2) This 

association is not driven by age-related slowing of processing speed, but 3) is influenced by the 

effects of white matter hyperintensity burden within frontal and parietal WM fiber tracts, and 4) 

differences in blood pressure serve as a salient mediating factor given its deleterious effects on 

white matter health.   

2. Methods 

2.1 Participants 

The sample included 190 cognitively normal individuals recruited through flyers and 

media advertisements from the Dallas-Fort Worth Metroplex. Participants were sampled across 

the adult lifespan ranging from 20-94 years of age and were screened to be free from a history of 

neurological, cardiovascular, metabolic, or psychiatric problems; head trauma involving loss of 

consciousness > 5 minutes; substance abuse; or cognitive altering medications. Self-report 

screening assessments specifically excluded participants for a history of heart disease, stroke, 

heart attack, clinically diagnosed learning disabilities, radiation or chemotherapy treatment for 

cancer, HIV, contraindications to MRI such as metallic implants or claustrophobia, or anti-

depressant or anti-anxiety medications. SWI scans were assessed on the sagittal, horizontal, and 
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coronal planes and screened for micro bleeds, that of which only three participants were 

confirmed of having one small micro bleed. Additional inclusion requirements involved in-lab 

assessment of the Mini-Mental State Exam (MMSE) score > 25 (Folstein, Folstein, & McHugh, 

1975), and Center for Epidemiologic Studies Depression Scale (CES-D) score ≤ 16 (Radloff, 

1977), as well as thorough screening of all acquired MRI (including T1-weighted, T2-FLAIR, 

susceptibility weighted, diffusion weighted, and perfusion imaging) for evidence of unreported 

stroke or brain anomalies. Before entering the study, each participant provided written informed 

consent in accord with the local Institutional Review Boards. The study protocol consisted of 

three visits: two cognitive sessions of approximately two hours each in duration, and one MRI 

session approximately two hours in duration. The lag time between the two cognitive sessions 

was on average 1.43 weeks (SD=1.48 weeks; range = 0 - 13.68 weeks), while the lag between 

the second cognitive session and the MRI session was on average 7.12 weeks (SD = 5.90 weeks; 

range = 0 - 34.05 weeks). During quality analysis and preprocessing steps, six participants were 

removed from further analyses for the following reasons: low MMSE score (n = 1), incorrect 

neuroimaging data acquisition (n = 1), abnormalities in brain structure (n = 1), and inability to 

resolve white matter tracts of interest (n = 3), yielding a total N = 184. Demographic data for this 

final sample of participants are summarized in Table 1. 

Table 1: Sample demographics 

  N = 184 Mean SD Range 
Demographics       

 Age (years) 53.20 18.80 20 - 94 

 Education (years) 15.51 2.50 12 - 20 

 MMSE 29.02 0.84 27 - 30 

 CESD 4.29 3.82 0 - 16 

 Systolic BP 126.98 18.62 82 - 194 

 Sex (M/F) 75/109   
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Executive Function - Trail Making (seconds)   
 Visual Scanning 21.05 6.13 9.77 - 49.04 
 Number Sequencing 31.14 12.27 11.45 - 75.98 
 Letter Sequencing 31.14 14.67 12.27 - 127.01 
 Switching 78.26 34.32 29.7 - 226.9 
Executive Function - Color Word Interference (seconds) 

 Inhibition 54.17 13.75 28.61 - 96.02 

 Switching 59.82 16.80 33.72 - 156.20 
Processing Speed - Pattern Comparison (seconds) 

 Part A 15.72 4.14 8 - 29 

 Part B 17.73 4.13 7 - 30 
Processing Speed - Letter Comparison 
(seconds)   

 Part A  11.35 2.77 5 - 20 
  Part B 10.41 2.95 4 - 18 

Note. SD = Standard Deviation; MMSE = Mini-Mental State Exam; CESD = Center for 

Epidemiological Study, Depression; BP = Blood Pressure; M = Male; F = Female. 

2.2 Blood Pressure Measures 

 Participants’ blood pressure was measured at each of the three study visits using brachial 

cuff automatic sphygmomanometers via a Panasonic EW3153 at each cognitive session and a 

Welch Allyn Spot Vital Signs 420TB at the MRI session. Each measurement was taken while the 

participant had been in a seated position for a minimum of five minutes, arm horizontal, and legs 

uncrossed. Systolic and diastolic pressure were recorded in mm/Hg, as well as heart rate in beats 

per minute. For the current study, we utilized systolic pressure as our index of interest given 

evidence that systolic pressure may be a better index of cerebrovascular dysfunction than 

diastolic pressure (Chobanian et al., 2003) and more predictive of white matter hyperintensities 

(Liao et al., 1996).    
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2.3 Cognitive measures 

Prior to MRI scanning, each participant underwent a comprehensive battery of cognitive 

testing separated across two sessions. Multiple assessment tools were used to measure executive 

functioning and processing speed abilities. Specifically, executive functioning was measured as 

completion time for each of the Color Word Interference tasks (inhibition and switching) and 

Trail Making subtests (visual scanning, number sequencing, letter sequencing, and switching) of 

the Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001). 

Subtests that are often linked to motor and speeded abilities, such as the word reading or color 

naming measures in the Color Word Interference task, or the motor speed or counting 3’s 

assessment of the Trail Making test, were specifically excluded to avoid overlap with variance 

associated with processing speed. Instead, processing speed was measured using a separate task, 

the total number of correct responses within the 30-second duration of both parts of the Pattern 

Comparison and Letter Comparison tasks (Salthouse & Meinz, 1995). Descriptive statistics for 

cognitive scores are provided in Table 1. 

2.4 Neuroimaging acquisition 

 Neuroimaging data were acquired on a single 3-Tesla Philips Achieva scanner with a 32-

channel head coil using SENSE encoding (Philips Healthcare Systems, Best, Netherlands). The 

current study employed a T1-weighted MPRAGE high-resolution structural scan for the 

purposes of anatomy and registration (160 sagittal slices at a voxel size of 1mm3, flip angle = 

12°, TR/TE/TI = 8.1ms/3.7ms/1100ms, FOV = 204×256×160, matrix = 256×256, 3:57min), a 

T2-FLAIR structural scan to identify areas of white matter hyperintense tissue (64 axial slices at 

a voxel size of .5×.5×2.5 mm3, flip angle=90°, TR/TE/TI = 11000ms/125ms/2800ms, 

FOV=230×160×230, matrix=352×212, 3:40 min), and a diffusion-weighted single-shot EPI 
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sequence to probe white matter tracts (65 axial slices with a voxel size of 2×2×2.2 mm3 

reconstructed to .85×.85×2.2mm3, 30 diffusion-weighted directions at b-value = 1000s/mm2 with 

1 non-diffusion weighted b0 at 0 s/ mm2, TR/TE = 5608ms/51ms, FOV = 224×143×224, matrix 

= 112×112, 4:19min). 

2.5 Neuroimaging data processing 

2.5.1 T1-weighted anatomical scans 

 After visual inspection for acquisition artifacts including movement distortions, high-

resolution structural T1-weighted images were used as an anatomical reference, and for co-

registration during multiple data processing steps, including to T2-FLAIR image space and 

diffusion image space, as well as between anatomical template space and diffusion space utilized 

in subsequent processing. Additionally, to covary for differences in head size, intracranial 

volume was derived by manually tracing 9 coronal slices (every 12th slice) using Analyze version 

12.0 (AnalyzeDirect, Overland Park, KS), summing these slices into an area, and multiplying by 

slice thickness to create volume in mm3 (as in Raz et al., 2004).   

2.5.2 White matter hyperintensity data 

White matter hyperintense voxels were identified by processing T2-FLAIR images using 

the lesion prediction algorithm (LPA; Schmidt, 2017, Chapter 6.1) as implemented in the Lesion 

Segmentation Toolbox (LST) version 2.0.5 (www.applied-statistics.de/lst.html) for SPM12. This 

automated classifier produces a lesion probability map where voxel values provide an estimated 

probability that the corresponding T2-FLAIR voxel is a white matter lesion. Trained operators 

viewed each participant’s lesion probability map, overlaid on top of the participant’s T2-FLAIR 

image, to determine a probability threshold that best minimized false-positive voxels (e.g., 

motion artifacts) while leaving legitimate lesions intact. Due to image inconsistencies and 
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variance in both the sample and the sensitivity of the LPA, probability thresholds differed among 

participants. False-negative voxels (e.g., the ends of periventricular “caps”) were added during 

the editing process to ensure that true white matter hyperintensities were included in the maps, 

and any false-positives that remained after thresholding were manually removed (e.g., blood 

vessels). Regions of avoidance (ROAs) were created to eliminate false-positive voxels in non-

biologically plausible brain areas. In order to remove false-positive voxels in the ventricles (e.g., 

choroid plexus), each participant’s CSF probability map obtained from FMRIB’s Automated 

Segmentation Tool (FAST; Y. Zhang, Brady, & Smith, 2001) was registered to their native T2 

space using the Advanced Normalization Tools (ANTs) software package (Avants, Tustison, & 

Song, 2009). The T2-registered CSF probability maps were thresholded at 0.5 and binarized to 

create the CSF ROA (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The remaining 

ROAs were placed on the Montreal Neurological Institute (MNI) 1mm space brain and 

registered to each participant’s native T2 space using ANTs. A mid-sagittal 2-slice thick ROA 

plane eliminated false-positive voxels in the septum pellucidum. A ventral ROA (below z = 34) 

removed false-positive voxels from the cerebellum and brainstem, while a dorsal ROA (above z 

= 130) removed false-positive voxels from exiting blood vessels. Whole-brain white matter 

hyperintensity volume maps were then binarized and registered to each participant’s native 

diffusion space to be used both as masks to eliminate hyperintense white matter voxels from 

diffusion data, and to quantify within-tract lesion load from each diffusion-based tract of interest. 

Additionally, as a precaution against underestimating the effects of WMHs on neighboring 

voxels and the associated diffusion metrics, WMH lesion maps were further dilated by a factor of 

1, 2, 3, and 5 voxels to create larger, more conservative masks with which to exclude diffusion 

values surrounding the identified WMH. Removing these additional voxels from the various 
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dilation masks produced no effect on the model results. Thus, all statistics, models, and figures 

reported hereafter use the undilated data. Illustration of WMH from a representative participant 

denoted by red voxels in Figure 1. 

 

Figure 1: White Matter Measures. Axial and sagittal views illustrating white matter tracts 

resolved using deterministic tractography (green = corpus callosum genu; blue = inferior 

frontal occipital fasciculus; yellow = superior longitudinal fasciculus; pink = corticospinal 

tract) and white matter hyperintense regions (red = white matter hyperintense voxels) in a 

participant with an average number of white matter streamlines in each tract and both 

within-tract and whole brain white matter hyperintensity burden (+/- .5 SD). 

2.5.3 Diffusion-weighted data 
  

 Diffusion data underwent quality assurance checks utilizing both manual and automated 

procedures. A trained researcher identified any anatomical abnormalities or scanner artifacts 

across all slices of each gradient, and DTIPrep v1.2.4 (Liu et al., 2010) identified additional 

slice- or gradient-wise artifacts above the default thresholds. Any gradients with distortions were 

removed from analyses and were not incorporated into the tensor calculation. On average, less 

than four of the thirty gradients were identified as unusable and removed from analyses 
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(remaining gradients ranged from 22-30). DTIPrep was then used to adjust for motion and eddy-

current distortions via registration to the b0 image while additionally adjusting the gradient table 

to account for registration-induced changes to the applied encoding directions (Leemans & 

Jones, 2009).  

Tensor calculation and deterministic tractography were conducted using DSI Studio 

software (build released September 26th, 2014; Yeh, Verstynen, Wang, Fernández-Miranda, & 

Tseng, 2013). To isolate white matter tracts of interest, a series of regions of interest (ROIs) and 

ROAs were strategically placed to capture representative white matter fibers while eliminating 

non-biologically plausible or extraneous fibers. All regions were placed on the MNI 1mm brain 

and registered to each participant’s native diffusion space using the ANTs software package 

(Avants et al., 2009). To capture white matter tracts relevant to executive functions, deterministic 

tractography was conducted to generate the genu of the corpus callosum (genu), the bilateral 

inferior frontal occipital fasciculus (IFOF), and the bilateral dorsal superior longitudinal 

fasciculus (SLF), and to provide a contrast projection fiber tract, the corticospinal tract (CST) 

was also isolated, as described below. Additional tracking parameters were applied to ensure the 

biological plausibility of the resolved streamlines including a fractional anisotropy (FA) 

threshold of .20, maximum turning angle of 60 degrees, and a minimum and maximum length of 

20mm and 500mm, respectively. Tracts from a representative participant are illustrated in Figure 

1.  

CC genu. The genu was isolated using the “genu of the corpus callosum” parcellation 

from the JHU atlas (Mori, Wakana, Van Zijl, & Nagae-Poetscher, 2005) as an ROI. Additionally, 

a midsagittal ROI plane was included to ensure that resolved streamlines crossed the midline. 

ROAs were added to remove streamlines tracking into the cingulum (using the JHU cingulate 
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gyrus parcellations), streamlines tracking into other corpus callosum segments (using a coronal 

plane posterior to the JHU genu ROI starting at slice y = 21), and streamlines projecting laterally 

(using parasagittal planes 25 slices on each side of the midline).  

IFOF. To isolate the IFOF, two coronal 3-slice thick ROI planes were placed in the 

frontal (centered at y = 21) and occipital (centered at y = -75) lobes to ensure that the fiber tract 

traversed the entire brain. Given the extensive length of this tract, a number of ROAs are 

required to eliminate spurious streamlines. To eliminate streamlines more likely associated with 

the anterior thalamic radiations, a coronal ROA was placed between y = -7 and y = -12, but 

importantly did not extend axially below z = 3. Additionally, to remove any thalamic 

streamlines, in particular those that could be considered part of the internal capsule, a rectangular 

cuboid was placed in each hemisphere such that each stretched 38 coronal slices from y = 10 to y 

= -27, 17 slices axially from z = 7 to z = -9, and 5-sagittal slices between x = -10 and x = -14 in 

the left hemisphere and x = 9 and x = 13 in the right hemisphere. Finally, to eliminate streamlines 

that stray too far inferiorly (such as false frontal-temporal connections), or too far superiorly 

(such as frontal lobe streamlines looping towards premotor cortex), two axial ROAs planes were 

placed at z = 35 and z = -24.  

SLF. The frontal-parietal limb of the SLF was isolated using two ROI coronal planes, 

each 12 slices thick, centered at y = -27.5 and y = -45.5. A 6-slice thick axial ROA was centered 

at z = 13.5 to ensure that the more ventral streamlines comprising the arcuate fasciculus part of 

the SLF were not included.  

CST. The projection fibers of the CST were isolated by using two ROIs and four ROAs. 

The ROIs consisted of the precentral gyrus, delineated from within the FreeSurfer software 

package using the Desikan-Killiany atlas (Desikan et al., 2006), and the brainstem, defined by a 
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region that stretched axially from z = -15 to z = -50, sagittally from x = -15 to x = 17, and 

coronally from y = -13 to y = -36. ROAs consisted of a 3-slice thick coronal plane (centered at y 

= 21), two 5-slice thick sagittal exclusion planes at x = -43 and x = 42, the lateral occipital region 

from the Desikan-Killany atlas, and a 3-slice thick midsagittal plane to eliminate fibers crossing 

the midline.    

Visual inspection ensured that each tract was accurately resolved for each participant 

based upon previous literature and anatomical atlases (Catani & De Schotten, 2008; Huang et al., 

2005; Makris et al., 2005). Three participants were removed at this stage due to the inability to 

sufficiently resolve the IFOF (less than 100 streamlines resolved). Each participant, on average, 

had 4,454 (± 1187 SD) streamlines in the genu, 6048 (± 1946 SD) streamlines in the SLF, and 

3137 (± 1348 SD) streamlines in the IFOF. These streamlines served as data-driven regions of 

inclusion to identify the voxels most likely contributing to structural connections between the 

frontal and parietal regions. Lesion maps were used as masks to remove white matter 

hyperintense voxels from those contained within the resolved tracts to avoid inclusion in any 

calculation quantifying white matter diffusion. FA values from the remaining voxels contained 

within each of the streamlines were averaged across tract and across hemisphere (for SLF and 

IFOF) to obtain a single FA value for each of the three white matter tracts.   

2.6 Data analysis and model specification 

 To investigate the complex associations among age, blood pressure, brain, and cognitive 

variables, data were analyzed using structural equation modeling (SEM) within Mplus v8 

statistical software (Muthén & Muthén, 2017) using maximum likelihood estimation and 5000 

bootstrap iterations. Measurements for which there was a single value collected, such as age, and 

covariates of years of education, sex, and intracranial volume, were modeled as 
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observed/manifest variables. All other measures were used as observed indicators to form latent 

variables to capitalize on covariance among data points. SEM allows for variables with a high 

degree of covariance to co-exist and account for one another within the same structure, thus 

allowing for assessment of the unique variance attributable to each variable. Given the known 

overlap in variance shared between EF and PS (Salthouse, 2011), SEM is essential to allow for 

modeling of the unique cognitive contributions of each process. Cognitive measures were 

combined into two latent variables, one for EF and one for PS (see measurement model fit 

indices in Supplemental Information), by standardizing each of the individual tasks into z-scores 

and modeling them together within their associated domain. White matter hyperintensity data 

were modeled by individually z-scoring the within-tract lesion loads (volume in mm3) from the 

genu, SLF, and IFOF voxels and allowing them to covary as a single white matter hyperintensity 

latent variable (denoted as WMH in subsequent text and models). Similarly, fractional anisotropy 

was modeled by individually z-scoring the FA values from each tract and allowing them to 

covary as a single white matter fractional anisotropy latent variable (denoted as WMFA in 

subsequent text and models). Blood pressure measures, collected at each time point during the 

study (cognitive session one, cognitive session two, and MRI), were combined into a latent 

variable using the systolic measurements from each data point (denoted as BP in subsequent text 

and models). All participants had a complete data set with the exception of a few individuals 

missing BP readings (maximum of 4 data points) due to equipment malfunction. In addition to 

using 95% CI with 5000 bootstraps, to acknowledge potential inflation of familywise error 

buildup across estimated paths, 99% CI were also estimated. A correlation matrix of all variables 

modeled is included in Table 2.  

Table 2: Correlation matrix of modeled variables 
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1
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1
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0.023

0.031
1
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0.113

1
5. Systolic BP S2

0.089
0.569

0.026
0.801

1
6. Systolic BP M

RI
0.132

0.466
0.093

0.671
0.717

1
7. CST FA
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-0.089

0.107
-0.017
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-0.055

1
8. Genu FA
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-0.710
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-0.397

-0.456
-0.362

0.322
1
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F FA
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-0.563

0.081
-0.321

-0.385
-0.329
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1
10. SLF FA
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-0.596
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-0.417

-0.479
-0.364

0.430
0.784
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1

11. Pattern Com
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1
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1
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1
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0.678

1
21. Intracranial Volum

e
0.711

-0.003
0.151
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0.141

0.179
0.164

0.096
0.128

0.185
-0.025
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0.115
0.115
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0.007
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1
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M
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-0.101
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1
23. Genu W

M
H

-0.057
0.427

0.059
0.253

0.264
0.315

0.021
-0.419

-0.378
-0.342

-0.228
-0.256

-0.205
-0.201

0.322
0.227
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1
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0.247
0.274
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1
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M
H

-0.140
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0.226
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-0.175
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0.156
0.159

0.137
0.118

0.126
0.201

-0.123
0.899

0.761
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1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2020.05.14.096677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.096677


20 
 

 To address the hypotheses, four separate structural equation models were created. Each 

model was designed to incrementally build upon the previous models in order to gain more 

insight into the mediating effects of brain- and health-related variables on the association 

between age and executive functioning. Model fit was estimated by examining the following fit 

indices: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean 

Square Error of Approximation (RMSEA; < 0.01 indicates excellent, < 0.05 good, < 0.08 

moderate fit to the data), Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI; excellent 

fit ≥ 0.95), Standardized Root Mean-Square Residual (SRMR; excellent fit ≤ 0.05, good fit < 

0.08), and Chi-Square Test of Model Fit for Baseline Model (p-value) (Raykov & Marcoulides, 

2006). In lieu of traditional power analysis, the sample size for structural equation modeling 

followed the rule of thumb of greater than 10 participants per path estimated (e.g., for our most 

complex model, 10 paths were estimated, requiring at least 100 participants). Data and code for 

this study are publicly available via OSF at 

https://osf.io/hts8w/?view_only=9c8ce88227cf47c79a1d3e11dd0d6363. No portion of the study 

procedures or analysis was preregistered. All participant and data inclusions and exclusions were 

determined before study analyses were conducted. 

3. Results 
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 Each model demonstrated acceptable fit parameters as detailed in Table 3. In each model 

diagram (Figures 2-5), squares represent observed variables, circles represent latent variables, 

straight dark lines are significant path estimates, curved lines are autocorrelations, thin lines 

represent factor loadings, and light gray lines indicate non-significant paths. Values along the 

paths are standardized beta estimates with 95% CIs (significant when the range does not include 

zero), showing direction and strength of the effect. As a penalty for multiple estimations, 99% 

CIs were also estimated. All significant paths at 95%CI remained significant at 99%CI (i.e., did 

not include 0) in all models. 

Table 3: Summary of structural equation model fit metrics 

Model Fit Parameter Model 1 Model 2 Model 3 Model 4 
Akaike Information Criterion (AIC) 3530.68 5016.41 6148.79 7305.43 
Bayesian Information Criterion (BIC) 3662.49 5209.31 6402.77 7604.42 
Root Mean Square Error of Approximation 
(RMSEA) 0.049 0.047 0.047 0.044 

Comparative Fit Index (CFI) 0.986 0.982 0.977 0.976 
Tucker-Lewis Index (TLI) 0.977 0.974 0.969 0.969 
Standardized Root Mean Square Residual 
(SRMSR) 0.028 0.03 0.037 0.04 

Chi-Square Test of Model Fit for Baseline 
Model (p-value) < 0.001 < 0.001 < 0.001 < 0.001 

 

 

 

3.1 Mediating effect of frontal-parietal white matter on the age-EF relationship (Model 1) 

 The first goal of this study was to determine whether the proxies of white matter health, 

accessed at the higher-order cognitive centers of the frontal and parietal regions, played a 

significant role in the age-related decline in executive function abilities commonly observed with 

aging. This simple mediation model (Figure 2) was specified to test a direct effect of age on the 

EF latent construct, and an indirect effect where the WMFA latent construct mediates the age/EF 
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association, while covarying for education and sex. Significant standardized path estimates were 

found for the association between age and WMFA (Path A: Est. = -.722, 95% CI [-.787, -.638]), 

WMFA and EF (Path B: Est. = -.288, 95% CI [-.481, -.098]), and age and EF (Path C: Est. = 

.482, 95% CI [.308, .648]). Given that higher EF values indicate poorer performance, and lower 

FA values indicate less structural impedance and directionality in white matter tissue, these 

results show main effects of each association in the expected direction. Importantly, a significant 

indirect effect was found for the mediation of WMFA on the relationship between age and EF 

(Path A*B: Est. = .208, 95% CI [.071, .356]).  

 

Figure 2: Model 1.  Simple mediation model of age by executive function, with white matter 

fractional anisotropy of the fronto-parietal white matter tracts. Years of education and 

participant sex were regressed from all latent variables modeled. Note: EF = executive 

function; WMFA = white matter fractional anisotropy; FA = fractional anisotropy; IFOF = 

WMFA
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inferior frontal occipital fasciculus; SLF = superior longitudinal fasciculus; CWI = color 

word interference; EDU = years of education.  

 

3.2 Mediating effect of frontal-parietal white matter on the age-EF relationship accounting 

for PS (Model 2) 

 After confirming that frontal-parietal white matter FA mediates the association between 

age and executive function, we sought to determine the functional specificity of these white 

matter connections by introducing PS as an outcome variable. Model 2 was created by adding a 

PS latent variable to the Model 1 specification as a separate cognitive construct for which 

WMFA could be mediating (Figure 3). Both cognitive constructs were allowed to covary to 

account for any shared variance among the individual measures and to control any potential 

overlap between these cognitive domains. For measurement model fit indices for the cognitive 

variables, see Supplemental Information. Significant standardized path estimates were found for 

the association between age and WMFA (Path A: Est. = -.664, 95% CI [-.770, -.545]), WMFA 

and EF (Path B1: Est. = -.253, 95% CI [-.467, -.085]), age and EF (Path C1: Est. = .398, 95% CI 

[.268, .522]), and between age and PS (Path C2: Est. = -.534,95% CI [-.697, -.383]). The path 

between WMFA and PS, notably, was not significant. A significant indirect effect was found for 

the mediation of WMFA on the association between age and EF (Path A*B1: Est. = .208, 95% 

CI [.076, .352], but there was no mediation found for age and PS, suggesting some specificity of 

these associations to executive functioning. 
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Figure 3: Model 2. Model 2 builds upon model 1 by adding processing speed as a cognitive 

construct. Processing speed serves to regress speed-like features from the executive 

function construct to demonstrate specificity of the selected white matter tracts in their 

association to switching and inhibition. Years of education and sex were regressed from all 

latent variables modeled. Note: EF = executive function; PS = processing speed; WMFA = 

white matter fractional anisotropy; FA = fractional anisotropy; IFOF = inferior frontal 

occipital fasciculus; SLF = superior longitudinal fasciculus; CWI = color word 

interference; EDU = years of education. 

In addition to the observed association between white matter FA and EF but not PS, we 

also sought to demonstrate that this effect was specific to the white matter connecting frontal and 

parietal regions. Using the CST white matter as a comparison region, FA values were added as 

an additional observed variable (CSTFA) that could be mediating the age-PS or age-EF 

relationship, while allowing for covariance between both white matter latent variables (Model 
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2A, Figure 4). Significant standardized path estimates were found for the association between 

age and WMFA (Path A1: Est. = -.717, 95% CI [-.783, -.631]), WMFA and EF (Path B1: Est. = -

.372, 95% CI [-.605, -.141]), age and EF (Path C1: Est. = .444, 95% CI [.262, .622]), and 

between age and PS (Path C2: Est. = -.620, 95% CI [-.826, -.401]). Interestingly, the path 

between WMFA and PS remained non-significant, and the path between CSTFA and EF was 

non-significant. In contrast, the path between CSTFA and PS was significant (p=0.035), however 

the 95% confidence interval includes 0 after 5000 bootstraps (Path EB1: Est. = -0.150, 95% CI [-

.320, .013]. While this association between CSTFA and PS is weak at best, it demonstrates that 

the relationship between white matter and our executive function latent is unique to the frontal-

parietal latent, and that other white matter tracts, such as the CST, could be related to other 

aspects of cognition. Note, that CST is modeled as a single indicator rather than a latent factor, 

and as such differs in its ability to parse error variance compared to latent constructs such as the 

WMFA.  
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Figure 4: Model 2A. Model 2A demonstrates the specificity of the frontal-parietal white 

matter by adding an additional white matter pathway, the corticospinal tract, to the model. 

The CST not only allows for covariance between two distinct white matter regions, but it 

also shows that different white matter pathways are related to separate aspects of 

cognition. Years of education and sex were regressed from all latent variables modeled. 

Note: EF = executive function; PS = processing speed; CSTFA= corticospinal tract 

fractional anisotropy; WMFA = white matter fractional anisotropy; FA = fractional 

anisotropy; IFOF = inferior frontal occipital fasciculus; SLF = superior longitudinal 

fasciculus; CWI = color word interference; EDU = years of education. 

 

3.3 Influence of white matter hyperintensities on white matter tract structure and cognition 

(Model 3) 

 After establishing the specificity of these white matter tracts in their relationship with EF, 

and accounting for shared variance between the two cognitive constructs, we examined the 

potential deleterious effects of white matter hyperintensities on the structure of white matter 

fibers. Prior literature indicates that white matter hyperintensity burden increases with age and 

influences the integrity of white matter fiber pathways, leading to declines in cognitive 

performance. Therefore, Model 3 (Figure 5) was specified to build off of Model 2 by adding 

paths that reflect the influence of WMH on WMFA, while also considering the separate 

mediating influences WMH may contribute directly to cognitive processing. Additionally, 

intracranial volume was added as a covariate to account for the volumetric nature of measuring 

white matter hyperintensity burden. Significant standardized path estimates were found for the 

following associations: age and WMFA (Path A1: Est. -.638 =, 95% CI [-.722, -.538]); age and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2020.05.14.096677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.096677


27 
 

WMH (Path A2: Est. = .461, 95% CI [.354, .550]); WMFA and EF (Path B1: Est. = -.272 , 95% 

CI [-.481, -.090]); WMH and WMFA (Path D1: Est. = -.189, 95% CI [-.275, -.095]); age and EF 

(Path C1: Est. = .490, 95% CI [.309, .674]); and age and PS (Path C2: Est. = -.703, 95% CI [-

.905, -.502]). The paths between WMH and each of the cognitive constructs were not significant, 

nor was the relation between WMFA and PS. A significant indirect effect was found, however, 

for the mediating path that represented WMH and WMFA’s influence on the association 

between age and EF (Path A2*D1*B1: Est. = .019, 95% CI [.004, .048]). This indicates that 

WMH burden influences WMFA and that together this path significantly mediates the age-EF 

relationship. However, this was specific to EF as there remained no significant mediating effect 

on age and PS. Additionally, the original mediation of WMFA on the age and EF relationship 

remained significant after accounting for the effects of WMH (Path A1*B1: Est. = .140, 95% CI 

[.045, .265]). Finally, to test a separate model that examines any possible influence of WMFA on 

WMH, we reversed the WMH and WMFA path direction and found no significant mediation in 

this direction (data not shown).      
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Figure 5: Model 3. Model 3 builds upon model 2 by adding within-tract white matter 

hyperintensity burden as a latent variable that directly influences white matter fractional 

anisotropy. This allows examination of the detrimental effects of lesion-like infarcts within 

white matter tracts of interest, and their overall influence on cognitive abilities. Years of 

education and sex were regressed from all latent variables modeled. Intracranial volume 

was regressed from white matter hyperintensity burden. Note: EF = executive function; 

CWI = color word interference; PS = processing speed; WMFA = white matter fractional 

anisotropy; FA = fractional anisotropy; IFOF = inferior frontal occipital fasciculus; SLF = 

superior longitudinal fasciculus; WMH = white matter hyperintensity burden; EDU = 

years of education; ICV = intracranial volume. 
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3.4 Influence of blood pressure on WMH and WMFA leading to poorer cognitive performance 

(Model 4) 

 To assess the influence of individual differences in vascular health on frontal-parietal 

white matter FA and within-tract white matter hyperintensity burden, we incorporated an 

estimate of blood pressure in our model. A latent variable composed of three systolic blood 

pressure measures was added to the model as a mediator of the relationship between age and 

WMH, as well as age and WMFA (Figure 6). This also indirectly influences the mediation of the 

associations between age and cognition, though we hypothesized that this would occur via a 

direct influence on white matter factors, but not be related to cognition itself. Significant 

standardized path estimates were found for the associations between age and WMFA (Path A1: 

Est. = -.525, 95% CI [-.664, -.373]), age and WMH (Path A2: Est. = .407, 95% CI [.285, .577]), 

age and BP (Path A3: Est. = .597, 95% CI [.483, .686]), WMFA and EF (Path B1: Est. = -.283, 

95% CI [-.496, -.096]), WMH and WMFA (Path D1: Est. = -.175, 95% CI [-.260, -.088]), BP 

and WMFA (Path D3: Est. = -.196, 95% CI [-.364, -.044]), age and EF (Path C1: Est. = .483, 

95% CI [.299, .670]), and age and PS (Path C2: Est. = -.701, 95% CI [-.902, -.503]). The relation 

between WMH and each of the cognitive constructs, as well as the relation between WMFA and 

PS, remained non-significant. Additionally, the relation between BP and WMH was also non-

significant. The indirect effect previously found for the mediating path that represented WMH 

and WMFA’s influence on the relationship between age and EF (Path A2*D1*B1: Est. = .020, 

95% CI [.005, .047], and WMFA alone on age and EF (Path A1*B1: Est. = .149, 95% CI [.059, 

.268]), both remained significant. The new mediation path that examined the combined effects of 

BP and WMFA on the relation of age and EF was also significant (Path A3*D3*B3: Est. = .033, 

95% CI [.005, .097]). However, any path including both BP and WMH was non-significant. 
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Figure 6: Model 4. Model 4 builds upon model 3 by adding systolic blood pressure as a 

latent variable that directly influences both white matter hyperintensity burden and white 

matter fractional anisotropy. Years of education and sex were regressed from all latent 

variables modeled. Intracranial volume was regressed from white matter hyperintensity 

burden. Note: EF = executive function; CWI = color word interference; PS = processing 

speed; WMFA = white matter fractional anisotropy; FA = fractional anisotropy; IFOF = 

inferior frontal occipital fasciculus; SLF = superior longitudinal fasciculus; WMH = white 

matter hyperintensity burden; BP = blood pressure; SYS = systolic; EDU = years of 

education; ICV = intracranial volume. 
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The present study identified key factors that influence age-related differences in cognitive 

performance by identifying specific contributions of tract-specific white matter anisotropy, white 

matter hyperintensity burden, and blood pressure through an incremental structural equation 

modeling approach. Executive function performance is highly vulnerable to the effects of aging, 

and is worse in participants who demonstrate poorer diffusion properties of fronto-parietal (but 

not cortico-spinal) white matter. More specifically, decreased fronto-parietal fractional 

anisotropy mediates executive function abilities with age, while additionally, increased blood 

pressure and white matter hyperintensities within these white matter tracts each contribute to 

poorer white matter health and are important contributors to overall brain health.  

The primary finding, that the relationship between age and EF is mediated by the health 

of fronto-parietal white matter connections, was motivated by the growing body of literature 

emphasizing the importance of network-like brain organization between higher-order association 

cortices that is responsible for efficient cognitive processing in aging (Damoiseaux, 2017; Fjell et 

al., 2016). These results advance both the idea of regional vulnerabilities in the aging brain and 

the disconnected brain theory of cognitive aging. Regional vulnerabilities in tissue structure have 

been reported across imaging modalities with an emphasis on the higher-order cognitive centers 

typically found in the frontal and parietal cortices (Hoagey, Rieck, Rodrigue, & Kennedy, 2019), 

especially with regard to executive function performance (Bennett & Madden, 2014; Bettcher et 

al., 2016; Cole et al., 2013; Kennedy & Raz, 2009a; Llufriu et al., 2017). The observed 

specificity of the white matter interconnecting frontal and parietal cortices, but not of the 

projection fibers of the CST, adds support to theories of retrogenesis or last-in, first-out views of 

age-related decline, while demonstrating the cognitive correlates of these differences in structural 

integrity. Decreases in fractional anisotropy point to a lessening in the overall directionality of 
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water flow along these fronto-parietal tracts, suggesting a number of failures could be at play 

such as decreased or thinning of the myelin sheath, loss of fiber organization, axonal damage, or 

decreased density or thinning of fiber tracts (Bartzokis, 2004; Davis et al., 2009; Madden et al., 

2009). Future research is needed to examine possible microstructural changes at the neuronal 

level (i.e., biophysical diffusion models). Notably, in a separate class of white matter, the 

corticospinal tract, thought to mature early in life to enhance motor responses during 

development, there was no evidence of an age-related vulnerability. While this does not 

eliminate the possibility that additional higher-order white matter pathways are also related to 

executive function performance, it does provide specificity that speaks toward the retrogenesis 

hypothesis.   

Regardless of the mechanisms leading to poorer anisotropy, these results point to a 

disconnection of the communication among higher-order cognitive cortices, which does not 

appear to be a ubiquitous, brain-wide consequence of differences in white matter health. Cortical 

disconnections result in a loss in communication efficiency of neurons and are evidenced by 

associations between cognitive declines and metrics demonstrating impairment in the health of 

functional and structural connectivity (Cox et al., 2016; Langen et al., 2018). With regional 

specificity, we are able to demonstrate that measures indicative of structural connectivity are, at 

least partially, related to the efficiency in EF performance. Identifying and understanding the 

specificity involved in the relationship between the brain and cognitive abilities is critical for 

localizing vulnerabilities and could lead to biomarker-like targets, for both clinical and aging 

research, and help develop strategies for preserving cognitive abilities (Madden et al., 2017).  

Another goal of the study was to interrogate the specific white matter connections of the 

genu of the corpus callosum, IFOF, and SLF, to evaluate their role in cognitive specificity, 
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compared to a projection fiber tract not expected to be directly involved in EF performance. We 

found that differences in white matter anisotropy in these fronto-parietal tracts are related to 

executive function performance, but not to processing speed. The EF construct modeled in this 

study taps several EF subcomponents, as it is composed of switching and inhibition measures, 

but might not generalize to other EF subdomains (such as temporal ordering or attention). 

However, importantly, we believe this construct to be independent from the influence of 

processing speed given the covariance with speed-based simple comparison tasks. This approach 

allowed for an avoidance of overlap that might exist between the cognitive tasks, and instead, 

constructs were modeled as residualized versions of each other. As hypothesized, this method 

revealed no significant results related to processing speed, likely due to the specificity involved 

in selecting white matter tracts mirroring those pathways active during EF processing. These 

results demonstrate an independent contribution of fronto-parietal white matter connectivity that 

stands in contrast to previous work linking processing speed to more general aspects of white 

matter or age-related slowing (Penke et al., 2010), or neurocognitive test batteries with a high 

cognitive burden unaccounted for in processing speed tasks (Kerchner et al., 2012; Salami, 

Eriksson, Nilsson, & Nyberg, 2012).   

Vascular risk factors have been proposed as a candidate mechanism for the disruptions in 

white matter health leading to declines in cognitive performance via increases in white matter 

hyperintensity burden or increased blood pressure (Bender & Raz, 2015; de Groot et al., 2001; 

Jacobs et al., 2013; Kennedy & Raz, 2009a; Langen et al., 2018; Langen et al., 2017; Power et 

al., 2017; Salat et al., 2012). In the current study, the influence of white matter hyperintensity 

burden is modeled directly and related to fractional anisotropy of the white matter, contributing 

to the mediation of age and EF, but not directly related to cognitive performance. While this 
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builds on traditional “lesion” models with the inclusion of within-tract white matter 

hyperintensity burden, the findings differ from what would be expected in that these vascular 

lesions are not directly related to cognitive performance, but rather seem to only show a relation 

to proxies of white matter health. To confirm this outcome, we reversed the WMH and WMFA 

constructs path direction in model 4 to verify the directionality of the association and found that 

WMFA was indeed, unrelated to WMH and that the overall mediation was no longer significant, 

demonstrating additional specificity inherent to the model. Much discussion has been raised 

around the concerns of WMH contamination of diffusion imaging metrics such as FA (e.g., 

Leritz et al., 2014; Pelletier et al., 2016; Svärd et al., 2017; Van Leijsen et al., 2018; Vangberg, 

Eikenes, & Håberg, 2019; Vernooij et al., 2008), and the current study provides some 

information to that discussion, namely that WMFA is a salient predictor of age-related cognitive 

performance differences, independent of any effect of WMH lesions (measured at several levels 

of WMH lesion dilation kernel sizes).  

 Additionally, while systolic blood pressure measures were related to white matter FA and 

contributed to the mediation of age and executive function performance, no direct association of 

BP with white matter hyperintensity burden was detected. Therefore, it would appear that 

increased blood pressure and white matter hyperintense areas may separately influence white 

matter health, and that the cross-sectional association of blood pressure and WMH burden is 

weak in the current sample. This finding appears to stand in contrast to much of the literature, 

but may be due to our sample selection of highly healthy adults with relatively mild increases in 

blood pressure, less pronounced white matter hyperintensity burden, and exclusion of individuals 

with clinical concerns such as small vessel disease. Previous research groups have also reported 

that this association is weak in healthy participants with only mild vascular risk (Lindemer, 
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Greve, Fischl, Augustinack, & Salat, 2017), or is only found with more clinically advanced 

white-matter degeneration, and not present in samples including younger individuals (Maillard et 

al., 2012). However, the idea of separate mechanistic influences of blood pressure and white 

matter hyperintensity influence on age-related cognitive decline has previously been discussed 

(Jacobs et al., 2013). The current results suggest that these vascular risk factors might exert 

varying effects on cognitive performance because of their unique influences on different 

properties of white matter integrity. It has also been posited that ontogenetically and 

phylogenetically later regions are differentially associated with vascular risk compared to earlier 

developing regions, perhaps following an anterior-posterior gradient. This differential pattern 

follows a retrogenesis theory, where healthy, uncomplicated aging is associated with anterior 

white matter changes (i.e., frontal association regions), but the addition of vascular risk pushes 

an expansion to more posterior regions (i.e., parietal association cortices), both in diffusion-

based studies (Kennedy & Raz, 2009) and in studies of longitudinal WMH progression over 5 

years (Raz et al, 2007). Specific work remains to be done to test this interesting hypothesis. 

Overall, these findings highlight the significant role that vascular factors play in brain aging 

processes, which is predictive of age-related cognitive decreases even within healthy adults.  

4.1 Considerations and Conclusions:  

 The current findings should be considered in the context of their strengths and 

limitations. The methods utilized in the current project offer several advantages over much of the 

current literature. Our use of diffusion tractography allowed an extraction of diffusivity estimates 

from the entirety of each white matter tract at the voxel level, as opposed to using a skeletonized 

version derived from a group template. These tracts were uniquely generated in each individual, 

included a “control” region, and allowed for within-tract quantification of white matter 
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hyperintensity burden and removal of white matter hyperintense voxels from fractional 

anisotropy calculations, with several dilation iterations. Additionally, the use of structural 

equation modeling allowed for all of the variables of interest to be modeled simultaneously in 

such a way that they account for possible instances of covariance. The complexity inherent to 

model our hypotheses of interest required that we use a method that accounts for shared variance 

among multiple cognitive constructs, various measures of white matter health, and vascular 

factors, while removing additional confounds such as intracranial volume, sex, and education. 

Without appropriate modeling, the study results would lack specificity and instead point to more 

generalized correlations among white matter variables or broad cognitive constructs as opposed 

to showing specificity with executive function performance (Salthouse et al., 2015). While 

specificity is a strength of this current project, it limits the scope of our findings such that other 

research examining a broader range of white matter and/or cognitive tasks may find that other 

white matter tracts are specifically related to processing speed or to additional aspects of EF not 

measured in the current study (Borghesani et al., 2013). An additional caveat is that structural 

equation modeling is a regression-based technique and is unable to test causality or test lead-lag 

relationships in data collected in a cross-sectional fashion. Further, these models are only a test 

of one set of a priori configured hypotheses; other variables and modeling configurations could 

be used to test related hypotheses. Nevertheless, the present results highlight the importance of 

vascular health on the efficient communication of fronto-parietal white matter and the negative 

impact this has on executive function performance in aging. Additional longitudinal analyses to 

fully establish possible lead-lag relationships among these variables are currently underway and 

should soon shed light on how health factors lead to structural change and cognitive decline.  
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Supplemental Information 

Supplemental Table S1. Cognitive variable factor structure. Measurement models of all 
cognitive variables of interest as either a one-factor solution or as a two-factor solution 
(executive function tests and processing speed tests as separate constructs). The 2-factor solution 
fit the data significantly better than a 1-factor solution (via a chi-square difference test χ2[9] = 
103.006, p < .00001.) 

Model Fit Parameters 1-Factor 2-Factor 
Akaike Information Criterion (AIC) 4208.56 4123.554 
Bayesian Information Criterion (BIC) 4305.008 4248.936 
Root Mean Square Error 0.162 0.126 
Comparative Fit Index (CFI) 0.861 0.938 
Tucker-Lewis Index (TLI) 0.822 0.893 
Standardized Root Mean Square Residual 0.058 0.038 
Chi-Square Test of Model Fit  204.463 101.457 

 

 

Supplemental Table S2. Alternative model 2 fit parameters. Two separate specifications of the 
original “Model 2” were tested to compare the fit parameters when executive function and 
processing speed were separated and covarying with each other (EF/PS) and for when these 
measures were modeled as a single cognitive latent (COG). While both models demonstrate 
excellent fit parameters, the EF/PS specification demonstrated a slight improvement over the 
COG model in many of the most commonly referenced fit indices. Additionally, the EF/PS 
model fits the data significantly better using a chi-square difference test χ2[5] = 20.431, p = 
.001037.    

Model Fit Parameter EF/PS COG  
Akaike Information Criterion (AIC) 5016.41 5026.84  
Bayesian Information Criterion (BIC) 5209.31 5203.67  
Root Mean Square Error 0.047 0.055  
Comparative Fit Index (CFI) 0.982 0.974  
Tucker-Lewis Index (TLI) 0.974 0.965  
Standardized Root Mean Square Residual 0.03 0.036  
Chi-Square Test of Model Fit  116.999 137.431  
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