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Abstract 

The molecular characterisation of the cardiometabolic syndrome could improve our 

understanding of its pathogenesis and pathophysiology and guide the identification of new 

treatment strategies. We identified the combinations of features that help to define the 

cardiometabolic syndrome using a multi-omic penalised logistic regression approach, from in-

depth phenotyping, including transcriptome and epigenome profiling of innate immune cells, 

platelets, plasma metabolomics and extensive biochemistry, of 202 blood donors and two 

groups with extreme phenotypes (obese and lipodystrophy). This allowed us to determine the 

likelihood of the individuals in the donor group of having an increased cardio-metabolic risk 

and to determine the molecular mechanisms at play. To investigate if the observed effects 

were reversible, we repeated the in-depth phenotyping six months after bariatric surgery. 

These analyses revealed patterns of abnormal activation in innate immunity cells in the 

extreme phenotype groups, which were abrogated after surgery with the establishment of 

new gene expression landscapes.  

 

Introduction 

Cardiovascular disease (CVD) is the primary cause of death worldwide (17.9 million 

deaths in 2016, 31% of all deaths)(Kelli and Kassas, 2016) and the ever increasing number of 

overweight and obese individuals places a burden of hundreds of billions of dollars on 

healthcare systems each year(Leal et al., 2006; Go et al., 2014). CVD and type 2 diabetes (T2D) 

risk are increased in cardiometabolic syndrome (CMS)(Grundy et al., 2005), a cluster of 

interrelated features including: obesity, dyslipidemia, hyperglycemia, hypertension and non-

alcoholic fatty liver disease(Azzu et al., 2020). These features have overlapping components, 

which include visceral fat deposition, high triglycerides, high low-density lipoprotein (LDL)-

cholesterol, high fasting blood glucose, hypertension, decreased high-density lipoprotein 

(HDL)-cholesterol and low-grade inflammation(Hotamisligil, 2006; Alberti et al., 2009; 

Stienstra and Stefan, 2013). Furthermore, increased prevalence of peripheral vascular 

disease, coronary artery disease and myocardial infarctions(McNeill et al., 2005), as well as 

cerebro-vascular arterial diseases and stroke(Ford, 2005) in individuals developing CMS 

highlight the role of thrombosis in this pathology(Ninomiya et al., 2004). The therapeutic 
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approaches to mitigate their presentation include weight loss strategies(Shimada et al., 

2019), lipid lowering drugs(Pahan, 2006), antiplatelet therapies(Majithia and Bhatt, 2019), 

glucose lowering(Drucker and Nauck, 2006; Sanchez-Rangel and Inzucchi, 2017) and anti-

inflammatory drugs(Kosmas et al., 2019). The relationship between cardiometabolic health 

and body weight is complex(Stefan, Schick and Häring, 2017). CVD risk varies between 

individuals of similar body mass index (BMI) depending on adipose tissue (AT) distribution and 

functionality(Kip et al., 2004; St-Pierre et al., 2005; Katzmarzyk et al., 2006; Virtue and Vidal-

Puig, 2010; Nichols et al., 2017). AT acts as an active endocrine organ(Hotamisligil, Shargill 

and Spiegelman, 1993; Choe et al., 2016) and when dysfunctional, plays a major role in 

metabolic disorders inducing peripheral insulin resistance, and contributing to chronic-low 

grade inflammation(Vishvanath and Gupta, 2019). When dysfunctional, AT is accompanied by 

macrophage recruitment (Weisberg et al., 2003), altered ratio of pro- and anti-inflammatory 

macrophages(Aron-Wisnewsky et al., 2009), enhanced production of cytokines and other pro-

inflammatory signals(Visser et al., 1999; Park, Park and Yu, 2005), which trigger inflammatory 

responses in immune cells(Choe et al., 2016). AT dysfunction also has been involved in 

cardiometabolic disease(Lancha, Frühbeck and Gómez-Ambrosi, 2012; Lawler et al., 2016) 

and atherosclerosis(Berg and Scherer, 2005). 

Several risk score algorithms have been developed to predict the risk of complications 

associated with obesity (Onesi and Ignatius, 2014; Matthews et al., 1985; Søndergaard et al., 

2017; Bedogni et al., 2006; Sterling et al., 2006; Artigao-Rodenas et al., 2013; Hippisley-Cox 

et al., 2008; Onesi and Ignatius, 2014), however a number of questions still remain. CVD may 

also occur in the absence of other comorbidities and certain type of events have a better 

clinical outcome in overweight and obese patients compared with their leaner counterparts 

(the so-called "obesity paradox")(Elagizi et al., 2018).   

Blood cells omics studies have helped identify pathways involved in CVD and obesity, and 

confirmed their utility as a source of surrogate biomarkers able to delineate the metabolic 

status(Ghosh et al., 2010). Whilst the participation of platelets and neutrophils in thrombosis 

and that of macrophages in atherosclerotic plaque formation are well established(Bobryshev 

et al., 2016; Puhr-Westerheide et al., 2019; Ramirez, Manfredi and Maugeri, 2019), the role 

of these cell types in atherogenesis and CVD onset has been appreciated only 

recently(Nording, Seizer and Langer, 2015). Furthermore, prolonged exposure to low-grade 

inflammation modifies the functional phenotype of monocytes(an effect named trained 
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immunity(van Tuijl et al., 2019)), platelets(Gros, Ollivier and Ho-Tin-Noé, 2014; Koupenova et 

al., 2018) and neutrophils(Wright et al., 2010; Caielli, Banchereau and Pascual, 2012). The 

molecular characterisation of these phenotypic changes remains incomplete, motivating the 

in-depth molecular phenotyping of these cells performed in the present study, including 

transcriptome and epigenome profiling.  

Here, we present the molecular characterization of the transcriptional (RNA sequencing, 

RNAseq) and epigenetic (histone 3 lysine 27 acetylation, H3K27ac; reduced representation 

bisulfite sequencing, RRBS, and Illumina HumanMethylation450 BeadChip) changes of 

morbidly obese (BMI>40kg/m2) and lipodystrophy individuals in neutrophils, monocytes, 

macrophages and platelets.  

We also developed a multi-omic data integration approach to determine the CMS associated 

molecular signatures, using penalised logistic regression, across multiple data layers. The 

resulting molecular signatures were highly predictive and, generally, in good agreement with 

the predictions made using plasma biochemistry markers only, although there was stark 

disagreement for some individuals. We used these signatures to stratify leaner individuals 

based on their CMS risk. The features identified in the plasma lipidomic layer were also 

associated with known risk factors in a large independent cohort. 

Finally, to investigate the reversibility of these molecular profiles, we deployed the enhanced 

phenotype approach to characterise the obese group six months after bariatric surgery. We 

found changes in gene expression, especially in neutrophils and platelets, accompanied by 

more modest differences in regulatory elements usage and almost no differences in DNA 

methylation profiles. Plasma proteome analysis allowed us to determine changes in other 

tissues and organs, whilst neutrophil and platelet cell function assay results indicated reduced 

ability to adhere, the key initial step during their activation. 

Results 
Metabolic signatures in the obese and lipodystrophy groups. 

Four different groups of participants were recruited: healthy day controls (N=20; from which 

metabolically healthy where then selected), familiar partial lipodistrophy type 2 (N=10; 

hereafter lipodystrophy; carrying mutations in PPARG or LMNA genes, as verified by whole 

genome sequence(Turro et al., 2020)), obese referred for bariatric surgery (N=11; without 
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clear genetic causes(Turro et al., 2020)) and blood donors (hereafter “BD”; N=202)(Chen et 

al., 2016). To determine the metabolic health of the individuals in these groups, we collected 

data on age and body weight (BW), and performed plasma biochemistry assays for the 

following (all values and differences reported in Table S1): leptin, adiponectin, insulin, free 

fatty acid (FFA), glucose (GLC), serum lipid (triglycerides (TG), total cholesterol (TC), high 

density lipoprotein (HDL-C), low-density lipoprotein (LDL-C)), activity of alanine and aspartate 

amino-transferases (ALT and AST, respectively) and high-sensitivity C-reactive Protein 

(hsCRP). Additionally, we computed leptin-adiponectin ratio (LAR), Homeostatic Model 

Assessment for Insulin Resistance (HOMA-IR) and Adipose Tissue Insulin Resistance (AT-IR) 

indices. The lipodystrophy group had elevated GLC, TC, TG, ALT, AST, insulin (and 

consequently HOMA-IR and AT-IR; HDL-C and LDL-C were decreased. The obese group had 

elevated LAR, LDL-C and hsCRP. To illustrate the influence of these parameters, we performed 

a principal component analysis (PCA). PCA is a statistical method which allows the 

visualization of the information content in large data tables by means of a smaller set of 

factors or principal components (PCs). This showed that obese, lipodystrophy and BD groups 

were distributed over distinct, albeit partially overlapping dimensions (Fig.1A). The first two 

components (PC1 and PC2) were sufficient to distinguish the different groups 

(Obese/Lipodystrophy: p value=0.002; Obese/BD: p value< 2.2e-16; Lipodystrophy/BD: p 

value< 2.2e-16; Hotelling's T-squarred test with F distribution). In particular the extreme 

phenotype groups (obese and lipodystrophy) were separated from BD participants along PC1, 

whilst the obese and the lipodystrophy groups were separated from each other along PC2.  

Loading and contribution analysis (Fig.1B, arrow length and direction) showed that BW, LAR, 

hsCRP, AST, ALT, GLC, AT-IR, HOMA-IR and TG were the main contributors to the separation 

along PC1. Additionally, BW, LAR, hsCRP separated the obese from the lipodystrophy groups 

in one direction, whilst AST, ALT, GLC, AT-IR, HOMA-IR and TG separated them in the opposite 

direction along PC2. Obesity(Moore et al., 2014; Cirulli et al., 2019) and lipodystrophy(Huang-

Doran et al., 2010; Fiorenza, Chou and Mantzoros, 2011) have been shown to be associated 

with plasma metabolite levels. To determine which metabolites were present and their 

abundance, plasma samples were analysed on the Metabolonⓡ platform (see methods), 

which identified and quantified 988 species. To cluster and then characterise groups of 

metabolites, whose levels were correlated across samples, we performed a weighted gene 

co-expression network consensus analysis (WGCNA)(Zhang and Horvath, 2005). We identified 
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16 consensus modules (M1 to M16; Table S2) and we determined if there were any 

associations between these modules with age, BW and the plasma biochemistry assays 

results. Of the 208 tested associations, 11 showed significant correlation with the results of 

the plasma biochemistry assays in the extreme phenotypes group (FDR adjusted Fisher p 

values < 0.05; six were positively correlated, 5 were negatively correlated; Fig.1C); where 

none of the modules showed significant correlation with the results of the plasma 

biochemistry assays in the BD cohort (not shown). These modules also showed no enrichment 

for biological pathways, which could be partly explained by the presence of cryptic 

metabolites not yet functionally annotated and that cannot be mapped to existing databases. 

Nevertheless, taken individually, some of their metabolites were known to be associated with 

their respective traits. For example, in the module M6, which was associated with both TG 

and LDL-C, we found: eicosapentaenoic and docosahexaenoic acids already known to be 

associated with cardiometabolic risk factors(Innes and Calder, 2018), 3-Carboxy-4-methyl-5-

propyl-2-furanpropanoic acid known to be associated with non-alcoholic fatty liver disease 

(NAFLD) (Dai et al., 2019) and L-cysteine known to be associated with T2D(Jain et al., 2014) 

all being negatively associated with TG and positively associated with LDL levels. By extension, 

this suggested new similar roles for the phosphatidylcholine (PC) and lysophospholipid 

(LysoP), molecules present in this module and not yet annotated, and also for homo-L-

arginine which was known to be associated with cirrhosis and hyperargininemia (full list of 

modules and metabolites in Table S2).  

To determine which of these modules could be associated with disease status, we analysed 

the eigen-metabolite adjacencies. Consensus modules formed two clusters, C1 and C2 

(Fig.1D) using extreme phenotype group samples whereas, two distinct clusters, C3 and C4, 

were found using BD samples only (Fig.S1A). To determine if C1 and C2 represented the obese 

and lipodystrophy groups, we plotted the average eigen-metabolite value for each cluster. 

This showed that the extreme phenotypes could be identified by their distinct metabolic 

signature (Fig.1E), whereas clusters C3 and C4, defined by different metabolites, were unable 

to discriminate between them (Fig.S1B). When the same pathway was found enriched in 

multiple clusters (Table S2; i.e. aminoacyl-tRNA biosynthesis or glycine, serine and threonine 

metabolism), it was because different metabolites in the same pathway were found in 

different clusters (Fig.S1C).  
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In summary, analysis of serum metabolites abundance, in individuals at high CMS risk, 

revealed patterns correlating with anthropometric and plasma biochemistry parameters that 

are disease specific. 

Transcriptional and epigenetic signatures in obese and lipodystrophy patients for three 

innate immune cell types and platelets. 

Next, we sought to determine if the metabolic changes observed in plasma were 

accompanied by changes at transcriptional and epigenetic levels in innate immune cells 

(neutrophils, monocytes, macrophages) and platelets, as these are some of the key players in 

atherogenesis and thrombus formation(Swystun and Liaw, 2016) (Fig.2A). We characterised: 

transcriptome by ribo depleted total RNAsequencing (RNAseq), genome-wide distribution of 

histone 3 lysine 27 acetylation (H3K27ac), a marker of active promoters and transcriptional 

enhancers, by chromatin immunoprecipitation (ChIPseq) and DNA methylation by reduced 

representation bisulfite sequencing (RRBS). First, we determined which, amongst the 

participants recruited as day controls, were the metabolically healthy individuals (hereafter 

“lean”, selected using the following parameters: BMI < 25, GLC <5.4 mmol/L, TG <1.7 mmol/L, 

LDL-C <2.59 mmol/L, HDL-C >1 mmol/L for men and >1.3 mmol/L for women, HOMA-IR index 

< 2.2) and used these in all the following comparisons (Table S7).  

The comparison between the obese and lean groups (Fig.2B) led to the identification of 191 

differentially expressed genes (DEG) in macrophages (142 up and 49 down regulated in obese 

individuals, Table S8), 80 in monocytes (45 up and 35 down regulated, Table S9), 79 in 

neutrophils (30 up and 49 down regulated, Table S10) and 120 in platelets (71 up and 49 down 

regulated, Table S11); at a FDR 5%. We identified only one differentially acetylated region 

(DAcR; Fig.2B) below 5% FDR in each of the cell types (Tables S12-S14). DNA methylation 

analysis found 17 differentially methylated CpG islands (0.5% FDR) in macrophages (Table 

S15); 14 in monocytes (Table S16) and 13 in neutrophils (Table S17).  

The comparison between the lipodystrophy and lean groups (Fig.2C) identified 194 DEG in 

macrophages (139 up and 55 down regulated in lipodystrophy, Table S8), 90 in monocytes 

(51 up and 39 down regulated, Table S9), 284 in neutrophils (160 up and 124 down regulated, 

Table S10) and 60 in platelets (29 up and 31 down regulated, Table S11). DAcR were observed 

in macrophages and monocytes: 402 DAcR (392 up and 10 down) in the former (Table S12), 9 

of these were located on gene promoter, 176 (43%) were intergenic and 195 (48%) in introns 
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and one in the latter (up regulated; intergenic). No DAcR were identified in neutrophils. DNA 

methylation analysis found 11 differentially methylated CpG islands in macrophages (Table 

S15); 46 in monocytes (Table S16) and 16 in neutrophils (Table S17).  

The comparison between the obese and lipodystrophy groups (Fig.S2B) identified 26 DEG in 

macrophages (17 up and 9 down regulated in lipodystrophy, Table S8), 24 in monocytes (15 

up and 9 down regulated, Table S9), 59 in neutrophils (34 up and 25 down regulated, Table 

S10) and 79 in platelets (33 up and 46 down regulated, Table S11). We observed 17 DAcR in 

macrophages (all hyper-acetylated in lipodystrophy; Fig.S2B and Table S12), 7 (41%) were 

intergenic and 9 (52%) in introns. We also observed 3,616 DAcR in monocytes (2,234 up and 

1,382 down; Fig.S2B and Table S13), 1,259 (35%) of these were located in UTRs, TSSs, TTSs or 

exons, 301 (8%) were intergenic and 1,798 (49%) in introns. No DAcR were found in 

neutrophils.  

In macrophages, DNA methylation analysis found 6 CpG islands differentially methylated (2 

up and 4 down, Table S15), 91 in monocytes (50 up and 41 down, Table S16) and 35 in 

neutrophils (14 up and 21 down, Table S17). 

To gain insight into the gene expression changes, we performed functional annotation by 

gene ontology (GO) terms enrichment analysis. In the comparison between the obese and 

lean groups (Fig.2D), we found an enrichment for GO terms related to interferon alpha/beta 

signalling pathway, as well as focal adhesion in DEG up-regulated in macrophages (Table S18). 

In monocytes, down-regulated DEG were enriched in GO terms related to programmed cell 

death and ion homeostasis; whereas up-regulated DEG were enriched for GO terms related 

to inflammatory response (Table S19). In neutrophils, down-regulated DEG showed 

enrichment for genes responding to antithrombotic drugs (Table S20). In the comparison 

between the lipodystrophy and lean groups (Fig.2D), macrophages up-regulated DEG were 

enriched for GO terms related to cholesterol biosynthesis and immune response activation. 

In monocytes and neutrophils, up-regulated DEG were enriched in GO terms related to 

interferon signalling and immune response. The above pairwise comparisons provided insight 

on the differences existing in the different omics layers. It provided reliable multi-omic layers 

to integrate in order to identify combinations of features (i.e. molecular signatures) from 

across all layers that characterise the extreme phenotype groups. 
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Multi-omic signature classification of extreme phenotypes 

Multivariable selection approaches have provided an effective means to integrate multiple 

omics layers and elucidate disease signatures(Liu et al., 2018; Wu et al., 2019). We used one 

such approach to integrate RNAseq, H3K27ac histone modification, DNA methylation, 

metabolic and lipidomic datasets. We identified a training set comprising: (i) a control group 

of 6 BD (selected using the criteria used to define the lean group above); and (ii) a group of 6 

obese individuals for which we had complete measurements on all omic data layers, in 

monocytes and in neutrophils. Using this training set, we used elastic net penalised logistic 

regression (Zou and Hastie, 2005) to identify signatures associated with an increased 

probability of belonging to the extreme phenotype obese group and therefore having some 

or all of the features associated with CMS (Fig.3A). We chose to use this approach, since we 

have a large number of variables, but small sample size (see, for example, (Waldmann et al., 

2013)). The values taken by the variables selected into each signature defined patterns 

characterising the groups (Fig.3B; Table S24-26).  

We used the variables selected for each signature, together with the biometric variables, to 

construct multivariable logistic regression models to predict if an individual would be better 

classified as belonging to the control group or the obese group. We considered predictions 

made by models trained on each layer individually, as well as, a multi-layer predictive model. 

All models allowed us to rank individuals according to their probability of belonging to the 

obese group (Fig.3C, Fig.S3A). To quantify each model’s ability to discriminate individuals in 

the extreme phenotype groups from all other individuals, we calculated the log loss (also 

known as the cross-entropy loss; Fig.3C and Fig.S3A)(Murphy, 2012). This demonstrated that 

the multi-layer model provided the best separation, followed by the models trained on the 

RNAseq layers, then the models trained on the metabolite and methylation layers.  We also 

performed this analysis using the lipodystrophy and lean groups to train the multi-layer 

predictive model. In this case we found that obese individuals were often predicted to belong 

to the lipodystrophy group (Fig.S3B).  

The extent of the possible validation of the model we proposed, using existing datasets, was 

rather limited and we acknowledge that further multi-omic studies will be required for a 

complete evaluation in external cohorts, as well as to establish the most cost-effective 

combination of data layers in respect of their predictive power. However, since lipidomic data 

from external cohorts were already available, we focused on investigating the lipidomic 
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signature. We prioritised a reduced set of 9 lipid species from the signature to test for 

univariate association with known CMS risk factors (see Materials and Methods for details, 

and Fig.3D for results). Of these nine species, we matched eight with lipid species that had 

also been measured in a subset of 1,507 participants of the Fenland study(Lindsay et al., 

2019), which is a population-based cohort of 12,345 volunteers without diabetes born 

between 1950 and 1975 and recruited within the Cambridgeshire region between 2005 and 

2015. In the Fenland cohort, the null hypothesis of no association was rejected in 225 out of 

368 tests (≈ 61%) after correcting for multiple testing. We found TG (52:2) and TG (50:1) to 

be positively associated with several risks factors, such as fasting plasma glucose, fasting 

insulin level, HOMA-IR, a fatty liver index, HbA1c, leptin, LDL-C, hsCRP, TG, BMI, fat mass, ALT, 

and ferritin (Table S27). Conversely, they were inversely associated with adiponectin and HDL-

C. Except for adiponectin and HDL-C, PC (40:7), PC (38:7), PC-O (36:2), PC (38:6) and PC (35:2) 

were inversely associated with all the remaining factors. To assess the specificity of the 

selected lipid species, we repeated the analysis with a set of five lipid species randomly 

selected from lipid species not included in the predictive signature. Far fewer associations 

were found to be significant (49 out of 230 tests, ≈ 21%). We observed the same pattern of 

associations between the prioritised lipid species and known CMS risk factors using data from 

the present study (Fig.3D; Table S27), as well as in a biopsy-confirmed non-alcoholic 

steatohepatitis (NASH) cohort comprising 73 individuals (Sanders et al., 2018) (Fig.S4; Table 

S27). 

 

Effect of bariatric surgery on transcriptional profile, epigenetic landscape and cell functions. 
Bariatric surgery is an effective option for the management of extreme obesity and its 

comorbidities, including CMS risk(Busetto et al., 2017), with well-established long-term 

benefits on weight loss, diabetes, hypertension and dyslipidemia(Adams et al., 2017). Here, 

we investigated the effects of weight loss by bariatric surgery on the transcriptional and 

epigenetic profiles of innate immune cells and platelets, and on plasma proteins to expand 

our ability to detect changes happening elsewhere in the body. To this aim, a second blood 

sample from obese individuals was obtained six months after bariatric surgery and subjected 

to the same assays. Pairwise comparison of each biochemical parameter showed a decrease 

for LAR, TG, hsCRP, AT-IR and AST and an increase of HDL-C level (p values of: 7.22*10-6, 

2.63*10-9, 4.98*10-4, 2.51*10-2, 1.48*10-3 and 1.86*10-3 respectively; conditional multiple 
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logistic regression, to allow us to adjust for age and sex; Fig.4A; Table S1 for other 

comparisons). We next compared the transcriptional and epigenetic profiles in monocytes, 

neutrophils, macrophages and platelets before and after bariatric surgery (Fig.4B). We 

identified, using paired analysis, 599 DEG in macrophages (340 up and 259 down regulated; 

Table S8); 1,931 in monocytes (1,118 up and 813 down regulated; Table S9); 2,571 in 

neutrophils (556 down and 2015 up regulated; Table S10) and 2,883 in platelets (1,223 up 

and 1,660 down regulated; Table S11). No DAcR were found in macrophages (Table S12), 229 

in monocytes (139 up and 90 down regulated; Table S13) and 788 in neutrophils (13 up and 

775 down regulated; Table S14). RRBS analysis found 201 differentially methylated CpGs in 

macrophages (97 up and 104 down regulated; Table S15); 48 in monocytes (32 up and 16 

down regulated; Table S16) and 198 in neutrophils (139 up and 58 down regulated; Table 

S17).  

Overall, GO terms enrichment for DEG identified the following processes: ribosome 

formation, metabolism of amino acid and proteins, several immune related pathways and 

cytoplasm translation were up-regulated whereas regulation of cholesterol metabolic process 

(through SREBF and miR33(Horie et al., 2013)) and mRNA processing pathways were down-

regulated (Table S18, S19, S20 and S21 for macrophages, monocytes, neutrophils and 

platelets, respectively). The results of the other comparisons (Fig.S2) are available in Tables 

S8 to S17. Next, we searched for those genes whose expression changed in obese individuals 

and reverted to the level observed in lean individuals after bariatric surgery. We found 9 

(RHPN1, DGKQ, TCTEX1D2, MVD, LDLR, BCAR1, ANKRD33B, FASN, COL5A3; overlap p value = 

3.6*10-8, hyper-geometric test), 7 (EPB41L3, LRRC8B, STARD4, ZNF331, SEMA6B, DSC2, 

RGPD8; overlap p value = 5*10-6), 5 (NAIP, RP11-1319K7.1, LINC01271, LINC01270, DNAH17; 

overlap p value = 1.3*10-5) and 10 (CTC-429P9.4, XXbac-BPG300A18.13, RP11-386G11.10, 

MT-TG, TVP23C-CDRT4, SHE, MPZL3, CLIP1, RGPD1, RPL23AP7; overlap p value=6.5*10-5) 

genes, in macrophages, monocytes, neutrophils and platelets respectively,  that after having 

been upregulated in obese individuals compared to lean individuals, returned to similar 

expression level after weight loss. Intriguingly, key genes involved in lipoprotein metabolism 

(LDL receptor, LDLR), fatty acid synthesis (Fatty acid synthase, FASN) in macrophages and 

cholesterol transport (StAR-related lipid transfer protein 4, STARD4) in monocytes were 

modulated. We found 2 (SNHG5, EVI2A; overlap p value = 0.03) and 3 (XXbac-BPG32J3.22, 
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MEIS2, MS4A14; overlap p value = 0.03) genes with the opposite progression in macrophages 

and monocytes respectively.   

To obtain further insight into the effects of bariatric surgery on gene expression and signaling 

pathways in other tissues and organs, we investigated plasma proteins level before and after 

surgery. We quantified 3,098 plasma proteins; 604 of which were found to be differentially 

abundant (DAP, Fig.4C and Table S28) above ordinal Q-value of 1*10-3. Proteins whose levels 

increased after bariatric surgery (72) were enriched in GO terms related to tight junction, 

WNT signalling, PI3K/AKT signalling, and sphingolipid signalling. Instead, proteins whose 

abundance decreased after surgery (532) were enriched in the following GO terms: cell cycle 

and DNA repair, ribosomal RNA metabolism and cell senescence, phagocytosis and T cell 

receptor signalling as well as FGF, IL2, VEGF and insulin signalling pathways (Table S29), of 

note, no significant changes in full blood count except mean platelet volume (p value = 0.03; 

paired t-test) and eosinophils count (p value = 0.03) were observed (Table S1). Plasma 

proteins can have different origins; to determine if any of the proteins identified could be 

linked to a specific tissue, we curated the GTEx project database(GTEx Consortium, 2015) to 

extract tissue specific genes, these ranged from 286 in the heart left ventricle to 1,286 in the 

spleen (Table S30 and methods). Tibial, coronary and aorta artery, heart atrial appendage 

and left ventricle and blood displayed an enrichment of tissue specific genes amongst DAP (p 

values: 1.6*10-2, 8*10-3, 2*10-2, 1.8*10-2, 1.6*10-2 and 5*10-2, respectively; hyper-geometric 

test; Table S30). Of the 13 blood specific genes that encoded for a DAP, six were also 

differentially expressed in at least one of the four studied cell types (Fig.4D). The data 

generated in monocytes and macrophages allowed us to explore the effect of bariatric 

surgery on trained innate immunity(Quintin et al., 2012), as it has been shown that it plays a 

role in atherosclerosis(Leentjens et al., 2018; Bekkering et al., 2019). We found overlaps 

between the genes associated with the top 500 regions that gain histone 3 lysine 4 

trimethylation (H3K4me3) both after β-glucan treatment (BG) or untreated (NT) in Quintin 

and colleagues(Quintin et al., 2012) and the DEG found comparing lean individuals and obese 

individuals post surgery (overlap p value = 0.015 and 4.49*10-6  respectively; hypergeometric 

test). These conditions had also significant overlap with DEG before and after bariatric surgery 

(overlap p value = 0.018 and 8.2*10-13 respectively; hyper-geometric test). The overlap was 

more significant if we considered only genes downregulated after bariatric surgery and NT 
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top 500 H3K4me3 genes (overlap p value = 0.005) and the DEG found comparing obese 

individuals before and after bariatric surgery (Table S31).  

Lastly, we performed functional tests on neutrophils and platelets to determine if the changes 

observed at molecular levels resulted in changes in the functional phenotypes of these cells 

(Fig.4E). After bariatric surgery, neutrophils showed a reduction in their ability to adhere 

when unstimulated and when subjected to a variety of stimuli (DTT, LBP, PAM3, PAF and 

fMLP) but not when treated with TNFalpha or PMA. These results were accompanied by a 

reduction in the cell surface levels of CD16 and CD32 but not CD66b, CD63, CD62L or CD11b 

(paired t-test, all result in Table S32). Alongside, we performed platelet functional tests which 

showed a reduction in P-selectin surface exposure upon collagen stimulation, but not upon 

ADP or thrombin stimulations. These results were accompanied by a reduction in the cell 

surface levels of fibrinogen receptor (both CD61 and CD41b) and CD36, whereas no changes 

were observed for CD49b, CD42a, CD42b, CD29 and CD9 (paired t-test, all result in Table S32).  

 

Discussion 
We successfully deployed an enhanced phenotyping strategy to obtain CMS signatures from 

extreme phenotype groups (morbid obesity and lipodystrophy) and we developed an 

integrative multi-omic strategy to use these signatures to determine the cardiometabolic 

status of a cohort of blood donors, aged between 40 and 70 (Table S1), which represent a 

group at high risk of this disease. 

 
Biochemical and Metabolic group characterisation.  

Our data showed that some individuals in the BD group were difficult to distinguish from 

those in the extreme phenotype groups on the basis of plasma biochemistry and, not 

surprisingly, BW (Fig.1A). The main contributors to the separation of the extreme phenotype 

groups from the bulk of BD and between each other were, in agreement with the existing 

literature, BW, LAR, hsCRP singling out the obese group. Whereas, ALT, AST, GLC, TG, HOMA-

IR and AT-IR had a larger contribution towards the separation of the lipodystrophy group 

(Fig.1B). This indicates that AT dysfunction is a shared component among the two groups, but 

with a different influence on each of them.  

We then investigated plasma metabolite levels to refine the separation. Metabolites can be 

separated in 16 distinct modules, which contain different species in the extreme phenotypes 
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and in BD groups (Table S2). Using a network-based approach, we determined the 

relationships between modules and plasma biochemistry parameters, this revealed the 

association between some of the 16 modules and BW, TG, HDL-C, LDL-C, AST and ALT (Fig.1C), 

whereas no associations were found for the modules in the BD group (not shown). For each 

module associated with a trait, several metabolites had already been shown to be linked to 

it. By extrapolation, we could infer that other metabolites belonging to that module were also 

associated with the trait. The analysis of module correlations defined two different clusters, 

C1 and C2 (Fig.1D), each representing one of the extreme phenotype groups (Fig.1E), thus 

demonstrating that the separation of the two groups was observed also at this level. Not 

unexpectedly, the two clusters were enriched for modules previously associated with 

NAFLD(Sookoian and Pirola, 2012; Hyötyläinen et al., 2016; Pacana et al., 2015; Alves et al., 

2019) and with obesity(Rath and Masek, 1966; Libert, Nowacki and Natowicz, 2018; Alves et 

al., 2019).   

 

Transcriptional and epigenetic signatures. 
The comparison between extreme phenotypes and lean groups showed a modest impact on 

H3K27ac levels and its distribution, on DNA methylation profiles and on gene expression, in 

the absence of acute challenge, in neutrophils, monocytes macrophages and platelets (Fig.2B 

and 2C). The largest number of changes observed in active chromatin (3,616 DAcR) was found 

in macrophages, between the obese and lipodystrophy groups (Fig.S2B). These differences 

were not accompanied by as many changes at transcriptional level, indicating that the same 

transcriptional output can be achieved with different regulatory landscapes, as previously 

shown(Kieffer-Kwon et al., 2013) or that these cells have been primed differently in the two 

groups to have different responses upon stimulation.  

This observation was also in agreement with the absence of a significant overlap between 

DEG and genes previously associated with trained immunity(Quintin et al., 2012) when 

comparing lean versus obese and lean versus lipodystrophy groups. However limited, the 

observed changes were specific enough to highlight, in functional enrichment analysis, GO 

terms related to inflammatory response thus confirming that the underlying chronic 

inflammation associated with these conditions modifies the molecular phenotype of the cell 

types involved in the development of atherosclerosis and in thrombus formation (Fig.2D). 

Similar results have previously been reported for whole blood cell DNA methylation(Kvaløy, 
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Page and Holmen, 2018), while more extensive changes have been observed in adipose 

tissue(Ling and Rönn, 2019).  

Overall, across all comparisons, with the exception of H3K27ac in macrophages, we found 

that the two extreme phenotype groups are more similar to each other than to BDs.  

 

Multi-omic signatures 

Given the limited number of changes identified using layer-by-layer univariate comparisons, 

we sought to identify multivariable signatures characterising the extreme phenotypes and 

lean groups to better discriminate between the different groups by combining information 

from across omic layers (Fig.3A). Using the obese and lean groups as training data, we 

identified signatures for each layer (Fig.3B) and trained classification models on each layer 

separately, as well as training a multi-layer integrative model.  As quantified by the log loss, 

we found the multi-layer model to provide the clearest separation between the extreme 

phenotype and donor groups, followed by models trained on the individual RNAseq, 

metabolite and methylation layers (Fig.3C and S3). This indicates that, while each individual’s 

rank differs in the single layer models, those individuals that are predicted by the integrative 

model to belong (with a high probability) to the extreme phenotype groups, are the ones with 

the most similarity, across all layers, of the lipodystrophy and obese groups. The differences 

observed when comparing the models trained using lean vs obese and lean vs lipodystrophy 

were likely reflecting the higher heterogeneity in the obese group which was lacking a high 

penetrance genetic cause.     

It should be noted that among the lipids prioritised by our analysis, PC (38:6) and PC (36:2) 

have already been identified in obesity studies(Hall et al., 2017); and, TG (50:1) and TG (52:2) 

have previously been linked to NAFLD(Lindsay et al., 2019) and NASH(Sanders et al., 2018). 

Moreover, we showed the diagnostic value of the prioritised lipid species through their 

association with major cardiometabolic risk factors in the Fenland study and in the present 

study (Fig.3D); as well as, albeit not significantly due to the small sample size, in the NASH 

cohort (Fig.S4).    

 
Effect of bariatric surgery. 
Bariatric surgery is an effective therapeutic approach to reduce weight and improve wellbeing 

for morbidly obese individuals(Maggard et al., 2005; Karlsson et al., 2007) and it has been 
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shown to have beneficial effects in lipodystrophy patients with BMI < 30(McGrath and 

Krishna, 2006; Utzschneider and Trence, 2006; Ciudin et al., 2011; Grundfest-Broniatowski et 

al., 2017; Melvin et al., 2017).  

We found that bariatric surgery not only induced significant changes in plasma biochemistry 

parameters, as already established(Wewer Albrechtsen et al., 2018), but it had a profound 

effect on transcriptional and active chromatin landscapes. We found genes that, after 

bariatric surgery, revert to the expression level observed in lean individuals. However, the 

majority of genes whose expression levels changed after surgery either did not revert to the 

values observed in lean individuals or was not differentially expressed between the obese and 

lean group. This suggests that the reduction in inflammatory signatures observed in 

macrophages, monocytes, neutrophils, and platelets after bariatric surgery is mostly due to 

the establishment, at least in the short term, of novel gene expression landscapes.  

The overall small number of changes in DNA methylation observed, together with the short 

life span of the cell types analysed, indicates that reverting from a pro-inflammatory to a 

healthy environment has little effect on the hematopoietic stem cell epigenome and effect 

observed in rodents(Singer et al., 2014) are either species specific or are dilute and then lost 

with the turnover of the hematopoietic progenitor pool. Other organs and tissues are 

impacted more severely by this change of environment. Plasma proteomic analysis gave us a 

snapshot of the changes that occur after surgery through the entire body. The majority of the 

changes were due to proteins whose level decreased after surgery (532 out of 605; Table 

S28). These were associated with inflammatory response, insulin signalling, WNT signalling, 

VEGF signalling and their decrease was likely due to the reduction in fat mass. The tissue 

specificity analysis identified amongst the sources of the DAP heart, artery and blood (Table 

S29). The former two showed that vascular integrity, compromised by obesity(Shah et al., 

2015), was restored, as also observed by Albrechtsen and colleagues(Wewer Albrechtsen et 

al., 2018). Almost half (6/13) of the blood specific DAP were also DEG in at least one cell type; 

SIRPB1 is known to be involved in impaired immune response and leptin resistance(Rendo-

Urteaga et al., 2015), RAC2 plays a role in immune pathways(Das, Ma and Sharma, 2015), 

PPBP (also known as CXCL7) is a chemokine involved in neutrophils recruitment during 

thrombosis(Brown, Sepuru and Rajarathnam, 2017) while ADGRE2 mediates macrophage 

differentiation and inflammatory response(Kuan-Yu et al., 2017). This showed that some of 
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the changes that occurred at transcriptional level are directly involved in the reduction of the 

proinflammatory environment but also that other levels of regulation are involved. 

The comparison of pre and post surgery of gene expression data allowed us also to determine 

the behaviour of genes involved in trained immunity(Quintin et al., 2012). Post surgery, we 

observed that many of the changes involved expression of genes that were upregulated in 

the absence of training(Novakovic et al., 2016), suggesting that bariatric surgery had a positive 

impact on innate immune cells, as well as, that trained immunity acted downstream of the 

hematopoietic stem cell pool and its effects were diluted and eventually lost with the renewal 

of the hematopoietic progenitors pool.  

Lastly, we observed that the transcriptional events were accompanied by a decrease in 

adhesion in platelets and neutrophils. The decrease in adhesion was also accompanied by a 

reduction in the level of surface markers, such as, CD16 and CD32 in neutrophils and CD61, 

CD41b and CD36 in platelets. 

These changes suggested a decreased capacity to activate and a decreased capacity to 

interact with other immune cells, such as leukocytes(Spangenberg et al., 1993). Together 

these findings indicate that many key players in thrombus formation have reduced ability to 

respond to stimuli after bariatric surgery. 

Conclusion 
 
This study provides a comprehensive view of the transcriptional and epigenetic changes 

associated with CMS in three innate immune cell types (monocytes, neutrophils and 

macrophages) and platelets. The integration of multiple -omics data layers allowed us to 

extract the features discriminating between extreme phenotype groups and between these 

and blood donors. Moreover, it allowed us to construct a predictive model that we used to 

rank individuals by their probability of belonging to one of these groups. We also identified 

an extensive rewiring of the transcriptional programs in neutrophils, monocytes, 

macrophages and platelets after bariatric surgery. Only a small proportion of the rewired 

features were a return to the values observed in the lean group, suggesting that bariatric 

surgery does not revert the metabolism to the lean status but rather it defines a new status 

with low inflammation and low thrombotic propensity.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


 

19 

 

Acknowledgments and funding. 
L.S. is supported as PhD student by British Heart Foundation Centre of Excellence ; M.C.S is 

supported by a MRC Clinical Research Training Fellowships (MR/R002363/1) ; D.B.S is 

supported by the Wellcome Trust (WT 107064), the MRC Metabolic Disease Unit 

(MRC_MC_UU_12012.1), and The National Institute for Health Research (NIHR) Cambridge 

Biomedical Research Centre and NIHR Rare Disease Translational Research Collaboration ; 

K.D. is supported as a HSST trainee by NHS Health Education England ; P.D.W.K is supported 

by Medical Research Council (MC_UU_00002/13). The Human Research Tissue Bank is 

supported by the NIHR Cambridge Biomedical Research Centre. 

 

Conflict of interest.  

Authors have no CoI to declare. 

 

Author contributions 
 

Conceptualization, D.S., J.J.L, L.G., L.L.N., M.V., P.D.W.K and M.F.; Methodology, D.S., A.C., 

T.H.C., L.L.N., P.D.W.K and M.F.; Software, D.S., A.C., B.E. and P.D.W.K; Validation, D.S., M.P, 

C.L. and P.D.W.K; Formal analysis, D.S., A.C., T.H.C., B.E., L.L.N., K.D. and P.D.W.K; 

Investigation, D.S., A.C., T.H.C., P.A.Q., L.L.N., A.P., P.D.W.K and M.F.; Data curation, D.S., A.C., 

C.L.A., L.L.N. and P.D.W.K; Writing – Original Draft, D.S., A.C., T.H.C., L.L.N., P.D.W.K and M.F.; 

Writing – Review & Editing, D.S., A.C., M.P, T.H.C., L.S., M.C.S., G.M, S.D., L.L.N., A.P., M.V., 

P.D.W.K and M.F.; Visualization, D.S., A.C., M.P, P.D.W.K and M.F.; Funding Acquisition, M.F.; 

Resources, J.J.L, F.B., S.F, H.M, J.B., C.K., A.K., L.L.N., D.B.S., C.L., C.B., K.D., M.A., M.V. and 

M.F.; Supervision, L.L.N. P.D.W.K. and M.F, Project administration, M.F. 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


 

20 

Legends. 

Figure 1 - Metabolic signatures in obese individuals and lipodystrophy patients.  A. Principal 

component analysis (PCA) of three groups: obese, green; lipodystrophy, blue; and blood 

donors (BD), light red. PCA was performed using the parameters below. B. Representation of 

PCA loadings on: age, weight (BW), body mass index (BMI), leptin-adiponectin ratio (LAR), 

glucose (GLC), triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL-C), low-

density lipoprotein (LDL-C), alanine amino-transferase (ALT), aspartate amino-transferase 

(AST), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and adipose tissue 

insulin resistance (AT-IR) indexes and high-sensitivity C-reactive Protein (hsCRP). Colour and 

arrow length scale represent contribution to variance on the first two principal components. 

C. Metabolite module-trait associations using WGCNA consensus analysis and 988 

metabolites. Each row corresponds to a module eigen-metabolites (ME), and each column to 

a parameter. Number of metabolites in each module is indicated in brackets. Cell colour 

represents Pearson’s correlation as shown by legend. Significance is annotated as follows: * 

P≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 (Fisher’s test p value corrected for multi 

testing). D. Heatmap of patients’ MEs adjacencies in the consensus MEs network. The 

heatmap is color-coded by adjacency, yellow indicating high adjacency (positive correlation) 

and blue low adjacency (negative correlation). E. Beeswarm plot using average MEs per 

cluster presented in D.  

Figure 2 - Transcriptional and epigenetic signatures in obese and lipodystrophy patients for 

three innate immune cell types and platelets. A. Schematic overview of the comparisons 

made in the 4 different cell types (Monocytes: blue ; Neutrophils: green ; Macrophages: 

purple ; Platelets: yellow). B and C. Barplot showing the number of features significantly 

different: H3K27ac distribution (ChIPseq), gene expression (RNAseq) and DNA methylation 

(RRBS). Each bar is color coded to represent the different cell types as in A. B represents 

results when comparing lean and obese individuals. C represents results when comparing lean 

individuals and lipodystrophy patients. D. Functional GO term annotation of up-regulated 

genes when comparing lean versus obese individuals (top) and lean individuals versus 

lipodystrophy patients (bottom), colour coded by cell types as above. The numbers near each 

dot indicate, from left to right: number of submitted genes, number of genes overlapping 

with the category and number of genes in the category.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


 

21 

Figure 3 - Multi-omic signatures of obesity and their use in prediction.  A. Presentation of 

the different layers used for multi-omic integration, the strategy leading to signature 

identification and schematic view of BD ranking. B. Heatmaps showing the mean of the Z-

score distribution for each group, for all features selected in each layer. C. Plots showing 

individuals ranked by their predicted probability of belonging to the obese group, using 

models trained using data from individual layers, as well as a multi-layer predictive model (as 

indicated by the plot titles).  Plots are ordered by decreasing log loss, with smaller values 

corresponding to better discrimination of individuals in the extreme phenotype group from 

all other individuals.  D. Heatmap showing age and sex adjusted association values between 

(left) 8 prioritised lipid species and risk factors measured in the Fenland and present cohorts; 

and (right) a negative control set of 5 unselected lipid species and the same risk factors. Black 

asterisks indicate significant associations after correcting for multiple testing. 

Figure 4 - Effect of bariatric surgery on transcriptional profile, epigenetic landscape and cell 

functions. A. Biochemical values distribution across the four studied groups: obese (dark 

green); lipodystrophy (blue); blood donors (BD) (light red); and post bariatric surgery patients 

(light green). Asterisks indicate result of significance from multiple logistic regression models 

and conditional multiple logistic regression for obese versus post surgery comparison. 

Significance is annotated as follows: * P≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. B. 

Bar Plot shows number of features significantly different when comparing obese individuals 

before and after bariatric surgery, colored by cell types. C. Volcano plot showing differentially 

abundant plasma proteins when comparing obese individuals before and after bariatric 

surgery. Whole blood specific genes associated with differentially abundant proteins have 

been annotated. D. RNAseq expression in the 4 different cell types of highlighted proteins in 

C. Asterisks indicate if the gene was differentially expressed in at least one cell type. E. 

Adhesion percentage of neutrophils measured in the presence of different pro-inflammatory 

molecules in obese (dark green) and post surgery (light green) individuals. Asterisks indicate 

the result of significance from paired t-test. Significance is annotated as follows: * P≤ 0.05, ** 

P ≤ 0.01. 

 

Supplemental figure 1 - Related to Figure 1 - WGCNA analysis with BD individuals metabolite 

values and cluster functional annotation. A. Heatmap of BD individuals eigen-metabolites 

adjacencies in the consensus eigen-metabolites network. Each row and column correspond 
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to one eigen-metabolite (labeled by consensus module color). The heatmap is color-coded by 

adjacency, yellow indicating high adjacency (positive correlation) and blue low adjacency 

(negative correlation) as shown by the color legend. B. Beeswarm plot using average eigen-

metabolites per cluster. Colors indicate cohorts. C. Functional annotation of cluster C1, C2 

and C4. Heatmap shows normalised abundance of metabolites belonging to each functional 

category.  

 

Supplemental figure 2 - Related to Figure 2 - Summary plots of different feature numbers in 

all comparisons. Barplots showing the number of features significantly different for each 

comparison in H3K27ac distribution (ChIPseq), gene expression (RNAseq) and DNA 

methylation (RRBS). Each bar is color coded to represent the different cell types. 

 

Supplemental figure 3 - Related to Figure 3 - Multi-omic signatures of extreme phenotype 

groups and their use in prediction. A. Plots showing individuals ranked by their predicted 

probability of belonging to the obese group. As in Figure 3C, but for the Methylation 

(monocytes), RNAseq (monocytes), Metabolites, and ChIPseq (monocytes) data layers. B. 

Multi-omic model trained using lipodystrophy patients often predicts obese individuals to 

belong to the lipodystrophy group. As in Figure 3C (final plot), but training the multi-layer 

model using the Lipodystrophy and Lean groups (rather than the Obese and Lean groups). 

Using this model, Obese individuals are often predicted as belonging to the Lipodystrophy 

group. 

 

Supplemental figure 4 - Related to Figure 3 - A common pattern of associations between 

the prioritised lipid species and known CMS risk factors. The pattern of association between 

the prioritised lipids and known CMS risk factors in the NASH cohort (NASH cohort; left) agrees 

with the results from the present study (BD cohort; right). 
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Figure 1 - Metabolic signatures in obese individuals and lipodystrophy patients.
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Figure 2 - Transcriptional and epigenetic signatures in obese and lipodystrophy patients for 3 innate 
immune cell types and platelets.
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Figure 3 - Multi-omic signatures of obesity and their use in prediction.
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Supplemental figure 2 - Related to Figure 2 - Summary plots of different feature numbers in all comparisons. 
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Material and methods 
 
The datasets generated during this study are available at EGA under study ID 

EGAS00001003780.  

The codes generated during this study are available at GitLab 

https://gitlab.com/dseyres/extremephenotype. 

Patients recruitment and ethics 

Obese individuals referred for obese surgery by the obesity clinic and lipodystrophy patient 

cared for by the National Severe Insulin Resistance Service respectively, both based at 

Addenbrooke’s hospital, Cambridge University Hospitals were recruited to this study together 

with healthy individuals. Informed consent was obtained under the “Inherited Platelet 

Disorders” ethics (REC approval 10/H0304/66 for patients and 10/H0304/65 for healthy 

controls, NRES Committee East of England-Cambridge East). 

BluePrint work package 10 (WP10) volunteers (representing the blood donors, “BD”, cohort) 

were recruited amongst NHS Blood and Transplant donors after informed consent under the 

“A Blueprint of Blood Cells” ethical approval (REC approval 12/EE/0040 NRES Committee East 

of England-Hertfordshire).  

“BioNASH” Cohort consisted of 73 consecutive patients recruited at the NASH Service at the 

Cambridge University Hospital. All the patients had a clinical diagnosis of NAFLD (patients with 

alternate diagnoses and etiologies were excluded) and histology scored. This study was 

approved by the local Ethics Committee; all patients gave their informed consent for the use 

of data (Biochemistry and clinical history) and samples for research purposes. The principles 

of the Declaration of Helsinki were followed. 

 

Cell types isolation 

Whole blood (50ml) in citrate tubes was obtained after informed consent. Platelet rich plasma 

(PRP) was separated from the cellular fraction by centrifugation (20’, 150g and very gentle 

break) for platelet isolation. Platelets were then isolated from PRP after 2 more spins as above 

and leukodepleted using anti CD45 Dynabeads (Thermofisher) following the manufacturer's 

instructions. Purified platelets were stored in TRIzol (Invitrogen) until RNA extraction. The 
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remaining cells were resuspended in buffer 1 and separated on a Percoll gradient. Neutrophils 

were harvested from the red blood cell pellet after red cell lysis (4.15 g NH4Cl, 0.5 g KHCO3 

and 18.5 mg EDTA (triplex III, 0.01%) in 500 ml of water) and aliquots prepared for RNA 

extraction (TRIzol), DNA extraction for RRBS (snap frozen pellet) and ChIPseq (formaldehyde 

fixation, see below). Monocytes were isolated from the peripheral blood mononuclear cell 

(PBMC) layer by CD14 positive selection (Miltenyi) and aliquots prepared for RNA extraction 

(TRIzol), DNA extraction for RRBS (snap frozen pellet) and ChIPseq (formaldehyde fixation, see 

below). Macrophages were cultured by plating 14*106 PBMC resuspended in 2 ml 

macrophage media (Macrophage-SFM [with L-Glutamine without Antibiotics], Fisher 

Scientific UK LTD). After 1h 30’ non adherent cells were removed and 1 ml fresh macrophage 

media added together with 400 𝜇l of autologous serum. Culture media was replaced after 3 

or 4 days. On day 7 cells were harvested for RNA extraction (TRIzol), DNA extraction for RRBS 

(snap frozen pellet) and ChIPseq (formaldehyde fixation). Cell purity was determined by flow 

cytometry as follows: neutrophils CD66b (BIRMA17c, FITC, 9453 https://ibgrl.blood.co.uk/), 

CD16 (VEP13, PE, 130-091-245 Miltenyi) and CD45 (HI30, PE-CY5.5, MHCD4518 Invitrogen); 

monocytes CD14 (MφP9, FITC, 345784 BD), CD16 (B73.1 / leu11c, PE, 332779 BD), CD64(10.1, 

PerCP-Cy5.5, 561194 BD), CD45 (HI30, PE-CY7, MHCD4512 Invitrogen); macrophages panel 1: 

CCR7/CD197 (150503, FITC 561271 BD), CD25-PE MACS 120-001-311 (10ul/test), CD14 (TuK4, 

PE-Cy5.5, MHCD1418 Invitrogen), CD40 (5C3, PE-Cy7, 561215 BD). Panel 2: CD206 (19.2, PE, 

555954 BD), CD36 (SM𝜱, FITC, 9605-02 Southern Biotech), CD45 (HI30, PE-Cy5.5, MHCD4518 

Invitrogen). Samples whose purity was below 90% were discarded. BD samples isolation has 

been extensively described in Chen et al.. 

RNA sequencing  

RNA extraction 

RNA extraction from samples stored in TRIzol was performed following the manufacturer's 

instructions. Briefly, tubes were retrieved in small batches and thawed on ice. Prior to 

extraction samples were vortexed for 30” to ensure complete lysis and let for 5’ at room 

temperature. Samples were then transferred to heavy phase lock tubes (5prime) to separate 

RNA in the aqueous phase from the organic phase. RNA was precipitated from the former 

with isopropanol and glycogen. The RNA pellet was resuspended in RNase free water. Purified 
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RNA was stored in single use aliquots. Each sample was quality controlled by a Bioanalayser 

(Agilent) and quantified via Qubit (Thermofisher).  

 

Library preparation and sequencing 

For cell types isolated from obese and lipodystrophy patients and day controls we used 100 

ng of total RNA for neutrophils, monocytes and macrophages and 200 ng for platelets. o 

libraries were prepared for sequencing using the Kapa stranded RNAseq kit with riboerase 

(Roche) according to the manufacturer's instructions and sequenced 150bp paired end on 

Illumina HiSeq 2500 or Illumina HiSeq 4000. BD RNAseq data (extensively described in Chen 

et al.(Chen et al., 2016)) were retrieved from European Genome-phenome Archive (EGA) - 

EMBL-EBI after application to the Data Access Committee.  

 

Quantification 

FastQ files were first checked for sequencing quality using FastQC (v.0.11.2) 

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and quality trimmed with 

TrimGalore! (v.0.3.7) [https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/].  

Transcript-level abundance was estimated using Kallisto (v0.42)(Bray et al., 2016) with 100 

bootstrap iterations in single-end mode for extreme phenotype samples in order to minimize 

technical batch effect with BD cohort. Transcript abundances were then summarized to gene-

level with Tximport R package (v1.9) (Soneson, Love and Robinson, 2015) by using tximport 

function and Ensembl reference transcriptome (Ensembl Genes 96)(Soneson, Love and 

Robinson, 2015; Zerbino et al., 2018). This step provides an input count matrix for DESeq2 

(v.1.21.21)(Love, Huber and Anders, 2014). DESeq2 was used to normalize counts by library 

size and transformed by variance stabilisation (VST). We corrected for sequencing batch effect 

by using Combat (from sva R package (v.3.29.1))(Leek et al., 2012; Love, Huber and Anders, 

2014) and individual status as covariate. Non-autosomal genes and those with no or low 

variance across individuals were removed. The final gene sets (including coding and non-

coding genes) were formed of 10,925 genes for monocytes and of 26,634 for neutrophils.  
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Differential analysis 

For differential analysis, transcript-level abundance was estimated by Kallisto with 100 

bootstrap iterations in paired-end mode for each group (obese, post surgery, lipodystrophy 

patients and lean individuals) using Ensembl reference transcriptome (Ensembl Genes 96). 

Transcript abundances were then summarized to gene-level with Tximport R package (v1.9) 

by using tximport function and DESeq2 object was created using DESeqDataSetFromTximport 

function from DESeq2 R package (v.1.21.21). Differential analysis was performed using Deseq 

function from DESeq2 and we used age and gender as covariates. Log fold changes were 

corrected with lfcShrink function from DESeq2. Genes with FDR < 5% were marked as 

differentially expressed. For obese versus post surgery comparison, we considered only 

paired samples 

([S01RS6;S022QS][S01Y9G;S022UK][S01WCI;S0232Z][S01TEQ;S0234V][S01WXD;S023EB][S01

WFC;S023F9][S01Y7K;S023H5][S022TM;S023PQ][S01XJ0;S023RM][S01SYR;S0240Z][S022GB;

S0245P]) and therefore performed a paired analysis by adding relationship information as 

covariate in the design formula. 

Functional annotation was performed with genes differentially expressed for each cell-types 

and comparisons, taking into account fold change direction. Lists of genes were submitted to 

EnrichR using the R package EnrichR (v.1.0) (E. Y. Chen et al., 2013; Kuleshov et al., 2016) and 

the following databases: BioCarta_2016, DSigDB, GO_Biological_Process_2018, 

GO_Cellular_Component_2018, GO_Molecular_Function_2018, HMDB_Metabolites, 

KEGG_2019_Human, Reactome_2016 and WikiPathways_2015. To facilitate gene lists 

submission, we developed an R shiny interface to EnrichR 

(https://blueprint.haem.cam.ac.uk/EnrichR_Interface/).  

 

Chromatin Immunoprecipitation sequencing  

Sample preparation 

Cells were fixed immediately after purification with 1% w/v formaldehyde for 10 min and 

quenched using 125 mM glycine before washing with PBS. Samples were sonicated using a 

Bioruptor (Diagenode), final SDS concentration of 0.1% w/v for 9 cycles of 30 s ‘on’ and 30 s 

‘off’, and immunoprecipitated using an IP-Star Compact Automated System (Diagenode) using 

the histone H3K27ac antibody C15410196 (lot 1723-0041D) Diagenode. Immunoprecipitated 
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and input DNA were reverse cross-linked (65 C for 4 h), treated with RNase and Proteinase K 

(65 C for 30 min).  

Library preparation and sequencing 
DNA was recovered with Concentrator 5 columns (Zymo) and prepared for sequencing using 

MicroPlex Library Preparation Kit v2 (C05010012, Diagenode). Libraries analysed using High 

Sensitivity Bioanalyzer chips (5,067–4,626, Agilent), quantified using qPCR Library 

Quantification Kit (KK4824, Kapa Biosystems), pooled and sequenced with a 50bp single end 

protocol on Illumina HiSeq 2500 or Illumina HiSeq 4000. 

Peak calling and quantification 
FastQ files were first checked for sequencing quality using FastQC (v.0.11.2) and quality 

trimming were applied on reads with TrimGalore! (v.0.3.7). Trimmed FASTQ files were aligned 

to the human genome (Ensembl GRCh38.80) with BWA (v.0.7.12)(Li and Durbin, 2010) aln and 

samse functions with default parameters. Low mapping quality reads (-q 15), multi-mapped 

and duplicate reads were marked and removed with respectively samtools (v.1.3.1)(Li et al., 

2009) and picard (http://broadinstitute.github.io/picard v.2.0.1). 

A combination of quality metrics was used to assess sample quality: number of uniquely 

mapped reads, number of called peaks, NSC (Normalized strand cross-correlation) and RSC 

(relative strand cross-correlation) computed with Phantompeakqualtools (v.1.2)(Kharchenko, 

Tolstorukov and Park, 2008; Landt et al., 2012), area under the curve (AUC), X-intercept and 

Elbow Point computed with plotFingerPrint function from deepTools suite (v.3.0.2)(Ramírez 

et al., 2016) with --skipZeros --numberOfSamples 50000 options. Peaks were called with 

MACS2 (v.2.1.1) with --nomodel --shift -100 --extsize 200, a qvalue threshold of 1e-3 options 

and celltype matching input file scaled to sample read number. We used MACS2 randsample 

function to downscale inputs. We then computed a score by summing values obtained for 

each range of these metrics. We applied a threshold of -3 (total) to select the best quality 

data.  
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To build ChIPseq layer for integrative analysis, we defined a master set of peaks and quantified 

H3K27ac ChIPseq signals under these peaks. Peaks shared by at least 5 individuals were 

merged using R package DiffBind (v2.9)(Ross-Innes et al., 2012). We obtained 67,763 and 

49,188 peaks for monocytes and neutrophils, respectively. Minimum merged peak size was 

244bp and 235bp, median peak size 1,392bp and 1,648bp and maximum peak size 75,534bp 

and 60,528bp for monocytes and neutrophils, respectively. We didn’t filter out very large 

merged peaks as they represent less than 3% of total peaks and indicate large acetylated 

regions. Read counts under merged peaks were TMM normalized using effective library size 

and logit transformed into count per million (CPM). Sequencing center batch effect was 

corrected with Combat (from sva R package (v.3.29.1)) using individual status (Patient/Donor) 

as covariate. Non-autosomal and no or low variance peaks across individuals were removed. 

The final master set of peaks counted 25,595 regions in monocytes and 26,300 regions in 

neutrophils.  

Differential analysis 
For differential analysis, we used DiffBind with the built-in DEseq2 method for statistical 

analysis. We merged peaks present in at least 50% of individuals and asked that all individuals 
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have a FRiP value (Fraction of Reads in Peaks) over 5%. We then applied a FDR threshold of 

5% to select H3K27ac peaks differentially acetylated peaks. We used age and gender as 

covariates. For obese versus post surgery comparison, we considered only paired samples and 

therefore performed a paired analysis by using the block factor in DEseq2. Differentially 

acetylated regions (DAcR) were annotated with HOMER (v.4.10)(Heinz et al., 2010), 

annotatePeak function and Hg38 RefSeq genome annotation 

(http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip).  

Functional annotation was performed on genes within a window of 10kb around each DAcR, 

taking into account fold change direction. Similarly to RNAseq, lists of genes were submitted 

to EnrichR interrogating the same databases.  

Illumina 450K arrays and reduced representation bisulfite sequencing (RRBS) 

Arrays and libraries preparation and sequencing 
BD Infinium Human Methylation 450 arrays (Illumina) were retrieved from the European 

Genome-phenome Archive (EGA) - EMBL-EBI. DNA extraction and array generation have been 

described in detail in Chen et al.(Chen et al., 2016). Briefly, cells were lysed using guanidine 

hydrochloride, sodium acetate and protease lysis buffer. DNA was extracted using chloroform 

and precipitated in ethanol prior to washing and resuspension in ultra-pure water. 500ng of 

DNA for each monocyte and neutrophil sample was randomly dispensed onto a 96-well plate 

to reduce batch effects. Samples were bisulfite-converted using an EZ-96 DNA Methylation 

MagPrep Kit (Zymo Research) following the manufacturer’s instructions with optimized 

incubation conditions (i.e., 16 cycles of 95C for 30 s, 50C for 60 min; followed by 4C until 

further processing). Purified bisulfite-treated DNA was eluted in 15 mL of M-Elution Buffer 

(Zymo Research). DNA methylation levels were measured using Infinium Human Methylation 

450 arrays (Illumina) according to the manufacturer’s protocol. 

For RRBS, 100 ng of genomic DNA were digested for 6h at 65°C with 20 U TaqI (New England 

Biolabs) and 6h hours at 37°C with 20 U of MspI (New England Biolabs) in 30 μl of 1x NEBuffer 

2. To retain even the smallest fragments and to minimize the loss of material, end preparation 

and adaptor ligation were performed in a single-tube setup. End fill-in and A-tailing were 

performed by addition of Klenow Fragment 3’ --> 5’ exo- (Enzymatics) and dNTP mix (10 mM 

dATP, 1 mM dCTP, 1 mM dGTP New England Biolabs). After ligation to methylated Illumina 

TruSeq LT v2 adaptors using T4 DNA Ligase rapid (Enzymatics), the libraries were size selected 
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by performing a 0.75x clean-up with AMPure XP beads (Beckman Coulter). The libraries were 

pooled based on qPCR data and subjected to bisulfite conversion using the EZ DNA 

Methylation Direct Kit (Zymo Research) with changes to the manufacturer’s protocol: 

conversion reagent was used at 0.9x concentration, incubation performed for 20 cycles of 1 

min at 95°C, 10 min at 60°C and the desulphonation time was extended to 30 min. These 

changes increase the number of CpG dinucleotides covered, by reducing double-strand break 

formation in larger library fragments. Bisulfite-converted libraries were enriched KAPA HiFi 

HS Uracil+ RM (Roche). The minimum number of enrichment cycles was estimated based on 

a qPCR experiment. After a 1x AMPure XP clean-up, library concentrations were quantified 

with the Qubit Fluorometric Quantitation system (Life Technologies) and the size distribution 

was assessed using the Bioanalyzer High Sensitivity DNA Kit (Agilent).  

 
Processing and quantification 
All Infinium Human Methylation 450 array data pre-processing steps were carried out using 

established analytical methods incorporated in the R package RnBeads (v.1.13.4)(Müller et 

al., 2019). First, we performed background correction and dye-bias normalization using 

NOOB(Triche et al., 2013), followed by normalization between Infinium probe types with 

SWAN(Maksimovic, Gordon and Oshlack, 2012). Next, we filtered out probes based on the 

following criteria: median detection p value 0.01 in one or more samples; bead count of less 

than three in at least 5% of samples; ambiguous genomic locations(Nordlund et al., 2013); 

cross-reactive and SNP-overlapping probes(Y.-A. Chen et al., 2013). 

The RRBS samples were sequenced on Illumina HiSeq3000 platform in 50bp single-end mode. 

Base calling was performed by Illumina Real Time Analysis (v2.7.7) software and the base calls 

were converted to short reads using Illumina2bam (1.17.3 https://github.com/wtsi-

npg/illumina2bam) tool before de-multiplexing (BamIndexDecoder) into individual, sample-

specific BAM files. Trimmomatic (v0.32)(Bolger, Lohse and Usadel, 2014) was used for 

trimming the adapter sequences. Trimmed short read sequences were aligned onto the 

GRCh38/hg38 human reference genome with BSMAP(v2.90)(Xi and Li, 2009) aligner in RRBS 

mode which was optimized for aligning the RRBS data while being aware of the restriction 

sites and with the following options: -D C-CGG -D T-CGA -w 100 -v 0.08 -r 1 -p 4 -n 0 -s 12 -S 0 

-f 5 -q 0 -u -V 2. R package RnBeads was used to filter out low confidence sites: sites 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


 

31 

overlapping any SNP, having a coverage lower than 5 and high coverage or missing in more 

than 5% or individuals were filtered out.  

Integration analysis required to attenuate technology effect between 450K arrays and RRBS. 

To this goal, we generated RRBS data for 14 BluePrint donors for which we already have 450K 

array data in monocytes, and 9 in neutrophils. We first removed non reproducible sites 

between technologies as follows: for monocytes and neutrophils, 1) liftover 450K sites to 

Hg38 using UCSC liftover tool(Kent et al., 2002), 2) keep overlapping sites between array and 

RRBS, 3) filter out sites with high variation in methylation percentage observed in more than 

70% of individuals. We excluded 844 and 1,127 sites for monocytes and neutrophils 

respectively. We have also excluded sites on sex chromosomes and imputed missing values 

using KNN networks (impute.knn function from impute R package (v.1.55.0)) [Hastie T, 

Tibshirani R, Narasimhan B, Chu G (2019). impute: impute: Imputation for microarray data.] 

with 10 nearest neighbors. 

Finally, we adjusted for batch effects using an empirical Bayesian framework, as implemented 

in the ComBat function of the R package SVA (v.3.29.1) and individual status as covariate, 

transformed beta values to M values using beta2m function in R package lumi (v.2.33.0)(Du, 

Kibbe and Lin, 2008; Du et al., 2010), normalize by quantile using normalize.quantiles function 

from R package preprocessCore (v.1.43.0) [Bolstad B (2019). preprocessCore: A collection of 

pre-processing functions.] and remove zero or low variance sites. The final data matrix used 

for multi-omic integration, comprised DNA methylation M-values across 24,311 CpG sites and 

210 samples in monocytes and 24,217 CpG sites and 203 samples in neutrophils. 

 

Differential analysis 

For differential analysis, we used the methylKit R package (v.1.8.1)(Akalin et al., 2012) and we 

compared only RRBS data. We first extracted methylation ratios from BSMAP mapping results 

with methratio.py python script provided with BSMAP. We then removed all sex 

chromosomes sites and filtered out non-retained sites from RnBeads RRBS processing. Finally, 

we used the methRead function from methylKit R package in CpGs context at base resolution 

to read in the input files and calculateDiffMeth function correcting for overdispersion 

(overdispersion="MN") and applying Chisq-test. We used age and gender as covariates. Q 

Values are then computed using the SLIM method(Wang, Tuominen and Tsai, 2011; Akalin et 

al., 2012). We applied two thresholds: difference of methylation > 25 and qvalue < 0.05 and 
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retrieved differentially methylated sites (DMS) with getMethylDiff function specifying 

type=”hypo” or type=”hyper” option to get down and up methylated CpGs respectively. 

For obese (pre) versus post surgery comparison, we considered only paired samples and 

therefore performed a paired analysis. DMS were annotated with HOMER (v.4.10), 

annotatePeak function and Hg38 RefSeq genome annotation 

(http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip).  

Functional annotation was performed on genes within a window of 10kb around each DMS, 

taking into account fold change direction. Similarly to RNAseq and ChIPseq, lists of genes were 

submitted to EnrichR interrogating the same databases.  

Plasma biochemistry assays 

Plasma biochemistry assays were performed in the Core Biochemical Assay Laboratory, 

Cambridge University Hospitals (https://www.cuh.nhs.uk/core-biochemical-assay-

laboratory) as described in supplementary material and methods. Homeostatic Model 

Assessment for Insulin Resistance (HOMA) score as follows: (glucose (mg/dL) x insulin 

(mIU/L)) / 405, and adipose tissue insulin resistance (AT) score as follows: insulin (µU/mL) x 

free fatty acids (mmol/L). 

Plasma metabolites measurement 

Metabolites quantification 
Metabolites profiling of obese and lipodhystrophy patients, day controls and blood donors 

(BD participants) was performed by Metabolon Inc. (https://www.metabolon.com/) using 

their standard protocol (see extended Methods). Briefly, Metabolon analytical platform 

incorporates two separate ultra-high performance liquid chromatography/tandem mass 

spectrometry (UHPLC/MS/MS2) injections and one gas chromatography GC/MS injection per 

sample. The UHPLC injections are optimized for basic species and acidic species. The numbers 

of compounds of known structural identity (named biochemicals) as well as compounds of 

unknown structural identity (unnamed biochemicals) detected by this integrated platform 

were respectively of 793 and 362 for the first batch and 947 and 433 for the second batch 

(with an overlap of 786 and 359 compounds respectively). All samples were rescaled to set 

the median to 1, missing values were imputed using KNN networks (impute.knn function from 

impute R package (v.1.55.0) with the following options: number of nearest neighbors=10, 
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maximum missing values per metabolites < 50% and maximum missing values for individuals 

< 80%.) Finally, we adjusted for batch effects using the ComBat function of the R package SVA 

(v.3.29.1) and individual status as covariate. 

Plasma lipids measurement 

Plasma was frozen in dry ice immediately after collection and stored at -80C until analysis. 

Samples were prepared essentially as previously described(O’Brien et al., 2019). Briefly, a 15 

μL sample, controls and blanks were placed in a predefined random order across 96-well 

plates (Plate+, Esslab, Hadleigh, UK). To which, 750 µL methyl tert-butyl ether was added, 

along with 150 µl of internal standard mix, containing the following six internal standards (IS): 

1,2-di-o-octadecyl-sn-glycero-3-phosphocholine (0.6 µM), 1,2-di-O-phytanyl-sn-glycero-3-

phosphoethanolamine (1.2 µM), C8-ceramide (0.6 µM), N-heptadecanoyl-D-erythro-

sphingosylphosphorylcholine (0.6µM), undecanoic acid (0.6µM), and trilaurin (0.6 µM), 

(Avanti Polar Lipids and SIgma Aldrich). Quality controls were derived from pooling all samples 

and serially diluting with chloroform. 25 µl of the sample/IS mixture was transferred to a glass 

coated 384 well plate and 90µl mass spectrometry (MS) mix [7.5mM NH4Ac IPA:MeOH (2:1)] 

added and then sealed. Lipidomics was performed using chip-based nanospray with an Advion 

TriVersa Nanomate (Advion) interfaced to the Thermo Exactive Orbitrap (Thermo Scientific). 

Briefy, a mass acquisition window from 200 to 2000 m/z and acquisition in positive and 

negative modes were used with a voltage of 1.2kV in positive mode and −1.5 kV in negative 

mode and an acquisition time of 72 s. Raw spectral data were processed as previously 

described(Eiden et al., 2015). Raw data were then converted to .mzXML 

(usingMSconvert(Race, Styles and Bunch, 2012) with peakpick level 1), parsed with R and 50 

spectra per sample (scan from 20 to 70) were averaged using XCMS42, with a signal cutoff at 

2000. Te fles were aligned using the XCMS(Smith et al., 2006; Tautenhahn, Böttcher and 

Neumann, 2008) grouping function using “mzClust” with a m/z-window of 22 ppm and a 

minimum coverage of 60%. Compound annotation was automated using both an exact mass 

search in compound libraries as well as applying the referenced Kendrick mass defect 

approach. Signal normalisation was performed by summing the intensities of all detected 

metabolites to a fixed value to produce a correction factor for the efficiency of ionisation. 

Exact masses were fitted to the lipid species library and subsequently annotated to the peak 

as described before(Sanders et al., 2018).  
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Plasma proteomics 

Sample preparation 
Plasma was precleared by centrifugation at 3,000 g for 10 minutes and bound to 100 µL of 

calcium silicate matrix (CSM, 4 mg/mL) by rotation for 1 hour. The sample was centrifuged at 

14,000 g for 1 minute and the supernatant was removed for further analysis. The pellet was 

washed in ammonium bicarbonate (50 mMoL, 1 mL) 3 times using the same centrifugation 

settings. The sample was then reduced for 30 minutes at 65°C using 200 µL of DL-dithiothreitol 

(DTT) premix (ADC 2%: ammonium bicarbonate 50 mMoL: DTT 1 MoL in the ratio of 50:49:1) 

and alkylated for 30 minutes in the dark with iodoacetamide (IAA) at 20 mMoL. Ammonium 

bicarbonate was added to dilute the ADC to 0.5%. Trypsin was added in the ratio of 1:25 

trypsin to plasma and incubated overnight at 37°C. The ADC was precipitated with 1% formic 

acid (FA) and centrifuged at 14,000 g for 10 minutes. The peptides were isolated using solid 

phase EMPORE C18 discs which had been washed with 1 stem of methanol and 3 stem of 

0.1% FA. The sample was left to bind to the column for 30 minutes before washing with 0.1% 

FA and eluting with 60% acetonitrile (ACN) with 0.1% FA and then 80% ACN with 0.1% FA. The 

ACN was removed by speed vacuum for 1 hour 15 minutes and freeze dried overnight. Peptide 

suspended in 30 µL of 0.1% FA and a peptide assay was performed to calculate the amount 

of peptides. 10 µL of peptides were removed from each sample and 0.1% FA added to equalise 

the volume and spiked with an internal standard protein (yeast alcohol dehydrogenase, ADH), 

with a known amount of 50 fmol injected for each run.  

 
Waters NanoAcquity UPLC and Synapt G2S 
Sample separation was performed using an Acquity UPLC Symmetry C18 trapping column 

(180 µm x 20mm, 5 µm) to remove salt and other impurities and a HSS T3 analytical column 

(75µm x 150mm, 1.8µm). Solvent A was compromised on 0.1% FA in HPLC grade water and 

solvent B contained 0.1% FA in ACN.  
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Time 
(minute) 

Flow rate 
(µL/minute) 

Solvent A 
(Water + 0.1% FA) 

Solvent B 
(ACN + 0.1% FA) 

3 0.3 97 3 

20 0.3 86 14 

30 0.3 80 20 

40 0.3 75 25 

51-52.2 0.3 69 31 

53-53.1 0.3 65 35 

54 0.3 63 37 

55 0.3 58 42 

63 0.3 31 69 

65 0.3 97 3 

80 0.3 50 50 

80.5 0.3 10 90 

82.2-87.5 0.3 97 3 

99.5 0.3 50 50 

101.5 0.3 10 90 

103.5-110 0.3 97 3 

  
 
Table above shows the gradient in 110 minutes of solvent A and B used in LC ESI-MS/MS 

analysis. The flow rate of solvents was 0.3 µL/minute. Coupled directly to the Nano Acquity 

UPLC was a Water Synapt G2S mass spectrometer (Waters Corporation, Manchester, UK). The 

Synapt G2S includes a nano electrospray ionisation (ESI), StepWave ion guide, Quadrupole, 

TriWave and TOF (Supplementary Figure 2).  

Proteomic data processing and analysis 

Progenesis QI for Proteomics (Nonlinear Dynamics, Waters Corporation, UK) was employed 

to identify and quantify proteins. The human database from UniProtKB was downloaded and 

used in FASTA format. The proteomic raw data was searched using strict trypsin cleavage rules 

with a maximum of two missed cleavages. Cysteine (Carbamidomethyl C) was set as a fixed 
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modification. Deamination N, Oxidation M and Phosphoryl STY were selected as variable 

modifications. Minimum of 2 fragments per peptide, minimum of 5 fragments per protein and 

minimum of 2 peptides per protein were set for parameters of identification. The maximum 

protein mass was set to 1000 kDa. The false rate discovery (FDR) for protein identification was 

set at a maximum rate of 1%. Then, proteomic data generated from using the Progenesis QI 

was exported to Microsoft Excel for further data analysis.  

For differential analysis, we used LIMMA (v.3.37.4)(Ritchie et al., 2015). Because we 

compared obese and post surgery patients, we performed a paired analysis. We then applied 

a threshold of 0.1% on ordinary qvalue.  

To define whole blood specific genes, we exported GTEx project(Carithers et al., 2015) 

expression table (in TPMs), converted it into SummarizedExperiment container using 

SummarizedExperiment R package ((v.1.11.6); Morgan M, Obenchain V, Hester J, Pagès H 

SummarizedExperiment: SummarizedExperiment container. (2019)) and used 

teGeneRetrieval function from the TissueEnrich R package (v.1.2.1)(Jain and Tuteja, 2019). 

This package relies on Human Protein Atlas(Uhlén et al., 2015) to grouped genes as follows: 

Tissue Enriched (Genes with an expression level greater than 1 TPM that also have at least 

five-fold higher expression levels in a particular tissue compared to all other tissues), Group 

Enriched (Genes with an expression level greater than 1 TPM that also have at least five-fold 

higher expression levels in a group of 2-7 tissues compared to all other tissues, and that are 

not considered Tissue Enriched) and tissue Enhanced (Genes with an expression level greater 

than 1 TPM that also have at least five-fold higher expression levels in a particular tissue 

compared to the average levels in all other tissues, and that are not considered Tissue 

Enriched or Group Enriched). With default parameters, we identified 693 whole blood specific 

genes. Finally we interesected genes coding for differentially abundant proteins and whole 

blood specific genes.  

  
Weighted correlation network analysis (WGCNA)  
WGCNA(Zhang and Horvath, 2005) is a correlation-based method that describes and 

visualizes networks of data points, whether they are gene expression estimates, metabolite 

concentrations or other phenotypic data. To increase statistical power, we merged the 

patient groups under the assumption that they share similar associations of metabolites and 

phenotypic traits. We followed the protocols of WGCNA to create metabolic networks. 
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Metabolites are clustered into co-abundant "modules". Low correlations can be suppressed 

either in a continuous ("soft") manner or the discontinuous ("hard") thresholding used in 

constructing unweighted networks. To maintain scale-free topology, we estimated an applied 

power by computing soft-threshold with pickSoftThreshold function from WGCNA R package 

(v.1.64-1) (Langfelder and Horvath, 2008). To build network, we used blockwiseModules 

function with the following options: TOMType = "signed", minModuleSize = 20, 

reassignThreshold = 0, mergeCutHeight = 0.25 and corType="bicor". Each obtained module is 

notated by a unique color. Additionally, we assigned a name to each consensus module. Each 

module abundance profile can be summarised by one representative metabolite: the module 

eigen metabolite. Specifically, the module eigen metabolite was defined as the first right-

singular vector of the standardized module expression data(Langfelder and Horvath, 2007). 

We performed 3 analysis: extreme phenotypes (obese individuals and lipodystrophy patients 

were combined to get minimal sample size for network analysis), donors (all BD individuals) 

and a consensus analysis. We identified 8, 22 and 16 modules with donors, patients and 

consensus data respectively. Regarding consensus analysis, we considered 988 metabolites, 

of these, 375 were assigned to 15 different modules and the remaining 613 were put in an ad 

hoc extra module because they did not show any correlation. We computed eigenmodule and 

biochemical parameters correlations (leptin-adiponectin ratio (LAR), glucose (GLC), 

triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL-C), low-density 

lipoprotein (LDL-C), alanine amino-transferase (ALT), aspartate amino-transferase (AST), 

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and adipose tissue insulin 

resistance (AT-IR) indexes and high-sensitivity C-reactive Protein (hsCRP) and also weight 

(WGT), BMI and age) using cor function from stats R base package (R version 3.5.0) and 

pearson method (default). P Value of each correlation was computed using corPvalueStudent 

function from WGCNA R package.  

Pathways enrichment analysis were performed with MetaboAnalyst(Chong, Yamamoto and 

Xia, 2019) and in particular Pathway analysis module by submitting combined list HMDB 

identifiers for clusters C1 and C2, hyper-geometric test, relative-betweenness centrality 

topology analysis and KEGG database. In addition, we submitted these lists to the Reactome 

database.  
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Multi-omic integration 

Training datasets 
We identified 16 BD individuals as controls, according to the following criteria: BMI < 25, 

glycaemia (GLUC) <5.4 mmol/L, TG <1.7 mmol/L, LDL <2.59 mmol/L, HDL >1 mmol/L for men 

and >1.3 mmol/L for women, HOMA score< 2.2. For training the multi-omics predictive model 

(see below), we used a reduced training dataset comprising the subset of individuals having 

measurements across all omics layers. This reduced set comprised 6 controls, 6 obese 

individuals and 10 lipodystrophy patients. For the clinical data, we first used multiple 

imputation by chained equations, as implemented in the mice R package (with default 

options) to impute missing values before construction of the training dataset.  We used the 

same method to impute missing clinical values in the NASH cohort.  

 

Variable selection: multivariable regression approach  

For each of the omics layers considered independently, we used elastic-net penalised logistic 

regression as implemented in the glmnet R package to identify putative signatures that 

discriminated between all patients (i.e. lipodystrophy + obese) versus controls. We adjusted 

for age and sex by including them as unpenalised covariates in the multivariable model.  The 

elastic-net ɑ parameter was fixed at ɑ = 0.1, while the λ parameter was determined using 

cross-validation. Since different cross-validation splits resulted in different choices for λ, we 

performed multiple rounds of cross-validation, and used the value of λ that resulted in the 

maximum number of selections.  

 

Clinical predictive model  
We trained a ridge-penalised logistic regression model predictive of the binary response (i.e. 

patient/control status) using the clinical training dataset.  

 

Multi-omics predictive model  
We used the omic variables selected by the multivariable approach described above, together 

with the clinical covariates, to train a ridge-penalised logistic regression model predictive of 

the binary response (i.e. patient/control status). We fitted this model using the reduced 

training dataset. We used this model to make predictions for the 96 individuals for which we 

had measurements across all omics layers. To allow us to make predictions for those 
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individuals for which we only had measurements on a subset of the omics datasets, we 

additionally fitted models to each combination of subsets. 

 
Validation of selected lipids 
To further investigate the lipidomic signature, we prioritised a reduced set of 9 lipid species 

that had been selected into the signature. These 9 species satisfied the following criteria: (1) 

they were selected into the lipidomic signature; and (2) using the Mann-Whitney test with 

Storey’s q-value method to correct for multiple testing, we were able to reject the null 

hypothesis of no difference in distribution for these lipids in all of the following comparisons: 

(i) obese vs. control; (ii) lipodystrophy vs. control; and (iii) {obese and lipodystrophy} vs. 

control. All tests were performed using data from the present study only. Of these 9 species, 

we were able to match 8 with lipid species that had been quantified in a subset of 1,507 

participants of the Fenland study(Sanders et al., 2018; Lindsay et al., 2019) which is a 

population-based cohort of 12,345 volunteers without diabetes born between 1950 and 1975 

and recruited within the Cambridgeshire region between 2005 and 2015. We used linear 

regression analysis to test for association between plasma levels of the 8 lipid species selected 

into the lipidomic signature and all relevant CMS parameters quantified in both the reduced 

Fenland cohort, and the BD cohort, adjusting for age and sex, and using the Bonferroni 

method to control for multiple testing. To create a negative control set, we identified lipids 

that satisfied the following criteria: (1) they were not selected into the lipidomic signature; 

(2) they could be matched with lipid species that had been quantified in the reduced Fenland 

cohort; and (3) using the Mann-Whitney test with Storey’s q-value method to correct for 

multiple testing, we were unable to reject the null hypothesis of no difference in distribution 

for these lipids in any of the following comparisons: (i) obese vs. control; (ii) lipodystrophy vs. 

control; and (iii) {obese and lipodystrophy} vs. control. There were 37 lipid species that 

satisfied these criteria. We ranked these according to their mean absolute Pearson correlation 

with the 9 prioritised lipid species, and selected the 5 lowest ranking as our negative control 

set.  
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Functional tests 

Neutrophils Adhesion Method: 

Polymorphonuclear granulocytes were isolated via density gradient (1.078g/mL) from 3.2% 

sodium citrated whole blood within 2hours of venipuncture. Neutrophil purity was assessed 

by haematology analyser (Sysmex, XN-450) to ensure purity levels were satisfactory (≥90%) 

for subsequent functional assays. Isolated cells were incubated in a water bath at 37C for 30 

minutes with fluorescently labelled Calcein-AM (4ug/mL, Molecular probes). Cells were 

washed twice with 1x PBS and resuspended at 2x106/ml in HEPES complete medium 

supplemented with calcium (1mM). 1.6x105 fluorescently labelled neutrophils were then 

added to relevant duplicate wells in a 96-well plate containing the following stimuli; fMLP, 

10µM; DTT, 10mM; Pam3Cys, 20µg/ml; LBP+LPS, 50ng/mL and 20ng/mL; PAF, 1µM; PMA, 

1µg/mL; TNF, 10ng/mL or HEPES only as a control in a final volume of in 100µl. Cells were 

incubated for 30 minutes at 37C in a 5% CO2 incubator, after which they were washed twice 

using 1x PBS before lysing in 100µl PBS with 0.5% triton. A 100% adhesion control was 

generated by lysing 1.6x105 fluorescently labelled neutrophils in 0.5% triton. Fluorescent 

intensity was measured using a Tecan Infinite® 200 PRO series plate reader (excitation of 

485/20nm and emission of 535/25nm). The mean of duplicate values were calculated and the 

% adhesion over the hepes control calculated using the following formula: % adhesion = ((RFU 

stimuli – RFU HEPES)/ RFU 100% control) x 100. 

 CD63 Expression: 

50ul of whole blood was incubated with antibodies: 

CD16 PE VEP13 Miltenyi 

CD63 APC H5C6 Miltenyi 

CD11b APC ICRF44 BD Pharmingen™ 

CD62L FITC Dreg 56 BD Pharmingen™ 

CD32 FITC FLI8.26 BD Pharmingen™ 

CD14 APC MφP9  BD Pharmingen™ 
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for 20 minutes, followed by a red cell lysis (BD FACS lyse) and resuspension in 0.2% formyl 

saline. Samples were analysed using flow cytometry (Beckman Coulter, FC500) within 4 hours. 

Neutrophils were identified using scatter properties and CD16 positivity. BD CompBeads were 

used to generate compensation controls. The median fluorescence intensity (MFI) for each 

surface marker was calculated using Kaluza Analysis Software (Beckman Coulter). 
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