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ABSTRACT 

Objective: To assess whether women with a genetic predisposition to medical conditions known 

to increase preeclampsia risk have an increased risk of preeclampsia in pregnancy. 

Design: Case-control study. 

Setting and population: Preeclampsia cases (n=498) and controls (n=1864) of European ancestry 

from 5 US sites genotyped on a cardiovascular gene-centric array. 

Methods: Significant single nucleotide polymorphisms (SNPs) from 21 traits in 7 disease 

categories (cardiovascular, inflammatory/autoimmune, insulin resistance, liver, obesity, renal, 

thrombophilia) with published genome-wide association studies (GWAS) were used to create a 

genetic instrument for each trait. Multivariable logistic regression was used to test the association 

of each continuous, scaled genetic instrument with preeclampsia. Odds of preeclampsia were 

compared across quartiles of the genetic instrument and evaluated for significance using a test for 

trend.  

Main Outcome Measures:  preeclampsia. 

Results: An increasing burden of risk alleles for elevated diastolic blood pressure (DBP) and 

increased body mass index (BMI) were associated with an increased risk of preeclampsia (DBP: 

overall OR 1.11 (1.01-1.21), p=0.025; BMI: OR 1.10 (1.00-1.20), p=0.042), while risk alleles 

associated with elevated alkaline phosphatase (ALP) were protective (OR 0.89 (0.82-0.97), 

p=0.008), driven primarily by pleiotropic effects of variants in the FADS gene region. The effect 

of DBP genetic loci was even greater in early-onset (<34 weeks) preeclampsia cases (OR 1.30 

(1.08-1.56), p=0.005). For all other traits, the genetic instrument was not robustly associated with 

preeclampsia risk. 

Conclusions: These results suggest that the underlying genetic architecture of preeclampsia is 

shared with other disorders, specifically hypertension and obesity.  
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TWEETABLE ABSTRACT 

Genetic predisposition to increased diastolic blood pressure and obesity increases the risk of 

preeclampsia. 
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INTRODUCTION 

Preeclampsia (PE) is a severe, pregnancy-specific disorder affecting 3-8% of all gestations and 

characterized by new-onset hypertension and proteinuria after 20 weeks gestation. Despite 

extensive investigation, the etiology remains poorly understood and PE continues to be a leading 

cause of maternal and neonatal morbidity and mortality. 

 

Genetics influence PE risk—multiple epidemiologic studies estimate the heritability at 55-60%, of 

which 30-35% is maternal and 20% fetal1–4, with early-onset PE having the largest genetic 

component and environmental factors contributing more to late-onset PE5. Understanding PE 

heritability is challenging due to the involvement of two genomes (maternal and fetal), the 

heterogeneous nature of the disease, and limited availability of large, well-phenotyped PE cohorts6. 

Recently, the first fetal and maternal PE genome-wide association studies (GWAS) have been 

published revealing a few genetic loci contributing to risk7–11; however, the majority of PE 

heritability remains unexplained.  

 

Co-existing maternal medical conditions (e.g., diabetes, chronic hypertension, renal disease, 

autoimmune disease, antiphospholipid antibody syndrome) also increase PE risk12,13. Many 

additional clinical risk factors for PE are well-established, including obesity, dyslipidemia, 

multifetal gestation, nulliparity, use of assisted reproductive technology, previous PE, and family 

history of PE or cardiovascular disease12–17. Specifically, women with chronic hypertension have 

a 16-25% risk of PE12,13, and women with prior PE are more likely to use antihypertensive 

medications both the short- and long-term18. For obesity, the higher the BMI, the greater the risk 

of PE; women who are obese (BMI >35) have a 3-fold increased risk19–23. For dyslipidemia, PE is 
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associated with elevated total cholesterol, non-HDL cholesterol, and triglycerides throughout 

pregnancy, as well as with lower HDL levels in the third trimester16,24,25. Additionally, following 

a pregnancy with PE, women have a 2-4-fold increased lifetime risk of cardiovascular disease 

(CVD)26–29.  

 

 Given this, we hypothesized that women with genetic predisposition to these medical conditions 

would have an increased risk of PE. To test this hypothesis, we identified single nucleotide 

polymorphisms (SNPs) for relevant traits from the largest published European genome-wide 

association studies (GWAS) for each trait and tested whether these SNPs increased PE risk in a 

maternal case/control sample of European ancestry from the United States genotyped using the 

ITMAT-Broad-CARe (IBC) genotyping array, that captures genetic diversity across >2000 

candidate gene regions related to cardiovascular, inflammatory, and metabolic phenotypes30.   

 

METHODS  

Study population 

We utilized maternal GWAS data from a previously assembled IRB-approved cohort8 with 

European-ancestry cases (n=498) and controls (n=449) from five US cities and population controls 

from the National Heart, Lung, and Blood Institute (NHLBI) studies, Atherosclerosis Risk in 

Communities (ARIC; n=645)31 and Coronary Artery Risk Development in Young Adults 

(CARDIA; n=770)32, for a total of 498 cases and 1864 controls (Table 1). The published GWAS 

describes the specifics of the maternal sample collection, genotyping, and quality control for this 

cohort8. PE status at all sites was defined by standard American Congress of Obstetrician and 
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Gynecologists (ACOG) criteria33. Controls from the US sites were normotensive pregnant women 

without medical co-morbidities.  

 

Identification of traits and their associated single nucleotide polymorphisms (SNPs) 

The GWAS Catalog, curated by the National Human Genome Research Institute (NHGRI) and the 

European Bioinformatics Institute (EBI), was used to identify genome-wide association studies 

performed up to the year 2017 in individuals of European ancestry for traits known to be associated 

with PE34. We searched specifically for studies on traits in 7 categories: cardiovascular, 

inflammatory/ autoimmune, insulin resistance, liver, obesity, renal, and thrombophilia (Table 2).   

 

Within the cardiovascular category, we identified GWAS for systolic and diastolic blood 

pressure35, total cholesterol36,37, low-density lipoprotein (LDL)36,37, high-density lipoprotein 

(HDL)36,37, triglycerides36,37, coronary artery disease (CAD)38,39, and ischemic stroke40. PE is 

highly associated with hypertension both prior to and following pregnancy12,13. Other 

cardiovascular risk factors including increased levels of total cholesterol, LDL-C, and triglycerides 

and decreased levels of HDL-C have also been associated with PE24,41. The increased long-term 

risk of cardiovascular disease in women with prior PE includes an increased risk of CAD, ischemic 

stroke, heart failure, cardiac procedures, and cardiovascular-related hospitalizations26–29,42,43.  

 

Within the inflammatory/autoimmune category, we identified GWAS for C-reactive protein 

(CRP)44 and systemic lupus erythematosus (SLE)45. Women with increased CRP are at 

significantly increased risk of PE, even after adjustment for clinical confounders such as BMI46. 

Women with SLE are at increased risk of PE, particularly early-onset PE, even after adjustment 
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for chronic hypertension and antiphospholipid antibody syndrome (APS)47. While lupus nephritis, 

APS, and chronic hypertension with SLE are associated with the highest risk of PE, even 

uncomplicated SLE in remission is associated with increased risk48. 

 

Within the insulin resistance category, we identified GWAS for adiponectin49, fasting glucose49, 

fasting insulin50, type 2 diabetes mellitus (T2DM)51, and polycystic ovarian syndrome (PCOS)52. 

Women with pregestational or gestational diabetes have a 2-4 fold increased PE risk and non-

diabetic women with PE are at increased risk of later T2DM53. Adiponectin levels are associated 

with the development of gestational diabetes54,55. Women with PCOS have a high rate of metabolic 

syndrome and significantly higher risks of adverse pregnancy outcomes including PE56. 

 

Within the liver category, we identified GWAS for alkaline phosphatase (ALP)57, gamma-

glutamyl transferase (GTT)57, and alanine aminotransferase (ALT)57. Women with liver 

dysfunction during pregnancy (e.g., intrahepatic cholestasis of pregnancy) are at increased risk for 

PE58. Also, transaminitis is a key diagnostic feature for particular PE subtypes, including PE with 

severe features and HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome33. 

 

Within the thrombophilia category, we identified GWAS for fibrinogen59 and venous 

thromboembolism (VTE)60. PE is associated with a state of hypercoagulability. Specifically, 

fibrinogen levels are elevated in women with PE61 and women with PE are at significantly 

increased risk of VTE42,62. Although antiphospholipid antibody syndrome is a strong clinical risk 

factor for PE, the only published GWAS is a small study of Japanese women63.  
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Within the obesity category, we identified GWAS for body mass index (BMI)64 and maternal 

birthweight65. Increased BMI is a prevalent risk factor for PE and the degree of obesity is directly 

correlated to the level of risk19–23. We included maternal birthweight as women who are small at 

birth and obese as adults have a particularly high risk of PE66. 

 

Within the renal category, we identified GWAS for estimated glomerular filtration rate from serum 

creatinine (eGFRCr)67 and uric acid68. Women with decreased GFR prior to pregnancy are at 

increased risk of PE69,70, and women with PE have a reduced GFR71,72. In addition to its role as a 

marker for renal function, elevations in uric acid are associated with PE and may contribute directly 

to disease pathogenesis73–75. 

 

For each of the above traits, the most recent and largest published GWAS (up to the year 2017) 

for individuals of European ancestry was identified and trait-associated SNPs with p-values ≤ 1.0 

x 10-6 were curated (see Supplementary Tables S1-S21 for each trait). For each curated SNP, we 

determined if the SNP was genotyped on the IBC array used in our cohort30.  If the SNP was not 

present on the array, we determined if a proxy SNP was present in the 1000 Genomes phase 3 

(1KGPv3) CEU population76 using SNAP, the SNP Annotation and Proxy Search available 

through the Broad Institute77. For each proxy, the proxy SNP with the strongest correlation was 

chosen. Most proxy SNPs had r2>0.8, and only SNPs with proxies of r2>0.5 were included in our 

analyses (see Supplementary Tables S1-S21). Using this approach, the noted number of SNPs were 

available for each trait (Table 3). 
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After curation of these GWAS and their associated SNPs, we had a total of 21 distinct traits within 

7 categories with SNPs or proxy SNPs available (Table 2). Some traits of interest (alanine 

aminotransferase (ALT), fasting insulin, polycystic ovarian syndrome (PCOS)) could not be 

included in analysis as the implicated SNPs were not genotyped in our cohort. Of note, while newer 

GWAS have been published since 2017 for some of the selected traits, the additional loci reported 

could not able to be examined as our cohort was genotyped on the gene-centric IBC array (which 

has limited SNPs compared to newer arrays) and the additional loci or proxies were not available 

in our data.  

 

Statistical Analysis 

Determination of genetic instruments 

For each trait, we derived a genetic instrument to assess risk for each individual participant by 

summing the number of risk SNPs, which were weighted by the respective allelic effect size (β-

coefficient) from the original discovery cohort using PLINK, as previously described78–81. If 

genotype data were missing for a particular individual for a particular SNP, then the expected value 

was imputed based on the sample allele frequency of the SNP (in total, this affected very few loci 

(<5%), as SNPs were removed for call rates <95%). Scaling of the genetic instrument for each trait 

was performed to allow interpretation of the effects on PE as a per-1 risk allele increase in the total 

sum of risk SNPs for each trait (division by twice the sum of the β-coefficients and multiplication 

by twice the SNP count representing the maximum number of risk alleles). Multivariable logistic 

regression in R was used to test the association of each continuous, scaled genetic instrument with 

PE, adjusted for study site and principal components of ancestry, leading to an adjusted, overall 
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odds ratio. The odds of PE were compared across quartiles of each genetic instrument and 

evaluated for significance using a test for trend.   
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RESULTS 

The distribution of European ancestry PE cases and normotensive controls between the 5 US sites, 

as well as the population controls, is shown in Table 1. As noted previously, the cases in this 

sample are enriched for early-onset PE (diagnosis <37 weeks gestation; 40%), hemolysis-elevated 

liver enzymes-low platelets (HELLP) syndrome (29%), and PE with severe features (43%)8. 

 

For each of the 21 traits identified, the derived genetic instrument was used to assess the risk of 

PE conferred by the trait-associated risk SNPs (Table 3). For the cardiovascular traits, we found 

that an increasing burden of risk alleles for elevated diastolic blood pressure (DBP) was associated 

with increased PE risk at all quartiles of risk with an overall OR of 1.11 (1.01-1.21), p=0.025, per 

risk allele. For coronary artery disease (CAD), patients in the third quartile of risk had a 

significantly increased risk of PE compared to the reference group (OR 1.43 (1.08-1.90), p=0.014), 

while for HDL, patients in the third quartile had a significantly decreased risk of PE compared to 

the reference (OR 0.70 (0.53-0.93), p = 0.014).  In this analysis, we did not find an association of 

the genetic instruments for systolic blood pressure (SBP), total cholesterol, LDL, triglycerides, or 

ischemic stroke with PE. For the inflammatory/ autoimmune traits, we did not find an association 

between CRP or SLE-associated genetic instruments and PE. Similarly, for the insulin resistance 

traits, adiponectin, fasting glucose, and type 2 diabetes (T2DM), the genetic instruments were not 

significantly associated with PE.   

 

For the liver traits, gamma-glutamyl transferase (GTT)-associated risk alleles were not 

significantly associated with PE. However, an increasing burden of risk alleles for elevated 

alkaline phosphatase (ALP) levels was surprisingly protective for PE (overall OR 0.89 (0.82-0.97), 
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p=0.008). As this result was not anticipated, we examined the particular SNPs (n=5) used to create 

the ALP genetic instrument in further detail (Supplementary Table S2; SNPs from most 

comprehensive GWAS of plasma liver enzyme concentrations57). Of these 5 SNPs, 2 SNPs 

contributed most significantly to the protective nature of the ALP variants: rs174601 (associated 

with FADS1, FADS2, and C11orf10 gene expression) and rs579459 (near the ABO gene) (data not 

shown). 

 

For the obesity traits, an increasing burden of risk alleles for increased body mass index (BMI) 

was associated with increased PE risk (overall OR 1.10 (1.00-1.20), p=0.042). The genetic 

instrument for maternal birthweight, however, was not associated with PE risk.  For the renal traits, 

patients in the second quartile of risk for increased GFR, had a decreased risk of PE (OR 0.75 

(0.57-0.99), p=0.044). In contrast, the genetic instrument for uric acid was not significantly 

associated with PE. For the thrombophilia traits, patients in the second quartile of genetic risk for 

VTE had a decreased risk of PE (OR 0.66 (0.49-0.89), p=0.006), while the genetic instrument for 

fibrinogen was not significantly associated with PE. 

 

As early-onset PE has the strongest genetic predisposition5, we performed a sensitivity analysis 

for all 21 traits on the subset of PE cases with delivery < 34 weeks (n=103 cases) and < 37 weeks 

(n=201 cases).  In the subset of cases with early-onset PE, the effect of DBP-associated risk alleles 

was greater than in the overall cohort (<34 weeks: overall OR 1.30 (1.08-1.56), p=0.005; <37 

weeks: overall OR 1.19 (1.05-1.36), p=0.009) (Table 4). In contrast, the effects of BMI and ALP-

associated risk alleles were diminished (BMI, <34 weeks: overall OR 1.04 (0.87-1.24), p=0.683; 

<37 weeks: overall OR 1.06 (0.93-1.21), p=0.400. ALP, <34 weeks: overall OR 0.86 (0.72-1.03), 
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p=0.108; <37 weeks: overall OR 0.82 (0.72-0.94), p=0.004) (Table 4). For all other traits 

examined, the effects of the genetic instruments were not significant in the early-onset subgroup 

(data not shown).  
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DISCUSSION 

Main Findings 

Here we detail the first comprehensive analysis of the effect of genetic predisposition for 21 

clinical traits on PE risk, utilizing data from the largest published US maternal PE GWAS8. Among 

the 21 traits examined, risk alleles for elevated DBP and increased BMI were most robustly 

associated with PE risk, while risk alleles associated with elevated ALP levels were protective. 

Additionally, we identified a suggestive risk effect for coronary artery disease and possible 

protective effects for increased HDL, GFR, and VTE risk. The effect of DBP-associated risk alleles 

was strongest in early-onset PE cases, while the effects of BMI and ALP-associated risk alleles 

were diminished in this subset, suggesting that these effects are more important in late-onset 

disease. For the other traits examined, we did not find significant associations. 

 

Strengths and Limitations 

Strengths of this study include utilization of the largest US-based maternal PE cohort with genome-

wide SNP data reported to date and a comprehensive examination of PE-associated traits. This 

cohort is enriched with early-onset and severe cases that are more likely to have a genetic 

predisposition to PE5.  

 

Despite its size relative to many other PE genetic studies, this cohort has a limited sample size 

for assessment of common genetic variation associated with disease. Additionally, the 

genotyping was performed several years ago on a platform with limited SNPs (a gene-centric 

array with 50K SNPs) compared to those now readily available. These limitations mean that PE 

may share overlapping genetic features with additional traits, but to detect these effects, larger 
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cohorts with higher-coverage genotyping or sequencing will be required. In general, for each 

trait examined, the power to detect a significant association is dependent on the degree of 

heritability of the trait, the amount of heritability explained by risk alleles in the literature, and 

the number of risk alleles assessed on the genotyping array. For example, for hypertension, we 

demonstrated overlapping genetic architecture between DBP and PE, but not SBP. However, the 

heritability of SBP and DBP is estimated at ~20% and 50%, respectively, in European ancestry 

individuals82; thus, we would expect shared genetic architecture of DBP and PE to be 

demonstrated in a smaller cohort than that required to demonstrate shared genetics of SBP and 

PE. For specific traits potentially associated with PE (e.g. PCOS, fasting insulin), an assessment 

could not be performed as there were no proxies on our array for the literature SNPs.  

 

Interpretation 

Prior studies have examined whether genetic predisposition to specific cardiovascular-associated 

traits (i.e., maternal essential hypertension83, dyslipidemia84, and CRP85) predisposes women to 

PE. For essential hypertension genetics and PE risk, a similar approach was used and no significant 

association was found83. However, this analysis was done in a smaller cohort (162 PE cases, 108 

controls) using risk alleles from a 2011 hypertension GWAS86. The genetic instrument included 6 

SBP and 6 DBP risk alleles 83. In our analysis, an expanded set of risk alleles for SBP (19 SNPs) 

and DBP (16 SNPs) were used from a subsequent GWAS35 in a larger cohort. Thus, we had 

increased power to detect an association. For dyslipidemia, lower HDL was marginally associated 

with increased PE risk84,85, similar to our observation that risk alleles associated with increased 

HDL had a suggestive association with decreased PE risk. For the study of CRP (which again used 

a smaller cohort and fewer SNPs), increased genetic risk for elevated CRP was associated with 
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decreased PE risk84,85, which is in contrast to the clinical association of increased CRP with 

increased PE risk46. These findings warrant further interrogation in larger cohorts. 

 

The specific mechanisms by which known clinical risk factors—including hypertension, obesity, 

and diabetes—contribute to PE development, as well as long-term CVD risk, have not been fully 

elucidated. Our results suggest that genetic risk factors shared between particular traits (i.e., 

hypertension, obesity, CAD) and PE may be involved both in the pathogenesis of PE itself and in 

later CVD development. In published hypertension GWAS, risk loci are enriched for regulatory 

elements affecting gene expression in vascular endothelial cells and are associated with end organ 

damage in the heart, cerebral vessels, carotid artery, and the eye35. As PE is characterized by 

diffuse endothelial dysfunction87, women with genetic predisposition to altered vascular 

endothelial cell function are likely to be at high risk for PE. This idea is directly supported by the 

results of the maternal PE GWAS performed on this same cohort8 where the variant, rs9478812 

near the gene, PLEKHG1, was identified; this locus has been associated with blood pressure in an 

independent GWAS88. In published CAD GWAS, risk loci are highly associated with lipid traits 

and blood pressure, and pathway analyses highlight lipid metabolism and inflammation as key 

underlying biological processes89, processes also highly associated with PE24,90–92. In published 

obesity GWAS, identified risk loci are highly associated with brain regions important for appetite 

regulation, learning, emotion, and memory64, as well as insulin utilization, energy/lipid 

metabolism, and adipogenesis in other tissues64. Whether these pathways directly contribute to 

underlying PE pathophysiology or are mediated through BMI-related effects, is an important 

question for future investigations. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.976472doi: bioRxiv preprint 

https://paperpile.com/c/VvoA2k/sBzQQ+NpWb0
https://paperpile.com/c/VvoA2k/HeWTT
https://paperpile.com/c/VvoA2k/oSXK0
https://paperpile.com/c/VvoA2k/pU6hN
https://paperpile.com/c/VvoA2k/5sdhk
https://paperpile.com/c/VvoA2k/o6UkK
https://paperpile.com/c/VvoA2k/Mqgyr
https://paperpile.com/c/VvoA2k/RrvYv+LtMWb+LNNnf+IgKvO
https://paperpile.com/c/VvoA2k/jeDbl
https://paperpile.com/c/VvoA2k/jeDbl
https://doi.org/10.1101/2020.03.04.976472
http://creativecommons.org/licenses/by-nc-nd/4.0/


At first glance, the ALP and VTE effects related to PE were surprising, as they were in the opposite 

directions as anticipated. However, further investigation provides some useful insight. For ALP, 

increased levels are commonly associated with biliary obstruction, but ALP is also present in bone, 

intestine, leukocytes, and placenta93. Of the 5 SNPs used in the ALP genetic instrument, 2 SNPs 

drove the association—rs174601 and rs579459. The SNP, rs174601, is associated with decreased 

FADS1 and FADS2 expression in the liver and decreased FADS1 and increased FADS2 and 

C11orf10 expression in peripheral leukocytes57. FADS1 and FADS2 are associated with circulating 

fatty acids in plasma, as well as CAD and ischemic stroke risk94. The function of C11orf10 remains 

unknown. The SNP, rs579459, is an upstream variant near the ABO gene, which encodes for ABO 

blood group system proteins. C-allele carriers of the rs579459 SNP (corresponding to blood group 

A) have increased LDL cholesterol95 and an increased risk of adverse cardiac outcomes96. Thus, 

the apparent protective nature of SNPs associated with elevated ALP for PE may instead reflect 

the pleiotropic nature of these SNPs, particularly in relationship to cardiovascular traits. 

 

For VTE, while it is clinically-recognized that women with PE are at significantly increased risk 

of VTE42,62, thrombosis is also a trait highly-associated with recurrent pregnancy loss97,98.  Given 

this, women with the highest genetic risk for VTE may have a reduced rate of live births, leading 

to a decreased expression of all pregnancy-related phenotypes including PE. We hypothesize that 

this relationship may explain the lower rate of PE seen in women with increased genetic risk for 

VTE. 

 

Distinct molecular subtypes of PE that go beyond the distinction of early vs. late-onset disease are 

emerging99–101. While much work remains to define these subtypes, our analysis suggests 
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clustering of different trait associations within the broad categories of early vs. late-onset. 

Specifically, patients with increased genetic risk for elevated DBP are more likely to develop early-

onset PE, while patients with increased genetic risk for obesity are more likely to develop term 

PE.  As larger cohorts with more detailed PE phenotyping and genetics emerge, molecular 

subtyping of PE can be refined further based on both maternal and fetal genetic risk.  

 

CONCLUSIONS 

In conclusion, using curated literature genetic risk loci, we provide the first comprehensive 

analysis of the overlap of maternal PE genetic architecture with the genetic architecture of other 

disorders, revealing an overlap of hypertension and obesity genetics with PE. These results 

implicate underlying genetics as a causal factor for both the pathogenesis of PE itself and the 

development of later CVD. Expanding understanding of PE heritability will require the 

establishment of larger maternal and fetal PE consortia with detailed phenotyping and genome-

wide genotyping/ sequencing. Future analyses should focus not only on the independent effects of 

the maternal and fetal genomes on disease pathogenesis, but also how the interplay of the two 

genomes contributes to disease. Such endeavors will allow for more comprehensive delineation of 

PE heritability and the overlap of PE genetics with the genetic underpinnings of other common 

diseases.  
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TABLES 

 

Table 1. Collection site of European ancestry preeclampsia cases (n=498) and controls (n=1864). 

Site/Study 
Preeclampsia 

cases 

Normotensive 

controls 

Population 

controls 

    

Boston 263 74 ––– 

CHOP 69 345 ––– 

Iowa 75 ––– ––– 

USC 80 ––– ––– 

Yale 11 30 ––– 

ARIC ––– ––– 645 

CARDIA ––– ––– 770 

    

Total 498 449 1415 

Abbreviations: CHOP = Children’s Hospital of Philadelphia; USC = University of Southern California; ARIC 
= Atherosclerosis Risk in Communities; CARDIA = Coronary Artery Risk Development in Young Adults 
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Table 2. Disease categories and specific traits assessed using risk SNPs. 

Disease category Trait 

Cardiovascular Systolic blood pressure (SBP), diastolic blood pressure (DBP), total 

cholesterol, low-density lipoprotein (LDL), high-density lipoprotein 

(HDL), triglycerides, coronary artery disease (CAD), ischemic stroke 

Inflammatory/ autoimmune C-reactive protein (CRP), systemic lupus erythematosus (SLE) 

Insulin resistance Adiponectin, fasting blood glucose, type 2 diabetes mellitus (T2DM) 

Liver Alkaline phosphatase (ALP), gamma-glutamyl transferase (GTT) 

Obesity Body mass index (BMI), birthweight 

Renal Estimated glomerular filtration rate from serum creatinine 

(eGFRCr), uric acid 

Thrombophilia Fibrinogen, venous thromboembolism (VTE) 
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Table 3. Preeclampsia risk by quartiles of trait-specific risk SNPs. 

TRAIT*  
Q1 

odds ratio 
(Ref) 

Q2 
odds ratio 
(95% CI) 

Q3 
odds ratio 
(95% CI) 

Q4 
odds ratio 
(95% CI) 

Overall  
odds ratio† 

(95% CI) 

p-value  
(for trend 

by quartile) 

Cardiovascular 

SBP 
(19 SNPs) 

1.00 
 

0.82 
(0.62-1.08) 

0.88 
(0.67-1.15) 

0.84 
(0.64-1.10) 

0.96 
(0.88-1.04) 

0.322 

DBP 
(16 SNPs) 

1.00 
 

1.37 
(1.03-1.82) 

1.42 
(1.07-1.89) 

1.39 
(1.05-1.86) 

1.11 
(1.01-1.21) 

0.025 

Total cholesterol 
(20 SNPs) 

1.00 
 

1.03 
(0.78-1.36) 

0.97 
(0.73-1.28) 

1.10 
(0.84-1.45) 

1.02 
(0.94-1.12) 

0.589 

LDL 
(12 SNPs) 

1.00 
 

0.95 
(0.71-1.26) 

1.20 
(0.91-1.58) 

1.13 
(0.85-1.49) 

1.06 
(0.98-1.16) 

0.164 

HDL 
(28 SNPs) 

1.00 
 

1.01 
(0.77-1.32) 

0.70 
(0.53-0.93) 

0.87 
(0.66-1.14) 

0.93 
(0.85-1.01) 

0.096 

Triglycerides 
(15 SNPs) 

1.00 
 

0.92 
(0.70-1.21) 

0.94 
(0.71-1.24) 

0.95 
(0.72-1.26) 

0.98 
(0.90-1.07) 

0.626 

CAD 
(10 SNPs) 

1.00 
 

1.18 
(0.88-1.57) 

1.43 
(1.08-1.90) 

1.11 
(0.82-1.51) 

1.05 
(0.96-1.15) 

0.294 

Ischemic stroke 
(5 SNPs) 

1.00 
 

0.95 
(0.71-1.26) 

0.81 
(0.60-1.10) 

0.97 
(0.72-1.31) 

0.97 
(0.89-1.07) 

0.584 

Inflammatory/ autoimmune 

CRP 
(9 SNPs) 

1.00 
 

0.93 
(0.70-1.23) 

1.10 
(0.84-1.44) 

0.97 
(0.73-1.28) 

1.00 
(0.92-1.10) 

0.949 

SLE 
(9 SNPs) 

1.00 
 

1.12 
(0.85-1.48) 

1.04 
(0.78-1.38) 

1.09 
(0.82-1.44) 

1.01 
(0.93-1.11) 

0.775 

Insulin resistance 

Adiponectin 
(3 SNPs) 

1.00 
 

1.06 
(0.74-1.51) 

0.95 
(0.67-1.35) 

0.95 
(0.66-1.36) 

0.97 
(0.87-1.07) 

0.521 

Fasting glucose 
(5 SNPs) 

1.00 
 

0.75 
(0.56-1.00) 

0.92 
(0.69-1.23) 

0.86 
(0.65-1.15) 

0.99 
(0.90-1.08) 

0.782 

T2DM 
(21 SNPs) 

1.00 
 

1.17 
(0.89-1.54) 

0.94 
(0.71-1.24) 

0.97 
(0.73-1.29) 

0.97 
(0.89-1.06) 

0.470 

Liver 

ALP 
(5 SNPs) 

1.00 
 

0.85 
(0.65-1.11) 

0.63 
(0.47-0.84) 

0.74 
(0.56-0.97) 

0.89 
(0.82-0.97) 

0.008 

GTT 
(6 SNPs) 

1.00 
 

1.29 
(0.97-1.72) 

1.31 
(0.99-1.74) 

1.19 
(0.90-1.57) 

1.05 
(0.97-1.15) 

0.250 

Obesity 

BMI 
(15 SNPs) 

1.00 
 

0.96 
(0.72-1.27) 

1.14 
(0.86-1.51) 

1.28 
(0.97-1.69) 

1.10 
(1.00-1.20) 

0.042 
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Birthweight 
(6 SNPs) 

1.00 
 

1.07 
(0.80-1.42) 

1.07 
(0.80-1.44) 

1.17 
(0.87-1.57) 

1.04 
(0.95-1.13) 

0.457 

Renal 

eGFRCr 
(9 SNPs) 

1.00 
 

0.75 
(0.57-0.99) 

0.86 
(0.66-1.13) 

0.83 
(0.63-1.09) 

0.96 
(0.88-1.05) 

0.391 

Uric acid 
(11 SNPs) 

1.00 
 

1.24 
(0.94-1.65) 

1.17 
(0.88-1.55) 

1.16 
(0.88-1.54) 

1.04 
(0.95-1.14) 

0.379 

Thrombophilia 

Fibrinogen 
(5 SNPs) 

1.00 
 

0.91 
(0.68-1.21) 

0.94 
(0.72-1.24) 

1.06 
(0.81-1.40) 

1.03 
(0.94-1.12) 

0.565 

VTE 
(5 SNPs) 

1.00 
 

0.99 
(0.75-1.31) 

0.66 
(0.49-0.89) 

0.89 
(0.66-1.18) 

0.93 
(0.85-1.02) 

0.101 

*Specific SNPs assessed for each trait are listed in the Online Supplement 
† Odds ratio reflects the per risk allele increase in preeclampsia risk, adjusted for study site and principle 

components of ancestry 
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Table 4. Early-onset preeclampsia risk by quartiles of trait-specific risk SNPs. 

TRAIT*  
Q1 

odds ratio 
(Ref) 

Q2 
odds ratio 
(95% CI) 

Q3 
odds ratio 
(95% CI) 

Q4 
odds ratio 
(95% CI) 

Overall  
odds ratio† 

(95% CI) 

p-value  
(for trend 

by quartile) 

Delivery < 34 weeks 

DBP 
(16 SNPs) 

1.00 
 

1.71 
(0.89-3.28) 

1.91 
(1.00-3.64) 

2.45 
(1.31-4.58) 

1.30 
(1.08-1.56) 

0.005 

BMI 
(15 SNPs) 

1.00 
 

0.76 
(0.42-1.36) 

0.87 
(0.50-1.51) 

1.03 
(0.60-1.78) 

1.04 
(0.87-1.24) 

0.683 
 

ALP 
(5 SNPs) 

1.00 
 

1.09 
(0.65-1.84) 

0.66 
(0.37-1.18) 

0.71 
(0.40-1.27) 

0.86 
(0.72-1.03) 

0.108 

Delivery < 37 weeks 

DBP 
(16 SNPs) 

1.00 
 

1.73 
(1.10-2.73) 

1.70 
(1.08-2.68) 

1.91 
(1.22-2.98) 

1.19 
(1.05-1.36) 

0.009 

BMI 
(15 SNPs) 

1.00 
 

1.00 
(0.65-1.52) 

0.97 
(0.64-1.48) 

1.17 
(0.78-1.77) 

1.06 
(0.93-1.21) 

0.400 
 

ALP 
(5 SNPs) 

1.00 
 

0.81 
(0.55-1.20) 

0.55 
(0.36-0.85) 

0.60 
(0.40-0.90) 

0.82 
(0.72-0.94) 

0.004 

*Specific SNPs assessed for each trait are listed in the Online Supplement 
† Odds ratio reflects the per risk allele increase in preeclampsia risk, adjusted for study site and principle 

components of ancestry 
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