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Abstract

Background: A robust method for Mendelian randomization does not require all genetic

variants to be valid instruments to give consistent estimates of a causal parameter. Several

such methods have been developed, including a mode-based estimation method giving con-

sistent estimates if a plurality of genetic variants are valid instruments; that is, there is no

larger subset of invalid instruments estimating the same causal parameter than the subset

of valid instruments.

Methods: We here develop a model averaging method that gives consistent estimates under

the same ‘plurality of valid instruments’ assumption. The method considers a mixture distri-

bution of estimates derived from each subset of genetic variants. The estimates are weighted

such that subsets with more genetic variants receive more weight, unless variants in the sub-

set have heterogeneous causal estimates, in which case that subset is severely downweighted.

The mode of this mixture distribution is the causal estimate. This heterogeneity-penalized

model averaging method has several technical advantages over the previously proposed mode-

based estimation method.

Results: The heterogeneity-penalized model averaging method outperformed the mode-

based estimation in terms of efficiency and outperformed other robust methods in terms of

Type 1 error rate in an extensive simulation analysis. The proposed method suggests two

distinct mechanisms by which inflammation affects coronary heart disease risk, with subsets

of variants suggesting both positive and negative causal effects.

Conclusions: The heterogeneity-penalized model averaging method is an additional robust

method for Mendelian randomization with excellent theoretical and practical properties, and

can reveal features in the data such as the presence of multiple causal mechanisms. (249

words)

Keywords: Mendelian randomization, instrumental variables, robust methods, invalid in-

struments, model averaging.

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/175372doi: bioRxiv preprint 

https://doi.org/10.1101/175372
http://creativecommons.org/licenses/by/4.0/


Key messages:

• We propose a heterogeneity-penalized model averaging method that gives

consistent causal estimates if a weighted plurality of the genetic variants are

valid instruments.

• The method calculates causal estimates based on all subsets of genetic vari-

ants, and upweights subsets containing several genetic variants with similar

causal estimates.

• The method is asymptotically efficient and does not rely on bootstrapping to

obtain a confidence interval, nor is the confidence interval constrained to be

symmetric.

• In particular, the confidence interval can include multiple disjoint intervals,

suggesting the presence of multiple causal mechanisms by which the risk factor

influences the outcome.

• The method can incorporate biological knowledge to upweight the contribu-

tion of genetic variants with stronger plausibility of being valid instruments.
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Introduction

Mendelian randomization is an epidemiological approach for making causal inferences from

observational data by using genetic variants as instrumental variables [1, 2]. If a genetic

variant is a valid instrument for the risk factor, then any association of the variant with the

outcome is indicative of a causal effect of the risk factor on the outcome [3]. When there

are multiple genetic variants that are all valid instrumental variables, and under certain

parametric assumptions (most notably that all relationships between variables are linear

and there is no effect modification), an efficient test of the causal null hypothesis as the

sample size increases can be obtained using the two-stage least squares method (based on

individual-level data) [4] or equivalently the inverse-variance weighted (IVW) method (based

on summarized data) [5]. With uncorrelated instruments, the IVW estimate (equal to the

two-stage least squares (2SLS) estimate) is a weighted mean of the Wald (or ratio) estimates

obtained separately from each individual instrumental variable.

While the 2SLS/IVW estimator is asymptotically efficient, it is not robust to violations of

the instrumental variable assumptions. Specifically, if a genetic variant is a valid instrument,

then the ratio estimate based on that variant is a consistent estimate of the causal effect.

Hence the weighted mean of these ratio estimates is a consistent estimate of the causal

effect if all genetic variants are valid instruments, but not in general if at least one variant

is not a valid instrument [6]. This has motivated the development of robust methods for

instrumental variable analysis based on only a subset of the genetic variants being valid

instruments. For example, Kang et al. developed a method using L1-penalization that gives

consistent estimates if at least 50% of the instrumental variables are valid [7]. Bowden et al.

considered simple and weighted median methods that again are consistent if at least 50% of

the instrumental variables are valid; the simple median method is a median of the variant-

specific ratio estimates [8]. Most recently, Hartwig et al. have developed a modal-based

estimation method that provides a consistent estimate under the zero modal pleiotropy

assumption (ZEMPA) [9]. This assumption states that, in large sample sizes, the largest

subset of variants with the same ratio estimate comprises the valid instruments. Invalid

instruments may have different ratio estimates asymptotically, but there is no larger subset

of invalid instruments with the same ratio estimate than the subset of valid instruments.

Intuitively, this means that the true causal estimate can be identified asymptotically as the

mode of the variant-specific ratio estimates.
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While the idea of a modal-based estimate has merit, there are several issues with the

implementation of Hartwig’s modal-based estimate that could be improved upon. In partic-

ular, their implementation of this approach fits a kernel density-smoothed function to the

variant-specific ratio estimates, and calculates confidence intervals based on the median ab-

solute deviation of a bootstrapped distribution. Varying the bandwidth of the kernel density

can result in substantial changes to the estimate and its confidence interval, as demonstrated

later in this paper.

In this paper, we propose an alternative way of constructing a density function for the

causal effect estimate as a heterogeneity-penalized weighted mixture distribution. This ap-

proach upweights estimates that are supported by multiple genetic variants, but severely

downweights heterogeneity. We show that the mode of this distribution will be an asymp-

totically consistent estimator of the causal effect if a weighted plurality of the genetic variants

are valid instruments. We first introduce this method, and then we demonstrate its perfor-

mance in a simulation study compared to other robust methods. We consider its behaviour

in two applied examples. Finally, we discuss the results of this paper and their relevance

to applied research. In particular, we consider how to incorporate biological knowledge into

the weighting procedure. Software code for implementing the proposed method is provided

in the Supplementary Material.

Methods

In this section, we first introduce the data requirements and parametric assumptions nec-

essary for summarized data Mendelian randomization. We then recall the inverse-variance

weighted method, and subsequently introduce the model averaging procedure proposed in

this paper.

Data requirements and assumptions

For practical reasons, many modern Mendelian randomization investigations are conducted

using summarized data on genetic associations with the risk factor (X) and outcome (Y )

taken from univariable regression models of the risk factor (or outcome) regressed on the

genetic variants in turn [10]. We assume, as is common in applied practice, that the genetic

variants are all uncorrelated (not in linkage disequilibrium). For each genetic variant Gj
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(j = 1, 2, . . . , J), we assume that we have an estimate β̂Xj of the association of the genetic

variant with the risk factor obtained from linear regression. Similar association estimates

are assumed to be available for the outcome (β̂Y j). The standard error of the association

estimate with the outcome is se(β̂Y j). If any of the variables is binary, then these summarized

association estimates may be replaced with association estimates from logistic regression; as

has been shown previously, the interpretation of the causal estimate in this case is not clear

due to non-collapsibility, but estimates still represent valid tests of the causal null hypothesis

[11, 12]. See Bowden et al. [13] for a more detailed exposition of the parametric assumptions

typically made in summarized data Mendelian randomization investigations that are also

made here.

Inverse-variance weighted method

The ratio estimate based on genetic variant j is θ̂j = β̂Y j

/
β̂Xj , with standard error taken

as se(θ̂j) = se(β̂Y j)
/
β̂Xj (the leading order term from the delta expansion for the standard

error of the ratio of two variables). The inverse-variance weighted (IVW) estimate is a

weighted mean of the ratio estimates:

θ̂IV W =

∑
j θ̂j se(θ̂j)

−2∑
j se(θ̂j)

−2
=

∑
j β̂Y jβ̂Xj se(β̂Y j)

−2∑
j β̂

2
Xj se(β̂Y j)−2

. (1)

The same estimate can be obtained from the weighted regression:

β̂Y j = θIV W β̂Xj + ϵj, ϵj ∼ N (0, se(β̂Y j)
2). (2)

For uncorrelated variants, this estimate is also equivalent to the estimate obtained from

two-stage least squares, a method typically used for instrumental variable analysis with

individual-level data [5]. These estimates do not take into account uncertainty in the genetic

associations with the risk factor; however, these associations are typically more precisely

estimated than those with the outcome, and ignoring this uncertainty does not lead to

inflated Type 1 error rates in realistic scenarios [14].

The standard error of the IVW estimate based on a fixed-effect meta-analysis model is:

se(θ̂IV W ) =
1√∑

j se(θ̂j)
−2

=
1√∑

j β̂
2
Xj se(β̂Y j)−2

. (3)
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We also consider a multiplicative random-effects model based on the weighted linear regres-

sion above:

β̂Y j = θIV W β̂Xj + ϵj, ϵj ∼ N (0, ψ2 se(β̂Y j)
2), (4)

where ψ is the residual standard error. Most statistical software packages estimate this

additional parameter by default in a weighted linear regression model. A fixed-effect analysis

can be performed by fixing the value of ψ to 1 [15]. To ensure that the standard error of

the IVW estimate is never more precise than that from a fixed-effect analysis, we allow ψ to

take values above 1 (corresponding to over-dispersion of the genetic association estimates),

but not values below 1 (corresponding to under-dispersion). If all genetic variants estimate

the same causal parameter, then ψ should tend to 1 asymptotically.

Heterogeneity-penalized model averaging method

We seek to estimate a distribution with the property that the mode (the maximum value)

of the distribution will tend to the true causal effect when a plurality of the genetic variants

are valid instruments. We consider a model averaging procedure with 2J − J − 1 candidate

models, where J is the total number of genetic variants. Each model corresponds to one

of the 2J − J − 1 subsets of genetic variants (subsets including 0 or 1 genetic variants are

ignored throughout). We consider a mixture distribution of 2J −J − 1 normal distributions,

where the kth normal distribution has mean and standard deviation corresponding to the

IVW estimate and standard error based on all the variants in the kth subset:

θ̂IV W,k =

∑
j∈σk

θ̂j se(θ̂j)
−2∑

j∈σk
se(θ̂j)−2

(5)

se(θ̂IV Wr,k) =
ψ̂k√∑

j∈σk
se(θ̂j)−2

(6)

where σk = (σk1, σk2, . . . , σkJ) : σkj ∈ {0, 1} represents a subset of the genetic variants,

j ∈ σk when σkj = 1 (this means that θ̂IV W,k is the IVW estimate based on all the variants

in subset k), and

ψ̂k = max(1,
1

K − 1

∑
j∈σk

se(β̂Y j)
−2 (β̂Y j − θ̂IV W,k β̂Xj)

2) (7)
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where K is the number of variants included in subset k. The random-effects versions of the

standard error se(θ̂IV Wr,k) are used in this mixture distribution to appropriately allow for

heterogeneity between the variant-specific ratio estimates in the overall causal estimate.

The weight given to each of these normal distributions is calculated as:

wk =
∏
j∈σk

se(θ̂j)
−1 exp

[
−(θ̂j − θ̂IV W,k)

2

2 se(θ̂j)2

]
. (8)

Aside from the constant term, this is the likelihood assuming the variant-specific ratio esti-

mates θ̂j are normally distributed about a common mean θ̂IV W,k with variant-specific stan-

dard deviation se(θ̂j). Weights will be larger when more variants are included in the subset k

due to the se(θ̂j)
−1 terms, but they will reduce sharply if there is more heterogeneity between

the variant-specific ratio estimates for variants in the subset than would be expected due

to statistical uncertainty alone if all variants estimated the same causal parameter. If the

variant-specific ratio estimates for variants in a particular subset substantially differ, then

the weight for that subset will be low. Note that the reason for excluding subsets with one

variant is that heterogeneity cannot be estimated for these subsets. We then normalize the

weights so that they sum to one:

w′
k =

wk∑
k wk

. (9)

The causal estimate is the mode of the the mixture of normal distributions using these

weights:

θ̂MODE = argmax
θ

∑
k

w′
k se(θ̂IV Wr,k)

−1 exp

[
− (θ − θ̂IV W,k)

2

2 se(θ̂IV Wr,k)2

]
. (10)

Consistency and efficiency

In the asymptotic limit for a fixed number of genetic variants but as the sample size tends to

infinity (and hence the standard errors of the ratio estimates decrease to zero), the weighted

mixture distribution tends to a series of spikes about the IVW estimates based on each subset

of variants. The height of each spike depends on the total weight of variants that have that

causal estimate, and the tallest spike is the estimate with the greatest weight of evidence.

The modal estimate will be the IVW estimate corresponding to the subset k of variants all

having the same ratio estimate which has the greatest product of the inverse standard errors

of the ratio estimates
∏

j∈σk
se(θ̂j)

−1. Therefore a consistent estimate is obtained under
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a Hartwig’s weighted ZEMPA assumption [9]. The intuition of this assumption is that a

weighted plurality of the genetic variants is required to be valid instruments (as opposed to

median-based methods that require a majority or weighted majority of variants to be valid

instruments). The term ‘plurality’ is taken from the terminology of elections; a political

party winning more votes than any other is said to have a plurality of the votes.

Under this assumption, the heterogeneity-penalized model averaging method is asymp-

totically efficient, as the weight of the IVW estimate based on all the valid instruments will

increase to 1 as the sample size tends to infinity. This can be seen as the weight for any

subset containing variants with different ratio estimates will decrease to zero rapidly. The

weight of the largest subset of variants with the same ratio estimates will be the greatest

of all subsets by the ZEMPA assumption, and the ratio of this weight to all other weights

will increase to infinity as the sample size increases. However, asymptotic efficiency is not

necessarily an important property in practice, as infinite sample sizes are rarely encountered

in applied investigations. The model averaging estimate should be efficient for finite sample

sizes when several variants have similar ratio estimates.

Inferences on the weighted model-averaged distribution

We perform causal inferences based on the model-averaged distribution using a generalized

likelihood ratio test to construct a confidence interval. We take twice the log-likelihood

function, and construct a confidence interval consisting of all points for which twice their log-

likelihood is within a given vertical distance from the modal estimate. For a 95% confidence

interval, this distance is 3.841 (half of the 95th percentile of a chi-squared distribution with 1

degree of freedom). This is based on the result that twice the difference in the log-likelihood

at the estimate and at the true value of the parameter has a chi-squared distribution (here

with 1 degree of freedom as the parameter is 1-dimensional). This results in inference

without requiring resampling techniques (such as bootstrapping). The confidence interval is

not guaranteed to be symmetrical, or to be a single range of values (see later for an example

of a bimodal weighted distribution resulting in a composite confidence interval).

Practically, the modal estimate and confidence interval were obtained using a grid search

approach. The likelihood was evaluated at a series of points (in the simulation study, from

−1 to +1 at intervals of 0.001 – so estimates and confidence intervals were estimated to

3 decimal places). The modal estimate was taken as the point with the greatest value of
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the likelihood function, and the 95% confidence interval was taken as the set of points for

which twice the log-likelihood was within 3.841 of the twice the log-likelihood at the modal

estimate.

Simulation study

To consider the expected performance of this proposed method in realistic situations as well

as in comparison to alternative robust methods, we perform a simulation study. We consider

four scenarios:

1. no pleiotropy – all genetic variants are valid instruments;

2. balanced pleiotropy – some genetic variants have direct (pleiotropic) effects on the

outcome, and these pleiotropic effects are equally likely to be positive as negative;

3. directional pleiotropy – some genetic variants have direct (pleiotropic) effects on the

outcome, and these pleiotropic effects are simulated to be positive;

4. directional pleiotropy via a confounder – some genetic variants have pleiotropic effects

on the outcome via a confounder. These pleiotropic effects are correlated with the

instrument strength.

In the first three scenarios, the Instrument Strength Independent of Direct Effect (InSIDE)

assumption [6] is satisfied; in Scenario 4, it is violated. This is the assumption required for

the MR-Egger method to provide consistent estimates.

We simulate data for a risk factor X, outcome Y , confounder U (assumed unmeasured),

and J genetic variants Gj, j = 1, . . . , J . Individuals are indexed by i. The data-generating
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model for the simulation study is as follows:

Ui =
J∑

j=1

ψjGij + ϵUi (11)

Xi =
J∑

j=1

γjGij + Ui + ϵXi

Yi =
J∑

j=1

αjGij + θXi + Ui + ϵY i

Gij ∼ Binomial(2, 0.3) independently for all j = 1, . . . , J

ϵUi, ϵXi, ϵY i ∼ N (0, 1) independently

γj ∼ Uniform(0.03, 0.1) independently for all j = 1, . . . , J

The risk factor and outcome are positively correlated due to confounding even when the

causal effect θ is zero through the unmeasured confounder U . The genetic variants are

modelled as single nucleotide polymorphisms (SNPs) with a minor allele frequency of 30%.

A total of J = 10 genetic variants are used in each analysis. As the proposed model-averaging

method calculates weights for all 2J − J − 1 possible models, the model scales exponentially

with the number of variants, and so including more variants was not computationally feasible

in a simulation setting. For each of Scenarios 2 to 4, we considered cases with 2, 3 and 5

invalid instruments. For valid instruments, the αj and ψj parameters were set to zero. For

invalid instruments, the αj parameters were either drawn from a uniform distribution on the

interval from −0.1 to 0.1 (Scenario 2), or from 0 to 0.1 (Scenario 3), or set to zero (Scenario

4). The ψj parameters were either set to zero (Scenarios 2 and 3), or drawn from a uniform

distribution on the interval from −0.1 to 0.1 (Scenario 4). The causal effect θ was either set

to 0 (no causal effect) or 0.2 (positive causal effect). The average value of the R2 statistic

for the 10 variants across simulated datasets was 1.0% (from 1.1 to 1.4% in Scenario 4)

corresponding to an average F statistic of 20.4 (from 23.4 to 27.5 in Scenario 4).

In total, 10 000 datasets were generated in each scenario. We considered a two-sample

setting in which genetic associations with the risk factor and outcome were estimated on

non-overlapping groups of 20 000 individuals. We compared estimates from the proposed

heterogeneity-penalized model averaging method with those from a variety of methods: the

standard IVW method, MR-Egger [6] (both using random-effects), weighted and simple

11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/175372doi: bioRxiv preprint 

https://doi.org/10.1101/175372
http://creativecommons.org/licenses/by/4.0/


median [8], and the mode-based estimate (MBE) of Hartwig et al. [9]. Each of the methods

was implemented using summarized data only.

Results

Results for all of the methods are provided in Tables 1 (Scenario 1) and 2 (Scenarios 2 to 4).

We provide the mean estimate, the standard deviation of estimates, the mean standard error

(Table 1 only), and the empirical power of the 95% confidence interval (the proportion of 95%

confidence intervals excluding the null; this is the Type 1 error rate with a null causal effect).

Results for the MBE method are only provided for 1000 simulated datasets per scenario. This

is for computational reasons – the MBE method took around 20 times longer to run than

all the other methods put together. Results for the MBE method correspond to simple

(unweighted) and weighted versions of the method not assuming NOME (no measurement

error) with the recommended bandwidth parameter from the modified Silverman rule (ϕ = 1)

[16]; in total, 12 different versions of the MBE method are proposed by Hartwig et al.

Table 1 shows the efficiency of the model averaging method when all genetic variants are

valid instruments. The method is considerably more efficient than the MR-Egger and MBE

methods, with less variable estimates and greater power to detect a causal effect, and similar

in efficiency to the median-based methods. Coverage under the null is conservative for all

methods, but particularly for the MBE and model averaging methods.

Table 2 shows the robustness of the model averaging method in a range of invalid instru-

ment scenarios. Type 1 error rates are well-controlled (less than 7.5%) in all scenarios when

2 or 3 out of the 10 variants are invalid, and generally below those of other methods even

when 5 variants are invalid. Compared with the model averaging method, Type 1 error rates

with 5 invalid instruments for the MR-Egger method are lower in Scenario 3; however, they

are far higher in Scenario 4, and the power of the MR-Egger method to detect a positive

causal effect was low throughout. Equally, Type 1 error rates are slightly lower for the simple

median method in Scenario 4, but higher in Scenario 3. The empirical power of the model

averaging method to detect a causal effect was generally lower than that for other methods.

However, when a method suffers from Type 1 error inflation, this comparison is not a fair

one. The power of the model averaging method to detect a positive causal effect was not

dominated by any method that had well-controlled Type 1 error rates. Indeed, in Scenario 2,

the power of the model averaging method even exceeded that of the IVW method with 3 and
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5 invalid variants. This is because models including the invalid variants are downweighted in

the model averaging method, whereas these variants inflate the standard error in the IVW

method.

In comparison to the MBE method of Hartwig et al., Type 1 error rates for the model

averaging method were slightly higher than those for the simple MBE method, but lower

than those for the weighted MBE method; particularly in Scenario 4, where the Type 1

error rate for the weighted MBE method was not well-controlled even with only 2 invalid

instruments. Power to detect a positive causal effect was greater for the model averaging

than for the simple MBE method in all cases, and greater than for the weighted MBE method

in all cases except in Scenario 4, where the weighted MBE method had inflated Type 1 error

rates. Similar patterns were observed in the bias of estimates, with the model averaging

method generally having low bias. Although some methods were less biased in particular

scenarios, no method was less biased across all scenarios.

Scenario 1: all instruments valid
Method Mean SD Mean SE Power

Null causal effect: θ = 0

Inverse-variance weighted 0.001 0.072 0.077 3.9
MR-Egger 0.003 0.223 0.236 3.6

Simple median 0.001 0.092 0.105 2.1
Weighted median 0.002 0.086 0.096 2.8

Simple mode-based estimate (Hartwig) 0.003 0.113 0.149 0.3
Weighted mode-based estimate (Hartwig) 0.002 0.098 0.128 1.2
Heterogeneity-penalized model averaging 0.001 0.080 - 1.4

Positive causal effect: θ = +0.2

Inverse-variance weighted 0.191 0.080 0.086 61.9
MR-Egger 0.130 0.250 0.263 7.0

Simple median 0.201 0.104 0.119 39.0
Weighted median 0.185 0.096 0.109 39.9

Simple mode-based estimate (Hartwig) 0.195 0.136 0.167 18.5
Weighted mode-based estimate (Hartwig) 0.172 0.115 0.142 22.4
Heterogeneity-penalized model averaging 0.188 0.090 - 38.8

Table 1: Mean, standard deviation (SD), mean standard error (mean SE) of estimates, and
empirical power (%) for Scenario 1 (all variants valid instruments).

Applied examples

We provide further illustration of the proposed model averaging method and other robust

methods in two applied examples. In the first example, all the variants have similar ratio es-
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2 invalid variants 3 invalid variants 5 invalid variants
Method Mean SD Power Mean SD Power Mean SD Power

Null causal effect: θ = 0
Scenario 2: Balanced pleiotropy, InSIDE satisfied

Inverse-variance weighted -0.001 0.140 6.3 0.002 0.163 7.5 0.000 0.202 7.8
MR-Egger 0.001 0.436 7.7 0.004 0.509 8.2 0.007 0.629 9.3

Simple median 0.000 0.113 3.8 0.002 0.129 5.5 0.000 0.175 10.2
Weighted median 0.001 0.109 5.2 0.001 0.125 7.5 0.000 0.178 15.0

Simple MBE 0.000 0.126 1.0 0.008 0.131 1.8 0.006 0.196 4.0
Weighted MBE 0.004 0.105 2.4 0.000 0.113 3.1 0.005 0.172 8.3
Model averaging 0.000 0.100 2.4 0.000 0.115 3.2 -0.001 0.187 6.0

Scenario 3: Directional pleiotropy, InSIDE satisfied
Inverse-variance weighted 0.136 0.101 10.8 0.206 0.113 20.9 0.342 0.131 52.2

MR-Egger 0.004 0.421 7.8 0.002 0.479 8.2 0.011 0.539 8.5
Simple median 0.065 0.104 5.2 0.113 0.118 11.1 0.273 0.172 44.5

Weighted median 0.054 0.104 6.9 0.096 0.123 13.1 0.225 0.182 40.9
Simple MBE 0.020 0.122 1.7 0.044 0.138 2.3 0.146 0.220 9.4

Weighted MBE 0.013 0.102 2.9 0.041 0.123 5.1 0.114 0.177 12.8
Model averaging 0.021 0.098 2.6 0.043 0.121 3.9 0.133 0.214 11.8

Scenario 4: Directional pleiotropy, InSIDE violated
Inverse-variance weighted 0.104 0.125 19.4 0.150 0.135 26.2 0.232 0.140 38.3

MR-Egger 0.240 0.433 35.9 0.304 0.440 39.0 0.401 0.411 40.7
Simple median 0.023 0.111 4.1 0.044 0.125 6.5 0.095 0.164 16.9

Weighted median 0.090 0.144 20.8 0.143 0.164 34.1 0.247 0.178 60.5
Simple MBE 0.018 0.133 2.6 0.043 0.155 4.5 0.091 0.194 12.5

Weighted MBE 0.072 0.171 16.4 0.128 0.197 28.2 0.216 0.204 47.6
Model averaging 0.023 0.118 4.3 0.050 0.146 7.4 0.139 0.206 22.1

Positive causal effect: θ = +0.2
Scenario 2: Balanced pleiotropy, InSIDE satisfied

Inverse-variance weighted 0.193 0.143 33.3 0.188 0.168 26.5 0.195 0.206 19.5
MR-Egger 0.129 0.452 9.4 0.137 0.526 9.6 0.135 0.644 8.9

Simple median 0.204 0.127 34.6 0.200 0.143 33.2 0.206 0.191 33.0
Weighted median 0.186 0.122 36.4 0.186 0.140 36.2 0.190 0.188 37.0

Simple MBE 0.198 0.139 17.2 0.193 0.156 19.5 0.202 0.205 18.1
Weighted MBE 0.173 0.118 21.1 0.166 0.132 22.7 0.154 0.166 21.9
Model averaging 0.189 0.115 31.8 0.189 0.135 29.5 0.193 0.207 25.6

Scenario 3: Directional pleiotropy, InSIDE satisfied
Inverse-variance weighted 0.329 0.110 72.7 0.397 0.121 79.8 0.532 0.140 92.1

MR-Egger 0.138 0.432 9.5 0.140 0.486 9.8 0.136 0.552 9.4
Simple median 0.274 0.120 55.0 0.328 0.136 65.7 0.489 0.186 87.2

Weighted median 0.247 0.117 55.3 0.292 0.137 65.0 0.419 0.189 82.6
Simple MBE 0.216 0.141 20.8 0.254 0.154 26.1 0.356 0.226 39.3

Weighted MBE 0.187 0.117 24.8 0.211 0.122 31.0 0.283 0.165 48.0
Model averaging 0.218 0.116 41.8 0.243 0.136 43.9 0.339 0.218 52.6

Scenario 4: Directional pleiotropy, InSIDE violated
Inverse-variance weighted 0.298 0.131 63.5 0.343 0.140 66.6 0.426 0.146 74.4

MR-Egger 0.396 0.449 42.8 0.473 0.454 48.4 0.586 0.415 51.9
Simple median 0.232 0.125 42.7 0.252 0.139 45.7 0.304 0.176 53.2

Weighted median 0.285 0.156 62.1 0.338 0.175 71.5 0.444 0.184 85.4
Simple MBE 0.212 0.145 22.0 0.237 0.155 25.2 0.290 0.175 37.2

Weighted MBE 0.245 0.173 37.1 0.293 0.195 46.8 0.383 0.202 65.4
Model averaging 0.226 0.137 40.5 0.257 0.167 42.7 0.348 0.217 52.3

Table 2: Mean, standard deviation (SD) of estimates, and empirical power (%) for scenarios
2, 3, and 4. Abbreviation: MBE = mode-based estimate of Hartwig et al. [9].
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timates, whereas in the second example, there is marked heterogeneity in the ratio estimates.

Further detail about the applied examples is given in the Supplementary Material.

Low-density lipoprotein cholesterol and CAD risk

We consider the causal relationship between low-density lipoprotein (LDL) cholesterol and

coronary artery disease (CAD) risk based on 8 genetic variants having strong biological links

with LDL-cholesterol. Each of these variants is located in a gene region that either encodes a

biologically relevant compound to LDL-cholesterol, or is a proxy for an existing or proposed

LDL-cholesterol lowering drug. Genetic associations with LDL-cholesterol were obtained

from the Global Lipids Genetics Consortium’s 2013 data release [17], and associations with

CAD risk from CARDIoGRAMplusC4D’s 2015 data release [18]. These associations are

displayed graphically in Figure 1 (left panel).

C-reactive protein and CAD risk

We also consider the causal relationship between C-reactive protein (CRP) and CAD risk

based on 17 genetic variants previously demonstrated to be associated with CRP at a genome-

wide level of statistical significance [19]. The biological rationale for this analysis is not to

evaluate the causal role of CRP, as several of these genetic variants are not specifically

associated with CRP and hence are not valid instruments. The causal role of CRP can be

evaluated in a Mendelian randomization analysis using genetic variants in the CRP gene

region, the region that encodes CRP [20]. Rather, the biological rationale for this analysis

considers CRP as a proxy measure for inflammation more generally, and investigates whether

there are any consistent causal relationships between inflammation and CAD risk. Genetic

associations with CRP are obtained from Dehghan et al. [19], and associations with CAD

risk from the CARDIoGRAM consortium [21]. These associations are displayed graphically

in Figure 1 (right panel).

Results

Results for both examples are presented in Table 3. Estimates represent log odds ratios for

CAD per 1 mmol/L increase in LDL-cholesterol, or per unit increase in log-transformed CRP.

For the MBE method, we present estimates for a range of values of the bandwidth in the
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kernel-density estimator representing the suggested bandwidth from the modified Silverman

rule (ϕ = 1), half the suggested bandwidth (ϕ = 0.5), and one-quarter of the suggested

bandwidth (ϕ = 0.25), as well as for simple and weighted versions of the method.

In the first example, all of the methods suggest a positive causal effect. In the model

averaging method, the weight of the estimate including all 8 variants is 12.1%, and esti-

mates with 7 or more variants comprise 42.1% of the total weight (compared with 0.4% and

3.6% of the weight with no heterogeneity penalization – equal weights). The width of the

confidence interval from the model averaging method is similar to that from the weighted

median method, and narrower than that from all other methods except for the standard IVW

method. Confidence intervals from the MBE method are considerably wider than those from

other methods, and vary in size by up to 40% for the different choices of bandwidth con-

sidered here. In the second example, the methods give varied estimates. In particular, the

simple MBE method gives a positive estimate, whereas the weighted MBE method gives

a negative estimate with a confidence interval that excludes zero. In contrast, the model

averaging method gives a negative estimate, but a confidence interval that includes both

negative and positive values, although excludes zero – it includes two disjoint ranges of val-

ues. Again, the precision of the MBE estimates varied for different choices of bandwidth, in

the most extreme comparison by almost a factor of two.

Figure 2 shows the mixture distributions of the IVW estimates based on all subsets of

genetics variants using both equal weights (dashed line) and heterogeneity-penalized weights

(solid line) weights from the model averaging method. For the first example, the equally

and penalized weighted distributions are similar, as the IVW estimates based on all subsets

of variants are similar. For the second example, the heterogeneity-penalized distribution

differs substantially from distribution using equal weights and is bimodal, indicating that

there are groups of variants having similar weight of evidence supporting both a positive

and a negative causal effect, and suggesting that there are causal mechanisms linked with

inflammation that have both protective and harmful effects on CAD risk. This explains the

composite confidence interval including both positive and negative values. Only the model

averaging method is able to capture this feature of the data.
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Risk factor: LDL-cholesterol C-reactive protein

Method Estimate (SE) 95% CI Estimate (SE) 95% CI

Inverse-variance weighted 0.585 (0.044) 0.499, 0.671 -0.135 (0.102) -0.334, 0.065
MR-Egger 0.611 (0.100) 0.415, 0.807 -0.223 (0.198) -0.611, 0.165

Simple median 0.561 (0.067) 0.429, 0.693 0.118 (0.155) -0.187, 0.422
Weighted median 0.585 (0.057) 0.473, 0.697 -0.303 (0.108) -0.515, -0.092

Simple MBE (ϕ = 1) 0.522 (0.105) 0.316, 0.727 0.295 (0.372) -0.433, 1.023
Simple MBE (ϕ = 0.5) 0.700 (0.136) 0.434, 0.966 0.285 (0.502) -0.698, 1.269
Simple MBE (ϕ = 0.25) 0.699 (0.147) 0.411, 0.987 0.306 (0.510) -0.694, 1.305
Weighted MBE (ϕ = 1) 0.686 (0.096) 0.498, 0.875 -0.407 (0.152) -0.705, -0.108
Weighted MBE (ϕ = 0.5) 0.697 (0.140) 0.423, 0.971 -0.458 (0.112) -0.678, -0.238
Weighted MBE (ϕ = 0.25) 0.696 (0.140) 0.421, 0.970 -0.472 (0.218) -0.898, -0.045

Heterogeneity-penalized
0.598 0.475, 0.718 -0.441

-0.602, -0.257 and
model averaging a 0.038, 0.352 b

Table 3: Estimates (standard errors, SE) and 95% confidence intervals (CI) from a variety
of methods for applied examples. Abbreviation: MBE = mode-based estimate of Hartwig
et al. [9].

aThe heterogeneity-penalized model averaging method does not estimate a standard error. For the risk
factor LDL-cholesterol, and assuming normality, the standard error would be 0.062.

bThe confidence interval in this case is the union of two disjoint ranges.
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Figure 1: Genetic associations with risk factor and outcome (lines are 95% confidence
intervals) for: (left) 8 genetic variants having biological links to LDL-cholesterol; (right)
17 genetic variants associated with C-reactive protein (CRP) at a genome-wide level of
significance.
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Figure 2: Mixture distributions of IVW estimates using equal (dashed line) and penalized
(solid line) weights from model averaging method for: (left) LDL-cholesterol; (right) C-
reactive protein (CRP). The right-hand axis is twice the log-likelihood – the 95% confidence
interval contains all points within a vertical distance of 3.84 units on this scale (3.84 is the
95th percentile of a chi-squared distribution on 1 degree of freedom).

Discussion

The aim of this manuscript was to develop a mode-based estimation method that provides a

consistent estimate of the causal effect under the assumption that a plurality of the genetic

variants are valid instruments. In comparison with the MBE method proposed by Hartwig

et al., we believe that our method has several technical advantages: 1) it does not rely

on the specification of a bandwidth parameter; 2) it makes inferences that do not rely

on resampling methods; 3) it makes no asymptotic assumption about the distribution of

the causal estimate for making inferences, in particular allowing confidence intervals to be

asymmetric and to span multiple ranges; 4) it is asymptotically efficient, and should be

efficient in finite samples, as the method seeks to upweight the IVW estimate based on the

largest number of variants with homogeneous ratio estimates. One particular concern with

the MBE method is that the precision of the estimate is highly variable depending on the

choice of bandwidth parameter. There would be a great temptation as an applied researcher

to perform the method for a variety of values of the bandwidth parameter, and choose the

bandwidth parameter corresponding to the most desirable estimate.

The proposed heterogeneity-penalized model averaging method also outperformed Hartwig’s
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method in the simulation study, and in the applied examples. No sizeable inflation in Type 1

error rates was observed across the simulation scenarios when 2 or 3 of the 10 genetic variants

were invalid, and bias and Type 1 error rates were generally either better or no worse than

for other robust methods. The method was also at least as efficient as other robust methods

when all variants were valid instruments, and had reasonable power to detect a causal effect

throughout.

One deficiency of the proposed method is computational time. While the method was

substantially quicker than that of Hartwig et al. with 10 genetic variants, the run-time of

our method doubles with each additional variant. In the applied example with 17 genetic

variants, 217 − 1 = 131 071 weights were calculated. The method calculated weights in 0.7

seconds on a single 2.60 GHz central processing unit (CPU). The grid search algorithm

took a 34 seconds. However, with 30 genetic variants, over 1 billion weights would need to

be calculated. Reducing the computational burden may be possible – for example, models

including genetic variants with highly discrepant ratio estimates would receive low weights

and could be dropped with little loss of accuracy. However, solving this computational

challenge in general is left as a problem for future work.

An extension of the method that could be valuable in applied practice is the use of prior

information on particular variants. This can be achieved by multiplying the unnormalized

weights wk by a prior weighting π0(k) before normalizing. For example, if an investigator is

particularly confident that a genetic variant is likely to be a valid instrument, then models

containing this variant can be upweighted. Alternatively, prior weightings of models contain-

ing specific variants could be based on biological characteristics of the variants. For example,

exonic and/or non-synonymous variants could be upweighted, or variants with functional in-

formation relating them to the risk factor. If these variants truly are more likely to be valid

instruments, then this prior weighting would add to the robustness of the method. Addi-

tionally, a prior could be set to more strongly upweight less parsimonious models (that is,

upweight models based on more genetic variants). This could add efficiency to the analysis,

as models including more genetic variants will have more precise IVW estimates. Equal prior

weights corresponds to a prior belief that 50% of genetic variants are valid instruments. If

one instead believed that (say) 80% of genetic variants were valid instruments, then the prior

for subset k could be set to π0(k) = 0.8K × 0.2J−K where J is the total number of genetic

variants and K is the number of variants in subset k. The option to set this prior probability
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is included in the software code.

In conclusion, the heterogeneity-penalized model averaging procedure introduced in this

paper will be a worthwhile contribution to the Mendelian randomization literature both

in providing an additional robust method for causal estimation and testing the causal null

hypothesis when some genetic variants may not be valid instruments, and for revealing

features in the data such as the presence of multiple causal mechanisms.
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Supplementary Material

A.1 Software code

###### Summarized data set-up

bx # genetic associations with risk factor

by # genetic associations with outcome

bxse # standard errors of genetic associations with risk factor

byse # standard errors of genetic associations with outcome

######

bx =c(0.160, 0.236, 0.149, 0.09, 0.079, 0.072, 0.047, 0.05, 0.069,

0.039, 0.088, 0.032, 0.104, 0.045, 0.054, 0.032, 0.032)

by =c(0.0237903, -0.1121942, -0.0711906, -0.030848, 0.0479207, 0.0238895,

0.005528, -0.0327605, 0.0214852, -0.0387675, -0.0304042, -0.0082261,

0.0246432, 0.0148795, -0.0498487, 0.0155667, 0.0242003)

bxse=c(0.006, 0.009, 0.006, 0.005, 0.005, 0.005, 0.006, 0.006, 0.011,

0.006, 0.015, 0.006, 0.015, 0.007, 0.009, 0.006, 0.007)

byse=c(0.0149064, 0.0303084, 0.0150552, 0.0148339, 0.0143077, 0.0145478,

0.0160765, 0.0140347, 0.0255237, 0.0139256, 0.0441698, 0.0162031,

0.0444987, 0.016674, 0.0220043, 0.018098, 0.0219547)

# example data (CRP-CAD associations)

#

### Simple (but inefficient) code

#

library(R.utils)

pen.weight <- function(theta, thetase, thetamean) {

return( exp(-sum(log(thetase))-sum((theta-thetamean)^2/thetase^2/2)) ) }

# this is the heterogeneity penalty weighting function

post=NULL; est=NULL; seest=NULL

# these are the heterogeneity-penalized weights and means and standard deviations

# of the normal distributions in the weighted mixture distribution

for (i in 1:(2^length(bx)-1)) {

inc=as.numeric(strsplit(intToBin(i),"")[[1]])

inc=c(rep(0,length(bx)-length(inc)), inc)

prior = ifelse(sum(inc)<1.5, 0, 1)

# prior is set to zero for all models with 0 or 1 variants,

# equal for all other subsets

estinc = (by/bx)[which(inc==1)]

seinc = abs((byse/bx)[which(inc==1)])

meaninc = sum(estinc*seinc^-2)/sum(seinc^-2)

weight = pen.weight(estinc, seinc, meaninc)

post[i] = prior*weight

est[i] = meaninc

if (sum(inc) > 1) {

seest[i] = summary(lm(by[which(inc==1)]~bx[which(inc==1)]-1,

weights=byse[which(inc==1)]^-2))$coef[1,2]/

min(summary(lm(by[which(inc==1)]~bx[which(inc==1)]-1,

weights=byse[which(inc==1)]^-2))$sigma, 1)

}

if (sum(inc) == 1) {
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seest[i] = byse[which(inc==1)]/bx[which(inc==1)] }

}

post.norm = post/sum(post)

# normalized heterogeneity-penalized weights

sumlik=NULL

point = seq(from=-1, to=1, by=0.001)

for (i in 1:length(point)) {

lik = post.norm*dnorm(point[i], mean=est, sd=seest)

sumlik[i] = sum(lik) }

# calculates the likelihood at a range of values from -1 to +1

# if the causal effect may be outside of this range,

# then this range of values will need to be expanded

whichin = which(2*log(sumlik)>(2*max(log(sumlik))-qchisq(0.95, df=1)))

# provides an index of estimate values in the 95% confidence interval

estimate = -1.001+0.001*which.max(log(sumlik))

# modal estimate

ifelse(sum(diff(whichin)!=1)==0, "Single range", "Multiple ranges")

# returns "Single range" if the 95% CI is a single range of values

# returns "Multiple ranges" otherwise

lowerCI = -1.001+0.001*whichin[1]

upperCI = -1.001+0.001*whichin[length(whichin)]

# lower and upper confidence interval limits (assuming single range)

fullCI = -1.001+0.001*whichin

# all estimate values in confidence interval

# if the likelihood is calculated for a different range of values (not -1 to +1),

# then this code will need to be altered

#

#

### Efficient (but harder to follow) code

#

library(matrixStats);

library(iterpc);

library(Matrix);

library(stats);

library(optimbase);

#

model.prior = function(model.size, N.obs, prob.valid.inst){

pr = (prob.valid.inst^model.size)*(1-prob.valid.inst)^(N.obs-model.size)

return(pr)

}

#

het.weight = function(prob.valid.inst, bx, by, byse){

J = length(by);

theta.est = by/bx;

theta.se = abs(byse/bx);

tmp.1 = by/byse;

tmp.2 = bx/byse;

theta.se.sq = theta.se^2;

log.theta.se = log(theta.se);
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est = seest = vector("numeric", 2^J-1);

het.weight = vector("numeric", 2^J-1);

#

count = 0;

for(n in 1:J){

perms = choose(J,n);

inc = sparseMatrix(i=as.vector(t(replicate(n,1:perms))),

j=as.vector(t(getall(iterpc(J,n,c(1:J))))),

x=1, dims = c(perms,J));

# sparse binary inclusion matrix

# 1 denotes an instrument is included in the model

# each row represents a particular model

est.sum = inc%*%(theta.est/theta.se.sq);

recip.var.ivw = inc%*%(1/theta.se.sq);

est.ivw = est.sum/recip.var.ivw;

est[(count+1):(count+perms)] = est.ivw;

if(n>1){

tmp = t(replicate(J, as.vector(est.ivw)));

if(n<J){

psi.hat = sqrt((1/(n-1))*rowSums(t(t(inc)*(tmp.1^2 - 2*tmp*(tmp.1*tmp.2) +

(tmp^2)*(tmp.2^2)))))

}

else{

psi.hat = sqrt((1/(n-1))*sum(tmp.1^2 - 2*tmp*(tmp.1*tmp.2) +

(tmp^2)*(tmp.2^2)));

}

psi.hat[which(psi.hat<1)] = 1;

seest[(count+1):(count+perms)] = psi.hat/sqrt(recip.var.ivw);

}

else if(n==1){

seest[(count+1):(count+perms)] = inc%*%theta.se;

}

#

if(n>1){

het.exponent = rowSums(inc*t(t(t(t(inc)*theta.est) -

as.vector(est.ivw))^2/theta.se.sq));

het.weight[(count+1):(count+perms)] =

exp(-(inc%*%(log.theta.se)+0.5*het.exponent))*

model.prior(n,J,prob.valid.inst);

}

count = count+perms;

} # ends for loop

newlist = list(het.weight, est, seest);

return(newlist)

}

#

results = het.weight(0.5, bx, by, byse);

het.weight = results[[1]];

het.weight.norm = het.weight/sum(het.weight);
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# normalized heterogeneity-penalized weights

est = results[[2]];

seest = results[[3]];

#

sumlik=NULL

grid.increment = 1e-3; grid.start = -1; grid.end = 1;

point = matrix(seq(grid.start, grid.end, grid.increment), ncol = 1);

#

l = length(het.weight.norm);

sumlik = vapply(point,function(i){sum(het.weight.norm*dnorm(rep(i,l), est, seest))}, 1);

# calculates the likelihood at a range of values from -1 to +1

# if the causal effect may be outside of this range,

# then this range of values will need to be expanded

whichin = which(2*log(sumlik)>(2*max(log(sumlik))-qchisq(0.95, df=1)));

# provides an index of estimate values in the 95% confidence interval

estimate = -1.001+0.001*which.max(log(sumlik));

# modal estimate

ifelse(sum(diff(whichin)!=1)==0, "Single range", "Multiple ranges");

# returns "Single range" if the 95% CI is a single range of values

# returns "Multiple ranges" otherwise

lowerCI = -1.001+0.001*whichin[1];

upperCI = -1.001+0.001*whichin[length(whichin)];

# lower and upper confidence interval limits (assuming single range)

fullCI = -1.001+0.001*whichin;
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A.2 Applied examples

LDL-cholesterol and CAD example: To assess the causal effect of LDL-cholesterol

on CHD risk, we used 8 genetic variants in separate gene regions each of which has been

specifically linked with LDL-cholesterol (each either encodes a biologically relevant com-

pound to LDL-cholesterol, or is a proxy for an existing or proposed LDL-cholesterol lowering

drug). These gene regions are: HMGCR (proxy for statin treatment), PCSK9 (proxy for

PCSK9 inhibition), NPC1L1 (proxy for ezetimibe), APOB (encodes biologically relevant

apolipoprotein B), ABCG5/G8 (bile acid sequestrant), SORT1 (antisense oligonucleotide

RNA inhibitor targeting this pathway currently under development), APOE (encodes bio-

logically relevant apolipoprotein E), and LDLR (encodes biologically relevant LDL receptor).

The specific choice of variant in each gene region to include in the analysis was based on

the lead variant from the 2010 analysis of the Global Lipids Genetic Consortium [Teslovich

et al., Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;

466:707–713].

Supplementary Table A1 provides information about these variants, including the beta-

coefficients and standard errors for their associations per additional copy of the effect allele

with LDL-cholesterol (mmol/L) and CAD risk (log odds ratios), together with the causal

estimates based on each of these variants (log odds ratios for CAD per 1 mmol/L increase

in LDL-cholesterol).

Nearest Effect Association with LDL-c Association with CAD risk Causal estimate
rsid gene allele Beta (SE) Beta (SE) Estimate (SE)

rs12916 HMGCR C 0.063 (0.005) 0.036 (0.009) 0.566 (0.150)
rs2479409 PCSK9 G 0.052 (0.006) 0.029 (0.010) 0.556 (0.200)
rs2072183 NPC1L1 C 0.030 (0.005) 0.014 (0.012) 0.451 (0.394)
rs1367117 APOB A 0.105 (0.005) 0.041 (0.011) 0.393 (0.101)
rs4299376 ABCG5/G8 G 0.071 (0.005) 0.051 (0.010) 0.714 (0.147)
rs629301 SORT1 T 0.146 (0.005) 0.101 (0.011) 0.694 (0.078)
rs4420638 APOE G 0.185 (0.007) 0.092 (0.014) 0.498 (0.076)
rs6511720 LDLR G 0.181 (0.008) 0.125 (0.017) 0.693 (0.094)

Supplementary Table A1: Details of genetic variants, beta-coefficients (standard errors, SE) for
associations with low-density lipoprotein cholesterol (LDL-c, mmol/L) and with coronary artery
disease (CAD) risk (log odds ratios) taken from CARDIoGRAM consortium, and causal effect
estimates (log odds ratio per 1 mmol/L increase in LDL-cholesterol) for 8 genetic variants.
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CRP and CAD example: Supplementary Table A2 provides information about the

17 variants used in the example analysis of this paper for investigating causal relationships

between inflammation and coronary artery disease (CAD) risk, using C-reactive protein

(CRP) as a measure of inflammation. All variants were previously demonstrated to be

associated with CRP levels at a genome-wide level of significance by Dehghan et al. [Meta-

analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for

C-reactive protein levels. Circulation 2011; 123(7):731–738] Details of these variants are

given, including the beta-coefficients and standard errors for their associations with CRP

(log-transformed) and CAD risk (log odds ratios), together with the causal estimates based

on each of these variants (log odds ratios for CAD per unit increase in log-transformed CRP).

Nearest Effect Association with CRP Association with CAD risk Causal estimate
rsid gene allele Beta (SE) Beta (SE) Estimate (SE)

rs2794520 CRP C 0.160 (0.006) 0.024 (0.015) 0.149 (0.093)
rs4420638 APOC1 A 0.236 (0.009) -0.112 (0.030) -0.475 (0.128)
rs1183910 HNF1A G 0.149 (0.006) -0.071 (0.015) -0.478 (0.101)
rs4420065 LEPR C 0.090 (0.005) -0.031 (0.015) -0.343 (0.165)
rs4129267 IL6R C 0.079 (0.005) 0.048 (0.014) 0.607 (0.181)
rs1260326 GCKR T 0.072 (0.005) 0.024 (0.015) 0.332 (0.202)
rs12239046 NLRP3 C 0.047 (0.006) 0.006 (0.016) 0.118 (0.342)
rs6734238 IL1F10 G 0.050 (0.006) -0.033 (0.014) -0.655 (0.281)
rs9987289 PPP1R3B A 0.069 (0.011) 0.021 (0.026) 0.311 (0.370)
rs10745954 ASCL1 A 0.039 (0.006) -0.039 (0.014) -0.994 (0.357)
rs1800961 HNF4A C 0.088 (0.015) -0.030 (0.044) -0.346 (0.502)
rs340029 RORA T 0.032 (0.006) -0.008 (0.016) -0.257 (0.506)
rs10521222 SALL1 C 0.104 (0.015) 0.025 (0.044) 0.237 (0.428)
rs12037222 PABPC4 A 0.045 (0.007) 0.015 (0.017) 0.331 (0.371)
rs13233571 BCL7B C 0.054 (0.009) -0.050 (0.022) -0.923 (0.407)
rs2836878 PSMG1 G 0.032 (0.006) 0.016 (0.018) 0.486 (0.566)
rs4903031 RGS6 G 0.032 (0.007) 0.024 (0.022) 0.756 (0.686)

Supplementary Table A2: Details of genetic variants, beta-coefficients (standard errors, SE)
for associations with C-reactive protein (CRP, log-transformed) and with coronary artery dis-
ease (CAD) risk, and causal effect estimates (log odds ratios for CAD per unit increase in
log-transformed CRP) for 17 genome-wide significant variants.
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