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Summary. In vitro fertilization comprises a sequence of interventions concerned with the creation 

and culture of embryos which are then transferred to the patient’s uterus. While the clinically 

important endpoint is birth, the responses to each stage of treatment contain additional information 

about the reasons for success or failure. Joint analysis of the sequential responses is complicated by 

mixed outcome types defined at two levels (patient and embryo). We develop three methods for 

multistage analysis based on joining submodels for the different responses using latent variables and 

entering outcome variables as covariates for downstream responses. An application to routinely 

collected data is presented, and the strengths and limitations of each method are discussed.  

Keywords: in vitro fertilisation; joint modelling; mixed data; multilevel modelling; multistage 

treatment data; multivariate responses  

 

1. Background and motivation 

In vitro fertilization (IVF) is a complex multistage procedure for the treatment of subfertility. 

Typically, a ‘cycle’ of IVF begins with the administration of drugs to stimulate the patient’s ovaries 

and promote the release of oocytes (eggs). The oocytes are collected from the patient and are then 

fertilised either by mixing or injecting them with sperm. The resulting embryos are cultured for 

several days. Finally, one or more of the best embryos are selected for transfer to the woman’s 

uterus, where it is hoped that they will implant and develop into a healthy baby. Treatment may fail 

at any stage of the cycle (if no oocytes are recovered from the ovaries, no good quality embryos are 

produced, or those transferred do not implant), in which case the subsequent stages are not 

undertaken.  

The sequential nature of IVF means that the patient’s response can be measured at each stage of the 

treatment (Heijnen et al. 2004): the stimulation of the ovaries can be evaluated by the number of 
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oocytes collected; the fertilization and culture stages can be evaluated by the number and quality of 

embryos produced; and the success of the transfer procedure can be evaluated according to 

whether or not a child is born as a result. Figure 1 displays a schematic of the IVF cycle. A recent 

review of outcome measures used in IVF RCTs showed that there is considerable interest in these 

‘intermediate’ or ‘procedural’ outcomes of IVF; 361 distinct numerators were identified, and the 

median (IQR) number of distinct outcomes reported per trial was 11 (7 to 16) (Wilkinson et al. 2016).      

The interest in procedural outcomes in IVF research is not surprising. While the most relevant 

measure of success for patients is the birth of a child (Min et al. 2004, Heijnen et al. 2004, Legro et 

al. 2014), establishing the effects of treatments and patient characteristics on procedural outcomes 

might increase our mechanistic understanding of how IVF works and how it might be improved. The 

question of how outcomes at each stage of the process relate to one another also appears to be 

relevant to designing and evaluating IVF interventions. In response, two approaches for the analysis 

of multistage IVF data have recently been proposed (Maity et al. 2014, Penman et al. 2007). The first 

is a discrete time-to-event approach that treats the stages of the IVF cycle as a series of ‘failure 

opportunities’ (Maity et al. 2014). Each woman’s response data then comprise a vector of binary 

indicator variables denoting whether they failed at this stage, or proceeded to the next. The second 

treats the stage of the cycle reached by the patient as an ordinal response, and models this using 

continuation ratio regression (Penman et al. 2007). Both of these approaches allow us to answer 

research questions relating to the effects of baseline treatment and patient characteristics on IVF 

response, while preserving the sequential nature of the data. Both share similar limitations, 

however. In particular, both treat the responses at each stage as dichotomous ‘success or failure’ 

events. This wastes a great deal of information, since it is more informative to measure the number 

of oocytes obtained from the ovaries than merely whether a sufficient quantity were available to 

enable the cycle to continue; and it is more informative to measure the quality of any embryos 

obtained than merely whether there were any available for transfer. These methods are also 

incapable of accommodating outcomes defined at different levels of a multilevel structure; some 

outcomes (eg: number of oocytes) may be defined for each patient, while others (eg: embryo 

quality) are defined for the patient’s individual embryos. In addition, while these methods allow for 

differential effects of covariates at each stage through the inclusion of interaction terms, they do not 

allow for different covariates to be included as predictors for the different stage-specific responses.  

While methods for the analysis of sequential IVF data exist therefore, it remains to identify 

techniques capable of incorporating the variety of outcome types encountered in this setting, and 

moreover responses which are defined at different levels of a two-level data structure (embryos and 

patients). This includes counts of oocytes, ordinal embryo quality scales, binary birth indicator 

variables, and so on. Methods for the analysis of multivariate responses of mixed outcome types are 

hardly new (eg: Goldstein 2003) but have received considerable attention in recent years (see de De 

Leon and Chough (2013) for a comprehensive collection of the state of the art). While much of this 

work has focussed on the joint analysis of time-to-event and longitudinal response data (see reviews 

by Gould et al. (2015) and Tsiatis and Davidian (2004)), approaches capable of accommodating 

different combinations of outcome types have been described (McCulloch 2008; Dunson 2000, 

Gueorguieva 2001, Gueorguieva and Agresti 2001, Dunson and Herring 2005, Dunson et al. 2003, 

Goldstein et al. 2009). Typically, these involve the inclusion of shared (McCulloch 2008, Dunson 

2000, Gueorguieva 2001, Dunson 2000, Dunson and Herring 2005) or otherwise correlated 

(Gueorguieva and Agresti 2001, Goldstein et al. 2009) latent variables in ‘submodels’ for the 
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different response variables. These latent variables accommodate dependency between the 

response variables in the model. Moreover, by estimating the parameters governing the distribution 

of these latent variables, we can examine both the direction and degree of association between a 

patient’s responses. A further attractive feature of latent variable approaches is that they can be 

used to jointly model responses measured at different levels of a multilevel data structure  

(Goldstein et al. 2009, Dunson et al. 2003). These methods do not appear to have been discussed in 

the context of multistage treatments however. 

Given the strict temporal ordering of the stages, an alternative strategy for the analysis of IVF data 

would be to explicitly model the relationships between the patient’s stage-specific responses using a  

series of conditional regression equations (Blalock 1961). Under this sort of approach, each response 

variable would be included as a covariate in the regression equations for each of the subsequent, or 

‘downstream’, responses. An advantage of these approaches is that they allow direct and indirect 

effects of the procedural responses on downstream outcomes to be distinguished (Pearl 2001). A 

third strategy we might consider would be to combine the two approaches hitherto described, and 

simultaneously link submodels for each response using latent variables while including the response 

variables as covariates in the downstream response models. This would then resemble the 

endogeneous treatment models employed in the econometrics literature (Terza 1998), or 

multiprocess models that have been employed in education research (Steele et al. 2009).  

In this paper, we develop methodology for the analysis of multistage IVF data, with mixed response 

types (count, ordinal, and binary) defined at different levels of a two-level data structure (patients 

and embryos). We describe three approaches in which distinct submodels are used for the various 

response variables. In the first, we include correlated latent variables and estimate the relationships 

between the responses. In the second, we adopt an outcome regression approach where response 

variables enter into regression equations for downstream response variables as covariates. This 

approach can be considered as a set of separate regression models. In the third, we consider an 

endogenous response model where we combine both of these approaches, by including upstream 

response variables as covariates in downstream submodels, and also allowing the submodel-specific 

latent variables to be correlated. The remainder of the manuscript is structured as follows. In section 

2, we describe the models. In section 3 we illustrate the use of the methods with an application to a 

routine clinical database. This is followed by a discussion in section 4. We conclude with some brief 

recommendations in section 5.  

 

      

2. Models 

Here we describe latent variable, outcome regression and endogenous response modelling 

approaches to the analysis of multistage IVF data. The approaches have several key features in 

common. First, they all include distinct submodels for each of the response variables considered in 

the cycle. We include six response variables for patient j = 1,…,n and their embryos i = 1,…,nj , and 

hence six submodels, in the current presentation: the number of oocytes (eggs) obtained from 

ovarian stimulation (a count,��
�); the fertilisation rate when the oocytes are mixed with sperm (��

�); 

two measures of embryo quality (cell evenness and degree of fragmentation ���
� and ���

� , both 
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measured using ordinal grading scales); an indicator denoting whether one or two embryos were 

transferred to the patient (denoted by a binary variable ��
�) and another (��

�) indicating whether or 

not the transfer of embryos resulted in the live birth of one or more babies (a live birth event, or 

LBE) (Fig.1). These are listed in temporal order, with the exception of the two embryo quality scales, 

which are coincident. We include the decision to transfer two embryos (known as double embryo 

transfer, or DET) in the model because it is an important predictor of transfer success which is 

partially determined by the outcomes of the earlier stages. A second feature common to the 

approaches is that once a patient has dropped out of the cycle, they do not appear in the submodels 

corresponding to the downstream responses. In the following, we ignore the possibility that each 

patient may undergo multiple cycles of IVF, noting that the models could be extended to three levels 

(embryos nested within cycles nested within women) by adding additional random scalar terms 

(Goldstein 2011). 

2.1 Correlated latent variable approach 

This approach requires the use of latent variable representations for the various submodels 

constituting the larger model. Each patient j has associated vectors of responses ��= 

(��
� , ��

� , ���
� , ���

� , ��
� , ��

�) and of underlying latent variables zj = (��
� , ��

� , ��
� , ��

� , ��
� , ��

� ). Both of these 

vectors may be partially observed due to drop-out or outright failure before completion of the 

treatment. We then posit a multivariate Normal distribution for the latent variables, and estimate 

the elements of the correlation and variance-covariance matrices. We prefer to use distinct latent 

variables in each submodel to an approach based on a common latent variable which is scaled by  

factor loadings in each submodel (eg: Dunson 2000, McCulloch 2008), as the linearity assumption 

required for the latter is too restrictive for present purposes (Gueorguieva 2001). For the latent 

variable approach, we do not include response variables as covariates in any of the submodels. The 

submodels for each stage are presented below, followed by the multivariate distribution of latent 

variables.  

 

 

2.1.1 Stimulation phase submodel  

For patient j, we assume the number of oocytes (eggs) obtained ��
� follows a Poisson distribution 

and model the log of the rate parameter ��
	 in the usual way: 

 

log
��
	� � 
�

	�	 � ��
	 (1) 

 

where 
�
	

 is a row-vector of cycle-level covariates for patient j, �	 is a corresponding vector of 

regression parameters and ��
	 is a patient-specific latent variable that captures overdispersion in the 

oocyte yield. This submodel is fitted to all patients who start the cycle.  

 

2.1.2 Fertilisation submodel 
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We model the number of embryos obtained when oocytes are mixed with sperm ��
� in terms of its 

rate parameter ��
�, again using a Poisson submodel: 

 

log
��
�� � log
��

�� � 
�
��� � ��

� (2) 

 

where  
�
�

, 
��  and ��

� are analogous to the corresponding terms in the stimulation model. We now 

include an offset term corresponding to the logarithm of the number of oocytes obtained in the 

linear predictor. This submodel is fitted to all patients who have oocytes mixed with sperm. In some 

cycles, the number of oocytes mixed with sperm is less than the number obtained, so there is an 

implicit assumption in the model that any oocytes which were not mixed could not have been 

successfully fertilized. The assumption is reasonable, since the decision not to mix an oocyte with 

sperm is almost always based on the fact that the oocyte has been identified as being degenerate.  

 

2.1.3 Embryo quality submodels 

 

We include two measures of embryo quality; cell evenness (��) and degree of fragmentation (��). 

These are ordinal 1 to 4 grading scales measured at the level of individual embryos. We model these 

using cumulative logit submodels. For embryo i (where i = 1,2,…,nj) nested in patient j we have, for k 

= 1,2,3: 

 

 

logit
�
��
� � �  �


� � 
��
� �


� � ��
�  

logit
�
��
� � �  �


� �  
��
� �


� � ��
� 

 

(3) 

 

 

where 
��
�  and 
��

�  are row-vectors of covariates, �

�  and �


�   are vectors of regression coefficients 

which may vary across the levels of k (relaxing the proportional odds assumption), and  ��
� and ��

� 

are patient-level random effects (latent variables) which are identified due to the clustering of 

embryos within patients. �
��
�  and �
��

�  are cumulative probabilities of embryo i in patient j having a 

grade of k or lower for evenness and fragmentation degree respectively and  �

�  and �


�  are 

threshold parameters, corresponding to the log-odds of the embryo having grade k or lower. These 

submodels are fitted to all embryos. 

 

 

2.1.4 Double embryo transfer submodel 
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In order to jointly model the binary response DET, denoting the number of embryos transferred, 

with the other response variables, we use a latent variable representation of a probit regression 

model (Albert & Chib 1993). Let ��
� � 1 or 0 if patient j does or does not have DET, respectively. We 

define ��
�� as a latent continuous variable underlying the binary ��

� , such that:  

��
� � �1 ����

��  � 00 �� ��
�� � 0� (4) 

 

A linear regression submodel for the latent ��
��  is then used to estimate covariate effects: 

��
�� �  
�

� �� �  ��
� 

 ��
�~��0, 1�    

 

(5) 

 

where 
�
�  is a row-vector of patient-level covariates and ��  is a vector of regression coefficients. 

Fixing the variance of ��
� to be 1 is mathematically equivalent to specifying a probit model for the 

probability that a patient will have DET. We use this error term to link the DET submodel to the 

others. 

 

 

2.1.5   Live birth event submodel 

As for DET, we use a latent probit representation for ��
� � 1 or 0 corresponding to whether or not 

LBE obtains, with an underlying latent variable ��
�� , row vector of patient-level covariates 
�

�  and 

vector of regression coefficients ��  . The error term ��
� again has a variance of 1, and is used to link 

the LBE submodel to the others. The DET and LBE submodels are fitted to patients who undergo the 

transfer procedure.  

 

2.1.6 Covariates in the latent variable approach 

 

An essential feature of the latent variable method is that none of the covariate vectors 
�
�

, 

�

�
, 

��

�
,   
��

�
, 

�

�
,  

�

�
  
include any of the  response variables �� .  

 

2.1.7 Latent variable distribution 

 

We specify a multivariate Normal distribution for the latent variables to connect the submodels: 
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We note that this framework allows us to estimate the relationships between patient and embryo-

level responses.  

 

2.2 Outcome regression approach  

In the outcome regression approach, we fit the submodels presented for the latent variable method 

as separate regression models, such that we replace the covariance matrix (6) by a diagnonal matrix. 

By contrast to the latent variable approach, we now include the response variables in the covariate 

matrices for each downstream submodel. In particular: we include the numbers of oocytes and 

embryos obtained as covariates in the submodels relating to embryo quality, DET and LBE; we 

include aggregated measures of embryo quality gradings as covariates in the DET and LBE 

submodels; and we include DET as a covariate in the LBE submodel. We use the shorthand 

‘outcome-covariate’ to refer to instances of response variables appearing as covariates in 

downstream submodels. While the simplicity of fitting separate regression models makes this an 

attractive strategy, a weakness of this approach is that it rests on the standard regression 

assumption that covariates are not endogenous, which is to say that they are not correlated with the 

error term in the submodel. This assumption is unlikely to hold if we include outcome-covariates, 

due to the likelihood that the different response variables in the submodels share unmeasured 

predictors.      

 

2.3 Combining the latent variable and outcome-regression approaches: an endogenous response 

model. 

 

A third approach we consider is a combination of the two approaches described above. We 

represent each response variable using a conditional regression equation including upstream 

response variables in the covariate matrix, as for the outcome regression approach (2.2). However, 

we also allow the submodels to be joined through multivariate Normal latent variables as for the 

correlated latent variable method (2.1). We estimate the variance-covariance matrix of this 

distribution, together with the regression parameters. This approach allows for the endogeneity of 

outcome-covariates, since the correlation between response variables is incorporated through the 

latent variables (Heckman 1978;Terza 1998). Consequently, this approach allows for valid estimation 

of the effects of upstream upon downstream response variables (Skrondal and Rabe-Hesketh 2004). 
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Identifying endogenous response models can be challenging however (McConnell et al. 2008, Diggle 

et al. 2007). Standard strategies include fixing parameters in the model (for example, fixing elements 

of the latent correlation matrix to be zero) and including instrumental variables in some of the 

submodels (Xie 2000; Steele et al. 2009; Terza 2009).  These variables should be strongly correlated 

with the response variable of the submodel in which they appear, but should not otherwise be 

associated with downstream responses.  

 

3 Application of the methods to routinely collected IVF data. 

 

3.1 St Mary’s Data 

 

 We utilise the three methods in an application to a routine clinical database from St Mary’s Hospital 

Department of Reproductive Medicine, Manchester, England. Our aim was to establish whether the 

endogenous response model would allow us to infer more about the internal structure of the IVF 

cycle compared to the simpler latent variable and outcome regression methods. The dataset 

includes 2962 initiated IVF treatments undertaken by 2453 women between 2013 and 2015, 

including quality data on 12,911 embryos. For present purposes, we ignore the fact that some 

women underwent multiple cycles, noting that the current models could be extended to a three-

level setting (Goldstein 2011). Characteristics of the treatment cycles in the dataset are presented in 

Table 1. We include age and partner age in all of the submodels. We standardise these by 

subtracting the mean value and dividing by a standard deviation. The models are flexible enough to 

allow different covariates to be included in different submodels; we include attempt number in the 

number of oocytes and DET submodels, pooling 4th and 5th attempts due to small numbers in these 

categories. In the embryo evenness and fragmentation submodels, we also include an indicator 

variable denoting whether the egg was fertilized by injecting it with sperm, or by mixing in vitro. We 

suppose that covariate effects are constant across the levels of the ordinal embryo responses 

(proportional odds), although the methods can accommodate non-proportionality. We fit three 

models as described in section 2 (correlated latent variable model, outcome regression model, and 

endogenous response model). Figure 2 shows path diagrams for each of these. Note that we do not 

distinguish between linear and nonlinear relationships in this diagram. 

 

3.2 Fitting the models 

We use the R (R Core Team 2014) implementation of the Bayesian software Stan (Stan Development 

Team 2014) to fit the models. While the benefits (or drawbacks, depending on one’s perspective) of 

Bayesian methods have been well rehearsed, our use of this software is primarily driven by 

pragmatism; the software is flexible and can accommodate complex multilevel models without the 

need to author custom sampling algorithms. We place weak Normal (0,10002) priors on the 

regression parameters in the submodels, with the exception of those included in the latent probit 

submodels (that is, those corresponding to DET, LBE). Given the fact that the latent responses in 

these submodels have a variance of 1, we place Normal (0, 2
2
) priors on the regression parameters. 

These can be considered to be weakly informative prior distributions which improve efficiency in 

fitting the model by restricting the sampler to realistic values for these parameters (Gelman et al. 

2014). We place weakly informative Cauchy (0,2.5) priors on the free variance parameters. Finally, 
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we use an LKJ prior distribution for the latent correlation matrix, which is uniform over all possible 

correlation matrices (Stan Development Team 2017). We consider this appropriate given that 

estimation of this matrix is of particular interest in our latent variable models. We run the samplers 

for between two and three thousand iterations in each case, using three chains. We check 

convergence using the Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992) and using 

traceplots. In practice, we note that fitting the endogenous response model can take around 12 

hours on an Intel Core i7-4810MQ 2.8 GHz processor with 16 GB of RAM. Stan code is provided in 

the online supplement. 

 

3.3 Results and interpretation 

 

The models produce a large number of parameter estimates relating to the covariates in each 

submodel and the relationships between stage-specific responses. In the following, we focus on the 

information provided by each approach regarding the relationships between response variables, and 

simply note here that estimates relating to other covariates were generally similar between the 

models.  

  

3.3.1 Latent variable approach 

In the latent variable approach, information regarding the relationships between the variables is 

obtained through the estimated latent correlation structure (Table 2). We note that estimates 

derived from this model are generally consistent with current understanding. For example, the 

model suggests a positive relationship between embryo evenness on the one hand, and probability 

of LBE on the other (transferring higher quality embryos makes success more likely), although the 

association between fragmentation and LBE is less clear. The number of oocytes obtained from 

ovarian stimulation and fertilization rate also appear to be associated with LBE (reflecting 

advantages of having a larger pool of embryos from which to select). Upstream measures of success 

are negatively associated with DET, possibly due to the fact that the transfer of multiple embryos is 

usually employed to compensate for poor prognosis. On the other hand, it is not immediately 

obvious why fertilization rate is (quite strongly) negatively related to the number of oocytes 

obtained, and to embryo quality variables.  

More generally, we might ask whether the latent correlations arising from this approach can 

reasonably be given a causal interpretation. In relation to this, we note that the estimated 

correlation coefficients can be adjusted for confounding variables by including these in both of the 

relevant submodels. However, giving correlation coefficients a causal interpretation may be 

problematic even if they are appropriately adjusted, since their magnitude is in part determined by 

the variance of the covariables under consideration, which may vary across populations (Greenland 

et al. 1991). Moreover, the estimated correlation between any two response variables is not 

adjusted for other response variables in the model. As a result, it is not possible to distinguish 

genuine from spurious structural relationships attributable to confounding by other outcome 

variables. Consequently, the latent variable approach does not appear to yield interpretable 

estimates of the relationships between response variables. In section 4, we suggest that the latent 

variable approach may be more useful for the purpose of making multivariate predictions regarding 
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IVF cycle outcomes. We note here that the latent variable approach accommodates both multilevel 

response data and participants with incomplete response data. Correlations relating to embryo-level 

responses can be interpreted as measures of association with the patient’s mean values of 

fragmentation and evenness, while drop out is assumed to be ‘missing at random’ (MAR, Rubin 

1976) given the observed responses and covariate data (McCulloch 2008).  

3.3.2 Outcome regression approach 

 

The outcome regression approach provides information on relationships between response variables 

directly by way of estimated regression coefficients (Table 3). Unlike the correlation coefficients  

from the latent variable model (Table 2), these are adjusted for upstream response variables as well 

as the other covariates in the submodel. The regression coefficients are also easier to interpret 

compared to the latent correlations and, moreover, may be given a causal interpretation. In the 

outcome regression approach, the parameter corresponding to fertilization rate in the LBE submodel 

is an estimate of the effect of increasing fertilization rates on LBE for a fixed number of oocytes, 

after blocking effects acting via the intermediate outcomes embryo quality or DET (Westreich and 

Greenland 2013). The estimate (95% CI) is 0.14 (0.08 to 0.21), indicating a positive effect. For the 

estimates in the outcome regression model to be valid however, we must assume that there is no 

unmeasured confounding (Westreich and Greenland 2013). For example, for our estimates of the 

effects of embryo evenness and fragmentation in the LBE submodel to be valid, we must assume 

that there are no unmeasured variables which influence both embryo quality and LBE. This is 

unrealistic in practice, as there are likely to be deleterious factors which influence both embryo 

viability and uterine receptivity (Roberts et al. 2010). Even if we believed that this could be 

adequately accounted for by the inclusion of age as a covariate, residual confounding due to 

measurement error and model misspecification (for example, including age as a linear term when its 

relationship with several of the responses may be nonlinear) would ensure that this assumption did 

not hold (Sterne et al. 2016). In the outcome regression approach, subgroups of participants enter 

each submodel according to their progress through (and drop out from) the stages of treatment. The 

model assumes therefore that missing data can be accounted for by the predictor variables in each 

submodel (and are therefore MAR given these covariates). 

 

3.3.3 Endogenous response modelling approach 

 

The latent correlation matrix from the fitted model is not obviously interpretable (Web Table 1). 

Instead, we use the regression coefficients to investigate the relationships between variables (Table 

3). As for the outcome-regression model, the regression coefficient corresponding to an outcome-

covariate can be interpreted as an estimate of the effect of the outcome on the response variable in 

the submodel. This estimate applies for fixed values of any upstream (in relation to our outcome-

covariate) variables, after blocking indirect effects through intermediate (downstream) response 

variables. We note that several of the estimates are inconsistent with those obtained from the 

outcome regression model. For example, the estimate (95% CI) corresponding to fertilization rate in 

the LBE submodel changes from 0.14 (0.08 to 0.21) in the outcome regression model to -0.17 (-0.35 

to 0.03) in the endogenous response model. This suggests that the positive relationship between 
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fertilization rate and LBE probability observed in the previous models might have been an artefact 

due to measurement error and unmeasured confounders; in the endogenous response model we 

conclude that an increased fertilization rate is probably associated with a reduced chance of a 

successful transfer. This might reflect an increased risk of selecting inferior embryos that are not 

identified by the grading scales used here. This contrast highlights the possibility of using 

endogenous response models to explore the extent of unmeasured confounding. In general, the 

estimates of outcome-covariate effects are less precise in the endogenous response model 

compared to the outcome regression model. This is analogous to the impact of allowing for, rather 

than ignoring, clustering of repeated measurements in a mixed model. To check the model, we 

plotted the observed responses in the data against replicated data drawn from the posterior 

predictive distribution (Figure 3). For embryo evenness, embryo fragmentation, DET and LBE, we 

plotted the observed frequency distributions with 95% intervals for the predictive distributions from 

the model. These checks suggested that the model was compatible with the study data, with the 

exception of DET, which systematically exceeded the model predictions by a small amount (Figure 

3). This is because our prior for the DET intercept was too strong, resulting in underfitting. We would 

relax this in future applications. 

 

The endogenous response model is again a MAR approach, as missing data are assumed to be 

ignorable given observed response and covariate data. Since the endogenous response model 

provides interpretable estimates of effects of procedural responses on downstream events (unlike 

the latent variable model) while allowing the assumption that outcome-covariates are not 

endogenous to be relaxed (unlike the outcome regression model) we conclude that this approach is 

superior for the analysis of multistage IVF treatment data.  

 

 

4 Discussion 

 

We have presented and compared several approaches for the analysis of multistage IVF data. All 

methods offer several advantages over those previously described, including the ability to 

incorporate mixed outcome types and responses defined at different levels of a multilevel data 

structure. The approaches are flexible enough to accommodate different combinations of response 

types and different covariates in the various submodels, according to the particular research 

question under consideration. The models can be fitted in freely available Bayesian software (Stan 

Development Team 2017) without the need to write custom sampling algorithms.  

 

The application to routinely collected clinical data highlighted a number of key differences between 

the approaches. The latent variable method can be used to examine relationships between 

covariates and stage-specific response variables. However, it is less useful for investigating the 

relationships between the responses, due to difficulties in interpreting the latent correlation 

coefficients and the fact that these cannot be adjusted for other response variables in the model. 

Both the outcome regression approach and the endogenous response model were preferable in this 

regard. Both provide easily interpretable regression coefficients and allow the causal structure of the 

sequence of responses to be represented. The validity of the estimates in the outcome regression 

approach rests upon an assumption of no unmeasured confounding however, which will always be 
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implausible in practice. By contrast, the endogenous response model allows for the valid estimation 

of outcome-covariate effects by explicitly modelling the correlation between the error term and the 

response variable (Terza 1998, Skrondal and Rabe-Hesketh 2004). We have assumed a multivariate 

Gaussian distribution for the latent variables connecting the submodels. This is unverifiable in 

practice. Accordingly, the model should not be seen as a panacea for confounding. It might be 

possible to improve robustness in this regard using more flexible latent variable distributions, such 

as mixtures of Normals (Komarek et al. 2010) or copula-based methods (de Leon and Wu 2011). We 

are aware that, in discussing the potential of these methods to quantify structural relationships in 

the IVF cycle, we have skirted the debate about whether or not it is meaningful to speak of causal 

effects of variables which are not directly modifiable (Greenland 2017, Krieger and Davey Smith 

2016). The methods we present could be described using the language of causal mediation, so that 

instead of speaking of an effect of number of oocytes on downstream variables, for example, we 

could speak of the effects of predictors being mediated through the number of oocytes. A valid 

approach to mediation analysis in nonlinear models has been described by Pearl (2011).  

 

Identification of endogenous response models can be challenging. The inclusion of instrumental 

variables in some of the submodels is a common strategy to assist with identification. In our analysis, 

‘attempt number’ acted as an instrumental variable in the number of oocytes and DET submodels 

and the binary variable ‘method of fertilization’ (either by mixing with sperm in vitro or by injecting 

the sperm directly into the oocytes) acted as an instrumental variable in the embryo quality 

submodels. We therefore assumed that attempt number affects the number of oocytes obtained 

and the decision to transfer two rather than one embryos (with previous failed attempts making it 

more likely both that higher doses of ovarian stimulation drugs will be used and that two rather than 

one embryo will be transferred) but does not influence the other response variables other than via 

these intermediaries. We also assumed that the method of fertilizing the oocytes influences the 

downstream outcomes solely through the quality of the resulting embryos. It is difficult to imagine 

how the method of fertilization could affect the cycle outcome by any other causal pathway. There 

could plausibly be unmeasured common causes of our instruments and downstream responses, 

which would undermine their validity as instruments. We note however that, since we handle 

endogenity through correlated latent variables in the model, validity of the instruments is not 

required. We anticipate that identification of endogenous response models is likely to be easier 

using larger datasets than that considered here, although as noted above fitting the models can be 

computationally expensive. It remains to identify a suitable reparametrization which may improve 

the speed of fitting the model, and to investigate the role of Bayesian prior regularization in 

improving efficiency (Gelman et al. 2014).  

 

Although the latent variable model was not useful for the purpose of investigating relationships 

between responses, models of this sort can be usefully employed for the purpose of making 

multivariate predictions (McCulloch 2008). Using the posterior draws from the latent variable model 

fitted in section 3, we predicted the IVF cycle outcomes for a new cohort of patients with the same 

characteristics as those in our sample. We adopted a sequential approach whereby we predicted the 

number of oocytes obtained after stimulation for each patient for each draw from the posterior, 

before predicting the fertilization rate (and consequently, the number of embryos obtained) in those 

who were predicted to have any oocytes available. We then predicted the embryo quality for each 

embryo predicted to arise from the fertilization procedure, and so on. This approach allows us to 
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predict the responses of a cohort of patients (or indeed, of an individual) as they pass through the 

stages of the IVF cycle, while incorporating the dependency between stage-specific responses. This is 

not a feature of existing prediction models (eg: Dhillon et al. 2016, Nelson and Lawlor 2011), but 

may be useful to the clinician whenever there is interest not only in the overall outcome of 

treatment but also in ensuring that this is achieved in a safe manner. For example, large egg yields 

following ovarian stimulation are associated with increased risk of ovarian hyperstimulation 

syndrome (Steward et al. 2014), low birthweight and preterm birth (Sunkara et al. 2015). 

Consequently, a target of ovarian stimulation is to obtain a yield of oocytes which is neither too low 

to limit the overall likelihood of success, nor too high to represent a risk to the patient or offspring 

(La Marca and Sunkara 2014, La Marca et al. 2012). We can use the latent variable approach to 

predict the probability of a patient obtaining a safe yield of oocytes under a given treatment (eg: 

fewer than 15) and going on to have a live birth. Without conditioning on any patient or treatment 

covariates, we calculate this as 23%, with a 95% prediction interval of 21 to 25%. It remains to 

establish whether there is any advantage offered by including outcome-covariates in the prediction 

setting.  

 

While all of the models presented here can accommodate embryo-level response variables, 

relationships between these and other outcomes are estimated using the mean value (Dunson et al. 

2003). An undesirable consequence of this is the implicit assumption that the relationship between 

the evenness and fragmentation of an embryo is the same as the relationship between the evenness 

of an embryo and the fragmentation of another from the same patient (Gueorguieva 2001). This 

could be relaxed by using latent representations of the embryo grading submodels and allowing the 

embryo-level residual terms to be correlated (McCulloch 2008, Gueorguieva and Sanacora 2006). A 

related concern is the fact the models do not allow embryo-level responses to be included as 

covariates in the DET and LBE submodels without averaging the values over a patient’s embryos. The 

estimation of the effects of embryo characteristics on birth outcomes is complicated by the fact that 

if two embryos are transferred and only one implants, it is not known which of the two was 

successful. This partial observability problem motivates the use of embryo-uterine models which 

have been described from both Bayesian (Dukic and Hogan 2002) and Likelihood (Roberts 2007) 

viewpoints. It remains to incorporate the embryo-uterine approach in the joint modelling 

approaches described here. We also note that the mean value might not be the best summary 

measure to use for the purpose of including the embryo gradings as covariates in the DET and LBE 

submodels, since the best one or two are selected for transfer. An alternative measure capturing the 

highest available grades might be more appropriate future applications of the methods. 

Alternatively, we could include the quality of the transferred embryos as additional embryo-level 

response variables in the model. More generally, we note the fact that we included only a small 

number of covariates as a limitation of our analysis. We anticipate that differences between the 

outcome regression and endogenous response approaches will reduce if further covariates are 

available to control for confounding. This is a topic for future research. 

 

In these examples, we do not differentiate between twin and singleton births. The difference is 

clinically important, since twin pregnancies represent increased risk to the mother and infants. 

While we do not make this distinction here, any of the approaches we describe could be extended to 

accommodate a twin vs singleton submodel, fitted conditional on birth. Our live birth submodel also 

does not distinguish between failure due to transferred embryos not implanting in the uterine wall 
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and failure due to implanted embryos not being sustained to term (ie: miscarriage). This may be an 

important distinction for some research questions. Separate submodels for embryo implantation 

and birth (conditional on implantation) could be included to this end.  

 

 

All of the approaches presented here assume that any drop out from the cycle is MAR. This might be 

plausible, since drop out is usually the result of poor response or outright failure at one stage, 

preventing further progression. These response variables are included in the models. If however, the 

MAR assumption is deemed not to be appropriate, we could  jointly model the drop out process by 

defining a sequential probit submodel (Albert and Chib 2001) corresponding to transitions through 

the stages, and allowing this to be correlated with the stage-specific responses (Steele et al. 2009). 

An alternative strategy would be to employ a selection modelling approach (Heckman 1976, 1978, 

Diggle and Kenward 1994) where the probability of dropout at a given stage is related to the 

coincident (possibly unobserved) response variables by way of inclusion as covariates and/or 

correlated latent variables. Selection models are difficult to implement in Stan, which does not 

support discrete parameters, thereby precluding explicit modelling of missing egg counts or ordinal 

gradings. More generally, we might question whether missing-not-at-random (MNAR) methods are 

suitable in the present context. Given that downstream responses are defined conditional on 

upstream success, this may be construed as an example of the phenomenon known as truncation-

by-death (Zhang and Rubin 2003, Rubin 2006). McConnell and colleagues (2008) note that MNAR 

methods implicitly assume an underlying value for missing outcomes, and discuss principal 

stratification approaches as an alternative. The applicability of principal stratification methods to 

complex multistage IVF data warrants consideration in future research.  

 

5 Recommendations 

 

When analysing multistage IVF data, the appropriate analytic method will depend on the exact 

research question under consideration. If interest is in estimating the effects of treatment and 

patient characteristics on outcomes, as well as the structural relationships between the responses at 

each stage, we recommend the use of the endogenous response model. Identification of the model 

is likely to require relatively large, detailed datasets, and researchers should be realistic about the 

scope to answer mechanistic research questions where this resource is not available. Questions of 

this sort may be tackled using the outcome regression approach, but researchers should be aware 

that this involves the strong assumption that confounding has been adequately dealt with by 

measured covariates. In our simple example, we arrived at substantively different conclusions 

regarding the effects of procedural response variables on downstream outcomes in the outcome 

regression approach compared to the endogeneity approach, which allows for the correlation 

between procedural responses and unmeasured predictive factors. We would urge caution when 

interpreting the endogenous response model however, since inevitable misspecification of the latent 

variable distribution means that residual confounding will not be eliminated. Researchers should still 

attempt to reduce confounding through the inclusion of known variables as far as possible. 

Estimates corresponding to other (exogenous) covariates were similar between models. Where 

interest lies in making predictions about the patient journey through the stages of the IVF cycle, the 

relatively simple latent variable approach offers a framework to do this while taking the dependency 

between the stages into consideration. These approaches assume that drop out is MAR. We are 
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unable to make a definitive recommendation regarding the most appropriate approach to modelling 

drop out at present, other than to state that MNAR methods assume that there is an underlying 

value for each missing response. This may not be appropriate where responses are strictly 

undefined. Finally, given the complexity of IVF, we note that any meritorious analysis will require 

substantial input from clinician and clinical scientist collaborators.  
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Figure 1: Schematic of the IVF cycle. 
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Figure 2: Path diagrams for three models of the IVF cycle: a latent variable model (top), an outcome 

regression model (middle), and an endogenous response model (bottom).
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Figure 3: Observed response distribution against replicates drawn from the posterior predictive distribution. ‘Error bars’ on barplots are 95% inte

replicated proportions.  

ervals based on

.
C

C
-B

Y
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 22, 2017. 
; 

https://doi.org/10.1101/173534
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/173534
http://creativecommons.org/licenses/by/4.0/


 

 

Variable Summary 

No of cycles started 2962 

No of cycles where eggs mixed with sperm 2861 

No of gradable embryos 12911 

Number of embryo transfer procedures 2501 

Age (years) 33 

30 to 36 

21 to 43 

Partner Age (years) 35 

32 to 39 

19 to 72 

Attempt Number 

1 

2 

3 

4 

5 

 

2132 (72%) 

659 (22%) 

147 (5%) 

4 (0%) 

20 (0%) 

Number of eggs obtained per cycle started 9 

5 to 13 

0 to 50 

Number of gradable embryos per cycle started 3 

1 to 5 

0 to 19 

Number of embryos transferred per transfer 

procedure 

1 

2 

 

1049 (42%) 

1452 (58%) 

Live birth event per transfer procedure 

No 

Yes 

 

1692 (68%) 

809 (32%) 

Table 1: Characteristics of the clinical dataset analysed in section 3. Median, interquartile range and 

range for continuous variables. 

 

 Number of 

oocytes 

Fertilization rate Embryo 

evenness 

Embryo 

fragmentation 

DET LBE 

Number of 

oocytes 

1 -0.62 

(-0.68 to -0.56) 

-0.01 

(-0.08 to 0.06) 

0.03 

(-0.03 to 0.09) 

-0.09 

(-0.16 to -0.02) 

0.16 

(0.09 to 0.23) 

Fertilization rate -0.62 

(-0.68 to -0.56) 

1 -0.21 

(-0.31 to -0.11) 

-0.28 

(-0.37 to -0.19) 

0.01 

(-0.09 to 0.10) 

0.11 

(0.02 to 0.21) 

Embryo 

evenness 

-0.01 

(-0.08 to 0.06) 

-0.21 

(-0.31 to -0.11) 

1 0.87 

(0.84 to 0.89) 

-0.26 

(-0.32 to -0.20) 

0.06 

(0.00 to 0.12) 

Embryo 

fragmentation 

0.03 

(-0.03 to 0.09) 

-0.28 

(-0.37 to -0.19) 

0.87 

(0.84 to 0.89) 

1 -0.23 

(-0.29 to -0.18) 

0.02 

(-0.04 to 0.08) 

DET -0.09 

(-0.16 to -0.02) 

0.01 

(-0.09 to 0.10) 

-0.26 

(-0.32 to -0.20) 

-0.23 

(-0.29 to -0.18) 

1 0.04 

(-0.02 to 0.11) 

LBE 0.16 

(0.09 to 0.23) 

0.11 

(0.02 to 0.21) 

0.06 

(0.00 to 0.12) 

0.02 

(-0.04 to 0.08) 

0.04 

(-0.02 to 0.11) 

1 

 

Table 2: Estimates of association between IVF response variables from the correlated latent variable model. 

Posterior medians and 95% CIs. 

 

 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2017. ; https://doi.org/10.1101/173534doi: bioRxiv preprint 

https://doi.org/10.1101/173534
http://creativecommons.org/licenses/by/4.0/


 

 

 

Parameter Outcome regression model Endogenous response model 

Number of oocytes submodel 

Intercept 2.09 (2.07 to 2.12) 2.09 (2.07 to 2.12) 

Age (SDs) -0.18 (-0.21 to -0.15) -0.18 (-0.21 to -0.15) 

Partner Age (SDs) 0.04 (0.01 to 0.06) 0.03 (0.01 to 0.06) 

Attempt number: 1
st
  0 0 

2
nd

  0.06 (0.01 to 0.12) 0.07 (0.02 to 0.12) 

3
rd

  0.17 (0.06 to 0.27) 0.15 (0.06 to 0.24) 

4
th

 or 5
th

  0.02 (-0.23 to 0.26) 0.14 (-0.10 to 0.37) 

Fertilization rate submodel   
Intercept -1.04 (-1.07 to -1.01) -0.96 (-0.99 to -0.93) 

Age (SDs) 0.06 (0.03 to 0.10) 0.07 (0.04 to 0.10) 

Partner Age (SDs) -0.02 (-0.05 to 0.02) -0.02 (-0.05 to 0.01) 

Embryo evenness submodel       

Intercepts (log odds of <=k): k=1 -4.33 (-4.47 to -4.18) -4.33 (-4.49 to -4.19) 

K=2 -1.37 (-1.47 to -1.28) -1.37 (-1.47 to -1.27) 

K=3 1.34 (1.24 to 1.43) 1.35 (1.25 to 1.45) 

Age (SDs) 0.02 (-0.04 to 0.09) 0.02 (-0.09 to 0.13) 

Partner Age (SDs) 0.04 (-0.02 to 0.11) 0.04 (-0.02 to 0.11) 

Sperm injected into egg -0.26 (-0.38 to -0.14) -0.26 (-0.38 to -0.15) 

Number of oocytes 0.09 (0.01 to 0.17)  0.24 (-0.10 to 0.60) 

Fertilisation rate -0.16 (-0.23 to -0.09) -0.45 (-0.66 to -0.21) 

Embryo fragmentation submodel       

Intercepts (log odds of <=k): k=1 -5.07 (-5.26 to -4.88) -5.07 (-5.25 to -4.88) 

K=2 -2.41 (-2.56 to -2.27) -2.40 (-2.54 to -2.26) 

K=3 -0.30 (-0.43 to -0.16) -0.28 (-0.41 to -0.15) 

Age (SDs) -0.12 (-0.21 to -0.03) -0.22 (-0.37 to -0.07) 

Partner Age (SDs) 0.07 (-0.02 to 0.16) 0.08 (-0.02 to 0.17) 

Sperm injected into egg -0.32 (-0.48 to -0.16) -0.32 (-0.48 to -0.15) 

Number of oocytes 0.22 (0.09 to 0.34) -0.09 (-0.53 to 0.42) 

Fertilisation rate -0.30 (-0.41 to -0.20) -0.57 (-0.90 to -0.20) 

Double embryo transfer submodel   
Intercept 0.13 (0.07 to 0.19) 0.08 (0.02 to 0.14) 

Age (SDs) 0.07 (0.00 to 0.13) -0.03 (-0.11 to 0.05) 

Partner Age (SDs) -0.03 (-0.09 to 0.03) -0.02 (-0.07 to 0.04) 

Attempt No: 1
st

  0 0 

2
nd

  0.25 (0.12 to 0.37) 0.26 (0.15 to 0.38) 

3
rd

  0.47 (0.23 to 0.70) 0.53 (0.31 to 0.76) 

4
th

 or 5
th

  0.63 (0.08 to 1.22) 0.68 (0.15 to 1.23) 

Number of oocytes -0.06 (-0.13 to 0.02) -0.25 (-0.48 to 0.01) 

Fertilization rate -0.02 (-0.09 to 0.05) -0.37 (-0.53 to -0.16) 

Embryo evenness -0.14 (-0.20 to -0.08) -0.09 (-0.15 to -0.02) 

Embryo fragmentation -0.12 (-0.18 to -0.06) -0.04 (-0.12 to 0.03) 

Live birth event submodel    
Intercept -0.55 (-0.64 to -0.47) -0.38 (-0.73 to -0.06) 

Age (SDs) -0.06 (-0.12 to -0.00) -0.12 (-0.20 to -0.04) 

Partner Age (SDs) -0.05 (-0.11 to 0.02) -0.03 (-0.09 to 0.03) 

Number of oocytes 0.04 (-0.03 to 0.13) -0.11 (-0.35 to 0.14) 

Fertilization rate 0.14 (0.08 to 0.21) -0.17 (-0.35 to 0.03) 

Embryo evenness 0.07 (0.01 to 0.13) 0.03 (-0.04 to 0.10) 

Embryo fragmentation 0.04 (-0.24 to 0.10) 0.04 (-0.04 to 0.11) 

DET 0.11 (0.00 to 0.21) -0.15 (-0.63 to 0.44) 

Table 3: Regression coefficients from outcome regression and endogenous response models for the 

IVF cycle. Posterior medians and 95% CIs.  
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