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Abstract 
Insulin may serve as a key causal agent which regulates fat accumulation in the body. 

Here we assessed the causal relationship between fasting insulin and adiposity using 

publicly-available results from two large-scale genome-wide association studies for 

body mass index and fasting insulin levels in a two-sample, bidirectional Mendelian 

Randomized approach. This approach is only valid on the condition that the two 

instruments are independent of one another. In analysis excluding overlapping loci, 

there was an increase of 0.20 (0.17, 0.23) log pmol/L fasting insulin per SD increase in 

BMI (P= 2.80 x 10-36), while there was a null effect of fasting insulin on BMI, with a 0.01 

(-0.39, 0.38) SD decrease in BMI per log pmol/L increase in fasting insulin (P= 0.98). 

Furthermore, a high degree of heterogeneity in the causal estimates was obtained from 

the insulin-related variants, which may be attributed to varying mechanisms of action of 

the insulin-associated variants. Results were largely consistent when an Egger 

regression technique and weighted median and mode estimators were applied. Findings 

suggest that the positive correlation between adiposity and fasting insulin levels are at 

least in part explained by the causal effect of adiposity on increasing insulin, rather than 

vice versa.  
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Introduction  
The energy balance model of obesity based on the First Law of Thermodynamics states 

that energy intake minus energy expenditure is equal to change in stored energy (i.e., 

weight gain or weight loss)1. Opponents of the energy balance hypothesis criticize its 

circular reasoning which, they state, does not separate out cause and consequence of 

overeating and weight gain and therefore does not provide a primary driver for the 

obesity epidemic.2,3  Recently there has been a revival of a theory about the obesity 

epidemic which provides an alternative mode of thinking to the prevailing hypothesis. 

This alternative hypothesis highlights the role of carbohydrate (and in particular, 

refined sugars such as sucrose and fructose) as being responsible for increasing rates of 

obesity and identifies insulin as the key causal agent that is driven by the carbohydrate 

content of diet and which regulates fat accumulation in the body.2  

 

The “insulin-carbohydrate” hypothesis views obesity as a hormonal, regulatory disorder 

and, in doing so, identifies insulin as a causal agent which may be directly targeted to 

reduce adiposity. Thus, this hypothesis provides impetus for the development of diet 

regimens that aim to lower intake of carbohydrate and glycaemic load.3 However, 

although observationally there is a strong association between levels of insulin and 

measures of adiposity, causal mechanisms (and indeed the direction of causation) still 

remain uncertain4. As a result, critics argue that this alternative hypothesis provides 

unwarranted support for fad diets proposed to lower levels of obesity5,6.  

 

Randomised controlled trials (RCTs) examining the effectiveness of low sugar diets 

have generally been limited by short trial duration, a lack of compliance and little 

differentiation between treatment groups. Where an effect of increased sugar intake on 

weight change has been observed, data suggest that this is mediated through changes in 

total energy intake.7 Meanwhile, other trials suggest that insulin therapy may have a 

direct effect on weight gain and proposed mechanisms include the anabolic effects of 

high-dose insulin and appetite increases.8 However, such trials have generally been 

performed in groups of diabetic patients and so findings may not be generalisable to the 

general population, where research into the role of hyperinsulinemia on obesity in the 

absence of insulin resistance and glucose intolerance is required.   

 

It may be possible to investigate causality in the association between insulin and 

adiposity using alternative methods of causal inference. Mendelian randomization (MR) 

is an approach that uses genetic variants robustly associated with modifiable exposures 

to infer causality.9,10 Such variants are not theoretically or empirically related to 

potential confounding factors or influenced by the development of the outcome. 

Therefore, they are not subject to confounding or reverse causation, allowing for the 

unbiased estimation of causal effects. The MR design is analogous to an RCT, where 

study participants are randomly allocated to one or another treatment, avoiding 

potential confounding between treatment and outcome.11  

 

Statistical methodology for MR has been extensively developed since it was initially 

proposed10 and developments include: the use of multiple genetic variants to improve 

the precision with which causal effects may be estimated12,13 ; the application of two-

sample MR based on summary statistics from two independent studies for genotype-

exposure and genotype-outcome assessment13-15; bi-directional MR, which may be used 

in situations where the direction of causality in an observed association is uncertain16; 
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and the application of various sensitivity analyses to test the assumptions of the MR 

approach, particularly pertaining to an appraisal of invalid instruments, which may bias 

causal estimates15,17,18.   

 

We aimed to investigate the causal relationship between fasting insulin and adiposity 

using publicly available results from two large-scale genome-wide association studies 

(GWAS) for body mass index (BMI)19 and fasting insulin levels20 in a two-sample, 

bidirectional MR approach. 

Methods  

Defining genetic instruments 
For BMI, a genetic instrument was constructed using 97 BMI-associated SNPs and their 

effect sizes (and associated standard errors) as estimated in a large-scale multi-ethnic 

meta-analysis of Genome wide Association Studies conducted by the Genetic 

Investigation of Anthropometric Traits (GIANT) consortium (n = 339,224)19. To 

generate the corresponding SNP–outcome (i.e., insulin) association, we took effect 

estimates and standard errors from publicly available results of a GWAS meta-analysis 

conducted by the Meta-Analysis of Glucose and Insulin-related traits Consortium 

(MAGIC) (n = 133,010)20.  

 

For fasting insulin, a genetic instrument was constructed using 14 fasting insulin-

associated SNPs and their effect sizes (and associated standard errors) as estimated in a 

large-scale meta-analysis of GWAS in the MAGIC consortium20. Although 19 SNPs were 

identified as being robustly associated with insulin in this meta-analysis, an additional 5 

SNPs were identified in a GWAS of insulin only when adjusted for BMI; therefore, these 

SNPs were excluded due to potential bias induced in the genetic associations in this 

context21. To generate the corresponding SNP-outcome association (i.e., BMI), we took 

effect estimates and standard errors from a GWAS meta-analysis conducted by the 

GIANT consortium19.  

 

Where the exposure SNPs were not available in the outcome data, we identified proxy 

SNPs in linkage disequilibrium (r2 > 0.8 and within 250kb of the target SNP) to use in 

analyses.  Given an absence of proxy SNPs for 7 of the BMI SNPs in the fasting insulin 

GWAS, we repeated analyses using summary data from a previous GWAS effort by 

MAGIC22, consisting of data obtained in up to 46,186 non-diabetic participants. GWAS 

summary results available for this study consisted of 1,860,357 SNPs directly 

genotyped or imputed from HapMap CEU sample data, compared with 64,436 SNPs 

directly genotyped on the MetaboChip array, which were available in the larger study 

used in our main analysis. All 97 BMI SNPs were present in this GWAS summary dataset 

and therefore there was no need to identify proxy SNPs.  

Statistical analyses 
All analyses were performed using the MR-Base “TwoSampleMR” package23 in R version 

3.2.2. We harmonized the SNP-exposure and SNP-outcome associations using the MR-

Base “harmonise_data” function23 to ensure that the associations obtained from the 

exposure and outcome GWAS summary-level data were coded relative to the same 

effect allele of each SNP. All harmonized SNP-exposure and SNP-outcome associations 

were combined using the inverse-variance weighted (IVW) method17. This produces a 
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causal estimate of the exposure-outcome association, which is equal to the coefficient 

from a weighted regression of the SNP-outcome on the SNP-exposure association 

estimates, where weights are the inverse of the precision of the SNP-outcome 

coefficients and the intercept is constrained to zero.  

Sensitivity analyses 

Investigating potential pleiotropy and prevailing direction of effect  
The existence of directional pleiotropy, where a genetic instrument has an effect on an 

outcome independent of its effect on the exposure, is a particular problem for MR, 

especially when using multiple genetic variants where the function of variants 

identified in GWAS is unknown.  

 

One indication of pleiotropy is a high degree of heterogeneity between causal estimates 

of the individual SNPs combined in the IVW method. In the meta-analysis of the 

individual SNP estimates, we therefore calculated Cochran’s Q-statistic to estimate the 

degree of heterogeneity (p[het]) and  Cook’s distance24 as a measure of the aggregate 

impact of each SNP in the model. We also applied the MR-Egger regression technique17, 

which was used to test overall directional pleiotropy and provide a valid causal 

estimate, taking into account the presence of pleiotropy.  Violation of the no 

measurement error (NOME) assumption of the SNP-exposure estimates was addressed 

using simulation extrapolation (SIMEX) to adjust the MR-Egger estimate for regression 

dilution 25.   Further to this, we applied the weighted median method, which provides a 

valid causal estimate under the assumption that up to 50% of the weight in the analysis 

stems from instrumental variables are invalid18, and the weighted mode method, which 

provides valid estimates when the largest number of similar causal effect estimates 

comes from valid instruments, even if the majority of instruments are invalid26.  

 

An important caveat relevant to bidirectional MR, is that these methods are only valid 

on the condition that the two instruments are independent of one another (i.e., that 

there is no overlap or linkage disequilibrium between genetic variants included in the 

construction of the instruments used for the two traits being investigated)10. For 

example, it is possible that an instrument for insulin may be contaminated by genetic 

variants directly associated with BMI if there is a causal effect of BMI on insulin. This 

leads to a violation of the InSIDE (Instrument Strength Independent of Direct Effect) 

assumption of MR-Egger, which states that the direct pleiotropic effect of the genetic 

variants on the outcome must be independent of the instrument strength (i.e., the 

association between the instrument and exposure)17. Therefore, we investigated 

whether any of the 97 BMI-associated variants and the 14 insulin-associated variants 

were identical or strongly correlated and repeated the analyses following the exclusion 

of such SNPs.  

 

As a final sensitivity analysis, we used the Steiger test to provide evidence for the 

prevailing causal direction, based on the estimated variance explained by the SNPs in 

the exposure and the outcome27,28.  

 

Investigating insulin secretion vs insulin resistance  
Previous studies indicate that genetic variants associated with fasting insulin are 

involved in different pathways of insulin action, specifically insulin resistance and 

secretion20,29. Of the 14 SNPs associated with fasting insulin that were used in our main 
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analysis, 6 were previously identified as being directly involved in insulin resistance as 

they showed associations with low HDL and higher triglycerides20, hallmarks of 

common insulin resistance (Supplementary Table 1).29 To investigate the relevance of 

these pathways within the context of BMI, we stratified our SNP set into those deemed 

to be “insulin resistance” SNPs (N=6) and those that were not (N=8) and compared 

causal estimates with BMI obtained between these strata.  

 

In an extension of this, we used a further list of SNPs29, which included an additional 4 

variants associated with insulin resistance (totaling 10 SNPs) and 21 variants 

associated more specifically with insulin secretion (Supplementary Table 2), and then 

compared the causal effect of fasting insulin on BMI between these strata.  

Results  
Using the available 90/97 SNPs robustly associated with BMI that were present in the 

MAGIC GWAS summary results (total r2 = 2.5%; F-statistic = 95.6), there was a 0.21 

(95% CI 0.17, 0.24) log pmol/L increase in fasting insulin per SD (4.5kg/m2) increase in 

BMI (P=1.57x10-32), although there was some evidence of heterogeneity for the 

individual causal estimates obtained for each variant (P(het) = 7.07x10-13) (Table 1, 

Figure 2).  

 

While the results of the MR analysis provided suggestive evidence for a causal effect of 

adiposity on increasing insulin levels using data from the most recent GIANT19 and 

MAGIC20 GWAS efforts for BMI and fasting insulin, respectively, we repeated analyses 

using summary data on all 97 SNPs robustly associated with BMI, which were present in 

the previous MAGIC GWAS effort22, consisting of data obtained in up to 46,186 non-

diabetic participants. The IVW method gave a causal estimate similar to that previously 

obtained in the main analyses (0.18 (95% CI 0.14, 0.21) log pmol/L increase in fasting 

insulin per SD increase in BMI (P= 2.02x10-20)). There was less evidence of 

heterogeneity for the individual causal estimates obtained for each variant (P(het) = 

0.05).  

 

In the reverse direction, using 14 SNPs robustly associated with fasting insulin that 

were present in the GIANT GWAS summary results (r2 = 0.4%; F-statistic = 35.0), there 

was a 0.58 (95% CI -0.20, 1.36) SD increase in BMI per log pmol/L increase in fasting 

insulin (P= 0.14) (Table 2, Figure 3).  However, there was evidence of heterogeneity 

for the individual causal estimates obtained for each fasting insulin-associated variant 

(P(het) =1.83 x 10-146).  

Sensitivity analysis 

Investigating potential pleiotropy and prevailing direction of effect  
All approaches provided evidence of a positive causal effect of BMI on insulin, with the 

causal estimate from both the MR-Egger, weighted median and weighted mode being 

very similar to that obtained by the IVW method (Table 1, Supplementary Figure 1a). 

When plotting the instrument strength (i.e., the genetic associations with BMI) against 

the individual IV estimates in a funnel plot, there was a degree of asymmetry 

(Supplementary Figure 1b), suggesting some level of directional pleiotropy. However, 

this was largely driven by one variant in the HHIP gene region and the MR-Egger 

intercept estimate of 0.001 (95% CI -0.002, 0.003; P = 0.62) was consistent with the 

null. Calculation of Cook’s distance showed four variants (including the HHIP variant) to 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/155739doi: bioRxiv preprint 

https://doi.org/10.1101/155739
http://creativecommons.org/licenses/by/4.0/


have a disproportionate level of influence on the model compared to the other variants 

in the set (Figure 4a). Three out of four of these variants were found to be identical or 

in strong LD with genetic instruments for fasting insulin (Table 3). 

 

All approaches provided suggestive evidence of a positive causal effect of insulin on 

BMI, with the causal estimate from MR-Egger being larger than the weighted median, 

weighted mode and IVW estimates (3.76 SD (95% CI -0.48, 8.00; P = 0.11), although 

with wide confidence intervals (Table 2, Supplementary Figure 2a). The asymmetry 

shown in the funnel plot of the instrument strength (i.e., the genetic associations with 

insulin) and the IV estimates (Supplementary Figure 2b) provided some evidence of 

negative directional pleiotropy, although the MR Egger regression was consistent with 

the null (intercept = -0.05 (95% CI -0.14, 0.02); P = 0.16). Calculation of Cook’s distance 

showed one variant, in the FTO gene region, to have a disproportionate level of 

influence on the model compared to the other variants in the set (Figure 4b). This 

variant is in strong LD with another SNP used as a genetic instrument for body mass 

index (Table 3). 

 

Of the insulin-associated SNPs used in this analysis, the FTO variant was most likely to 

have an effect on fasting insulin entirely mediated through BMI20. In line with this and 

as anticipated, there was evidence for a strong positive pleiotropic effect of the FTO 

variant on BMI (Supplementary Figure 2a). However, as the MR-Egger approach 

assumes that causal estimates for the stronger genetic variants should be closer to the 

true causal effect, this approach treats the effect estimates obtained from variants such 

as FTO as the least invalid17. As such, the MR-Egger estimate indicates directional 

pleiotropy in the negative direction when, in actual fact, the pleiotropic effect of FTO 

may induce a spurious positive effect of insulin on BMI in both the IVW and MR-Egger 

analyses. We therefore repeated the analyses, excluding FTO along with any other 

variants that were found to overlap the list of genetic variants for both BMI and insulin.   

 

In analysis excluding overlapping loci, similar estimates for the causal effect of BMI on 

insulin to that previously identified were obtained for all three approaches, with a 0.20 

(0.17, 0.23) log pmol/L increase in fasting insulin per SD increase in BMI (P= 2.80 x 10-

36) in the IVW analysis and a 0.12 (0.03, 0.21) log pmol/l increase in fasting insulin 

(P=0.01) in the MR-Egger analysis (Supplementary Table 3, Supplementary Figure 

3).  The intercept of the MR-Egger regression was consistent with the null (intercept = 

0.002 (-0.0001, 0.004), P = 0.06), suggesting no strong directional pleiotropic effect. 

However, evidence for heterogeneity of the individual causal estimates obtained for 

each BMI-associated variant on fasting insulin remained (P(het) = 8.70 x 10-5).  

 

Using summary data on the full 97 SNPs from the previous MAGIC GWAS effort22, effect 

estimates from MR-Egger, weighted median and weighted mode approaches were also 

consistent with this analysis, and the MR-Egger intercept (0.0003 (95% CI -0.003, 

0.002)) indicated no directional pleiotropy (Supplementary Table 4). Furthermore, 

results were largely unchanged after removing overlapping SNPs associated with 

fasting insulin (IVW estimate = 0.17 (95% CI 0.13, 0.21; P=4.47x10-19, P(het)=0.24) 

(Supplementary Table 5).    

 

With the exception of the weighted median and weighted mode approaches, estimates 

for the causal effect of insulin on BMI attenuated with the exclusion of these 
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overlapping variants, with a 0.01 (-0.39, 0.38) SD decrease in BMI per log pmol/L 

increase in fasting insulin (P= 0.98) in the IVW analysis (Supplementary Table 6, 

Supplementary Figure 4). The intercept of the MR-Egger regression was negative, 

although with a smaller magnitude and wide confidence intervals (intercept = -0.02 

(95% CI -0.06, 0.02), P = 0.39), providing no strong evidence of directional pleiotropy. 

Furthermore, calculation of Cook’s distance showed no outliers (Supplementary 

Figure 5a). However, there was evidence for heterogeneity of the individual causal 

estimates obtained for each fasting insulin-associated variant on BMI (P(het) = 1.58 x 

10-13)  

 

There was evidence for heterogeneity in the individual SNP estimates in all of the 

stratified analyses; therefore, it remains possible that there is violation of the InSIDE 

assumption in these analyses (for example if some of the SNPs being used as 

instruments for insulin resistance or insulin secretion have a direct effect on BMI). 

However, the Steiger test provided evidence against this in most analyses, where the 

tested direction of effect was found to be the prevailing causal direction 

(Supplementary Table 7).  

 

Investigating insulin secretion vs insulin resistance 
One explanation for the level of heterogeneity observed in the individual causal 

estimates for each fasting insulin-associated variant on BMI is the action of the genetic 

variants in either insulin secretion or insulin resistance pathways.20 We therefore 

performed stratified analysis to establish causal effects for 6 “insulin resistance” SNPs 

(Supplementary Table 8) compared with the remaining 8 variants, based on findings 

from a previous study20.   

 

The causal effect of fasting insulin on BMI was inverse using the SNPs implicated in 

insulin resistance (IVW estimate = -0.61SD (95% CI -0.95, -0.26; P=5.34x10-4)) 

compared with a positive causal estimate when using the remaining 8 SNPs (IVW 

estimate = 1.26SD (95% CI 0.25, 2.27; P=0.01) (p(het) between groups <0.001) (Figure 

5). The effect estimate obtained using the “insulin resistance” variants was largely 

unchanged after removing SNPs that were found to overlap with loci associated with 

BMI (IVW estimate = -0.53SD (95% CI -0.91, -0.15; P=0.006), although the positive 

causal estimate obtained using the other variants was halved (IVW estimate= 0.42SD 

(95% CI 0.11, 0.72; P=0.007) (Supplementary Table 9, Supplementary Figure 6).  

 

Using the more comprehensive list of “insulin resistance” variants (N=10) and “insulin 

secretion” variants (N=18/21 which were present in the GWAS summary results) 

(Supplementary Table 10), the effect estimates were similarly inverse when using the 

insulin resistance SNPs (IVW estimate = -0.72SD (95% CI -1.06, -0.38; P=4.16x10-5) and 

positive when using “insulin secretion” variants 1.06SD (95% CI 0.34, 1.79; P=0.004) 

(Supplementary Table 10, Supplementary Figure 7) although MR-Egger was less 

well powered to detect strong evidence for causality. Furthermore, the MR-Egger 

intercept was consistent with the null, providing no evidence for directional pleiotropy.  

However, for all stratified analyses the I2 values were very low, indicating instability in 

the MR-Egger estimates.  For all of stratified analyses, the weighted I2 values were very 

low (0-22%), indicating instability in the MR-Egger estimates. We therefore did not 

implement MR-Egger regression or SIMEX adjustment for this particular analysis.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/155739doi: bioRxiv preprint 

https://doi.org/10.1101/155739
http://creativecommons.org/licenses/by/4.0/


Nonetheless, for all of stratified analyses, weighted median and mode estimates were 

typically consistent with the IVW estimates.  

Discussion 

Summary of findings 
The observational association between adiposity and insulin levels is well established4 

and the genetic correlation between the two traits has been found to be 0.65 (SE=0.06; 

p = 1.81x10-25)30,31. This study used a MR approach to investigate the direction of 

causality in the association.  

 

Results obtained from the analysis suggest that the positive correlation between 

adiposity and fasting insulin levels are at least in part explained by the causal effect of 

adiposity on increasing insulin. However, insufficient evidence was provided regarding 

a causal effect of increasing insulin on adiposity and thus the “insulin-carbohydrate” 

hypothesis of weight gain was not supported in this analysis.2    

 

Furthermore, we identified a high degree of heterogeneity in the causal estimates 

obtained from the list of variants associated with insulin. This heterogeneity may be 

attributed to varying mechanisms of action of the insulin-associated variants. The 

insulin-related variants found to be inversely associated with BMI have all been 

determined to be “insulin resistance” SNPs in previous studies where they showed an 

inverse association with adiposity.29,32,33 This inverse association, which is in the 

opposite direction to that anticipated, has been attributed to the loci having primary 

effects on subcutaneous adipocyte function and distribution,29,33 although the extent of 

directional pleiotropy was not strong for these variants in the MR-Egger analysis.  

 

In the stratified analysis to establish causal effects using the “insulin resistance” SNPs 

compared with the remaining 8 variants, there was some evidence for a positive causal 

estimate obtained using the remaining variants. However, this effect was halved when 

removing SNPs that were found to overlap with loci associated with BMI. Furthermore, 

as the partitioning of insulin resistance and non-resistance SNPs was determined based 

on their associations with HDL and triglycerides29, which in turn are causally influenced 

by BMI, this might induce spurious associations through collider bias.34,35 When using a 

more comprehensive list of “insulin secretion variants”, there was some evidence for a 

positive causal effect, although the Steiger test provided some evidence that the SNPs 

were not having a direct effect through BMI. The lack of robust causal effect is 

consistent with previous findings showing little evidence of an association between 

genetic variants associated predominantly with insulin secretion and a number of 

anthropometric traits,29 again casting doubt on the causal role of hyperinsulinemia on 

obesity.  

Strengths and limitations  
A major strength of MR analysis in this context is that it enables an assessment of the 

direction of causality in an observed association between two traits. In particular, the 

use of genetic variants robustly associated with the exposures of interests and the two-

sample design utilising publicly available data from large-scale meta-analyses have 

been used to maximise power to detect causal effects in this context.10,23  
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This two-sample approach can also be used to address issues of weak instrument bias 

present in a one-sample setting which elevates the rate of Type 1 errors. In a two-

sample MR analysis, any bias due to weak instruments is in the direction of the null.36 

While this protects against inflated Type 1 error rates, this bias may lead to lower 

power to detect a causal effect, which could potentially explain the lack of causal effect 

of insulin on body mass index where the genetic instrument explained just 0.4% of the 

variance in insulin. However, overlap between the two datasets used in a two-sample 

MR approach can mitigate this bias towards the null37, which in the case of MAGIC and 

GIANT is ~48,000 individuals.   

 

A limitation of MR is the presence of a pleiotropic association of a genetic variant with 

the outcome which is independent of the exposure of interest. However, the use of MR-

Egger regression, weighted median and weighted mode techniques have been used to 

provide estimates of causal effects that are robust to the presence of pleiotropy in 

different but complementary ways.  While the sensitivity analyses left the causal 

estimate of BMI on insulin levels unchanged, the estimate from MR-Egger was larger 

than the IVW estimate for the causal effect of insulin on BMI. However, a limitation of 

the MR-Egger approach highlighted in this work was the violation of the InSIDE 

assumption due to the presence of the same variant in the SNP list for the exposure and 

the outcome. When overlapping SNPs were excluded, the causal effect of insulin on BMI 

was reduced in both the IVW and MR-Egger analyses.   

 

Efforts (led by the MAGIC consortium) are already underway to identify additional 

variants associated with fasting insulin levels with the results of a trans-ethnic analysis 

involving more than 280,000 non-diabetic individuals from 144 studies currently being 

prepared.38 Preliminary results suggest 62 loci (43 novel) associated with fasting 

insulin.  While the addition of these loci to the set available for future MR analyses may 

improve our ability to predict fasting insulin as an exposure (i.e. increase the variance 

explained), the difficulties highlighted in this analysis regarding heterogeneity of effects 

and potential pleiotropy are only likely to be enhanced. Additional work is needed to 

determine the functionality of the insulin-related variants in order to obtain the most 

reliable variants to improve the validity of the MR analysis assessing the causal effect of 

insulin on adiposity. Furthermore, while in this analysis we only assessed the causal 

effect of fasting insulin, the causal impact of other glycemic traits, including insulin 

response, on adiposity remain to be fully established.   

Implications 
Overall, no clear causal effect of insulin on BMI was established compared with the 

strong effect of increasing BMI on insulin levels. This analysis draws to question the 

validity of the alternative hypothesis of weight gain based on anabolic effects of insulin 

induced by a high-sugar diet.2 The lack of causal effect of insulin on body mass index is 

aligned with findings demonstrating no genetic link between sugar metabolism and BMI 

assessed using copy number variation at the human amylase locus39 and a genetic 

variant in FGF21 recently associated with sweet intake and preference40.    
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Tables 
Table 1 – Results of Mendelian randomization analysis with body mass index as the 

exposure and insulin as the outcome 

*Weighted I-squared=0.88 
± log pmol/L increase in fasting insulin per SD (4.5kg/m2) increase in BMI   

 

Table 2 – Results of Mendelian randomization analysis with insulin as the exposure and 

body mass index as the outcome 

N SNPs Method Coefficient Estimate± 95% CI p-value 

14 IVW Slope (β) 0.58 -0.20, 1.36 0.14 

14 MR-Egger Slope (β) 3.76 -0.48, 8.00 0.11 

14 MR-Egger Intercept (α) -0.05 -0.13, 0.02 0.16 

14 SIMEX* Slope (β) 5.93 -0.71, 12.57 0.08 

14 Weighted Median  Slope (β) 0.16 -0.06, 0.38 0.14 

14 Weighted Mode Slope (β) 0.13 -0.13, 0.39 0.36 

*Weighted I-squared=0.25 
± SD increase in BMI per log pmol/L increase in fasting insulin  

 

Table 3 – Overlapping loci between BMI and insulin genetic instrument lists  

 

Locus BMI instrument 

SNP 

Insulin 

instrument SNP 

Linkage 

disequilibrium (r2)  

FTO rs1558902 rs1421085 1.000 
TCF7L2 rs7903146 rs7903146 - 
HIP1 rs1167827 rs1167800 0.680 

LOC646736/IRS1 rs2176040 rs2972143 0.963 

 

 

 

 

 

 

 

 

 

 

N SNPs 
Method Coefficient Estimate±  95% CI p-value 

90 IVW Slope (β) 0.21 0.17, 0.24 1.57x10-32 

90 MR-Egger Slope (β) 0.19 0.10, 0.27 3.40x10-5 

90 MR-Egger Intercept (α) 0.001 -0.002, 0.003 0.62 

90 SIMEX* Slope (β) 0.21 0.11, 0.30 3.47x10-5 

90 Weighted Median  Slope (β) 0.23 0.19, 0.26 1.57x10-35 

90 Weighted Mode Slope (β) 0.24 0.18, 0.29 5.31x10-14 
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Figures  
Figure 1 – Schematic representation of bidirectional Mendelian randomization of BMI 

and insulin  

 

  
 

  

Confounders 

Trait A: Body mass index 

(BMI) 
Trait B: Fasting insulin levels 

Instrumental variable A: 97 

genetic variants 
Instrumental variable B: 14 

genetic variants 
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Causal effect estimate 

Causal effect estimate 

Figure 2 – Mendelian randomization analysis estimate of the association of genetically-

elevated body mass index on fasting insulin levels using 90 SNPs robustly associated 

with BMI as instrumental variables    

 
 

 

Figure 3– Mendelian randomization analysis estimate of the association of genetically-

elevated fasting insulin levels on body mass index using 14 SNPs robustly associated 

with BMI as instrumental variables    
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Figure 4 – Cook’s distance applied to the IVW analysis to assess outliers (A) for effect of 

BMI on fasting insulin (B) for effect of fasting insulin on BMI  

 

(A)                                           (B)  
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Figure 5 – Genetic associations between BMI and fasting insulin stratified by 

relationship with insulin resistance 

 
 

N.B. Results based on random-effects meta-analysis so differ slightly from those based 

on IVW in Supplementary Table 8 
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