
1 

 

Polycystic Ovary Syndrome as an Endogenous Alcoholic Polycystic Ovary 1 

Syndrome 2 

 3 

1Medeiros IC. (Ivanildo Coutinho de Medeiros, MD), 2Lima JG. (Josivan Gomes 4 

de Lima, MD) 5 

 6 

Universidade Federal do Rio Grande do Norte, Departamento de Medicina Clínica, 7 

1Divisão de Gastroenterologia e 2Divisão de Endocrinologia – Av. Nilo Peçanha, 620 - 8 

Natal/RN, Brazil  9 

 10 

Correspondence to: Ivanildo Coutinho de Medeiros 11 

Rua Hist. Tobias Monteiro, 1863 – Lagoa Nova 12 

Natal-RN, Brazil - CEP 59056-120 13 

Phone: +55 84 9984-3994 14 

Fax: +55 84 3342-9703 15 

Author email: coutimed@gmail.com 16 

Co-author email: josivanlima@gmail.com 17 

 18 

 19 

 20 

Financial Support  21 

This manuscript has no financial support.  22 

 23 

 24 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2017. ; https://doi.org/10.1101/143495doi: bioRxiv preprint 

https://doi.org/10.1101/143495
http://creativecommons.org/licenses/by-nd/4.0/


2 

 

ABSTRACT 25 

 26 

Polycystic ovary syndrome (PCOS) is a growing worldwide public health problem that 27 

affects millions of women in their reproductive age. Despite being a very common 28 

disorder among women, there are still gaps regarding knowledge of disease 29 

mechanisms. In this respect, it was recently reported that acetaldehyde (ACD) is 30 

endogenously formed during normal ovarian steroidogenesis. The researchers 31 

demonstrated that in physiological concentrations ACD caused no detrimental effect on 32 

ovarian tissue. Contrariwise, in supraphysiological levels, ACD impairs granulosa cell 33 

differentiation, reduces ovulation, and decreases oocyte quality. Gut microbiota of 34 

patients with nonalcoholic fatty liver disease (NAFLD) produces significant quantities 35 

of endogenous ethanol (EE) and ACD. Because PCOS is closely linked to NAFLD, an 36 

ethanol-producing disorder, we hypothesize that it can be an endogenous alcoholic 37 

polycystic ovary syndrome (EAPCOS). The main findings of this study were that (i) the 38 

odds ratio of having polycystic ovaries is 30-fold greater in alcohol-exposed women 39 

than among unexposed controls; (ii) NAFLD/PCOS patients produce gonadotoxic 40 

quantities of EE; (iii) NAFLD/PCOS and alcoholic hepatitis individuals share similar 41 

liver expression levels of genes regulating high-km ethanol-metabolizing enzymes; (iv) 42 

NAFLD/PCOS and alcohol-tolerant drinkers share similar high-capacity to metabolize 43 

ethanol in the gut-liver axis; and (v) low blood alcohol concentration (BAC) in 44 

NAFLD/PCOS and alcohol-tolerant individuals stem from extensive alcohol 45 

degradation in gut-liver axis and significant fecal loss of ethanol. In summary, we 46 

provide mechanistic insights supporting the hypothesis that PCOS can be indeed an 47 

EAPCOS.  48 
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INTRODUCTION 49 

Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility 50 

in women over its reproductive lifetime [1]. Available data indicate that PCOS is 51 

closely linked to obesity, insulin resistance, and nonalcoholic fatty liver disease 52 

(NAFLD) [2,3]. This suggests that these conditions share a common etiological 53 

background.  54 

A striking feature of patients with NAFLD and, by extension with PCOS, is to produce 55 

significantly more endogenous ethanol (EE) than controls [4–6]. Accordingly, it is 56 

believed that EE plays a critical role in NAFLD development and progression [7–9]. 57 

From these observations, we hypothesize that EE also may play a causative role in 58 

PCOS pathogenesis. 59 

It is no novelty the intriguing idea about the existence of an endogenous alcoholic 60 

disease. Early researchers attempting to validate this hypothesis have provided 61 

disappointing results. This discouraged further investigation regarding this matter for 62 

several decades. Firstly, because blood-alcohol concentration (BAC) following 63 

jejunoileal bypass was significantly lower than in alcoholics, it was concluded that the 64 

quantity of EE was insufficient to elicit liver injury [10]. Secondly, since liver histology 65 

was normal in a rat model of small intestinal bacterial overgrowth (SIBO), it was 66 

inferred that gut bacteria are unable to produce hepatotoxic amounts of ethanol [11]. 67 

However, Sprague-Dawley strains only develop steatohepatitis and fibrosis 12 to14 68 

weeks after study initiation. And in this study, the rodents were sacrificed very early, 69 

around the 4th to 5th weeks of experimentation [12]. Therefore, as this mouse model 70 

recapitulates the histopathological spectrum of human alcoholic liver disease, we 71 

postulate that it can also cause polycystic ovaries. 72 
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Thus, the main focus of this study was to provide a mechanistic explanation of how 73 

PCOS may be an endogenous alcoholic polycystic ovary syndrome (EAPCOS). 74 

 75 

 76 

 77 

 78 

 79 

 80 
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Ethanol is a prodrug 92 

As a prodrug, ethanol requires conversion to ACD in order to exert its cytotoxic 93 

properties [13,14]. This pharmacokinetic characteristic of ethanol is of paramount 94 

importance for a mechanistic understanding of the EAPCOS hypothesis. The clear and 95 

obvious implication of this is that in a scenario of extensive presystemic catabolism of 96 

ethanol, BACs can be negligible or even undetectable. The finding that intravenous 97 

infusion of cirrhotogenic amounts of ethanol (57.6 to 115.2 g/d) in alcohol-tolerant 98 

drinkers induces only modest BACs (1.5 to 4.5 mg/dL) supports this notion [15].  99 

 100 

Gastrointestinal production and degradation of ethanol 101 

Gastrointestinal microbiota of healthy subjects produces nontoxic amounts of EE from 102 

luminal dietary carbohydrates. Next, EE is absorbed and metabolized in the liver to 103 

ACD, which in turn is oxidized to non-toxic amounts of acetate [16]. In contrast, in 104 

SIBO-related conditions such as NAFLD/PCOS [17][18] and malabsorption syndromes 105 

[19], gut production of EE is significantly greater than in controls [4–6]. Agreeing with 106 

this, gut/fecal concentrations of EE in these cases are proportionally equal to or even 107 

greater than those obtained after moderate drinking [19–21]As ethanol is formed within 108 

a dysbiotic gut, it is converted to ACD in a dose- and concentration-dependent manner 109 

[11]. In this setting, ACD-producing alcohol dehydrogenase (ADH) activity is higher 110 

than that of ACD-oxidizing aldehyde dehydrogenase (ALDH) [22]. The net result is 111 

ACD build-up coupled with low BACs. However, in the auto-brewery syndrome, 112 

massive production of EE exceeds gut-liver axis ability to clear alcohol from 113 

circulation. As a consequence, BAC may reach 250-350 mg/dL [23]. 114 
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Blind-loop contents of rat jejunum converts ethanol to ACD at a rate of 1.99 µM/min • 115 

mL under aerobic conditions [11]. If applicable to patients with SIBO and small bowel 116 

contents around 2000 mL, it is estimated that everyone can convert ~528 g of EE into 117 

ACD daily. Experimentally it has been demonstrated that extrahepatic ACD is 30 to 118 

330-fold more hepatotoxic than that formed intrahepatically [24,25]. Extrapolating this 119 

to humans, 0.18-2 g of EE will provide an amount of ACD as hepatotoxic as that 120 

generated intrahepatically from a cirrhotogenic dose of 60 g ethanol [26]. 121 

BACs found in NAFLD/PCOS as well as in alcohol-tolerant subjects are consistently 122 

low [15,27]. In this scenario, for maintaining a steady-state BAC of 7.14 mg/dL [27] 123 

NAFLD/PCOS patients would need a 24-h continuous intravenous infusion of ethanol 124 

at a rate ~9.5 g/h (228 g/day) [28].  125 

Lastly, a seminal study showed up-regulation of all genes involved in ethanol 126 

metabolism in nonalcoholic steatohepatitis livers [5]. Importantly, these genes encode 127 

enzymes those maximal catalytic activities are at high ethanol concentrations [29]. Even 128 

more noteworthy is the finding that hepatic expression of ethanol-metabolizing genes in 129 

NAFLD/PCOS is similar to that of alcoholic hepatitis [7]. 130 

 131 

Ethanol pharmacokinetics in NAFLD/PCOS is similar to that of alcohol-tolerant 132 

individuals 133 

Blood-alcohol elimination rate may be 3-fold to 4-fold higher in alcohol-tolerant than in 134 

healthy individuals and social drinkers [29]. Causative factors include induction of 135 

high-Km alcohol-metabolizing enzymes by ethanol, insulin resistance, ketone bodies, 136 

unsaturated fatty acids [30], iron overload [31], hyperglycemia [32], and gut microbial 137 

degradation of ethanol [11].  Additionally, genetic polymorphisms of alcohol-138 
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metabolizing enzymes play an essential role in the development of this so-called alcohol 139 

tolerance/adaptation process [33,34]. In this setting, instead of metabolizing ethanol in 140 

milligram levels through ADH1 activity, the individual starts doing this at tens of grams 141 

scale via CYP2E1, catalase, ADH3, and ADH4 [30,35–37]For example, for maintaining 142 

a steady-state BAC between 1.5 to 4.5 mg/dL, alcohol-tolerant individuals require a 143 

continuous intravenous infusion of ethanol at a rate equivalent to 57.6 to 115.2 g/d [15]. 144 

Interestingly, and probably not by chance, all these risk factors for increased blood-145 

alcohol clearance are also present in NAFLD/PCOS [5,38–40]. For this reason, it is 146 

intuitive to infer that patients with NAFLD/PCOS metabolize exogenous/endogenous 147 

ethanol similarly to alcohol-tolerant individuals (Figure). In line with this argument, (i) 148 

aberrant microbiota found in NAFLD as well as in alcoholics consists of both ethanol-149 

producing and -degrading bacteria [4,41,42], (ii) gut production and degradation of 150 

ethanol are dose-dependent and simultaneous processes that prevent high BAC 151 

[11,19,43,44], and (iii) gut concentrations of ACD reach mutagenic values (49-87 µM) 152 

in rat blind loops [11]. Furthermore, impaired gastrointestinal absorption [45–48] and 153 

binding/entrapment of alcohol in food constituents certainly contribute to low BACs 154 

[47,49]. Notably, fecal loss of ethanol reaches concentration values up to 50-fold greater 155 

than BACs found in NAFLD [19][27]. 156 

 157 

Calculating EE production from a standard human pharmacokinetic model 158 

One study showed that average BAC of twenty patients with NAFLD was 7.14 mg/dL 159 

after a 12h overnight fast [27]. Assuming that ethanol elimination rate of these 160 

individuals was 20 mg/dL/h and that its mean height was 1.74 m, we estimate the 161 

amount of EE produced by each patient. To achieve this, we use a validated 162 
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physiologically-based model of alcohol metabolism, which has been described in detail 163 

elsewhere [28].  According to our calculations, each patient produced 161.49 g of EE 164 

after a 12-h overnight fast. By extrapolating the data to three equicaloric meals, the 165 

daily production of EE should reach 484 g. Because EE undergoes extensive conversion 166 

to ACD in the gut-liver axis, estimated total circulating alcohol burden is only 4.6 g. 167 

This leads to the characteristically low BAC found in these patients (see [28] for 168 

equations and calculation procedures). 169 

Ovariotoxicity of ethanol 170 

It has been shown that endogenous ACD is formed as a byproduct during normal 171 

ovarian steroidogenesis [50]. In this situation, there is no ovotoxicity because it 172 

converted to acetate by ovarian ALDH. On the contrary, in supraphysiological 173 

concentrations, ACD disrupts the differentiation of granulosa cells, reduces ovulation 174 

and lowers oocyte quality [50]. Acute as well as chronic exposure to ethanol inhibits 175 

ovarian steroidogenic acute regulatory protein (StAR), which plays a crucial role in 176 

gonadotropin-stimulated gonadal hormone production [51,52]. This leads to an increase 177 

in the number of the corpora lutea, atretic follicles, regression of theca antral follicles, 178 

vacuolation/fat deposition in granulosa, theca, and interstitial cells [53]. As a result, 179 

alcohol exposure entails disruption of puberty and menstrual cycling as well as a 180 

hormonal imbalance in pre and postmenopausal women [54].  181 

Agreeing with these observations, the odds ratio of having PCOS is about 30-fold 182 

higher among Chinese women consuming alcohol than in matched controls [55]. This 183 

substantial discrepancy is because 30% to 40% of Asian individuals carry out a 184 

defective ALDH2 enzyme, providing the accumulation of very high quantities of ACD 185 

[56,57]. Moreover, subgroup analyses of multiple subpopulations suggest a positive 186 
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relationship between heavy alcohol intake and ovarian cancer [58]. Supporting 187 

argument for this epidemiological connection comes from the finding of elevated 188 

concentrations of ACD in ovarian cancer tissues [59]. 189 

   190 

Other endogenous and exogenous risk factors for PCOS 191 

According to the data presented here, ethanol itself recapitulates the entire phenotype of 192 

PCOS. However, other endogenous/exogenous toxins may be implicated in its 193 

pathogenesis. These include dicarbonyl compounds [60–62], advanced glycation end 194 

products (AGEs) [63,64], advanced lipid peroxidation end products (ALEs) [65,66] and 195 

nitric oxide radicals [67]. Furthermore, it is possible that epigenetic changes and 196 

aberrant microRNA (miRNA) may play a relevant role in PCOS development [68,69]. 197 

Considering that NAFLD/PCOS is an alcohol-producing disorder, we postulate that 198 

even alcohol-abstinent women are at increased risk of developing ovarian cancer. This 199 

event would be particularly likely among NAFLD/PCOS patients carrying genetic 200 

susceptibility to both sporadic and hereditary ovarian neoplasms [70,71]. Likewise, 201 

NAFLD/PCOS women carrying functional polymorphisms in ethanol-metabolizing 202 

genes may be at highest risk for developing ovarian cancer and other alcohol-related 203 

neoplasms [72,73]. 204 

    205 

Conclusion 206 

In short, our data reconcile the apparently contradictory association between exposure to 207 

large amounts of ethanol concurrently with negligible BACs [15]. The EAPCOS 208 

hypothesis contains several limitations, including the fact that most of the evidence 209 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2017. ; https://doi.org/10.1101/143495doi: bioRxiv preprint 

https://doi.org/10.1101/143495
http://creativecommons.org/licenses/by-nd/4.0/


10 

 

comes from uncontrolled observational studies. Nevertheless, it provides sufficient 210 

evidence justifying the existence of an EAPCOS. Lastly, if confirmed by further studies, 211 

our hypothesis may contribute to novel therapeutic and preventive strategies for disease 212 

management and control. 213 
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Figure 1. Evidence that NAFLD/PCOS patients metabolize etanol similarly to Alcohol- 
tolerant individuals. Chronic exposure either to endogenous or exogenous high ethanol 
concentrations leads to a gut dysbiosis made-up of alcohol-producing and –degrading 
organisms. Then, a number of metabolic alterations switch alcohol metabolism from milligram 
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scale to hundreds of grams per day. This extensive presystemic clearance of ethanol causes 
ACD build-up, which in turn leads to the consistently low BACs. Lastly, in genetically 
predisposed women carcinogenic ACD can lead to ovarian cancer and other alcohol-related 
neoplasms. Km = Michaelis Constant; ADH = Alcohol dehydrogenase; CYP2E1 = Cytochrome 
P-450 2-E1; CAT = Catalase; EAPCOS = Endogenous Alcoholic Polycystic Ovary Syndrome; 
PCOS = Polycystic Ovary Syndrome; ACD = Acetaldehyde;   
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