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ABSTRACT 

Mendelian Randomization (MR) is an important approach to modelling causality in non-

experimental settings. MR uses genetic instruments to test causal relationships between 

exposures and outcomes of interest. Individual genetic variants have small effects, and so, when 

used as instruments, render MR liable to weak instrument bias. Polygenic scores have the 

advantage of larger effects, but may be characterized by direct pleiotropy, which violates a 

central assumption of MR.  

We developed the MR-DoC twin model by integrating MR with the Direction of Causation 

twin model. This model allows us to test pleiotropy directly. We considered the issue of 

parameter identification, and given identification, we conducted extensive power calculations.  

MR-DoC allows one to test causal hypotheses and to obtain unbiased estimates of the causal 

effect given pleiotropic instruments (polygenic scores), while controlling for genetic and 

environmental influences common to the outcome and exposure. Furthermore, MR-DoC in 

twins has appreciably greater statistical power than a standard MR analysis applied to 

singletons, if the unshared environmental effects on the exposure and the outcome are 

uncorrelated. Generally, power increases with: 1) decreasing residual exposure-outcome 

correlation, and 2) decreasing heritability of the exposure variable.  

MR-DoC allows one to employ strong instrumental variables (polygenic scores, possibly 

pleiotropic), guarding against weak instrument bias and increasing the power to detect causal 

effects. Our approach will enhance and extend MR’s range of applications, and increase the 

value of the large cohorts collected at twin registries as they correctly detect causation and 

estimate effect sizes even in the presence of pleiotropy.  
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INTRODUCTION 

Establishing causality in observational studies is important as knowledge of the relationship 

between a putative causal factor (exposure) and a potential outcome may inform rational 

treatment and prevention policies. While randomized controlled trials (RCTs) are the acid test 

of causality, they are expensive, time consuming, and may be practically or ethically unfeasible. 

For example, one cannot assign randomly individuals to a ‘low serum cholesterol condition’ in 

studying the causal effects of low serum cholesterol levels on cancer. An important alternative 

to the RCT is Mendelian Randomization (Katan 1, 2004).  

Mendelian Randomization (MR) offers some traction in addressing causality by using 

genetic variants as instrumental variables to detect the causal effect of a modifiable risk factor 

(exposure) on a disease outcome in non-experimental settings 2,3. MR is quickly becoming the 

dominant approach to establishing causality; many recent applications have been published 2,4-

10. The ascendency of MR is due to: dramatic drop in DNA genotyping costs, which has given 

rise to large genotyped samples, robust genetic associations established in genome-wide 

association studies (GWASs) 11, and the inherent advantages of MR, which include ecologic 

validity, robustness to reverse causation (from exposure to instrument) 12 and confounding 13.  

MR requires instruments with a relatively strong direct relationship with the exposure. 

A disadvantage of many genetic variants is that they have weak effects 14. Weak instruments 

confer insufficient statistical power, and render MR liable to weak instrument bias 13,15,16. 

Combining the weak genetic effects into a polygenic risk score (PGS) is a possible route to 

increase the strength of the genetic instrument 13,17-19. However, the MR assumption that the 

instrument is not pleiotropic (has no direct effect on the outcome) is stronger in the case of a 

PGS instrument 13,16,20,21. A PGS comprises many genetic variants, any of which may directly 

affect both the exposure and the outcome, or may include variants in linkage disequilibrium 

with variants affecting the outcome. As demonstrated by twin studies 22-27 and by polygenic risk 

score analyses 28-30, many genetic variants associate with multiple phenotypes, suggesting 

pervasive pleiotropy 31-35.  

Several methods are currently in use as means to tackle the ‘no pleiotropy’ assumption. 

Some approaches apply prior selection criteria to increase the probability that the instruments 

are valid. For instance, the stepwise procedure implemented in the R-package gtx 36 employs 

iteratively a heterogeneity test to discard from a polygenic score genetic instruments yielding 

significant heterogeneity in the estimates of the causal effect. Possible heterogeneity is assumed 
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to be indicative of pleiotropy. The efficiency of this method depends on its power 36 to detect 

heterogeneity arising from pleiotropy. However, heterogeneity may arise from sources other 

than pleiotropy, so that one may needlessly weaken the instrument by removing valid genetic 

variants. Johnson 36 noted that the performance of this procedure in terms of bias and type I 

error rates within the MR context has yet to be established. Other approaches like those based 

on the median estimator 37 can handle up to 50% invalid instruments. However, the strong MR 

assumption still applies to the variant(s) yielding the median causal effect. MR-Egger 

regression 38 is another approach that, with weaker assumptions, gives consistent estimates even 

when all instruments are pleiotropic. The estimator is (asymptotically) consistent under the 

weaker assumption that the effect of the instrument on the exposure is uncorrelated with the 

effect of the instrument on the outcome (i.e., the Instrument Strength Independent of Direct 

Effect assumption). However, the InSIDE assumption is unlikely to hold universally 38, as 

shared molecular mechanisms (i.e., direct/biological pleiotropy) are expected to yield correlated 

effects on the associated traits (see, for examples, 34). Furthermore, Bowder et al. noted 38 that 

there are other plausible paths from the instrument to the outcome (except direct paths, or 

indirect, via the exposure), for example, via confounders affecting both traits, or due to linkage 

disequilibrium between the instrument and a genetic variant affecting the outcome. In this case 

the estimate of the estimates of the causal effect in Egger regression will be biased 39. Finally, 

although MR-Egger uses multiple genetic variants to estimate the causal effect, these 

instruments are employed individually (i.e., not combined in a polygenic score), and so the 

approach (like the median-based approaches) remains liable to weak instrument bias 40.   

The utility of the classical twin design (CTD) in the study of direction of causality is 

well established 41-45. The present aim is to combine MR and CTD into a single model. A similar 

approach was proposed by Kohler et al. who integrated CTD with the instrumental variable 

method 44. Our focus is on combining MR with CTD to render testable the ‘no pleiotropy’ 

assumption. Particularly, we address issues of identification and statistical power associated 

specifically with a (poly-)genic instrument, which may be related directly to the outcome (i.e., 

violating the no-pleiotropy assumption). Integrating MR with CTD has three advantages: 1) it 

allows one to relax the strong MR assumption concerning the instrument’s conditional 

independence of the outcome (conditional on the exposure and confounders, i.e., the no 

pleiotropy assumption; 2) by accounting for pleiotropy, the approach facilitates the use of PGS 

as instruments; and 3) in specific circumstances, the approach confers substantial gains in power 

relative to the standard MR approaches. 
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METHODS 

Direction of Causation (DoC) twin model was advanced as an exploratory approach to 

establish direction of causation between two correlated traits 43,46-49. In contrast, MR 3,13 is 

used to test unidirectional causation (from designated causal exposure to outcome). Here we 

propose the MR-DoC twin model, developed by imposing restrictions on the DoC parameters 

to represent unidirectional causality hypotheses, and by extending the model to include 

measured genetic variants as instrumental variables. Integrating MR with DoC allows us to 

test certain MR assumptions.  

 

The Direction of Causation twin model  

The Direction of causation (DoC) twin model 43,46-49 uses cross-sectional data observed in 

monozygotic (MZ) and DZ twins to test causal hypotheses regarding the association between 

two traits. In contrast to MR, DoC does not necessarily involve a prior hypothesis concerning 

the causal direction. The path diagram of such a model is shown in Figure 1, given an 

exposure variable X and an outcome variable Y, observed in DZ twins.  

--Figure 1-- 

In Figure 1, X and Y are mutually causally related (parameters g1 and g2). The traits are 

subjected to the influence of latent additive genetic (AX and AY), shared (CX and CY) and 

unique (EX and EY) environmental effects, influences which can be direct or indirect, i.e., via 

the causal paths. As an instance of CTD, this model has the usual assumptions concerning 

random mating and the absence of genotype-environment interplay (GxE interaction, GxE 

covariance). The cross-twin correlation of the shared environmental variables is assumed to 

equal 1 within-trait, and rc across traits, regardless of zygosity. By definition, the cross-twin 

correlation of unique environmental effects is fixed to zero both within and across traits.  

The model as depicted in Figure 1 is not identified; it requires additional restrictions to 

identify the parameters. By imposing restrictions on the parameters, one can model several 

alternative hypotheses concerning the observational association between X and Y. The 

‘tertium quid’ hypothesis, that a third variable causes both traits, can be tested by constraining 

the parameters g1 and g2 to equal zero (i.e., the saturated bivariate model). Uni- and 

bidirectional causal hypotheses can be tested by fixing to zero the within- and cross-twin 

cross-trait genetic and environmental correlations (ra, rc, re), and estimating the causal 
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parameters g1 and/or g2 (i.e., the uni- and the bidirectional causality models).  These 

competing and nested alternative hypotheses can be tested by likelihood ratio 42,43, provided: 

1) the two traits differ in their sources of variance 43;  and 2) there are at least three sources of 

variance influencing the traits (i.e., A, E, and either C or D (dominance)) 50.  Given the 

assumptions mentioned above, we have 43,49: 

Xij = aXAXij + cXCXij + eXEXij + g2Yij                                        (equation 1) 

Yij = aYAYij + cYCYij + eYEYij + g1Xij                                         (equation 2), 

where subscript i stands for twin pair, and j for twin (j=1,2).  

 

Standard Mendelian Randomization 

The MR model is an instrumental variable regression model, which employs genetic variants 

as instrumental variables to test causal hypotheses regarding the association between an 

exposure and an outcome 3,13. Here we assume that the instrument is a PGS. Three 

assumptions must hold for a genetic variant to be a valid instrumental variable, as shown in 

Figure 2. Assumption 1: The genetic instrument (PGS) is robustly associated with the 

exposure variable X (b10 in Figure 2); Assumption 2: PGS is independent of confounders C 

(m=0; PGS  C); Assumption 3: PGS is independent of the outcome variable Y conditional on 

the exposure X and confounders C (b2=0; PGS  Y | X, C).  

--Figure 2-- 

In MR, the third assumption pertains to possible pleiotropic effects of the instrument (PGS), 

or to the likelihood of including variant(s) in linkage disequilibrium with variants affecting 

the outcome. In practice, the ‘no pleiotropy’ assumption may be violated, particularly when 

the instrument is a PGS combining the effects of multiple genetic variants (note that a single 

variant with pleiotropic effects in principle renders the polygenic score invalid as an 

instrumental variable). This core MR assumption is illustrated in Figure 3 where we consider 

several MR models with and without pleiotropic instruments, and pinpoint the definition of 

the no pleiotropy assumption. 

-- Figure 3 – 
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Among the methods of causal effect estimation in the standard MR are the two-stage least 

squares (2SLS) and the ratio of coefficients. In 2SLS, first, the instrumental variable (e.g., the 

polygenic score) is used to predict the exposure X, and second, the outcome is regressed on 

the predicted values of X. In the ratio of coefficients method, the causal effect is computed as 

a ratio of regression coefficients, with the numerator obtained in the regression of the outcome 

on the instrument, and the denominator obtained in the regression of the exposure on the 

instrument 13. Both methods are based on least squares estimation, and are expected to yield 

equivalent results in MR studies involving a single instrumental variable 13.  

The standard MR model can also be fitted in a single step as a structural equation model (as 

depicted in Figure 3 (panel C), with maximum likelihood (ML) estimation. The causal 

parameter �̂�1 in Figure 3C can be tested by the means of a likelihood ratio or a Wald test.   

 

Integrating Mendelian Randomization with the Direction of Causation twin model (the 

MR-DoC model)  

In observational studies, MR and DoC twin model offer some traction in testing a 

hypothesized direction of causality. As demonstrated below, the combined MR-DoC model 

has definite advantages over the individual approaches, in terms of power and assumptions. 

Figure 4 displays a path diagram of the MR-DoC model. Note that, the model as depicted is 

not identified. We consider the issue of identification below. 

--Figure 4-- 

The MR-DoC model is based on the following regression model: 

Xij = aXAXij + cXCXij  + eXEXij  + b1PGSij                                                                    (equation 5) 

Yij = aYAYij + cYCYij + eYEYij + g1Xij + b2PGSij                                     (equation 6), 

where i stands for twin pairs, and  j for twin (j=1,2). The vector of parameters is θ = [ra, rc, re, 

ax, cx, ex, ay, cy, ey, g1, b1, b2, x], where x is the standard deviation of the PGS.  Here, and in 

Figure 3, the parameter of interest is g1, as it concerns the causal effect of exposure X on 

outcome Y. Note that this model now includes the parameter b2, i.e., the pleiotropic effects of 

PGS on Y, which are usually assumed to be absent. Where we refer to a pleiotropic 

instrument below, we mean that the parameter b2 is not zero. Using ML estimation, we can 

test hypotheses concerning the parameters by means of a likelihood ratio or Wald test.  
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Model identification 

Model identification concerns the question whether the observed data provide sufficient 

information to yield unique estimates of the unknown parameters collected in the vector θ 51. 

In the present case, the observed information is summarized in the MZ and DZ (6x6) 

covariance matrices. We assume that the means are equal in the MZ and DZ and are equal in 

the twin 1 and twin 2 members (this is obviously testable). As the parameterization of the 

means has no bearing on the identification of the covariance structure model, we do not 

consider them in addressing identification.  

  Local identification is evaluated at a given set of parameters, say θa, and implies there 

are no points in the vicinity of point θa in the parameter space leading to the same expected 

covariance matrices ΣMZ(θa) and ΣDZ(θa) 51,52. We evaluated local identification using 

symbolic algebra in Maple 53. Derks et al. 54 previously used this method in the context of 

twin modeling. Using Maple, we checked whether the rank of the Jacobian matrix is full 

column rank. The Jacobian matrix contains the first order derivatives of the elements in the 

matrices ΣMZ(θa) and ΣDZ(θa) with respect to the free parameters. If the Jacobian is not full 

column rank, we require additional parameter constraints (on the elements in the parameter 

vector θa). Having established local identification in this manner, we proceeded to address the 

question of resolution by considering the statistical power to estimate the parameters of 

interest.  

 

Power calculations 

We used exact data simulation 55 to create data that fit a given identified model exactly (i.e., 

the observed covariance matrices equaled the expected covariance matrices exactly). We then 

dropped parameters of interest and assessed the power in the standard way using the non-

central χ2 distribution, with noncentrality parameter (NCP) λ. We adopted an alpha of .05 

throughout. Data were simulated in R using the MASS library function mvrnorm() with the 

empirical=TRUE option 56. The MR-DoC model was fitted to the population covariance 

matrices in OpenMx 57. We used the R-package AER 58 to conduct 2SLS estimation in the 

standard MR using the sample to twin 1 data, i.e., effectively a sample of unrelated 

individuals. We used the mRnd power calculator to calculate the power of the 2SLS 

procedure 59. We chose effect sizes by considering the decomposition of the variance of the 
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outcome Y, as illustrated in Figure 4. That is, given that the outcome Y is standardized (σ2
Y = 

1), we considered the components making up the explained variance, i.e., 1- σ2ξY, as a 

function of the regression parameters b1, b2, g1, the variances of the residuals ξX and ξY 

(parameters σ2
ξX and σ2

ξY), and the covariance between the residuals ξX and ξY  (parameter 

σξXξY). 

 

--Figure 5-- 

 

We varied  (a) the strength of the instrumental variable, defined as the percentage of variance 

explained in the exposure X by instrument (PGS); (b) the variance of ξX  (residual X), i.e., 

parameter σ2
ξX, representing the percentage of variance in the exposure, not explained by the 

instrumental variable); (c) the variance in ξY (residual Y), i.e., parameter σ2ξY, representing 

the percent of variance in Y  not explained by the MR model; and (d) the covariance between 

ξX and ξY  (parameter σξXξY). Using the path tracing rules, we can distinguish five components 

of variance (C1 to C5, Fig.5) that involve the parameters of interest g1 (the causal effect) and 

b2 (the direct effect of the instrument on the outcome). In all scenarios, the predictors 

explained 10% of the phenotypic variance of the outcome Y. The parameter values used in 

simulations are included in Supplementary Tables S1 and S2. To provide an indication on the 

potential gains in power conferred by our approach relative to a standard MR analysis of data 

obtained in unrelated individuals, we report the number of unrelated persons required to attain 

equivalent power as MR-DoC based on 2000 twin pairs.  

 

RESULTS 

Parameter recovery in standard MR and MR-DoC with valid or invalid (i.e., 

pleiotropic) instrumental variables (given re = 0) 

--Table 2-- 

Table 2 displays results obtained using non-pleiotropic (i.e., Figure 3, b2=0), or pleiotropic 

(i.e., b20, see Fig.4) instrumental variables in the causal effect estimation. Given b2=0, 

results indicate that all estimation methods recover the true parameter value (scenario S1, 

Table 2). As is to be expected, b20 leads to biased estimates of the causal effect when 

employing standard MR methods (e.g., 2SLS or ratio of coefficients). MR-DoC recovers 
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correctly the true parameter values (scenario S2, Table 2). Finally, we checked parameter 

recovery when the instrument has pleiotropic effects, but there is no causal effect of the 

exposure X on outcome Y (i.e., b20 and g1=0; scenario S3, Table 2). Results showed that 

standard MR detects a causal effect (when in truth there is none), while MR-DoC does not. 

We remind the reader that we have set re = 0 to obtain these results.  

 

Model identification 

--Table 1-- 

We considered identification in seven models given in Table 1. Model 1, in which all 

parameters are estimated freely, is not identified. However, constraining to zero any of the 

parameters re (Model 2), b2 (Model 3) or rc (Model 4) renders the model identified (i.e., 

Models 2, 3, 4). Conversely, all parameters are identified if the two traits differ with respect to 

their ACE model. This is the case if, e.g., the exposure is an AE trait and the outcome is an 

ACE trait (implying the parameters cx and rc are zero, Model 7), or the exposure is an ACE 

trait and the outcome (conditional on the exposure) is an AE trait (implying the parameters cy 

and rc to zero, Model 6). Note that in the latter case Y (unconditional) is characterized by 

shared environmental effects on Y (transmitted from CX, through the g1 path)  
41. Furthermore, 

we found that MR-DoC is not identified when the traits’ variances are limited to two sources 

(e.g., X and Y are both AE traits, Model 5). Fixing the parameter re to 0 is a constraint 

commonly employed in the fixed economic within MZ twin intra-pair differences model 44 

and in the discordant twin design. The following results are based on the model with this 

identifying constraint in place, i.e., re = 0.  

 

Power  

Figure 6 (and Supplementary Tables S3-S5) displays the results pertaining to the power to 

detect the causal effect in standard MR and in MR-DoC.  

--Figure 6-- 

With a valid instrumental variable (no pleiotropy) and all parameters freely estimated 

(including the parameter re, Table S3), the main factors that influence MR-DoC’s power are: 
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(a) instrument’s strength; (b) the genetic covariance structure of X (exposure) and Y 

(outcome); and (c) the magnitude of the residual X-Y correlation. As expected, and consistent 

with the standard MR literature, increasing instrument’s strength increases power. For 

instance, with an ACE trait as the exposure variable (h2
X=.5, c2

X=.2, e2
X=.3), an outcome 

variable having roughly the same mode of inheritance (h2
Y=.5, c2

Y=.2, e2
Y=.3), and a residual 

correlation of rξXξY=.2, the power of the MR-DoC equals .627 and .905 when the instrument 

explains 5% and 10% of the variance in the exposure, respectively. However, contrary to the 

standard DoC literature, having traits with similar genetic covariance structure has no bearing 

on MR-DoC’s power to detect the causal effect. This is the case for instance, if both the 

outcome and exposure are ACE traits.  Power is the highest when the outcome variable has a 

lower heritability than the exposure variable. For example, power increases from .622 in 

Scenario S1G (with a 50% heritable outcome and a 20% heritable exposure) to .658 in 

Scenario S1I (with a 20% heritable outcome variable and a 50% heritable exposure; Table 

S3). Finally, increasing X-Y residual correlation reduces MR-DoC’s power. For instance, 

with an outcome and an exposure having roughly the same mode of inheritance, and an 

instrument explaining 5% of the variance in the exposure, MR-DoC’s power drops from .627 

(Scenario S1H, Table S3) to .312 (Scenario S1B) when the residual correlation increases from 

rξXξY=0.2 to rξXξY=0.4.  

Given equal N, standard MR (4000 unrelateds) has larger power than MR-DoC (4000 twins) 

only when b2=0 and re 0 (Fig.6, left). Yet, assuming data collected in twins are readily 

available, greater statistical power is available in the MR-DoC model (than from reducing the 

twin pairs to singletons and resorting to standard MR, Table S4).  

We also calculated the required N of unrelated individuals to achieve the same power 

as 2000 twin pairs (Table 3). We found the yield of MR-DoC substantial if the parameter re 

was fixed to zero (as simulated, Fig.6, middle). For example, with a sample of 2000 twin 

pairs, MR-DoC yields a NCP λ of 38.68 given an instrument explaining 10% of the variance 

in the exposure, a residual correlation of rξXξY=0.2, an exposure variable with low heritability 

(h2
X=0.2, c2

X=0.1, e2
X=0.7), and a moderately heritable outcome (h2

Y=0.5, c2
Y=0.2, e2

Y=0.3). 

Standard MR needs about 56 737 unrelated individuals to achieve equivalent power (Table 3).  

Given b20 and re=0, MR-DoC’s power increases with: (a) decreasing X-Y residual 

correlation, and (b) decreasing heritability of the exposure (Fig.6 right; see for details, Tables 

S2 and S5). Regarding the former, power is always larger when the association between the 

exposure and the outcome is largely causal in nature (i.e., when the residual correlation drops 
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from rξXξY = 0.4 to rξXξY = 0.2). Regarding the latter, power is always greater in scenarios 

where the exposure has low heritability. For instance, the NCP λ increases from 7.29 to 39.1 

when the heritability of the exposure decreases from 50% (S2I) to 20% (S2J, Table S5). The 

same pattern of results was observed when b2=0 and re=0 (see Fig.6 middle, and Table S4). 

Note that the instrument’s strength has no longer a bearing on power when b20, i.e., when it 

affects the outcome both directly (parameter b2) and indirectly, via the exposure (parameter 

b1). For instance, 2000 twin pairs yield an NCP λ of 5.98 given two traits having identical 

variance components (h2
X = h2

Y =0.5; c2
X = c2

Y = 0.2; e2
X = e2

Y = 0.3), and a large residual 

correlation (rξXξY = 0.4), regardless of whether the instrument explains 5% or 10% of the 

variance in the exposure (Scenarios S2B and S2E, Table S5). As mentioned above, contrary to 

the standard DoC literature 43, MR-DoC does not require the exposure and the outcome 

variable to have radically different covariance structures to ensure sufficient power to test 

unidirectional causal hypotheses. 

 

DISCUSSION 

Our aim was to integrate MR and the classical twin model to render testable the MR’s strong 

assumption that the instrumental variable has no direct effect on the outcome, conditional on 

the exposure and confounders. We showed that, with standard MR methods, violations of this 

assumption readily lead to biased causal effect estimates, or may even yield spurious false 

positives. MR-DoC correctly detects causal effects and provides accurate parameter estimates 

even if the instrument is pleiotropic. With traits that have the same covariance structure (e.g., 

when both the outcome and exposure are ACE traits), the weaker assumption (also used in the 

discordant twin design) that the unique environmental component influencing the exposure, 

influences the outcome only via its effect on the exposure, but not directly (i.e., re=0), is needed 

to identify model parameters. Note, however, that this assumption is not required with traits 

that have different covariance structures (e.g., with an ACE and an AE trait). 

Aside from providing the means to relax the ‘no pleiotropy’ assumption, the MR-DoC 

twin model confers several other advantages in understanding causal relationships between 

exposures and outcomes. First, MR-DoC provides full statistical description of the observed 

exposure-outcome relationship, allowing one to disentangle the causal effect of the exposure 

on the outcome, from potential pleiotropic effects of the instrumental variable, as well as from 
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the contribution of other genetic and environmental factors to the variances and the covariance 

of the two traits. Second, the twin data provide sufficient information to estimate the direct path 

from the instrument to the outcome (i.e., the parameter b2 in Fig.3). Importantly, this path 

captures not only pleiotropic effects, but also possible effects of other variants affecting the 

outcome which are in linkage disequilibrium with the instrument. Third, our approach opens 

up the possibility of using strong genetic instrumental variables in the form of polygenic scores. 

This is generally desirable in the standard MR design, as the strength of the valid instrumental 

variable has a bearing on the precision of the causal estimate (i.e., with weak instruments the 

estimate tends to approach the observed OLS exposure-outcome association 60), and on the 

distribution of the causal effect estimate (the weaker the instrument, the more skewed the 

distribution; see Fig.7.1 in 13). As a consequence, significance tests and the construction of the 

confidence intervals, which rely on asymptotic normality, are no longer accurate. Consequently, 

tests may suffer inflated type I error rates 61. In addition, strong instruments are desirable from 

the perspective of power,  as our results showed (consistent with the literature 61). 

 Interestingly, the strength of the instrument (i.e., defined in terms of percentage of 

explained variance in the exposure), has no bearing on the power when the instrument has 

pleiotropic effects, given that these effects are correctly modeled (in MR-DoC). The reason for 

this is that the exposure no longer features as a full mediator variable in the presence of a direct 

path between the instrument and the outcome. Correspondingly, the misfit due to dropping the 

causal parameter from the analysis is attenuated by the presence of the parameter b2 in the 

model. That is, fixing the parameter g1 to zero will largely bias the parameter b2, but will not 

affect the between twin covariance matrix (as is the case in the standard MR design where the 

sole path from the instrument to the outcome is via the exposure). Stated otherwise, the bias in 

b2 will be greatest, leaving ra (Ax,Ay) and rc (Cx,Cy) relatively unaffected, regardless of how 

strong the instrument is. In this circumstance, the power to detect the causal effect will primarily 

depend on the magnitude of the residual correlation between the two traits and, to a lesser 

extent, on their modes of inheritance. 

MR-DoC is tailored for the readily available datasets collected worldwide on more than 

1.5 million twins at the Twin and Family Registries (see 62 for details on these rich resources of 

genotypic and phenotypic data). We showed that twin data correctly detect causation and 

estimate effect sizes even in the presence of pleiotropy. Although primarily developed to 

address the ‘no pleiotropy’ assumption, our results demonstrate that MR-DoC has greater 

statistical power than standard MR analysis in singletons if the parameter re is zero (as fixed to 
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zero in the model). With re fixed to zero, dropping the causal parameter g1 from the model 

greatly impacts all paths connecting the exposure and the outcome, both within and across twins 

(parameters ra and rc), creating a large discrepancy between the observed and the expected 

covariance matrix. This misfit is evident throughout the covariance matrix. Consequently, in 

some specific circumstances, testing causal hypotheses requires tens of thousands of unrelated 

individuals for one to achieve the same power as that conferred by several hundreds of twin 

pairs. It should be noted that unlike MR methods 37,38 or asymmetry tests 34 based on summary 

statistics, the approach proposed here only requires GWAS results for the exposure variable. 

With MR-DoC and these rich phenotype resources - ranging from personality, diet and lifestyle 

to disease and psychiatric traits 62 - collected at Twin and Family registries, the availability of 

genetic instruments robustly associated with the exposure remains the main limiting factor in 

addressing causal questions in non-experimental settings. 

As presented here, MR-DoC is limited to twin data, but note that twin registries often 

have available information on additional family members 62-66. Conversely, not all cohort 

studies necessarily include related individuals. To expand the model, we aim to accommodate 

additional family members (siblings and parents), and distantly related individuals by using 

Genetic Relationship Matrices (GRMs) based on average allelic correlations (where the alleles 

are defined at the measured single nucleotide polymorphisms). We anticipate that these 

extensions will further increase statistical power and robustness to assumption violation 67,68. 

Second, throughout the paper we assumed that the mating is random, there is no genotype-

environment correlation, and no genotype by environment interaction. Indeed, assumption 

violation may also arise because the mating is assortative 13, or because there are other plausible 

paths from the instrument to the outcome (except direct paths, or indirect, via the exposure), for 

example, via confounders affecting both traits, i.e., implying genotype by environment 

interaction or genotype by environment correlation. However, we note that these effects may 

be captured by the MR-DoC twin model with appropriate experimental designs 67,69. On a 

cautionary note, although valid strong instruments are desirable in MR from the perspective of 

power, making up the polygenic score based on variants of unknown function should limit the 

testable hypotheses to whether the model is consistent or not with a direct causal effect from 

the exposure to the outcome (as pointed out in 21). While we considered the use of MR-DoC 

with polygenic scores, our conclusions also hold in scenarios where a genetic variant with 

known function is used as the instrument, which would improve the biological interpretation of 

the causal effect.  
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In conclusion, by integrating Mendelian Randomization with the Direction of Causation twin 

model, we developed a model that allows one to test and relax the strong ‘no pleiotropy’ 

assumption employed by standard MR. This approach therefore allows one to employ strong 

instrumental variables in the form of polygenic scores, guarding against the weak instrument 

bias and increasing the power to detect causal effects of exposures on potential outcomes. We 

anticipate that MR-DoC will enhance and extend MR’s range of applications, and increase the 

value of the large cohorts collected at twin registries as they correctly detect causation and 

estimate effect sizes even in the presence of pleiotropy. 

 

 

FUNDING: This work was supported by the National Institute on Drug Abuse [grant 

number DA-018673]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134585doi: bioRxiv preprint 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwijluyXvZjNAhUElh4KHQhACHMQFggeMAA&url=https://www.drugabuse.gov/&usg=AFQjCNEPPfWbfBamIK9uF-LfrN1y-yeX7w&sig2=7J1L5G6JHb4ozTGQ23ky9g
https://doi.org/10.1101/134585


16 

 

 

 

Figures and tables 

 

Figure 1: Path diagram representing the direction of causation twin model given two traits: 

variable X and variable Y measured in dizygotic (DZ) twins (t1 and t2). Squares represent 

observed variables, while circles represent latent variables. A, C and E stand for additive 

genetic effects, shared and unique environmental effects, respectively. The double headed 

arrows represent within/between twins covariances of additive genetic effects (ra), shared 

environmental effects (rc) and unique environmental effects (re). The cross-twin covariance 

between additive genetic effects is fixed to .5 (1) for DZ (MZ) twins. DZ (MZ) twins are 

expected to share on average 50% (100%) of the genetic effects underlying both traits, hence 

the cross-twin cross-trait covariance is fixed to .5(1)ra for DZ (MZ) twins. . Single headed 

arrows represent causal effects. Note, the model as depicted, is not identified. Typically ra, rc, 

and re are assumed to be zero in the application of the DoC twin model. 
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Figure 2: Assumptions in Mendelian Randomization. Hypothesis: X causes Y. By 

assumption, the regression coefficients (m and b2) associated with the dashed lines are zero. 

Abbreviations: PGS – polygenic score; X – exposure variable; Y – outcome variable; C – 

confounders; 

 

Abbreviations: PGS – polygenic score; X – exposure variable; Y – outcome variable; C – 

confounders;  
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Figure 3: A) X directly influences Y (parameter g1). In addition, the additive genetic variables 

AX and AY are correlated (parameter ra). B) The set of loci M underlies the variance of AX, 

but does not underlie the variance of AY, i.e., in set theory notation, M=AX /AY. Likewise, 

N=AY/AX, i.e., the set of loci N contributing to the variance of AY but not to the variance of 

AX. Z represents the intersection of AX and AY, that is, the set of loci Z underlies both AX and 

AY, i.e., Z=AY ⋂ AX. Note that the set Z may contain pleiotropic loci, where the pleiotropy is 

due to direct effects or due to linkage disequilibrium; C) The MR model with a polygenic 

instrument (PGS) and ‘no pleiotropy’. PGS is associated with X (parameter b1), but is 

assumed to have no direct influence on the outcome Y. This model holds only if the 

instrument PGS is constructed on the basis of a subset of variants from set M. In the presence 

of PGS, A*X is a residual (in the regression of X on PGS). D) MR with pleiotropic genetic 

instrument. In this model, the PGS is constructed on the basis of a sample of genetic variants 

taken from set Z. The parameter b2 accommodates the fact that the set of variants used to 

construct PGS underlies the variance of both AX  and AY. The no pleiotropy assumption 

implies b2=0.  
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Figure 4: Path diagrammatic representation of the MR-DoC model in DZ twins. The 

parameter x equals the standard deviation of the observed instrument, i.e., PGS in the circle is 

standardized. The model as depicted is not identified (see Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134585doi: bioRxiv preprint 

https://doi.org/10.1101/134585


20 

 

Figure 5: Effect size calculation for the power analyses. Abbreviations: PGS – polygenic 

score; X – exposure variable; Y – outcome variable;  ξX  - residual X;  σ2
ξX - variance in the 

exposure, not explained by the instrumental variable PGS;  ξY - residual Y; σ2ξY - variance in 

Y  not explained by the MR model; σξXξY - the covariance between ξX and ξY ; b1 – regression 

coefficient in the regression of the exposure X on the instrument; b2 – regression coefficient in 

the regression of the outcome on the PGS; g1 – the causal effect of X on Y. 
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Figure 6: Results given a non-pleiotropic instrument (parameter b2=0; left and middle panels), and given a pleiotropic instrument (parameter b20; 

right panel). Fitting the model with the parameter g1 freely estimated, and with the parameter g1 constrained to equal zero provided the Non-

Centrality Parameter. The standard MR is based on two-stage least squares in a sample of 4000 unrelateds. The MR-DoC twin model used maximum 

likelihood and a sample of 2000 twin pairs. Abbreviations: rξXξY - residual exposure-outcome correlation; PGS – polygenic score.  
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Tables 

Table 1: Parameter constraints that render identified the Figure 3. Note ‘fr’ indicates that the 

parameter is estimated, ‘0’ – that the parameter is constrained to equal 0. 

Model x aX cX eX aY cY eY ra rc re b1 b2 g1 Identified? 

1 fr fr fr fr fr fr fr fr fr fr fr fr fr No 

2 fr fr fr fr fr fr fr fr fr 0 fr fr fr Yes 

3 fr fr fr fr fr fr fr fr fr fr fr 0 fr Yes 

4 fr fr fr fr fr fr fr fr 0 fr fr fr fr Yes 

5 fr fr 0 fr fr 0 fr fr 0 fr fr fr fr No  

6 fr fr fr fr fr 0 fr fr 0 fr fr fr fr Yes  

7 fr fr 0 fr fr fr fr fr 0 fr fr fr fr Yes 
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Table 2: Results of the comparison of the standard MR in analysis of unrelated individuals and 

MR-DoC twin model. Additive genetic (A), shared environmental (C) and unique 

environmental (E) effects contributed to the variance of both the exposure (h2
X=0.5, c2

X=0.2, 

e2
X =0.3) and the outcome (a2

X=0.2, c2
X=0.1, e2

X=0.7) variable, and genetic and shared 

environmental factors contributed to the correlations between the traits (rξXξY=0.2). Incorrectly 

estimated parameter values are in italics. 

Scenario  Parameter values  

(simulated) 

TSLS/ 

Two-sample 

MR/MR as SEM 

(estimated) 

MR-DoC 

(estimated) 

#1. Non-pleiotropic instrument and 

non-zero causal relationship 

between exposure and outcome 

b1 = 0.3162 

b2 = 0 

g1 = 0.1838 

b1 = 0.3162 

 

g1 = 0.1838 

b1 = 0.3162 

b2 = 0 

g1 = 0.1838 

#2. Pleiotropic instrument and non-

zero causal relationship between 

exposure and outcome 

b1 = 0.3162 

b2 = 0.1599 

g1 = 0.1265 

b1=0.3162 

 

g1 = 0.6324 

b1 = 0.3162  

b2 = 0.1599  

g1 = 0.1265 

#3. Pleiotropic instrument and no 

causal relationship between 

exposure and outcome 

b1 = 0.3162 

b2 = 0.3162 

g1 = 0 

b1=0.3162 

 

g1 = 1.00 

b1 = 0.3162 

b2 = 0.3162 

g1 = -4.86e-08 
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Table 3: The number of unrelated individuals (N) required by MR-standard to achieve the 

same NCP as MR-DoC in 2000 twin pairs. The number of unrelateds was estimated based on 

the NCP obtained by fitting the standard MR as a structural equation model, with estimation 

of the causal effect based on maximum likelihood (similar to MR-DoC). 

 

Scenario 

(S1) 

N required by MR standard to achieve 

the same NCP as MR-DoC with re=0  

A 56 737 

B 24 945 

C 13 472 

D 28 515 

E 13 480 

F 8206 

G 53 774 

H 24 440 

I 13 013 

J 13 558 

K 13 239 

L 7954 
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Supplementary Tables 

Table S1: Scenarios and parameter values used to generate data for assessing the power of the 

MR–DoC twin model, given a non-pleiotropic instrumental variable (parameter b2=0). We 

varied the strength of the instrument, (i.e., the Polygenic Score explained either 0.05 or 0.1 

proportion of the variance in the exposure), the proportion of variance explained in the exposure 

(X) and the outcome (Y) variable by additive genetic (h2
X=σ2

Ax/σ
2

phX; h2
Y= σ2

Ay/σ
2

phY), shared 

environmental (c2
X=σ2

Cx/σ
2
phX; c2

Y = σ2
Cy/σ

2
phY) and unique environmental (e2

X=σ2
Ex/σ

2
phX; 

e2
Y=σ2

Ey/σ
2

phY) factors, and the contribution of the instrumental variable (PGS; parameter b1), 

the causal effect (g1) and of the residual correlation between the outcome and the exposure 

(rξXξY) to the 10% explained variance in the outcome. The effect size is defined as the percentage 

of explained variance in the outcome given the chosen parameter values b1, b2, g1, σξXξY 

(covariance of ξX and ξY), σ2
ξX (residual variance in X), and σ2

ξY (residual variance in Y). 

Scenario (S1) Parameter values Effect size: percentage of 

variance explained in the 

outcome (%) 

A PGS = 0.05 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.068 

g1
2

 × σ2
ξX = 1.295 

2 × g1 × σξXξY =8.636 

B PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.068 

g1
2

 × σ2
ξX = 1.295 

2 × g1 × σξXξY =8.636 

C PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, ey
2= 0.7 

rξXξY = 0.4 

b1
2 × g1

2 = 0.068 

g1
2

 × σ2
ξX = 1.295 

2 × g1 × σξXξY =8.636 

D PGS = 0.1 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.142 

g1
2

 × σ2
ξX = 1.278 

2 × g1 × σξXξY = 8.579 

E PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.142 

g1
2

 × σ2
ξX = 1.278 

2 × g1 × σξXξY = 8.579 

F PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.4 

b1
2 × g1

2 =0.142 

g1
2

 × σ2
ξX = 1.278 

2 × g1 × σξXξY = 8.579 

G PGS = 0.05 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

b1
2 × g1

2 = 0.164 

g1
2

 × σ2
ξX = 3.126 
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h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

2 × g1 × σξXξY = 6.70 

H PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 = 0.164 

g1
2

 × σ2
ξX = 3.126 

2 × g1 × σξXξY =6.709 

I PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.2  

b1
2 × g1

2 = 0.164 

g1
2

 × σ2
ξX = 3.126 

2 × g1 × σξXξY =6.709 

J PGS = 0.1 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 =0.338 

g1
2

 × σ2
ξX =3.042 

2 × g1 × σξXξY =6.619 

K PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 =0.338 

g1
2

 × σ2
ξX =3.042 

2 × g1 × σξXξY =6.619 

L PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.2 

b1
2 × g1

2 =0.338 

g1
2

 × σ2
ξX =3.042 

2 × g1 × σξXξY =6.619 
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Table S2: Scenarios and parameter values used to generate data for assessing the power of the 

MR–DoC twin model, given a pleiotropic instrumental variable and no unique environmental 

correlation (parameters b20 and re=0). We varied the strength of the instrument, (i.e., the 

Polygenic Score explained either 0.05 or 0.1 proportion of the variance in the exposure), the 

proportion of variance explained in the exposure (X) and the outcome (Y) variable by additive 

genetic (h2
X =σ2

Ax/σ
2

phX; h2
Y = σ2

Ay/σ
2

phY), shared environmental (c2
X =σ2

Cx/σ
2
phX; c2

Y = 

σ2
Cy/σ

2
phY) and unique environmental (e2

X =σ2
Ex/σ

2
phX; e2

Y = σ2
Ey/σ

2
phY) factors, and the 

contribution of the instrumental variable (PGS; parameter b1), the causal effect (g1) and of the 

residual correlation between the outcome and the exposure (rξXξY) to the 10% explained 

variance in the outcome. The effect size is defined as the percentage of explained variance in 

the outcome given the chosen parameter values b1, b2, g1, σξXξY (covariance of ξX and ξY), 

σ2
ξX (residual variance in X), and σ2

ξY (residual variance in Y). 

 

Scenario 

(S2) 

Parameter values  Effect size: percentage of variance 

explained in the outcome (%) 

A PGS = 0.05 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.027 

2 × b1 × g1 × b2 = 0.607 

b2
2 = 3.364 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

B PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.027 

2 × b1 × g1 × b2 = 0.607 

b2
2 = 3.364 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

C PGS = 0.05 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.4  

b1
2 × g1

2 = 0.027 

2 × b1 × g1 × b2 = 0.607 

b2
2 = 3.364 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

D PGS = 0.1 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.057 

2 × b1 × g1 × b2 = 0.846 

b2
2 = 3.095 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

E PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.4 

b1
2 × g1

2 = 0.057 

2 × b1 × g1 × b2 = 0.846 

b2
2 = 3.095 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

F PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

b1
2 × g1

2 = 0.057 

2 × b1 × g1 × b2 = 0.846 
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h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.4 

b2
2 = 3.095 

g1
2

 × σ2
ξX = 0.521 

2 × g1 × σξXξY = 5.478 

G PGS = 0.05  

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2= 0.075 

2 × b1 × g1 × b2 = 0.95 

b2
2 =2.973 

g1
2

 × σ2
ξX = 1.442 

2 × g1 × σξXξY = 4.557 

H PGS = 0.05  

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 = 0.075 

2 × b1 × g1 × b2 = 0.95 

b2
2 =2.973 

g1
2

 × σ2
ξX = 1.442 

2 × g1 × σξXξY = 4.557 

I PGS = 0.05  

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.2 

b1
2 × g1

2 = 0.075 

2 × b1 × g1 × b2 = 0.95 

b2
2 =2.973 

g1
2

 × σ2
ξX = 1.442 

2 × g1 × σξXξY = 4.557 

J PGS = 0.1 

h2
X = 0.2, c2

X = 0.1, e2
X = 0.7 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 = 0.16 

2 × b1 × g1 × b2 = 1.28 

b2
2 =2.558 

g1
2

 × σ2
ξX =1.442  

2 × g1 × σξXξY = 4.557 

K PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.5, c2

Y = 0.2, e2
Y = 0.3 

rξXξY = 0.2 

b1
2 × g1

2 = 0.16 

2 × b1 × g1 × b2 = 1.28 

b2
2 =2.558 

g1
2

 × σ2
ξX =1.442  

2 × g1 × σξXξY = 4.557 

L PGS = 0.1 

h2
X = 0.5, c2

X = 0.2, e2
X = 0.3 

h2
Y = 0.2, c2

Y = 0.1, e2
Y = 0.7 

rξXξY = 0.2 

b1
2 × g1

2 = 0.16 

2 × b1 × g1 × b2 = 1.28 

b2
2 =2.558 

g1
2

 × σ2
ξX =1.442  

2 × g1 × σξXξY = 4.557 
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Table S3: Simulation results given a non-pleiotropic instrumental variable (parameter b2 = 0). 

We report the power to detect the causal effect g1 (given alpha=0.05), and the NCP obtained 

based on the standard MR with the causal effect estimated using two-stage least squares 

(N=2000 unrelateds), and based on the MR-DoC twin model (N=2000 twin pairs). In fitting 

the MR-DoC model we estimate all model parameters (with the parameter re, simulated re=0, 

freely estimated). 

Scenario (S1) MR-DoC’s 

power (NCP) 

in 2000 twin 

pairs  

Standard 

MR’s 

power 

(NCP)  

in 2000 

unrelated 

individuals 

(twin1) 

Standard MR’s 

power (NCP)  

in 4000 

unrelated 

individuals 

 

A .309 (2.13) .25 (1.61) .42 (3.13) 

B .312 (2.15) .25 (1.61) .42 (3.13) 

C .336 (2.36) .25 (1.61) .42 (3.13) 

D .559 (4.44) .44 (3.25) .72 (6.41) 

E .564 (4.50) .44 (3.25) .72 (6.41) 

F .602 (4.93) .44 (3.25) .72 (6.41) 

G .622 (5.16) .49 (3.73) .78 (7.39) 

H .627 (5.21) .49 (3.73) .78 (7.39) 

I .658 (5.61) .49 (3.73) .78 (7.39) 

J .902(10.615) .79 (7.59) .97 (15.1) 

K .905 (10.72) .79 (7.59) .97 (15.1) 

L .924 (11.54) .79 (7.59) .97 (15.1) 
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Table S4: Simulation results given a non-pleiotropic instrumental variable (b2=0). We report 

the power to detect the causal effect g1 (given alpha of 0.05) and the NCP obtained based on 

the standard MR with the causal effect estimated using two-stage least squares (N=2000 

unrelateds), and based on the MR-DoC twin model (N=2000 twin pairs). In fitting the MR-

DoC model we constrained re to equal 0 (as simulated). 

Scenario (S1) Power (NCP) 

based on 

2000 twin-

pairs 

Standard 

MR’s power 

(NCP) based 

on 2000 

unrelateds 

(twin 1) 

Standard 

MR’s 

power 

(NCP)  

in 4000 

unrelateds 

 

A >.99 (38.68) .25 (1.61) .42 (3.13) 

B .984 (17.00) .25 (1.61) .42 (3.13) 

C .857 (9.18) .25 (1.61) .42 (3.13) 

D >.99 (40.52) .44 (3.25) .72 (6.41) 

E .992 (19.15) .44 (3.25) .72 (6.41) 

F .927 (11.66) .44 (3.25) .72 (6.41) 

G >.99 (88.54) .45 (3.73) .78 (7.39) 

H >.99 (40.24) .45 (3.73) .78 (7.39) 

I >.99 (21.42) .45 (3.73) .78 (7.39) 

J >.99 (91.83) .79 (7.59) .97 (15.1) 

K >.99 (44.83) .79 (7.59) .97 (15.1) 

L >.99 (26.93) .79 (7.59) .97 (15.1) 
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Table S5: Simulation results given a pleiotropic instrumental variable (parameter b20). We 

report the power to detect the causal effect g1 (given alpha=0.05), and the NCP based on the 

MR-DoC twin model (N=2000 twin pairs). In fitting the MR-DoC model, to render the model 

identified, we assumed that parameter re equals 0 (as simulated). 

Scenario (S2) Power (NCP) 

A .97 (14.77) 

B .686 (5.98) 

C .379 (2.73) 

D .970 (14.77) 

E .686 (5.98) 

F .379 (2.73) 

G >.99 (39.1) 

H .981 (16.28) 

I .770 (7.29) 

J >.99 (39.1) 

K .981 (16.28) 

L .77 (7.29) 
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