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Abstract: 16 

Psychophysiological interaction (PPI) is a regression based method to study task modulated brain 17 

connectivity.  Despite its popularity in functional MRI (fMRI) studies, its reliability and reproducibility 18 

have not been evaluated.  We investigated reproducibility and reliability of PPI effects during a simple 19 

visual task, and examined the effect of deconvolution on the PPI results.  A large open-access dataset was 20 

analyzed (n = 138), where a visual task was scanned twice with repetition times (TRs) of 645 ms and 21 

1400 ms, respectively.  We first replicated our previous results by using the left and right middle occipital 22 

gyrus as seeds.  Then ROI-wise (regions of interest) analysis was performed among twenty visual-related 23 

thalamic and cortical regions, and negative PPI effects were found between many ROIs with the posterior 24 

fusiform gyrus as a hub region.  Both the seed-based and ROI-wise results were similar between the two 25 

runs and between the two PPI methods with and without deconvolution.  The non-deconvolution method 26 

and the short TR run in general had larger effect sizes and greater extents.  However, the deconvolution 27 

method performed worse in the 645 ms TR run than the 1400 ms TR run in the voxel-wise analysis.  28 

Given the general similar results between the two methods and the uncertainty of deconvolution, we 29 

suggest that deconvolution may be not necessary for PPI analysis on block-designed data.  Lastly, 30 

intraclass correlations between the two runs were much lower for the PPI effects than the activation main 31 

effects, which raise cautions on performing inter-subject correlations and group comparisons on PPI 32 

effects.  33 

 34 

Keywords: Reproducibility, reliability, test-retest, psychophysiological interaction, deconvolution.  35 

 36 
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1. Introduction 38 

Psychophysiological interaction (PPI) is a widely used method to study task related brain functional 39 

connectivity changes (Friston et al., 1997).  It employed simple regression-based method to model task 40 

modulated connectivity effects, thus enabling whole brain exploratory analysis.  Therefore, even though 41 

there are more sophisticated methods available, e.g. dynamic causal modeling (Friston et al., 2003), PPI is 42 

still a valuable method for fMRI data, given that our knowledge on large-scale task related connectivity is 43 

still quite limited.  Several modifications of the PPI method have been made after it was proposed, 44 

including adding a deconvolution step to deal with the asynchrony between task design and fMRI 45 

hemodynamic response (Gitelman et al., 2003) and introducing a generalized framework to model more 46 

than two experimental conditions (McLaren et al., 2012).  47 

 A PPI effect is defined as an interaction between the time series of a brain region (physiological 48 

variable) and a (or more) task design variable (psychological variable).  Noises of both the physiological 49 

and psychological variables go into the interaction term, so that the interaction effect is much noisier than 50 

the main effects of task free connectivity (physiological main effect) and task activation (psychological 51 

main effect).  This makes PPI analysis having lower statistical power than simple connectivity and 52 

conventional activation analysis.  Since PPI analysis has been increasingly used to study group 53 

differences and inter-subjects variability, it is important to evaluate the reproducibility and reliability of 54 

the PPI methods (Dubois and Adolphs, 2016; Vul et al., 2009).  Voxel-based meta-analysis has been used 55 

to examine consistency of PPI results across studies (Di et al., 2017a).  However, because the tasks used 56 

in different studies varied greatly, the motivation of a meta-analysis on PPI was rather to identify different 57 

connectivity that were modulated by different tasks, than to simply identify consistent connectivity cross 58 

studies with different tasks (Di et al., 2017a).  Nevertheless, the reliability of PPI effect has not been 59 

directly examined. 60 

 One critical step for the PPI method is to properly deal with the asynchrony between task design 61 

and observed blood-oxygen-level dependent (BOLD) signals.  An earlier solution is to convolve the 62 
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psychological variable with hemodynamic response function (HRF).  Then the PPI term x
1
PPI could be 63 

expressed as: 64 

)(1 hrfzxx PsychPhysioPPI          (1) 65 

where xPhysio represents the physiological variable, zPsych represents the psychological design variable, and 66 

* represents convolution operator.  However, this calculation is not appropriate if the interaction 67 

happened faster than the slow hemodynamic response.  Therefore, a deconvolution procedure is required 68 

(Gitelman et al., 2003) to find a variable zPhysio that: 69 

hrfzx PhysioiPhysio          (2) 70 

If this could be achieved, then the interaction could be calculated at the neuronal level and then convolve 71 

with HRF:   72 

hrfzzx PhysioPsychPPI  )(2
        (3) 73 

We can also put equation (2) to equation (1), so that:  74 

)()(1 hrfzhrfzx PhysioPsychPPI          (4) 75 

  Mathematically, x
1
PPI and x

2
PPI are not equivalent.  Therefore, deconvolution seems necessary. 76 

Effective deconvolution depends on assumptions such as known HRF and noise characteristics in the 77 

BOLD signals (O’Reilly et al., 2012; Roebroeck et al., 2011).  Unfortunately, there are substantial amount 78 

of variability in HRF both across brain regions and across subjects (Handwerker et al., 2004).  On the 79 

other hand, if a task design is slower than the hemodynamic response, e.g. a blocked design, the PPI terms 80 

calculated from the above mentioned two methods could be very similar.  We have demonstrated that the 81 

PPI results of a block-designed visual task are spatially corresponding very well between the 82 

deconvolution and non-deconvolution PPI methods (Di et al., 2017b).  Whether to perform deconvolution 83 

then needs to compromise between the deviation between the PPI terms calculated in different ways and 84 

the uncertainty of deconvolution (Di et al., 2017b).  Therefore, it might be better to not perform 85 

deconvolution for an block-designed task, which is actually recommended by FSL (FMRIB Software 86 
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Library) (Jenkinson et al., 2012; O’Reilly et al., 2012).  For event-related designed task, however, 87 

deconvolution may be still necessary, because the PPI terms calculated from the deconvolution and non-88 

deconvolution methods may be dramatically different.   89 

  We recently demonstrated negative PPI effects (reduced connectivity) between the middle 90 

occipital gyrus to the fusiform gyrus and supplementary motor areas in a simple block-designed 91 

checkerboard task compared with a fixation baseline (Di et al., 2017b).  Here, we further analyzed a 92 

larger sample of checkerboard data (n = 138) of two separate runs with two repetition times (TR: 645 ms 93 

and 1400 ms) (Nooner et al., 2012).  The aims of the current study are to first evaluate reproducibility and 94 

reliability of PPI effects in the checkerboard task.  Additionally, we investigated the impact of PPI 95 

calculation methods on the PPI results and their reproducibility and reliability.  We operationally defined 96 

reproducibility as whether previously reported clusters could be observed in the current analysis, and 97 

whether the clusters reported in one run could be observed in the other run.  Quantitatively, we utilized 98 

Dice coefficient to quantify overlaps of voxels on thresholded maps (Rombouts et al., 1998; Taylor et al., 99 

2012).  Next, we used intraclass correlation (ICC) to quantify test-retest reliability.  Because the short TR 100 

run has about twice the number of time points as the long TR one, we predict that statistical results would 101 

be better for the short TR run compared with the long TR run.  In addition, shorter sampling rate may 102 

provide more accurate estimate of hemodynamic response, therefore deconvolution PPI method should 103 

work better for the short TR than the long TR runs.  104 

 105 

2. Methods 106 

2.1. Simulations on the correlations between PPI terms 107 

The hemodynamic response is a slow response compared with neuronal events, which can be understood 108 

as a low-pass filter.  Intuitively, if a task design is slow enough, e.g. a blocked design, the convolution 109 

with the HRF may not affect PPI calculations much.  To directly demonstrate this relationship between 110 

design alternating length and the effect of convolution on PPI calculation, we firstly performed a 111 
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simulation.  In this simulation, we defined a simple block-designed task with equal on and off periods 112 

with different cycle lengths (from 8 s to 80 s), and a simple event-related design with fixed inter trial 113 

interval of 12 s (Figure 1A).  We used a typical sampling rate of 2 s, so that the event-related design could 114 

be expressed as alterations of one time bin (2 s) of a trial and 5 time bins (10 s) of the baseline condition 115 

(The first column in Figure 1A).  The remaining columns in Figure 1A show block designs with different 116 

frequencies of repetition.  For example, 80 secs cycle means 40-s on and 40-s off of the task condition 117 

related to the baseline.  We then simulated the physiological variable of neuronal activities as a Gaussian 118 

variable for 1,000 times.  For each design and simulated ―neuronal‖ physiological variable, we calculated 119 

PPI terms using two ways: 1) each variable convolved with the canonical HRF and then the two 120 

convolved variables were multiplied to form a PPI term (corresponding to 
1

PPIx  in equation 4); 2) the two 121 

variables were multiplied and then convolved with the canonical HRF (corresponding to 
2

PPIx  in equation 122 

3).  We then calculated the correlations of the PPI terms calculated from the two methods.  The code for 123 

this simulation can be found at: https://github.com/dixy0/PPI_correlation_demo . 124 

 125 

Figure 1 Simulations of the correlations between PPI terms calculated from deconvolution and non-126 

deconvolution methods.  Panel A illustrates different task designs that were used for the simulation.  Each 127 

column represents a task design.  E in the x axis represents the event-related design, with 1 time bin (2 s) 128 

of trial condition and 5 time bins (10 s) of baseline condition.  The remaining columns show block 129 

designs with different frequencies of repetition.  For example, 80 secs cycle means 40-s on and 40-s off of 130 
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the task condition related to the baseline.  Physiological variables at the neuronal level were generated 131 

using Gaussian random variables for 1,000 times.  Penal B shows boxplots of correlations across the 132 

1,000 simulations between PPI terms calculated from two methods: 1) the two simulated variables were 133 

convolved with the HRF and then multiplied to form the PPI term; 2) the two simulated variables were 134 

multiplied and then convolved with the HRF. 135 

  136 

2.2. FMRI data and task design 137 

We used the checkerboard fMRI data with TRs of 645 ms and 1400 ms from the release 1 of Enhanced 138 

Nathan Kline Institute - Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/enhanced/).  146 139 

subjects’ data with age equal or larger than 20 years old were included for analysis.  Six subjects’ data 140 

were discarded due to large head motion during fMRI scanning in any of the two scans (maximum frame-141 

wise displacement (FD) (Di and Biswal, 2015) greater than 1.5 mm or 1.5
o
).  One subject’s data were 142 

deleted because of poor coverage of the lower occipital lobe, and another subject’s data were deleted 143 

because of failure of coregistration and normalization.  The effective number of subjects was 138 (89 144 

females, 45 males, 1 unidentified).  The mean age of the sample was 47.8 years (20 to 83 years). 145 

 The checkerboard task consisted of 20 s fixation block and 20 s flickering checkerboard block 146 

repeated three times.  A blank screen was presented after the third checkerboard block until fMRI scan 147 

was complete.  The task was scanned for two separate runs with two TRs: 645 ms and 1400 ms, 148 

respectively.  For the 645 ms run, 239 or 240 fMRI images were scanned for each subject.  The following 149 

parameters were used: TR = 645 ms; TE = 30 ms; flip angle = 60 deg; voxel size = 3 x 3 x 3 mm
3
 150 

isotropic; number of slices = 40.  For the 1400 ms run, 98 fMRI images were scanned for each subject.  151 

The following parameters were used: TR = 1400 ms; TE = 30 ms; flip angle = 65 deg; voxel size = 2 x 2 152 

x 2 mm
3
 isotropic; number of slices = 64.  Anatomical T1 images were scanned using MPRAGE 153 

(magnetization-prepared rapid acquisition with gradient echo) sequence with the following parameters: 154 
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TR = 1900 ms; TE = 2.52 ms; flip angle = 9 
o
; voxel size = 1 x 1 x 1 mm

3
 isotropic.  More information of 155 

the data can be found in Nooner et al. (Nooner et al., 2012). 156 

2.3. FMRI data analysis 157 

2.3.1. FMRI data preprocessing 158 

Functional MRI data preprocessing and analysis were performed using SPM12 software 159 

(http://www.fil.ion.ucl.ac.uk/spm/) under MATLAB environment (http://www.mathworks.com/).  For the 160 

645 ms run, the first 14 images (9 s) were discarded from analysis, resulting in 225 images for each 161 

subject.  For the 1400 TR run, the first five images (7 s) were discarded from analysis, resulting in 93 162 

images for each subject.  The functional images were motion corrected, and corregistered to subject's 163 

anatomical images.  The anatomical images were segmented, and the deformation field images were used 164 

to normalize the functional images into MNI space.  The data from the two TR runs were both resliced 165 

and resampled at a spatial resolution of 3 x 3 x 3 mm
3
.  Lastly, the functional images were smoothed 166 

using a 6 mm full width at half maximum (FWHM) Gaussian kernel. 167 

2.3.2. Activation analysis 168 

We first defined functional ROIs of the visual thalamus and lower visual area by performing general 169 

linear model (GLM) analysis on the checkerboard task.  The checkerboard task was modeled as a box-car 170 

function, with 1 representing the checkerboard condition and 0 representing the fixation or blank screen.  171 

The box-car function was convolved with the canonical hemodynamic response function (HRF) to form a 172 

predictor of BOLD responses.  Two regressors of the first eigenvariate of BOLD signals in white matter 173 

and cerebrospinal fluid  (CSF), and 24 regressors of Friston’s autoregressive head motion model (Friston 174 

et al., 1996) were also added in the model as covariates.  An implicit high-pass filter of 1/128 Hz was also 175 

implemented in the model.  The high-pass filtering is accomplished in SPM by using discrete cosine 176 

transform functions.  The effective high-pass filtering cutoffs were then 0.0069 Hz (1 / 145.125 s) for the 177 

645 ms TR run and 0.0077 Hz (1 / 130.2 s) for the 1400 ms TR run.  The GLM model was estimated for 178 

each voxel in the brain to identify regions that showed similar patterns of activations as the task design.  179 
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The beta maps of task activation were used for group level analysis using a one sample t-test model.  180 

Statistical significant clusters were identified by using cluster level statistics based on random field theory.  181 

Clusters were first identified using a one-tailed t-test at p < 0.001, and cluster extent was determined 182 

using false discovery rate (FDR) at p < 0.05.  183 

2.3.3. Definition of regions of interest 184 

We performed two types of PPI analyses, voxel-wise analysis using seed regions that were activated by 185 

the checkerboard task and ROI-based analysis among visual thalamus and cortical visual areas 186 

independently defined from other toolbox.  In the activation analysis of the current data, the posterior 187 

visual cortex and the posterior portion of the thalamus were robustly activated by the visual checkerboard 188 

stimulation in both TR runs.  We therefore defined the left and right middle occipital gyrus (LMOG and 189 

RMOG) and the thalamus as regions of interest (ROIs) based on the activations.  To define the ROIs with 190 

proper size, we increase the threshold to t > 16 to define the LMOG and RMOG, and made an intersection 191 

between the two runs.  The size of LMOG was 222 voxels, and the size of RMOG was 259 voxels.  192 

Thalamus was defined using a threshold of p < 0.001, with an intersection between the two runs.  Because 193 

the visual thalamus is small, left and right ROIs were combined to form a single thalamus ROI (171 194 

voxels).  Different thresholds were chosen to ensure that these ROIs are similar in size.  The eigenvariate 195 

of a ROI was extracted with adjustment of effects of no interests (head motion, WM/CSF variables, and 196 

low frequency drifts). 197 

 We defined the visual thalamus as the regions that show functional associations with the lateral 198 

visual network in resting-state (Yuan et al., 2016).  Cortical visual areas were defined by using 199 

probabilistic cytoarchitectonic maps.  These areas include the OC1/OC2 (occipital cortex) (Amunts et al., 200 

2000), ventral and dorsal OC3 and OC4 (Kujovic et al., 2013; Rottschy et al., 2007), OC5 (Malikovic et 201 

al., 2006), and FG1/FG2 (fusiform gyrus) (Caspers et al., 2013).  For the probabilistic maps of these 202 

regions, we first performed a winner-takes-all algorithm to define unique regions of each area, and then 203 

split them into left and right regions.  As a result, there are 20 ROIs (left and right thalamus, OC1, OC3, 204 
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OC3d, OC3v, OC4d, OC4v, OC5, FG1, and FG2).  The eigenvariate of a ROI was extracted with 205 

adjustment of effects of no interests (head motion, WM/CSF variables, and low frequency drifts). 206 

2.3.4. Psychophysiological interaction analysis 207 

PPI analysis was performed using SPM12 with updates 6685.  PPI terms were calculated by using both 208 

deconvolution method and non-deconvolution method.  For the deconvolution method, the time series of 209 

a seed region was deconvolved with the canonical HRF, multiplied with the centered psychological box-210 

car function, and convolved back with the HRF to form a predicted PPI time series at hemodynamic 211 

response level.  For the non-deconvolution method, the box-car function of psychological design was 212 

convolved with the HRF to form a psychological variable, and it was centered and multiplied with the raw 213 

seed time series.  Figure 2 shows examples of PPI terms calculated from the two methods in the two TR 214 

runs.   215 

 216 

Figure 2 Examples of PPI terms calculated by the deconvolution and non-deconvolution methods for the 217 

two TR runs. 218 

 219 

 For voxel-wise PPI analysis, separate GLMs were built for the LMOG, RMOG, and thalamus 220 

seeds, and for the two TR runs.  The models included one regressor representing task activation, one 221 

regressor representing the seed time series, the PPI term, and covariates the same as the activation GLMs 222 

descripted above.  Group-level one sample t-test was used on the corresponding PPI effects, to test where 223 

in the brain showed consistent PPI effects with a seed region.  For both positive and negative contrasts, a 224 
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one-tailed t-test of p < 0.001 was first used to define clusters, and then a FDR cluster threshold of p< 0.05 225 

was used to identify statistical significant clusters.  For ROI-wise analysis, PPI GLM models were built 226 

for each of the 20 ROIs, and applied to all other ROIs as a dependent variable.  The GLM model included 227 

one psychological variable, one physiological variable, one PPI variable, and one constant term.  The 228 

covariates were not included because they have already been regressed out from all ROI time series.  PPI 229 

effects were calculated between each pair of ROIs, resulting in a 20 x 20 matrix of beta values for each 230 

subject.  The matrices were symmetrized by averaging corresponding upper and lower diagonal elements 231 

(Di et al., 2017b), with a total of 190 (20 x 19 / 2) unique effects.  Group-level one-sample t-test was 232 

performed on each element of the matrix.  For both positive and negative contrasts, a one-tailed t-test of p 233 

< 0.001 was used to identify significant PPI effects.  This threshold was chosen to match with voxel-wise 234 

analysis.  We also used FDR correction on the total of 190 effects.  And the results are similar to what 235 

using a p < 0.001 threshold.  However, FDR depends on the distribution of all tested p values, making it 236 

difficult to compare between two runs.  Therefore, we adopted p < 0.001 to report ROI-based PPI results.  237 

2.3.5. Reproducibility and reliability 238 

We operationally define reproducibility as overlaps of supra-threshold clusters.  Dice coefficient was used 239 

to quantify reproducibility (Rombouts et al., 1998).  Two strategies were used to threshold the maps or 240 

matrix from the two TR runs.  First, statistical t maps or t matrices from the two TR runs were 241 

thresholded using a common t value, ranging from 1.7 (approximately corresponds to p < 0.05) to 7.  242 

However, it is possible that the effect sizes in the two TR runs are systematically different, so that using a 243 

same t value could generate very different numbers of supra-threshold voxels or elements in the two runs.  244 

Therefore, we also thresholded t maps or t matrices based on the percentile of t values within a map or 245 

matrix.  This could ensure that the numbers of supra-threshold voxels or elements are the same between 246 

the two TR runs.  247 

 We operationally define reliability as test-retest reliability between the two TR runs, as quantified 248 

as ICC (Zuo et al., 2010a).  Voxel-wise ICC maps or each ROI and ICC matrices across 20 ROIs were 249 
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calculated between two TR runs for each PPI method.  At each voxel or matrix element, ICC was 250 

calculated from a 138 (subject) by 2 (run) matrix by using a MATLAB function written by Zuo et al. (Zuo 251 

et al., 2010a).  Because only voxels that have significant effects might show meaningful reliability, we 252 

displayed histograms of ICCs within significant voxels or elements with reference to those in the whole 253 

brain.  For task activations, the significant voxels were determined using intersection of the two TR runs 254 

each thresholded at p < 0.001.  For PPI effects of each ROI, the significant voxels were determined using 255 

intersection of the two TR runs and two methods each thresholded at p < 0.01.  This slightly liberal 256 

threshold was chosen to ensure enough number of voxels survived in the conjunction of the four scenarios.  257 

The whole brain mask was determined as all voxels in the brain, including WM and CSF. 258 

2.3.6. Coefficient of variation 259 

We calculated coefficient of variation to estimate measurement error of task activations and PPI effects.  260 

Coefficient of variation was calculated in ROIs that showed significant activation effects.  Specifically, 261 

the LMOG, RMOG, and thalamus ROIs that were used as seed in the PPI analysis were used to represent 262 

activation effects.  For the PPI results, we performed a conjunction analysis of the voxel-wise negative 263 

PPI effects across all the eight contrasts (2 PPI methods x 2 TR runs x 2 seeds) using a threshold of p < 264 

0.01, and identified 27 ROIs that showed common negative PPI effects.  Beta values of activations or PPI 265 

effects of these ROIs were extracted.   Coefficient of variation was calculated based on the method 266 

assuming the variation is proportional to the mean (Bland and Altman, 1996).  It measures within subject 267 

variations (across the two TR runs in the current case) relative to the mean effects of the two runs.  268 

Specifically, coefficient of variation was calculated based on a 138 (subject) x 2 (run) matrix.  The beta 269 

values were first logarithmic transformed.  Variation was then calculated for each subject, and a square 270 

root of mean variations across subjects was calculated.  The resulting value was then transformed back 271 

using an exponential function, and subtracted by 1.  The script for calculating coefficient of variation is 272 

available at: https://github.com/dixy0/PPI_correlation_demo.  The resulting value represents the 273 

percentage of variation of a measure relative to the mean.  Coefficients of variation were calculated on the 274 
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LMOG, RMOG, and thalamus ROIs to reflect measurement errors of the task activations, and were 275 

calculated on the 27 ROIs and two ROI seeds to reflect measurement errors of the PPI effects.  276 

 277 

3. Results 278 

3.1. Simulations on the correlations between PPI terms  279 

The distributions of PPI correlations for each task design are shown in Figure 1B.  For the block designs, 280 

the PPI correlations are a function of block cycle length.  With longer design cycle, e.g. greater than 40 s 281 

(20-s on and 20-s off), the correlations of PPI terms could be higher than 0.9.  Practically, most of the 282 

block-designed fMRI experiments have longer block cycles than 20-s on and 20-s off.  If the block 283 

alterations become faster, the correlation between PPI terms decreased.  And for the event-related design, 284 

the mean PPI correlations were below 0.5 and with large variations.  This simulation demonstrates that if 285 

a neuronal activity time series is known, using convolved time series to calculate PPI term (i.e. 
1

PPIx ) 286 

could be very similar to what calculated by first multiplying the two variables and then convolving (i.e. 287 

2

PPIx ) for typical block designed experiments.  In real fMRI data, the ―neuronal‖ physiological variable is 288 

not known, and has to be estimated by using deconvolution.  Considering the similarities of the PPI terms 289 

and the caveats of deconvolution, PPI calculations without deconvolution may be a better choice for block 290 

designed experiments.  On the other hand, the PPI correlations in the event-related design are much 291 

smaller (r < 0.5, meaning less than 25% of shared variance).  So that deconvolution is still a necessary 292 

step for PPI analysis in event-related designed experiments.  293 

3.2. Activations of the checkerboard task 294 

Both TR runs showed highly significant activations in the visual cortex, as well as in the posterior portion 295 

of the thalamus (Figure 3A).  The overlaps (Dice coefficients) of thresholded t maps between the two TR 296 

runs were as high as 0.7 (Figure 3B) at most of the shown t range percentile range.  And Dice coefficients 297 

went down when only extremely activated voxels were thresholded.  The visual cortex regions also 298 

showed high test-retest reliability (ICC greater than 0.7) (Figure 3C).  However, the activations of the 299 
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thalamus only showed small test-retest reliability around 0.2.  The histograms of ICCs in the significant 300 

voxels and in the whole brain are shown on the right of Figure 3C. 301 

 302 

Figure 3 A) Activations (t maps) of visual checkerboard presentation for the 645 ms TR run (upper) and 303 

1400 ms TR run (lower).  The threshold t value corresponds to one-tailed significance at p < 0.001.  B) 304 

Overlaps (Dice coefficients) between the two TR runs using t threshold (left) and percentile threshold 305 

(right).  C) Test-retest reliability map (intraclass correlations, ICC) of activations between the two runs is 306 

shown on the left, which were thresholded at ICC > 0.2.  The histograms of ICC of activations between 307 

the two TR runs in significant voxels and whole brain are shown on the right.  The significant voxels 308 

were determined using intersection of the two runs each thresholded at p < 0.001. 309 

 310 

3.3. Psychophysiological interactions 311 

The voxel-wise PPI analysis of the LMOG and RMOG seeds conveyed very similar patterns.  The PPI 312 

effects of the LMOG seed for the two TRs and two methods are shown in Figure 4.  We first observed 313 

that even though spatial extents of PPI effects varied across the two TR runs and two PPI methods, the 314 

negative PPI effects in previously reported regions, i.e. supplementary motor area and higher visual 315 

cortex, could be observed from all four scenarios.  The deconvolution method in 645 ms TR run had the 316 
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smallest spatial extent and statistical significance, while the non-deconvolution method in 645 ms TR run 317 

had the largest spatial extent and strongest statistical significance.  Both methods in TR of 1400 ms 318 

showed similar spatial extent and significance levels.  The last row in Figure 4 demonstrates the overlaps 319 

of negative effects in the four scenarios.  Similar results were found in the analysis of the RMOG seed 320 

(Figure 5).  321 

 322 

Figure 4 Psychophysiological interaction (PPI) results for the left middle occipital gyrus (LMOG) seed 323 

during checkerboard presentation in the two TR (repetition time) runs of 645 ms and TR 1400 ms.  The 324 

resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 325 

137.  The last row illustrates the number of overlapped negative PPI results in the four scenarios.  326 

Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space. 327 
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 328 

 329 

Figure 5 Psychophysiological interaction (PPI) results for the right middle occipital gyrus (RMOG) seed 330 

during checkerboard presentation in the two TR (repetition time) runs of 645 ms and TR 1400 ms.  The 331 

resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 332 

137.  The last row illustrates the number of overlapped negative PPI results in the four scenarios.  333 

Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space. 334 

 335 

 The voxel-wise PPI analysis of the thalamus seed only showed significant effects in the 645 TR 336 

run, but with different brain regions with opposite effects (Figure 6).  With deconvolution method, the 337 

thalamus seed showed significant positive PPI effects with middle cingulate gyrus, anterior portion of the 338 
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thalamus, bilateral anterior insula, basal ganglia, and right fursiform gyrus.  Whereas with non-339 

deconvolution method, the thalamus seed showed significant negative PPI effects with the bilateral 340 

occipital pole regions.  There were no consistent results between two TR runs and two methods.  341 

Therefore subsequent analysis was only performed on the LMOG and RMOG seeds. 342 

 343 

Figure 6 Psychophysiological interaction (PPI) results for the thalamus seed during checkerboard 344 

presentation in the TR (repetition time) run of 645 ms.  There is no significant PPI effects of the thalamus 345 

seed in TR run of 1400 ms.  The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), 346 

with DF (degree of freedom) of 137.  Numbers on the bottom represent z coordinates in MNI (Montreal 347 

Neurology Institute) space. 348 

 349 

 We next performed ROI-based PPI analysis among 20 regions of visual thalamus and cortical 350 

visual areas (Figure 7).  The 645 ms TR run showed more significant PPI effects than the 1400 ms TR run.  351 

And non-deconvolution method showed more significant PPI effects than the deconvolutio method.  A 352 

prominent number of connectivity changes are between the bilateral FG1 regions and other lower level 353 

visual areas ranging from OC1, OC2, to OC4.  We performed a conjunction analysis of PPI results across 354 

the four scenarios, and identified five connections with reduced connectivity in checkerboard than in 355 

fixation.  The regions and connections are highlighted in Figure 8.  356 
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 357 

Figure 7 Matrices of psychophysiological interaction (PPI) results among the 20 regions of interest of 358 

visual thalamus and visual cortex for the two TR (repetition time) runs and two methods.  The resulting 359 

clusters were thresholded at p < 0.001. 360 

 361 

 362 

Figure 8 Illustration of consistently reduced connectivity during checkerboard presentation compared 363 

with fixation in the ROI-based (region of interest) psychophysiological interaction (PPI) analysis in the 364 
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two TR (repetition time) runs and two methods.  Numbers on the bottom represent z coordinates in MNI 365 

(Montreal Neurology Institute) space. 366 

 367 

3.4. Reproducibility of PPI effects 368 

Since we observed similarities of spatial clusters and connectivity between the two TR runs, we next 369 

examined reproducibility of PPI effects by calculating Dice coefficients of thresholded statistical maps or 370 

PPI matrices between the two TR runs (Figure 9).  For voxel-wise analysis of both LMOG and RMOG 371 

seeds, when varying t threshold, the non-deconvolution method showed higher level overlap compared 372 

with the deconvolution method (Figure 9A).  When thresholding statistical maps with matched number of 373 

surviving voxels, a similar pattern could still be observed that the non-deconvolution method produced 374 

larger overlaps than the deconvolution method (Figure 9B).  For the ROI-wise analysis, however, Dice 375 

coefficients were at similar level between two PPI methods at most t and percentile thresholds.  But at 376 

very high t threshold or percentile thresholds, the deconvolution method seemed to produce larger 377 

overlaps (higher Dice coefficients) (Figure 9C and 9D).  378 
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 379 

Figure 9 Dice coefficients of thresholded negative PPI effects between the two TR runs as functions of t 380 

threshold (A) and percentile threshold (B) for the two seeds and two PPI methods.  The lowest t used for 381 

calculating overlap is 1.7, which approximately corresponds to p < 0.05.  The largest percentile is 80 to 382 

99.9 percentile, which is approximately corresponds to the largest proportions of voxels at p < 0.05. 383 

 384 

3.5. Reliability of PPI effects 385 

Lastly, we calculated ICC between the two TR runs to reflect reliability of PPI effects.  The voxel-wise 386 

maps of ICC showed that there were typically low reliability in both methods and ROIs, even in the 387 

regions that showed consistent negative PPI effects (Supplementary Figure S1).  We then plotted the 388 

histograms of ICCs in voxels from the whole brain (gray lines) and within regions that showed significant 389 

PPI effects (red lines) (Figure 10A through 10D).  It turns out that the distributions of ICCs within 390 
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significant regions are only slightly different from the distributions of correlations in the whole brain, 391 

with means around 0.07.  The distributions of ICCs were not different between deconvolution and non-392 

deconvolution methods.  Similar distributions of ICCs were also found for the ROI-wise analysis (Figure 393 

10E, 10F, and supplementary Figure S2).  We found five PPI effects that were consistently significant in 394 

both TR runs and methods.  And the ICCs for the five effects were also small and close to zero.  395 

 396 

Figure 10 Histograms (normalized) of intraclass correlations of PPI effects between the two TR runs 397 

across the whole brain (gray lines) and in statistically significant voxels (red lines).  The significant 398 

voxels were determined using intersection of the two runs and two methods each thresholded at p < 0.01.  399 

Left and right masks were calculated separately. 400 

 401 

3.6. Measurement error 402 

We calculated coefficients of variation (Bland and Altman, 1996) on task activations and PPI effects to 403 

reflect measurement error (Figure 11).  The variations of activation in the LMOG and RMOG were about 404 

70% of the mean activation, while the variation of activation in the thalamus was about 270% of the mean 405 

activation (Figure 11A).  In contrast, the variations of PPI effects through the 27 ROIs were about 500% 406 

of the mean effects for both the LMOG and RMOG seeds (Figure 11 B and 11C), which indicated much 407 
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larger variation of PPI effects compared with activations.  The deconvolution and non-deconvolution 408 

methods had similar level of coefficients of variations.  But when directly comparing the two methods, 409 

there was a trend that the non-deconvolution method had smaller coefficients of variation than the 410 

deconvolution method in most of the ROIs (Figure 11D and 11E).  411 

 412 

Figure 11 Measurement errors as revealed by coefficients of variations (CV) (Bland and Altman, 1996) 413 

for the activation (A) and psychophysiological interaction (PPI) results (B and C).  Please notice the 414 

different scales in y axes.  D) and E) demonstrate the differences of CV on PPI effects between the 415 

deconvolution and non-deconvolution methods.  LMOG, left middle occipital gyrus; RMOG, right middle 416 

occipital gyrus; Tha, thalamus.   417 

 418 

3.7. Miscellaneous analysis 419 

To gain further insight to the cases of deconvolution failure, we calculated correlations of PPI terms 420 

between deconvolution and non-deconvolution methods for the LMOG and RMOG seeds (Figure 12A).  421 

In both TR runs, the distributions of correlations centered approximately on 0.7, and there were outliers 422 
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whose correlations were only 0.2 or 0.3.  This is in contrast with the simulation results (Figure 1B, 40 sec 423 

cycle), where the correlations were around 0.9.   424 

 425 

 426 

Figure 12 A) Histograms of correlations between PPI terms with and without deconvolution across all 427 

subjects from both the LMOG and RMOG ROIs for the two TR runs.  B) For the worst case as spotted by 428 

the black arrow in A), we show the raw time series and the time series with deconvolution and re-429 

convolution with hemodynamic response function. 430 

 431 

 We identified the worst case in Figure 12A (black arrow indicated), and deconvolved and 432 

reconvovled it with HRF using SPM’s method (Figure 12B).  The raw and reconvovled signals look 433 

dramatically different, with the reconvolved signal resembling a smoothed version of the original signal.  434 

Smoothness is indeed the case for the SPM version of deconvolution (Gitelman et al., 2003), because it 435 

utilizes regularization to suppress high frequency components of cosine basis functions those were used to 436 

approximate the neuronal level physiological variable.  To directly illustrate this point, we performed fast 437 

Fourier transformation on the time series of the RMOG for all the subjects on the raw, deconvolved, and 438 

reconvolved time series for the two TR runs (Figure 13).  It could be seen that after deconvolution, high 439 

frequency components have been suppressed in both TR runs.  Particularly, there is a black line that 440 

shows higher power between frequencies of 0.2 to 0.4 Hz in the raw data plot of 645 ms TR run, which 441 
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coincides to be the outlier observed in Figure 12.  The high frequency component was suppressed, so that 442 

the reconvolved signal looks smooth. 443 

 444 

Figure 13 Power spectrums of time series from the right middle occipital gyrus seed for each of the 138 445 

subjects for the 645 ms run (upper panels) and 1400 ms run (lower panels).  Each line in a plot represents 446 

one subject.  Left, middle, and right panels show the power spectrum of the raw, deconvolved, and re-447 

convolved time series, respectively. 448 

 449 

4. Discussion 450 

By analyzing two separate runs of visual checkerboard task from a large sample (n = 138), the current 451 

study first replicated previously reported negative PPI effects between visual cortex and widespread brain 452 

regions, and then showed negative PPI effects among visual areas centered in the bilateral fusiform gyrus.  453 

By comparing results from two separate runs, we showed that group averaged effects were largely 454 

reproducible; however, the inter-subject reliabilities of the PPI effects were typically low.  By comparing 455 

the deconvolution and non-deconvolution PPI methods, we demonstrated that the results by the two 456 

methods were in general very similar, but the non-deconvolution produced larger statistical effects and 457 
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spatial extents.  The non-deconvolution method may reduce inter-subject variations and increase overlaps 458 

of results between the two runs in some circumstances compared with the deconvolution method. 459 

4.1. Functional connectivity during checkerboard stimulation 460 

The voxel-wise analysis of the LMOG and RMOG seeds replicated our previous results which only 461 

analyzed a sub-set of 26 subjects (Di et al., 2017b, 2015).  In our previous work (Di et al., 2017b) we 462 

could only identify significant PPI effects using the RMOG seed, while the current study demonstrated 463 

similar PPI effects from both the LMOG and RMOG seeds.  Furthermore, we illustrated that the spatial 464 

extent of regions that showed reduced connectivity with the MOG seed could be much larger and 465 

extended to other brain regions such as the insula and bilateral sensorimotor cortex.  This further suggests 466 

a higher extent of functional segregation between the visual cortex and other brain systems during such a 467 

simple visual stimulation task compared with the fixation.  The current study also extended previous 468 

study by analyzing task modulated connectivity effects among cytoarchitectonically defined visual areas.  469 

Reduced functional connectivity was observed among many visual areas, with the bilateral FG1 as hub 470 

regions.  FG1 is the most posterior portion of the fusiform gyrus, which just laid anterior to the occipital 471 

cortex (Caspers et al., 2013).  It is thought a transition zone between lower retinotopic visual areas and 472 

higher category specific brain areas, and integrates information from different retinotopic visual areas to 473 

higher category specific brain areas (Caspers et al., 2014).  Therefore, it is reasonable to see that the FG1 474 

showed reduced functional connectivity with many lower visual areas in the checkerboard condition, 475 

because the simple stimuli cannot form a meaningful percept of a specific category. 476 

 The thalamus is a critical subcortical structure in the brain, which not only relay sensory 477 

information to the cortex, but also thought to mediate corticocortical communications (Guillery and 478 

Sherman, 2002; Saalmann and Kastner, 2011).  The PPI analysis of the thalamus, however, did not show 479 

consistent effects in different TR runs, and different methods.  It may because that the visual thalamus is 480 

small in size compared with cortical visual areas, and the signals in the thalamus are not reliable enough.  481 

The current results do suggest some reduced connectivity between the visual thalamus to the primary 482 
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visual cortex, and increased connectivity between the visual thalamus to the anterior portion of the 483 

thalamus, basal ganglia, and insula.  However, the results are weak and unreliable, especially considering 484 

that the current analysis had included 138 subjects. 485 

4.2. Reproducibility and reliability of PPI effects 486 

To our knowledge, the current study is the first one to evaluate reproducibility and reliability on PPI 487 

effects.  The current analysis did not only reproduce the results reported previously (Di et al., 2017b), but 488 

also examined the reproducibility between two runs.  Although the two runs were scanned using different 489 

parameters, most importantly the temporal and spatial resolutions, the patterns of PPI effects turned out to 490 

be quite similar between the two runs.  The run with 645 ms TR seemed to generate larger spatial extent 491 

in the voxel-wise analysis and more statistically significant results in the ROI-wise analysis.  This is 492 

consistent with our prediction, because there are more time points in the 645 ms TR run than in the 1400 493 

ms TR run, which could yield higher statistical power.  We do notice that in some scenarios, i.e. voxel-494 

wise analysis with deconvolution, the PPI results in 645 ms TR run had smaller effect size and spatial 495 

extent, which might be due to failure of deconvolution.  496 

 On the other hand, the results indicated that inter-subject reliabilities are typically low (around 497 

0.07) no matter which PPI method was used.  The low reliability should be compared with those of 498 

simple task activations, which showed reasonably high reliability regardless of the scan length.  The 499 

reliability of PPI effects in the current analysis are also much lower than previous reported test-retest 500 

reliabilities on task activations (Plichta et al., 2012; Raemaekers et al., 2007) and resting-state functional 501 

connectivity (Guo et al., 2012; Zuo et al., 2010b).  Of course the short scan lengths could be one factor 502 

that explains the low reliability of PPI effects.  But it should be also emphasized that the reliability of 503 

higher order interaction effects (i.e. the PPI) should be much lower than the main effects of task 504 

activations and task-free functional connectivity.  A scan length that is sufficient for obtaining reliable 505 

task activations may not be necessarily enough to yield reliable task modulated connectivity estimates.  506 

This factor should be taken into account when designing studies on task based connectivity.  507 
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4.3. Deconvolution and PPI 508 

The PPI results using both the deconvolution and non-deconvolution methods are in general very similar.  509 

This is consistent with the simulation showing that the PPI term calculated from the convolution then 510 

multiplication method is very similar to the hypothetical PPI term with a known neural activity in a block-511 

designed task.  When comparing the differences of PPI results with these two methods, the non-512 

deconvolution method seems to be able to generate larger statistical effects and greater spatial extents or 513 

number of significant effects.  The non-deconvolution method also increased the Dice coefficients of 514 

thresholded PPI maps between the two TR runs.  However, the Dice coefficients of thresholded PPI 515 

matrices between the two TR runs are quite similar between the two PPI methods, and the deconvolution 516 

method may be even benefiting at higher thresholds.  These results highlighted the uncertainty of 517 

deconvolution method in PPI analysis.  518 

 We have shown that the correlations of PPI terms between deconvolution and non-deconvolution 519 

methods may have outliers whose correlations were only 0.2 or 0.3 (Figure 12), which is in contrast with 520 

the simulation results (Figure 1B).  The lower correlations of PPI terms from empirical data compared 521 

with the simulations imply that there might be some uncountable variations introduced during the 522 

deconvolution/convolution of real fMRI data.  Indeed, deconvolution is rather a practical problem to 523 

recover underlying signals from some recorded measures, than a simple mathematical problem as 524 

depicted in equation 2.  In the practical context, measurement noises need to be taken into account in the 525 

deconvolution model.  For fMRI, the goal of deconvolution is to recover neuronal activities from 526 

observed BOLD signals, where there are plenty of noises during MRI recording.  The deconvolution 527 

should be expressed as follows with an additional error term: 528 

 hrfzx PhysioPhysio         (5) 529 

In this circumstance, some noises would be removed during deconvolution so that a signal deconvolved 530 

and convolved back with a HRF will no longer be the same as the original signal.  The noise 531 
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characteristics and regularization methods for recovering zPhysio become critical to the success of 532 

deconvolution.  533 

 As have been shown in Figure 13, SPM’s deconvolution method explicitly suppresses high 534 

frequency components with the intention that the hemodynamic response is slow therefore high frequency 535 

components may represent noises.  But this may overly smooth the data and remove useful information in 536 

higher frequency bands, thus making PPI results with the deconvolution method less sensitive than those 537 

with the direct PPI method.  This problem may be more severe for short TR data, because there are more 538 

high frequency components in the data.  On the other hand, high frequency signals in BOLD have been 539 

increasingly recognized as functionally meaningful (Chen and Glover, 2015; Gohel and Biswal, 2015; 540 

Lewis et al., 2016), and high frequency components may be critical for connectivity dynamics.  Given 541 

that multiband imaging technique has made fMRI sampling rate much faster, proper treatment of high 542 

frequency signals may be critical in deconvolution of fMRI signals and connectivity analysis in general.  543 

 Given the facts that the two PPI methods can generate similar results for the current block-544 

designed task and the non-deconvolution method may increase statistical power, we lean toward a 545 

conclusion that the non-deconvolution PPI method may be a better choice for a block-designed task.  This 546 

is in line with the recommendation by FSL (O’Reilly et al., 2012).  Of course, deconvolution is still 547 

necessary for an event-related task design, because the PPI terms calculated from the convolution then 548 

multiplication method are dramatically different from those calculated from the multiplication then 549 

convolution method (Figure 1).  It’s also worth mentioning that it has been suggested that the beta series 550 

method (Rissman et al., 2004) might be an alternative method for event-related designed data (Cisler et al., 551 

2014).  Lastly, there are indeed many variety of deconvolution methods (Havlicek et al., 2011; Makni et 552 

al., 2008; Wu et al., 2013), and some of the methods may be more suitable for fMRI signals and PPI 553 

analysis.  Systematic comparisons between these different methods are needed in the future. 554 

 The current analyses are mostly based on empirical fMRI data.  One limitation of empirical 555 

analysis is that there is no known ground truth to compare with.  Simulation may be an alternative way to 556 
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approach the question.  However, development of biological realistic models for task modulated 557 

connectivity is still challenging, so that the deconvolution problem is difficult to study using simulations 558 

at the current stage.  In addition, the similarities and differences between PPI results of the deconvolution 559 

and non-deconvolution methods depend on the variability of hemodynamic response in real fMRI data, 560 

which cannot be simply derived from simulations.  Therefore, we believe that the current empirical 561 

analysis is suitable for the question of deconvolution. 562 

4.4. Practical implications on PPI analysis 563 

The current study analyzed data from a simple task design with one task condition and one baseline 564 

condition.  In real fMRI experiments, however, there are usually more than two conditions.  To deal with 565 

multiple conditions, it was recommended that each task condition is modeled separately with respect to all 566 

other conditions (McLaren et al., 2012).  In such ―generalized PPI‖ framework, each experimental 567 

condition is modeled as the same way as the checkerboard condition in the current study.  It is reasonable 568 

to conclude that the similarities of PPI results with and without deconvolution could be generalized to 569 

experiments with more than two conditions. 570 

 Task related functional connectivity as measured by PPI analysis is typically much smaller, in 571 

terms of effect size, reproducibility, and reliability, than simple task activations, and has much larger 572 

measurement error.  To ensure enough statistical power and reliability, a larger sample size than typical 573 

activation studies and enough scan length for each subject are necessary.  The design for an fMRI task 574 

needs to consider scan length as a critical factor, if the goal of the study is to examine task related 575 

connectivity.  To date, it is still largely unknown how long a scan is needed for reliability capture task 576 

related connectivity.  We can only get some insights from resting-state connectivity research, where large 577 

scale test-retest datasets are available (Biswal et al., 2010; Zuo et al., 2014).  In resting-state literature, it 578 

has been suggested that at least five minutes of scan is needed for reliability estimate functional 579 

connectivity (Birn et al., 2013; Van Dijk et al., 2010).  Then at least five minutes of scan length for a 580 

single task condition is needed for task based fMRI.  If the PPI effects are going to be compared between 581 
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two experimental conditions, which is usually the case for a well-designed cognitive neuroimaging study, 582 

the required scan length would be much longer.  Of course, direct examinations of the effect of scan 583 

length on task related connectivity estimates are still needed in future research. 584 

 The PPI method takes advantages of the dynamic aspect of the BOLD signals.  Therefore, it’s 585 

preferable to adopt faster sampling rate to capture temporal dynamics, which may in turn lead to sacrifice 586 

of other aspects of the signals, e.g. spatial resolution.  The current results support the idea that shorter TR 587 

may be beneficial for PPI analysis.  Of course, faster sampling rate could be accomplished by new 588 

developments of MRI techniques such as multi-band acquisition (Feinberg and Yacoub, 2012).  However, 589 

the current results also suggested some pitfalls of using short TR data.  The currently used HRF models 590 

and deconvolution method may be not quite suitable for fast TR data, so that the PPI method with 591 

deconvolution may fail in some cases in short TR data.  More work is still needed to validate and 592 

optimize models on high speed fMRI data.  Of course, high spatial resolution has its own advantage on 593 

mapping small brain structures such as the thalamus.  So that the considerations of temporal and spatial 594 

resolutions may also need to take into account the spatial scales of regions of interest.  595 

 596 

5. Conclusion 597 

We demonstrated that the deconvolution and non-deconvolution PPI methods generated similar results on 598 

a simple block-designed task.  The deconvolution method may be beneficial in terms of statistical power 599 

and reproducibility.  Taken together, deconvolution may be not necessary for PPI analysis for block-600 

designed fMRI data.  When using a large sample, group mean PPI effects are reproducible; however, 601 

inter-subject reliabilities of the PPI effects are quite limited.  Systematic evaluations on scan length and 602 

reliability may be necessary before studying inter-subject differences or group differences of PPI effects.  603 

 604 

 605 
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Figure legend 757 

Figure 1 Simulations of the correlations between PPI terms calculated from deconvolution and non-758 

deconvolution methods.  Panel A illustrates different task designs that were used for the simulation.  Each 759 

column represents a task design.  E in the x axis represents the event-related design, with 1 time bin (2 s) 760 

of trial condition and 5 time bins (10 s) of baseline condition.  The remaining columns show block 761 

designs with different frequencies of repetition.  For example, 80 secs cycle means 40-s on and 40-s off of 762 

the task condition related to the baseline.  Physiological variables at the neuronal level were generated 763 

using Gaussian random variables for 1,000 times.  Penal B shows boxplots of correlations across the 764 

1,000 simulations between PPI terms calculated from two methods: 1) the two simulated variables were 765 

convolved with the HRF and then multiplied to form the PPI term; 2) the two simulated variables were 766 

multiplied and then convolved with the HRF. 767 

 768 

Figure 2 Examples of PPI terms calculated by the deconvolution and non-deconvolution methods for the 769 

two TR runs.  770 

 771 

Figure 3 A) Activations (t maps) of visual checkerboard presentation for the 645 ms TR run (upper) and 772 

1400 ms TR run (lower).  The threshold t value corresponds to one-tailed significance at p < 0.001.  B) 773 

Overlaps (Dice coefficients) between the two TR runs using t threshold (left) and percentile threshold 774 

(right).  C) Test-retest reliability map (intraclass correlations, ICC) of activations between the two runs is 775 

shown on the left, which were thresholded at ICC > 0.2.  The histograms of ICC of activations between 776 

the two TR runs in significant voxels and whole brain are shown on the right.  The significant voxels 777 

were determined using intersection of the two runs each thresholded at p < 0.001.   778 

 779 

Figure 4 Psychophysiological interaction (PPI) results for the left middle occipital gyrus (LMOG) seed 780 

during checkerboard presentation in the two TR (repetition time) runs of 645 ms and TR 1400 ms.  The 781 
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resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 782 

137.  The last row illustrates the number of overlapped negative PPI results in the four scenarios.  783 

Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space.  784 

 785 

Figure 5 Psychophysiological interaction (PPI) results for the right middle occipital gyrus (RMOG) seed 786 

during checkerboard presentation in the two TR (repetition time) runs of 645 ms and TR 1400 ms.  The 787 

resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 788 

137.  The last row illustrates the number of overlapped negative PPI results in the four scenarios.  789 

Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space. 790 

 791 

Figure 6 Psychophysiological interaction (PPI) results for the thalamus seed during checkerboard 792 

presentation in the TR (repetition time) run of 645 ms.  There is no significant PPI effects of the thalamus 793 

seed in TR run of 1400 ms.  The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), 794 

with DF (degree of freedom) of 137.  Numbers on the bottom represent z coordinates in MNI (Montreal 795 

Neurology Institute) space. 796 

 797 

Figure 7 Matrices of psychophysiological interaction (PPI) results among the 20 regions of interest of 798 

visual thalamus and visual cortex for the two TR (repetition time) runs and two methods.  The resulting 799 

clusters were thresholded at p < 0.001.   800 

 801 

Figure 8 Illustration of consistently reduced connectivity during checkerboard presentation compared 802 

with fixation in the ROI-based (region of interest) psychophysiological interaction (PPI) analysis in the 803 

two TR (repetition time) runs and two methods.  Numbers on the bottom represent z coordinates in MNI 804 

(Montreal Neurology Institute) space. 805 

 806 
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Figure 9 Dice coefficients of thresholded negative PPI effects between the two TR runs as functions of t 807 

threshold (A) and percentile threshold (B) for the two seeds and two PPI methods.  The lowest t used for 808 

calculating overlap is 1.7, which approximately corresponds to p < 0.05.  The largest percentile is 80 to 809 

99.9 percentile, which is approximately corresponds to the largest proportions of voxels at p < 0.05.  810 

 811 

Figure 10 Histograms (normalized) of intraclass correlations of PPI effects between the two TR runs 812 

across the whole brain (gray lines) and in statistically significant voxels (red lines).  The significant 813 

voxels were determined using intersection of the two runs and two methods each thresholded at p < 0.01.  814 

Left and right masks were calculated separately.  815 

 816 

Figure 11 Measurement errors as revealed by coefficients of variations (CV) (Bland and Altman, 1996) 817 

for the activation (A) and psychophysiological interaction (PPI) results (B and C). Please notice the 818 

different scales in y axes. D) and E) demonstrate the differences of CV on PPI effects between the 819 

deconvolution and non-deconvolution methods. LMOG, left middle occipital gyrus; RMOG, right middle 820 

occipital gyrus; Tha, thalamus. 821 

 822 

Figure 12 A) Histograms of correlations between PPI terms with and without deconvolution across all 823 

subjects from both the LMOG and RMOG ROIs for the two TR runs.  B) For the worst case as spotted by 824 

the black arrow in A), we show the raw time series and the time series with deconvolution and re-825 

convolution with hemodynamic response function.  826 

 827 

Figure 13 Power spectrums of time series from the right middle occipital gyrus seed for each of the 138 828 

subjects for the 645 ms run (upper panels) and 1400 ms run (lower panels).  Each line in a plot represents 829 

one subject.  Left, middle, and right panels show the power spectrum of the raw, deconvolved, and re-830 

convolved time series, respectively.  831 
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