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Abstract 30 

Objectives: Current guidelines for empirical antibiotic treatment poorly predict the presence of 3rd 31 

generation cephalosporin resistant Enterobacteriaceae (3GC-R EB) as a cause of infection, thereby 32 

increasing unnecessary carbapenem use. We aimed to develop diagnostic scoring systems to better 33 

predict the presence of 3GC-R EB as a cause of bacteraemia. 34 

Methods: A retrospective nested case-control study was performed that included patients ≥18 years 35 

in whom blood cultures were obtained and intravenous antibiotics were initiated. Each patient with 36 

3GC-R EB bacteraemia was matched to four control infection episodes within the same hospital, 37 

based on blood culture date and onset location (community or hospital). Starting from 32 described 38 

clinical risk factors at infection onset, selection strategies were used to derive scoring systems for the 39 

probability of community- and hospital-onset 3GC-R EB bacteraemia. 40 

Results: 3GC-R EB bacteraemia occurred in 90 of 22,506 (0.4%) community-onset and in 82 of 8,110 41 

(1.0%) hospital-onset infections, and these cases were matched to 360 community-onset and 328 42 

hospital-onset control episodes, respectively. The derived community-onset and hospital-onset 43 

scoring system consisted of 6 and 9 predictors, respectively, with c-statistics of 0.807 (95% 44 

confidence interval 0.756-0.855) and 0.842 (0.794-0.887). With selected score cutoffs, the models 45 

identified 3GC-R EB bacteraemia with equal sensitivity as existing guidelines, but reduced the 46 

proportion of patients classified as at risk for 3GC-R EB bacteraemia (i.e. eligible for empiric 47 

carbapenem therapy) with 40% in patients with community-onset and 49% in patients with hospital-48 

onset infection. 49 

Conclusions: These prediction rules for 3GC-R EB bacteraemia may reduce unnecessary empiric 50 

carbapenem use.  51 
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Introduction 52 

As a consequence of the emergence of infections caused 3rd generation cephalosporin (3GC) resistant 53 

Enterobacteriaceae (3GC-R EB; in this manuscript used synonymously with extended-spectrum β-54 

lactamase (ESBL) producing Enterobacteriaceae), physicians are increasingly faced with the question 55 

which patients need empiric antibiotic treatment covering these pathogens. Hence, patients and 56 

physicians might benefit from prediction rules for 3GC-R EB. Although risk factors for carriage of 57 

ESBL-producing Enterobacteriaceae at hospital admission [1–4], and factors distinguishing ESBL- and 58 

carbapenemase-producing Enterobacteriaceae as a cause of bacteraemia have been determined [5–59 

8], there are no prediction rules for identifying 3GC-R EB as a cause of bacteraemia at the time that 60 

empiric therapy must be started.  61 

Current Dutch empiric treatment guidelines designate patients at risk of infection caused by 3GC-R 62 

EB based on prior colonization or infection with 3GC-R EB or on prior exposure to cephalosporins or 63 

fluoroquinolones, as these were identified as risk factors in patients with bacteraemia caused by 64 

these pathogens [9]. As carbapenems are the treatment of choice for 3GC-R EB, adherence to these 65 

guidelines may stimulate overuse of these antibiotics. Indeed, applying these recommendations for 66 

all patients needing empiric antibiotic treatment in a population with a pre-test probability for 3GC-R 67 

EB of 0.7%, revealed that 19% of all patients were classified as at risk for 3GC-R EB infection and thus 68 

eligible for empiric carbapenem therapy (referred to as test positivity rate), while at the same time 69 

only 50% of all patients with 3GC-R EB bacteraemia would be classified as at risk (referred to as 70 

sensitivity) [10]. Only using prior identification of 3GC-R EB carriage as risk factor, would reduce the 71 

test positivity rate to 4%, at the cost of a reduction in sensitivity to 42%. 72 

We aimed to develop prediction rules to better identify, among patients needing intravenous empiric 73 

antibiotic therapy, those being infected with 3GC-R EB. We were specifically interested in the balance 74 

between sensitivity and test positivity rate. In this derivation study, we compared these quantities to 75 

those of the two basic strategies introduced above, which rely on prior identification alone (prior 76 
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identification model), or in combination with prior exposure to cephalosporins and fluoroquinolones 77 

(two-predictor model). We focused on predicting 3GC-R EB bacteraemia, as these infections can be 78 

objectively assessed in retrospect, and an immediate start with appropriate antibiotics is indicated. 79 

We decided to derive separate prediction rules for community-onset and hospital-onset infections, 80 

as we assumed that factors driving spread of 3GC-R EB within these two settings are distinct.  81 

Methods 82 

Setting and patients 83 

This was a retrospective nested case-control study involving 8 hospitals, of which 3 university 84 

hospitals, in the Netherlands. Between January 1st 2008 and December 31st 2010, we included all 85 

consecutive patients of 18 years of age or older in whom a blood culture was obtained and 86 

intravenous broad-spectrum β-lactam antibiotics (i.e. not penicillin or flucloxacillin), aminoglycosides, 87 

and/or fluoroquinolones were started on the day of the blood culture or the day after, irrespective of 88 

duration. Patients receiving any of the eligible antibiotics on the day of blood culture obtainment 89 

were excluded if these had been initiated prior to this day (see Supplementary Table 1 for illustrating 90 

examples). In addition, patients with 3GC-R EB bacteraemia in the year prior were excluded, as it was 91 

assumed that treating physicians would always provide therapy aimed at these organisms in case of 92 

renewed infection. Patients could be included more than once, if a subsequent episode complied 93 

with in- and exclusion criteria. Additional information on hospital characteristics, study periods, and 94 

databases used in each of the hospitals is provided in Supplementary Table 2. 95 

Infection episodes were separated into two cohorts: the community-onset cohort comprised 96 

episodes in which the first blood culture was collected during the first three calendar days of 97 

hospitalization, and the hospital-onset cohort consisted of episodes in which blood cultures were 98 

obtained later during hospitalization. 99 

The causative pathogen of each episode was based on the results of blood cultures obtained on the 100 

day that antibiotics were started and the day before. In both cohorts, the case population comprised 101 
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all consecutive infection episodes with 3GC-R EB bacteraemia (see Supplementary Table 2 for 102 

definition of 3GC resistance in each of the hospitals). We estimated that a study period of three years 103 

in the participating hospitals would yield 100 patients with 3GC-R EB bacteraemia in both cohorts, 104 

which would allow initial logistic regression with 10 variables, based on the 10 events per variable 105 

recommendation [11].  106 

The control population was defined as all other infection episodes, including non-bacteraemic 107 

episodes and episodes with blood cultures yielding non-resistant Enterobacteriaceae, other bacteria 108 

or fungi. From this population four controls were matched to each case, a ratio chosen because of 109 

minimal gains in statistical power with more controls [12]. Controls were matched on hospital, being 110 

in the community or hospital-onset cohort, and being closest in time to the blood culture day of the 111 

case episode. 112 

Due to its retrospective nature, the Dutch Medical Research Involving Human Subjects Act did not 113 

apply to this study. In each of the participating hospitals, applicable local guidelines for non-114 

interventional studies were followed. In accordance with Dutch regulations, informed consent was 115 

waived for the study. Reporting of this study was in accordance with the TRIPOD Statement [13,14]. 116 

Data collection 117 

All selected cases and controls were subjected to chart review to obtain information that was 118 

considered available at the moment that the initial antibiotics were prescribed (referred to as 119 

infection onset). Blinding for the outcome during chart review was not considered feasible. Please 120 

refer to Supplementary Table 3 for an overview of all collected variables. 121 

Statistical analysis 122 

Two separate prediction models were constructed, one for community-onset and one for hospital-123 

onset infections. Data analyses were performed in R (version 3.2.2) [15], including packages mice 124 

2.25 [16], rms 4.5-0 [17], pROC 1.8 [18], and xtable 1.8-2 [19]. Descriptive analyses of predictors were 125 
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based on non-missing data only. Some variables were aggregated because of high correlation, low 126 

prevalence, and/or similar associations with the outcome (indicated in Table 1). Additionally, the 127 

number of categories for suspected sources was reduced to four by combining categories with low 128 

frequencies into a single remaining group (original categories in Supplementary Table 3), and 129 

categories for antibiotic use were created based on prevalence and assumed predictive power for 130 

3GC-R EB infection. Twenty imputed datasets were created to deal with missing values during the 131 

modelling stage. In the Supplementary Material, missing data patterns and the exact imputation 132 

procedure are described. 133 

Starting from 32 potential predictors, the first step of model creation involved selection of ten 134 

relevant predictors based on (1) observing the strength of their association with 3GC-R EB 135 

bacteraemia (without statistical hypothesis testing), and (2) considerations related to coverage of the 136 

entire spectrum of known risk factors for 3GC-R EB, and (3) ease-of-use of any resulting model. The 137 

second step involved removing redundant variables from the model, which was performed by 138 

backward stepwise logistic regression analysis until all remaining predictors had p-values < 0.2 in the 139 

Wald test (pooled from 20 imputed datasets by means of Rubin’s rules) [20]. Continuous predictors 140 

were initially introduced into models with restricted cubic spline functions with three knots to allow 141 

for non-linear associations. Finally, we evaluated by means of the Akaike’s Information Criterion (AIC) 142 

if simplification to a linear predictor was possible. 143 

Regression coefficients of the final models were pooled over imputed datasets by means of Rubin’s 144 

rules and shrunk according to model optimism (see description further on). Furthermore, developing 145 

a model in a case-control study artificially increases the prevalence of the outcome, which means 146 

that predicted probabilities generated by the model do not reflect true probabilities within the full 147 

cohorts. Test positivity rates, and positive and negative predictive values are similarly affected. 148 

Therefore, intercepts of the models were adjusted for the sampling fraction of the controls, and 149 
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controls were weighted by the inverse of the sampling fraction, as previously described [21]. All 150 

quantities presented in this paper reflect the values within the original full cohorts. 151 

Calibration of the predicted and observed probabilities was visually inspected for separate imputed 152 

datasets. All other performance parameters were averaged over the imputed datasets. 153 

Discrimination was assessed with the area under the curve for receiver operating characteristic 154 

curves (referred to as C-statistic). Sensitivity, specificity and positive and negative predictive values, 155 

and test positivity rate (i.e. fraction of the population classified as at risk of 3GC-R EB bacteraemia) 156 

were calculated for different cutoffs of the predicted risk. These model performance characteristics 157 

were compared to those of the prior identification model and two-predictor model. In the prior 158 

identification model, patients with identification of 3GC-R EB in the year prior to the infection 159 

episode were classified as test-positive. In the two-predictor model, also patients with cephalosporin 160 

or fluoroquinolone use during the prior two months were considered test-positive. 161 

A simplified score was created by multiplying the regression coefficients with a constant, followed by 162 

rounding to easy-to-use values. Performance of this score was determined similarly. 163 

Estimation of model optimism 164 

Optimism results from the fact that models are developed on a population sample and suffer from 165 

overfitting, which jeopardizes generalizability to other populations, including future patients for 166 

which a model will be used [22]. By means of a bootstrapping technique, the expected performance 167 

loss (e.g. lower sensitivity, specificity, and predictive values, and altered test positivity rate) when 168 

applying the model within the total population is quantified. For the two regression models, 169 

optimism was estimated by creating 2000 bootstrap samples, creating a new prediction model for 170 

each of these samples, and comparing the model’s performance in the original and bootstrapped 171 

data. Optimism was estimated for model coefficients, derived odds ratios and C-statistics. During the 172 

same procedure, the expected overestimation of sensitivity and underestimation of test positivity 173 

rate due to optimism was quantified by applying a probability cutoff above which patients are 174 
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classified as test-positive. For this evaluation, the probability cutoff was selected such that sensitivity 175 

corresponded to the two-predictor model. In the Supplementary Material, technical details of the 176 

bootstrapping procedure are presented. 177 

Results 178 

Probabilities of 3GC-R EB bacteraemia were 0.4% (n = 90) for the community-onset infection cohort 179 

(22,506 episodes) and 1.0% (n = 82) for the hospital-onset infection cohort (8,110 episodes) (Figure 180 

1). These case populations were matched to 360 community-onset control episodes and 328 181 

hospital-onset control episodes (Table 1). Multiple selection of individual patients, albeit with 182 

different episodes, as case and/or control were allowed and occurred 8 times within the community-183 

onset, and 9 times within the hospital-onset dataset. Isolated pathogens from blood cultures and 184 

initial antibiotic therapy are presented in Supplementary Tables 4 and 5.  185 

Community-onset infection 186 

The prediction model for 3GC-R EB bacteraemia in community-onset infection consisted of six 187 

variables (Table 2). It showed adequate discrimination (C-statistic = 0.808 (95% CI 0.756-0.855), also 188 

after correction for optimism (C-statistic = 0.775 (95% CI 0.705-0.839)), and calibration 189 

(Supplementary Figure 1). 190 

The derived scoring system had a performance similar to the original model (Supplementary Figure 191 

2a; C-statistic 0.807 (95% CI 0.756-0.855), not corrected for optimism). Table 3 and Figure 2a depict 192 

the trade-off between sensitivity and test positivity rate at different cutoffs for being at risk of 3GC-R 193 

EB bacteraemia. These can be contrasted to the fixed values for the prior identification model 194 

(sensitivity 24.4% and test positivity rate 2.8%), and the two-predictor model (sensitivity 53.9% and 195 

test positivity rate 21.5%). 196 

For instance, patients with a score of 120 or higher would have a probability of 1.7% (positive 197 

predictive value) of having 3GC-R EB bacteraemia, and with this score as a cutoff 45.7% of all patients 198 
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with 3GC-R EB bacteraemia would be missed (1 – sensitivity). This sensitivity (or proportion missed) is 199 

comparable to the simpler two-predictor model; however, the scoring system reduces eligibility for 200 

carbapenem use (test positivity rate) by 40%, from 21.5% to 12.8%. 201 

Bootstrapping of the model indicated that when applying this cutoff in a future patient population 202 

some performance loss should be expected due to model optimism. The optimism-corrected 203 

sensitivity for future populations was 6.2 percentage points lower, whereas a change in prevalence 204 

was hardly noticeably (Table 4; please note that the percentages presented relate to the regression 205 

model, not to the score described in the paragraph above). 206 

Hospital-onset infection 207 

The hospital-onset prediction model contained nine variables (Table 5), and also had adequate 208 

discrimination (C-statistic = 0.842 (95% CI 0.793-0.886), optimism-corrected 0.811 (95% CI 0.742-209 

0.873) and calibration (Supplementary Figure 3). 210 

The derived scoring system again performed very similar to the original model (Supplementary Figure 211 

2b; C-statistic 0.842 (95% CI 0.794-0.887), not corrected for optimism). In Table 6 and Figure 2b, 212 

sensitivity and test positivity rate at different scoring cutoffs are compared to the prior identification 213 

model (sensitivity 35.4% and test positivity rate 5.2%), and the two-predictor model (sensitivity 79.3% 214 

and test positivity rate 52.8%). 215 

Patients with scores of 110 or higher have a 3.1% probability of 3GC-R EB bacteraemia, and with this 216 

cutoff 18.5% of all patients with 3GC-R EB bacteraemias would be missed, similarly to the two-217 

predictor model. Yet, carbapenem eligibility would be reduced with 49% (27.0% vs. 52.8%). In this 218 

scenario, bootstrapping indicated that sensitivity in future patient populations should again be 219 

expected to be somewhat lower (-5.3%; Table 4). 220 

Discussion 221 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/120550doi: bioRxiv preprint 

https://doi.org/10.1101/120550
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

We developed scoring systems to more accurately identify patients with bacteraemia caused by 3GC-222 

R EB among those in whom empiric intravenous antibiotic therapy aimed at Gram-negatives is 223 

initiated. The scores consist of a limited number of clinical predictors that can easily be assessed 224 

based on the information available at the initial examination of a patient presenting with infection, 225 

before prescription of initial antibiotics, such as medical history, prior antibiotic usage, prior 226 

microbiology results, and infection characteristics. The calculated score can directly be converted to 227 

a probability that the patient suffers from 3GC-R EB bacteraemia, and depending on this probability, 228 

a decision can be made whether initial antibiotics should include coverage for 3GC-R EB or not. 229 

Implementing the scoring systems could improve appropriateness of empiric antibiotic therapy and 230 

reduce unnecessary use of broad-spectrum therapy. Compared to a basic model incorporating only 231 

prior 3GC-R EB identification and exposure to cephalosporins and/or fluoroquinolones, eligibility for 232 

empiric carbapenem use could be reduced by 40%-49% while maintaining a similar risk of missing 233 

patients with 3GC-R EB bacteraemia. 234 

With a global emergence of antibiotic resistance, physicians must assess the risks of missing resistant 235 

causative pathogens when starting empiric antibiotic treatment [23]. Risk avoidance, albeit 236 

imaginable in many situations, is one of the driving forces for broad-spectrum antibiotic use, fuelling 237 

the global pandemic of antimicrobial resistance. Better prediction rules for infections caused by 238 

antibiotic-resistant pathogens are therefore needed. Prediction systems have been developed for 239 

Gram-negative bacteraemia in septic patients [24], carriage of or infection with ESBL-producing 240 

Enterobacteriaceae at hospital admission [1,25,26], and distinguishing bacteraemia with ESBL- or 241 

carbapenemase-producing pathogens from bacteraemia with susceptible Enterobacteriaceae [5–8].  242 

Yet, guidance on incorporating the risk of 3GC-R EB in selecting empiric antibiotics is currently 243 

lacking. A recently published flow chart for initiating empiric therapy with a carbapenem in critically 244 

ill patients with suspected Gram-negative infection included predictors for 3GC-R EB carriage at 245 

hospital admission and in case of Enterobacteriaceae bacteraemia, without formal evaluation of 246 
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performance [27]. For clarity, 3GC-R EB bacteraemia is a subset of Enterobacteriaceae bacteraemia, 247 

which is a subset of all bacteraemia episodes. Risk factors for any of these overarching categories 248 

may alter the probability of bacteraemia caused by antibiotic-resistant Enterobacteriaceae. This is 249 

corroborated by the strong predictive role of the suspected source of infection in our prediction 250 

models, which likely reflects the likelihood that Enterobacteriaceae play a role as causative 251 

pathogens. It emphasizes the need to select a clinically meaningful patient population when deriving 252 

a prediction rule. We therefore focused on all patients receiving their first dose of antibiotic therapy 253 

aimed at Enterobacteriaceae, rather than selecting patients that had, in retrospect, bacteraemia. 254 

Due to the effect of including all patients with a clinical suspicion of infection, predicted probabilities 255 

of 3GC-R EB bacteraemia may seem low (0.4-1.0%). Yet, in a previous Dutch study, an 8.3% 3GC 256 

resistance rate among Enterobacteriaceae bacteraemia isolates resulted in a similarly low prior 257 

probability of 3GC-R EB bacteraemia in case of suspected Gram-negative infection (0.7%) [10]. 258 

Although our data originated from 2008-2010, the prevalence of 3GC resistance among 259 

Enterobacteriaceae only marginally increased in the Netherlands since then, and most Western 260 

European countries currently have similar prevalence rates of 3GC resistance among 261 

Enterobacteriace, namely between five and fifteen percent [28]. Model updating to reflect the local 262 

prevalence of resistance will generally improve calibration [22], but our model provides a useful 263 

universal backbone due to the incorporation of widely reported risk factors [29]. 264 

With the newly developed prediction rules, we aimed to achieve similar sensitivities as in existing 265 

prediction schemes, while at the same time reducing the proportion of patients eligible for broad-266 

spectrum antibiotics (test-positives). This leads to diverging performance; for community-acquired 267 

infections we were “satisfied” with a sensitivity of 54.3%, where this figure was 81.5% for hospital-268 

onset infections, and this yielded test-positive proportions of 12.8% and 27.0% for community-onset 269 

and hospital-onset infections, respectively. Yet, both prediction rules can also be used to increase 270 

sensitivity, which will – as a matter of fact – also increase the proportion of test-positivity. The 271 
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optimal cut-off cannot be defined as each point has a different balance between the risk of 272 

overprescribing carbapenems and inappropriate empiric antibiotics.  273 

That balance may be different for certain bug-drug combinations. For instance, the acceptance for a 274 

delay in adequate treatment of enterococcal bacteraemia may be different than for carbapenemase-275 

producing Enterobacteriaceae, and might be different in a clinically stable than in a 276 

haemodynamically unstable patient [30]. Taking the long-term population effects of, for instance, 277 

carbapenem overuse into that equation is difficult, as these effects have not been sufficiently 278 

quantified [31], and depend on extraneous factors such as hospital hygiene and the baseline 279 

prevalence of carbapenem-resistant micro-organisms [32].  280 

As expected, prior identification of 3GC-R EB was the strongest predictor in both models. In the 281 

Netherlands, screening for carriage is only practiced in intensive care units and for highly selected 282 

risk groups. Hence, identification was mostly based on previous clinical cultures, and an unknown 283 

proportion of actual 3GC-R EB carriers are classified as non-carriers. Naturally, more screening will 284 

further increase the sensitivity of this predictor for bacteraemia with 3GC-R EB. Yet, as infection rates 285 

among colonized patients are low [33,34], it is unsure whether positive predictive values of models 286 

will improve. In fact, if low-risk carriers would be identified by screening more frequently, positive 287 

predictive values might even decline. 288 

Prior antibiotic use, on the other hand, had little predictive value in the community-onset model, and 289 

was not retained in the hospital-onset model. This seems to contradict the results from other studies. 290 

Yet, in such studies associations resulted from comparing infections with resistant 291 

Enterobacteriaceae to their sensitive counterparts [29], which exaggerates the role of antibiotic use 292 

[35].  293 

We applied a nested case-control design for this study, implying that instead of analysing the full 294 

cohort, a representative subset of patients without 3GC-R EB (i.e. the control population) was 295 

analysed. The case population, however, (i.e. patients with 3GC-R EB) was analysed in full. This 296 
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design was chosen for efficiency reasons, reducing the amount of data collection by 95% while 297 

accepting a small loss of precision. Knowing the size of the original cohort, we were able to 298 

extrapolate the case-control data to the full cohort, resulting in probabilities generalizable to clinical 299 

practice. Within the community-onset and hospital-onset cohorts, we matched on hospital to adjust 300 

for hospital-specific practices (independent of the incidence of 3GC-R EB) and on date to avoid 301 

effects of season-specific fluctuations in incidence and risk factors. 302 

Our study has a limited sample size compared to the initial number of predictors studied. This may 303 

simultaneously lead to falsely rejecting predictive variables (a power problem) and selection of 304 

spurious predictors (overfitting resulting in overoptimism of model performance) [14]. We applied 305 

high p-value thresholds for variable retention in models to overcome our relatively low power, and 306 

internal validation by means of bootstrapping to quantify optimism in our model selection strategy. 307 

The latter resulted in optimism-adjusted odds ratios and C-statistics, giving insight in values expected 308 

when applying models to an external cohort. Expected performance loss when selecting specific 309 

probability cutoffs for clinical use has also been calculated (Table 4). Naturally, both models need 310 

prospective external validation before clinical implementation, for two reasons. First, even after 311 

shrinkage, optimism may still be present, as some steps could not be replicated in the bootstrap 312 

procedure, such as aggregation after observing similar associations with the outcome, simplification 313 

of continuous variables to linear predictors, and derivation of a scoring system. Second, the current 314 

study relied on data available in medical charts. We used pragmatic in- and exclusion criteria, which 315 

might not fully reflect intended clinical use, and as data collection was not blinded for outcome, 316 

information bias is not excluded. Moreover, potentially relevant predictors, especially for 317 

community-onset infection, such as international travel, animal contact, known colonization in 318 

household members, and dietary preferences could not be collected [29]. The same holds for 319 

determination of colonization pressure, which might be a relevant predictor for hospital-onset 320 

infections [32]. External validation studies are currently ongoing.  321 
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A study limitation is that the outcome was restricted to bacteraemic episodes, not including non-322 

bacteraemic infections caused by 3GC-R EB, which are more common than bacteraemic infections in 323 

patients being empirically treated [10]. Yet, with an overall prevalence of <5% it is unlikely that these 324 

infections had a substantial impact on the composition of control groups. Future studies may 325 

consider classifying these infections as outcomes. However, due to the more benign course, initial 326 

treatment with carbapenems may not have a high priority in non-bacteraemic infections. 327 

Another limitation of our study is that empiric coverage of 3GC-R EB is just one aspect of selection of 328 

appropriate empiric therapy. Other potential pathogens and resistance mechanisms, such as 329 

Pseudomonas aeruginosa, might justify alterations in empiric treatment even in the absence of risk 330 

factors for 3GC-R EB. In some countries, high incidences of infections with carbapenemase-producing 331 

Enterobacteriaceae may limit usefulness of our models. On the other hand, escape therapy for 3GC-R 332 

EB might not necessarily involve carbapenems, due to underlying resistance mechanisms other than 333 

ESBL, or favourable patterns of co-resistance. Ideally, frameworks for selecting empiric therapy 334 

should evaluate the probability of success of many different antibiotic agents. An example of such an 335 

approach is TREAT, an automated system for recommending antibiotic treatment based on, amongst 336 

others, patient and infection characteristics and local epidemiology [36]. TREAT can predict the 337 

presence of Gram-negative causative pathogens in infection with some accuracy [37], but 338 

performance with regard to resistant variants remains unknown. However, TREAT has not been 339 

widely adopted [38], and simple prediction rules may be easier to incorporate into clinical practice. 340 

Furthermore, treating physicians incorporate more factors in their clinical decision making regarding 341 

empiric antibiotics than those provided by current risk stratification schemes in guidelines. In both 342 

this and our previous study [10], empiric carbapenem use was much lower than it would have been 343 

with full guideline adherence (Supplementary Table 4). As a result, achievable reductions in empiric 344 

carbapenem use in real life may be lower than anticipated in our study. Yet, we consider it important 345 

that antibiotic guidelines do not stimulate unnecessary broad-spectrum antibiotic use [39]. 346 
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In conclusion, identification of patients with an infection caused by 3GC-R EB amongst all patients 347 

that need empiric antibiotic therapy remains a trade-off between acceptably low levels of 348 

unnecessary empiric carbapenem use and appropriate treatment in true 3GC-R EB bacteraemia 349 

cases. The prediction rules developed quantify this trade-off for patients that need empiric 350 

treatment, and might offer improvement in detecting such patients, compared to current 351 

international guidelines. As such, they provide useful starting points for optimizing empiric antibiotic 352 

strategies. 353 

[22,40–47]  354 
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Table 1 Clinical characteristics of cases and controls from both the community-onset and hospital-onset cohort 

Predictor
a 

Community-onset infection Hospital-onset infection 

Cases 

(N = 90)
b
, 

n/N with 

data (%) 

Controls 

(N = 360)
c
, 

n/N with 

data (%) 

OR 

(95% CI)
d 

Cases 

(N = 82)
b
, 

n/N with 

data (%) 

Controls 

(N = 328)
c
, 

n/N with 

data (%) 

OR 

(95% CI)
d
 

Female gender  39/90 (43)  158/360 (44)  0.98 (0.61-1.56)  32/82 (39)  129/328 (39)  0.99 (0.60-1.62)  

Age in years, median (IQR)  69 (61-76)e  63 (50-76)e  1.02 (1.00-1.03)  64 (55-73)  64 (52-75)  1.00 (0.99-1.02)  

Hospital ward (at infection onset)        

 Emergency room  58/90 (64)f  216/360 (60)f  1.21 (0.75-1.96)  0/82 (0)f  1/328 (0)f   

 Internal medicine  18/90 (20)
f
  78/360 (22)

f
  0.90 (0.51-1.61)  31/82 (38)

f
  193/328 (59)

f
  0.42 (0.26-0.69)  

 Surgery  11/90 (12)
f
  40/360 (11)

f
  1.11 (0.55-2.27)  33/82 (40)

f
  82/328 (25)

f
  2.01 (1.21-3.34)  
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 Intensive care unit  3/90 (3)
f
  26/360 (7)

f
  0.44 (0.13-1.50)  18/82 (22)  52/328 (16)  1.49 (0.82-2.73)  

       

Healthcare-associated infection  50/90 (56)e  141/353 (40)e  1.81 (1.13-2.89)  g g  

Admission from long-term care facility  9/90 (10)  16/353 (4)  2.09 (0.89-4.95)  g g  

Hospital admission (prior one year)  60/87 (69)  186/353 (53)  1.97 (1.20-3.23)  45/81 (56)  129/318 (41)  1.85 (1.13-3.02)  

Length of hospital stay prior to infection in 

days, median (IQR)  

g g 
 20 (10-48)

e
  11 (6-19)

e
  1.03 (1.02-1.04)  

       

Chronic pulmonary disease  8/90 (9)  68/358 (19)  0.42 (0.19-0.91)  10/81 (12)  39/328 (12)  1.09 (0.52-2.29)  

Diabetes mellitus  28/90 (31)e  83/358 (23)e  1.48 (0.89-2.46)  16/81 (20)  62/328 (19)  1.10 (0.60-2.03)  

Liver disease  2/90 (2)  5/358 (1)  1.42 (0.27-7.37)  4/81 (5)  4/328 (1)  4.62 (1.14-18.78)  

Biliary tract disease  2/90 (2)  4/358 (1)  1.76 (0.32-9.83)  1/81 (1)  4/328 (1)  1.33 (0.15-11.43)  

Any solid malignancyh  16/90 (18)  60/358 (17)  1.07 (0.58-1.97)  25/81 (31)e  70/328 (21)e  1.67 (0.97-2.87)  
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 Without metastases  9/90 (10)
i
  34/358 (10)

i
  1.06 (0.49-2.30)  17/81 (21)

i
  45/328 (14)

i
  1.71 (0.92-3.18)  

 Metastasized  7/90 (8)i  26/358 (7)i  1.07 (0.45-2.55)  9/81 (11)i  25/328 (8)i  1.56 (0.70-3.49)  

Haematological malignancy  11/90 (12)  28/358 (8)  1.62 (0.77-3.40)  9/81 (11)  44/328 (13)  0.85 (0.40-1.82)  

Renal disease  13/90 (14)e  21/358 (6)e  2.54 (1.22-5.27)  14/81 (17)e  17/328 (5)e  3.98 (1.87-8.45)  

 Haemodialysis  1/90 (1)  5/353 (1)  0.55 (0.06-4.76) 
 g

 
g
 

 

       

Immunocompromisedj  27/87 (31)e  62/356 (17)e  2.03 (1.19-3.46)  16/80 (20)  76/323 (24)  0.85 (0.47-1.56)  

 Immunosuppressant use  23/90 (26)i  59/358 (16)i  1.71 (0.98-2.96)  16/81 (20)i  74/328 (23)i  0.89 (0.49-1.62)  

 Neutropenia (at infection onset)  7/87 (8)i  14/357 (4)i  2.09 (0.81-5.40)  5/81 (6)i  35/323 (11)i  0.53 (0.20-1.42)  

Any transplant
h
  14/90 (16)

k
  22/358 (6)

k
  2.67 (1.31-5.45)  15/81 (18)

e
  23/327 (7)

e
  3.10 (1.54-6.23)  

 Solid organ transplant  11/90 (12)i  12/358 (3)i  3.71 (1.58-8.70)  9/81 (11)i  14/327 (4)i  2.93 (1.23-6.99)  

 Stem cell transplant  3/90 (3)  10/358 (3)  1.13 (0.30-4.21)  7/81 (9)i  9/327 (3)i  3.50 (1.26-9.68)  
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Urological patienth  25/90 (28)e  40/357 (11)e  2.96 (1.68-5.22)  5/81 (6)k  21/323 (6)k  1.05 (0.39-2.83)  

 Recurrent urinary tract infection  16/90 (18)i  25/358 (7)i  2.81 (1.43-5.53)  2/81 (2)  8/324 (2)  0.96 (0.20-4.63)  

 Obstructive urinary disease  5/90 (6)i  9/358 (2)i  2.13 (0.70-6.52)  0/81 (0)  6/328 (2)  Not available  

 Urological procedure (prior 30 days)  7/90 (8)
i
  7/357 (2)

i
  4.01 (1.36-11.79)  3/82 (4)  7/326 (2)  1.71 (0.43-6.77)  

       

Surgical procedure (prior 30 days)  4/90 (4)  34/357 (10)  0.43 (0.15-1.24)  37/82 (45)e  116/327 (36)e  1.50 (0.92-2.46)  

Endoscopic procedure (prior two days)  1/90 (1)  4/358 (1)  0.84 (0.09-7.60)  6/82 (7)  9/326 (3)  2.65 (0.92-7.66)  

Central vascular catheter (at infection 

onset)  

5/89 (6)  20/344 (6)  0.93 (0.34-2.55)  46/75 (61)e  106/299 (36)e  2.72 (1.62-4.57)  

Urinary catheter (at infection onset)  22/88 (25)  61/342 (18)  1.47 (0.84-2.56)  38/71 (54)  142/291 (49)  1.21 (0.73-2.00)  

Other catheter/drain (at infection onset)  4/90 (4)  15/347 (4)  0.89 (0.29-2.73)  17/74 (23)  72/300 (24)  0.99 (0.54-1.80)  
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Signs of hypoperfusion (at infection onset)  12/86 (14)  35/340 (10)  1.46 (0.73-2.93)  25/77 (32)
e
  38/296 (13)

e
  2.82 (1.57-5.06)  

Suspected source of infection (at infection 

onset)  

      

 Urinary tract infection or intra-

 abdominal infectionh  

55/90 (61)k  94/359 (26)k  4.44 (2.73-7.22)  26/80 (32)  46/325 (14)  3.00 (1.71-5.26)  

  Urinary tract infection  41/90 (46)e  48/359 (13)e  5.44 (3.25-9.11)  12/80 (15)i  20/325 (6)i  2.85 (1.35-6.04)  

  Intra-abdominal infection  14/90 (16)  46/359 (13)  1.26 (0.66-2.41)  14/80 (18)
i
  26/325 (8)

i
  2.42 (1.20-4.89)  

 Lower respiratory tract infection  8/90 (9)e  111/359 (31)e  0.22 (0.10-0.46)  4/80 (5)e  86/325 (26)e  0.14 (0.05-0.40)  

 Other infection  5/90 (6)  42/359 (12)  0.45 (0.17-1.16)  11/80 (14)  35/325 (11)  1.37 (0.66-2.85)  

 Unknown  22/90 (24)l  112/359 (31)l  0.71 (0.42-1.21)  39/80 (49)l  159/325 (49)l  0.98 (0.60-1.60)  

       

Prior identification of 3GC-R EB (prior one 

year)  

22/90 (24)
e
  9/359 (2)

e
  11.82 (5.25-26.63)  29/82 (35)

e
  16/328 (5)

e
  10.67 (5.41-21.03)  
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Any antibiotic use of antibiotics (prior two 

months)h  

51/85 (60)e  140/346 (40)e  2.22 (1.37-3.60)  68/82 (83)  228/324 (70)  2.02 (1.08-3.77)  

 Cephalosporins or fluoroquinolonesh  28/85 (33)i  66/346 (19)i  2.12 (1.26-3.55)  58/82 (71)  165/323 (51)  2.27 (1.34-3.84)  

  Cephalosporins  14/86 (16)i  33/351 (9)i  1.91 (0.99-3.68)  49/82 (60)e  114/322 (35)e  2.67 (1.62-4.39)  

  Fluoroquinolones  17/85 (20)
i
  44/346 (13)

i
  1.81 (0.98-3.35)  25/82 (30)  81/322 (25)  1.28 (0.75-2.18)  

 Carbapenems  4/86 (5)
i
  2/351 (1)

i
  4.95 (1.02-24.02)  12/82 (15)  29/321 (9)  1.66 (0.81-3.42)  

 Other beta-lactams  25/85 (29)i  72/345 (21)i  1.65 (0.97-2.80)  29/82 (35)  110/320 (34)  1.04 (0.62-1.72)  

 Aminoglycosides, macrolides or other 

 antibioticsh  

33/85 (39)i  73/345 (21)i  2.31 (1.39-3.84)  56/82 (68)k  131/323 (41)k  3.11 (1.85-5.21)  

  Aminoglycosides  4/86 (5)
i
  13/351 (4)

i
  1.21 (0.40-3.67)  13/81 (16)  35/319 (11)  1.49 (0.75-2.98)  

  Macrolides  3/86 (4)
i
  18/347 (5)

i
  0.75 (0.23-2.44)  17/81 (21)  37/320 (12)  2.01 (1.06-3.82)  

  Other antibiotics  29/85 (34)i  57/345 (16)i  2.57 (1.51-4.39)  49/82 (60)  98/323 (30)  3.38 (2.04-5.58)  
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Selective digestive/oropharyngeal 

decontamination (prior two months)  

1/86 (1)
k
  2/351 (1)

k
  1.63 (0.24-11.12)  10/82 (12)  26/325 (8)  1.56 (0.72-3.40)  

       

At risk of 3GC-R EB bacteraemia according 

to two-predictor model
m  

46/86 (54)n  71/347 (20)n  4.32 (2.63-7.09)  65/82 (79)n  168/323 (52)n  3.46 (1.94-6.17)  

 

Abbreviations: OR, odds ratio; CI: confidence interval, IQR, interquartile range. 

a See Supplementary Table 3 for definitions used.  

b Patients with 3GC-R EB bacteraemia. 

c Sample of patients without bacteraemia or with blood cultures yielding non-resistant Enterobacteriaceae, other bacteria or fungi. 

d OR calculated in 20 imputed datasets, combined by means of Rubin's rules. 

e One of ten predictors selected during the first step of model creation. 

f Predictor not considered for model construction purposes because of expected problems in generalization to other settings. This implies that is was neither 

used for univariable preselection during the bootstrapping procedure. 

g
 Predictor not recorded for this setting. 
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h Aggregated variable combining indented variables below. 

i Predictor not considered for model construction purposes (see f for implications) because of aggregation. 

j Aggregated variable combining immunosuppressant use, neutropenia (at infection onset), and solid organ transplant. 

k Predictor only shown for comparison with other cohort and not considered for model construction purposes (see f for implications). 

l Predictor not considered for model construction purposes (see f for implications) because it was used as reference category. 

m Aggregated variable combining use of cephalosporins or fluoroquinolones (prior two months), and prior identification of 3GC-R EB (prior one year).  

n Predictor only shown to evaluate performance of two-predictor model and not considered for model construction purposes (see f for implications). 
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Table 2. Regression model and scoring system for community-onset infection 

Predictor 

Original model Optimism-corrected modela Derived 

score 
β coefficient OR (95% CI) β coefficient OR (95% CI) 

Intercept  -7.632   -7.248    

Prior identification of 3GC-R EB (prior one year)  2.355  10.53 (4.26-26.08)  1.963  7.12 (2.88-17.62)  100 

Suspected source of infection: Urinary tract infection  1.297  3.66 (2.04-6.57)  1.081  2.95 (1.64-5.29)  50 

Immunocompromised  0.590  1.80 (0.96-3.39)  0.491  1.63 (0.87-3.08)  25 

Any use of antibiotics (prior two months)  0.377  1.46 (0.83-2.55)  0.314  1.37 (0.78-2.39)  25 

Age (per year)  0.022  1.02 (1.01-1.04)  0.018  1.02 (1.00-1.04)  1 

Suspected source of infection: Lower respiratory tract infection  -1.075  0.34 (0.15-0.78)  -0.896  0.41 (0.18-0.94)  -50 

 

The optimism-corrected predicted probability of 3GC-R EB bacteraemia can be calculated with the following formula: 1/(1 + exp(-(-7.248 + 1.963 x prior 

identification of 3GC-R EB (prior one year) + 1.081 x suspected source of infection: urinary tract infection + 0.491 x immunocompromised + 0.314 x any use of 
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antibiotics (prior two months) + 0.018 x age in years - 0.896 x suspected source of infection: lower respiratory tract infection))). For categorical predictors, fill 

in 1 if present, and 0 if absent. Similarly, the score can be calculated with the following formula: 100 x prior identification of 3GC-R EB (prior one year) + 50 x 

suspected source of infection: urinary tract infection + 25 x immunocompromised + 25 x any use of antibiotics (prior two months) + age in years - 50 x 

suspected source of infection: lower respiratory tract infection. 

Abbreviations: OR, odds ratio; CI, confidence interval. 

a
 Derived by multiplication with a shrinkage factor (0.834) obtained by bootstrapping, followed by re-estimation of the intercept and correction for the 

sampling fraction of controls to match overall predicted incidence by the model with observed incidence (procedure described in detail in Supplementary 

Material).  
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Table 3. Performance of scoring system for community-onset infection 

 Score 

-31a 50 60 70 80 90 100 110 120 130 140 150 160 170 267b 

 Characteristics of interval [prior value, current value) 

Proportion of population (%)  33.9 10.1 6.0 9.7 11.3 6.7 4.7 4.8 2.5 2.2 2.3 1.4 1.4 2.9 

Probability of 3GC-R EB 

bacteraemia (%) 

 0.1 0.1 0.2 0.2 0.2 0.3 0.7 0.8 1.4 1.5 0.8 1.3 2.2 2.6 

 Characteristics of cutoff ≥ current value for classification as at risk of 3GC-R EB bacteraemia 

Test positivity rate (%)  66.1 56.0 50.0 40.3 29.0 22.4 17.7 12.8 10.3 8.1 5.7 4.3 2.9 0.0 

Sensitivity (%)  93.2 91.0 87.8 83.3 76.8 72.3 63.7 54.3 45.2 36.6 32.2 27.8 20.0 1.1 

Specificity (%)  34.0 44.1 50.1 59.9 71.2 77.8 82.5 87.3 89.8 92.1 94.4 95.8 97.2 100.0 

Positive predictive value (%)  0.6 0.6 0.7 0.8 1.1 1.3 1.4 1.7 1.8 1.8 2.3 2.6 2.8 100.0 

Negative predictive value (%)  99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.7 99.7 99.7 99.7 99.6 

 

a Minimum score within the study sample. 

b Maximum score within the study sample.  
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Table 4 Expected optimism when selecting probability cutoffs based on the sensitivity of the two-predictor model 

 Community-onset infection Hospital-onset infection 

Two-predictor model Probability cutoff 0.0067a Two-predictor model Probability cutoff 0.0086a 

 Apparent performance in study sample 

Sensitivity, % (95% CI) 53.9 (44.2-63.9) 55.2 (43.7-63.7) 79.3 (70.7-87.8) 80.6 (71.8-88.8) 

Test positivity rate, % (95% CI) 21.5 (17.3-25.8) 12.8 (9.8-16.7) 52.8 (47.3-57.9) 27.6 (22.6-32.1) 

 Optimism-corrected performanceb 

Sensitivity, % (95% CI) 53.9c (44.2-63.9) 49.0 (32.3-62.2) 79.3c (70.7-87.8) 75.3 (61.8-86.6) 

Test positivity rate, % (95% CI) 21.5c (17.3-25.8) 13.2 (6.9-18.6) 52.8c (47.3-57.9) 28.2 (18.7-35.0) 

 

Abbreviations: CI, confidence interval. 

a The predicted probability (as calculated by the regression model) from which patients are classified as at risk of 3GC-R EB bacteraemia. It is chosen such 

that the resulting sensitivity is as close as possible to the sensitivity of the two-predictor model. 

b As obtained by bootstrapping described in Supplementary Material. 

c Not affected by optimism due to pre-specification of models.  
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Table 5. Regression model and scoring system for hospital-onset infection 

Predictor 

Original model Optimism-corrected modela Derived 

score 
β coefficient OR (95% CI) β coefficient OR (95% CI) 

Intercept  -6.210  -5.807    

Renal disease  1.743 5.71 (2.24-14.55) 1.372  3.94 (1.55-10.05)  120 

Prior identification of 3GC-R EB (prior one year)  1.718 5.57 (2.41-12.89) 1.353  3.87 (1.67-8.95)  120 

Any solid malignancy  0.917 2.50 (1.29-4.87) 0.722  2.06 (1.06-4.01)  80 

Signs of hypoperfusion (at infection onset)  0.646 1.91 (0.91-4.01) 0.509  1.66 (0.79-3.49)  40 

Surgical procedure (prior 30 days)  0.564 1.76 (0.94-3.28) 0.444  1.56 (0.84-2.91)  40 

Central vascular catheter (at infection onset)  0.533 1.70 (0.88-3.31) 0.420  1.52 (0.78-2.95)  40 

Use of cephalosporins (prior two months)  0.527 1.69 (0.90-3.17) 0.415  1.51 (0.81-2.83)  40 

Length of hospital stay prior to infection (per day)  0.014 1.01 (1.00-1.03) 0.011  1.01 (1.00-1.03)  1 
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Suspected source of infection: Lower respiratory tract infection  -2.196 0.11 (0.04-0.35) -1.729  0.18 (0.06-0.56)  -160 

 

The optimism-corrected predicted probability of 3GC-R EB bacteraemia can be calculated with the following formula: 1/(1 + exp(-(-5.807 + 1.372 x renal 

disease + 1.353 x prior identification of 3GC-R EB (prior one year) + 0.722 x any solid malignancy + 0.509 x signs of hypoperfusion (at infection onset) + 0.444 

x surgical procedure (prior 30 days) + 0.420 x central vascular catheter (at infection onset) + 0.415 x use of cephalosporins (prior two months) + 0.011 x 

length of hospital stay prior to infection in days - 1.729 x suspected source of infection: lower respiratory tract infection))). For categorical predictors, fill in 1 

if present, and 0 if absent. Similarly, the score can be calculated with the following formula: 120 x renal disease + 120 x prior identification of 3GC-R EB (prior 

one year) + 80 x any solid malignancy + 40 x signs of hypoperfusion (at infection onset) + 40 x surgical procedure (prior 30 days) + 40 x central vascular 

catheter (at infection onset) + 40 x use of cephalosporins (prior two months) + length of hospital stay prior to infection in days - 160 x suspected source of 

infection: lower respiratory tract infection. 

Abbreviations: OR, odds ratio; CI: confidence interval. 

a Derived by multiplication with a shrinkage factor (0.788) obtained by bootstrapping, followed by re-estimation of the intercept and correction for the 

sampling fraction of controls to match overall predicted incidence by the model with observed incidence (procedure described in detail in Supplementary 

Material).  
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Table 6. Performance of scoring system for hospital-onset infection 

 Score 

-159a 50 70 90 110 130 150 170 190 210 230 250 270 290 432b 

 Characteristics of interval [prior value, current value) 

Proportion of population (%)  46.0 8.4 10.0 8.5 6.9 6.2 4.0 3.2 1.3 2.4 0.2 0.3 0.5 2.0 

Probability of 3GC-R EB 

bacteraemia (%) 

 0.1 0.6 0.1 0.8 1.7 1.4 2.0 2.8 3.1 1.6 30.2 19.3 8.7 10.6 

 Characteristics of cutoff ≥ current value for classification as at risk of 3GC-R EB bacteraemia 

Test positivity rate (%)  54.0 45.6 35.6 27.0 20.1 13.9 9.9 6.7 5.4 3.0 2.7 2.4 2.0 0.0 

Sensitivity (%)  93.9 89.0 87.8 81.5 70.1 61.7 54.0 45.2 41.2 37.5 30.6 25.3 21.3 1.2 

Specificity (%)  46.4 54.9 65.0 73.5 80.4 86.5 90.5 93.7 95.0 97.4 97.6 97.8 98.2 100.0 

Positive predictive value (%)  1.8 2.0 2.5 3.1 3.6 4.6 5.6 7.0 7.9 13.0 11.5 10.6 11.1 100.0 

Negative predictive value (%)  99.9  99.8  99.8  99.7  99.6  99.5  99.5  99.4  99.4  99.3  99.3  99.2  99.2  99.0  

 

a Minimum score within the study sample. 

b Maximum score within the study sample. 
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Figure 1. Patient flowchart 
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Figure 2. Performance of community-onset (A) and hospital-onset (B) scoring systems at different cutoff values 

 

Figures show sensitivities (blue), test positivity rates (black), and positive predictive values (red) at different cutoffs for derived scoring systems from which 

patients are categorized as at risk of 3GC-R EB bacteraemia. These are compared to the (constant) sensitivities, test positivity rates, and positive predictive 

values for the basic two-predictor model (solid lines) and prior identification model (dashed lines). See Tables 3 and 6 for exact values at the score cutoffs. 
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