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Abstract

Inference of the causal structure that induces correlations between two traits can be achieved by combining
genetic associations with a mediation-based approach, as is done in the causal inference test (CIT) and
others. However, we show that measurement error in the phenotypes can lead to mediation-based approaches
inferring the wrong causal direction, and that increasing sample sizes has the adverse effect of increasing
confidence in the wrong answer. Here we introduce an extension to Mendelian randomisation, a method that
uses genetic associations in an instrumentation framework, that enables inference of the causal direction
between traits, with some advantages. First, it is less susceptible to bias in the presence of measurement
error; second, it is more statistically efficient; third, it can be performed using only summary level data
from genome-wide association studies; and fourth, its sensitivity to measurement error can be evaluated. We
apply the method to infer the causal direction between DNA methylation and gene expression levels. Our
results demonstrate that, in general, DNA methylation is more likely to be the causal factor, but this result
is highly susceptible to bias induced by systematic differences in measurement error between the platforms.
We emphasise that, where possible, implementing MR and appropriate sensitivity analyses alongside other
approaches such as CIT is important to triangulate reliable conclusions about causality.

Introduction

Observational measures of the human phenome are growing ever more abundant, but using these data to
make causal inference is notoriously susceptible to many pitfalls, with basic regression-based techniques
unable to distinguish a true causal association from reverse causation or confounding (1-3). In response
to this, the use of genetic associations to instrument traits has emerged as a technique for improving the
reliability of causal inference in observational data, and with the coincident rise in genome-wide association
studies it is now a prominent tool that is applied in several different guises (3—6). However, potential pitfalls
remain and one that is often neglected is the influence of non-differential measurement error on the reliability
of causal inference.

Measurement error is the difference between the measured value of a quantity and its true value. This study
focuses specifically on non-differential measurement error where all strata of a measured variable have the
same error rate, which can manifest as changes in scale or measurement imprecision (noise). Such variability
can arise through a whole plethora of mechanisms, which are often specific to the study design and difficult
to avoid (7,8). Array technology is now commonly used to obtain high throughput phenotyping at low cost,
but comes with the problem of having imperfect resolution, for instance methylation levels as measured
by the Ilumina450k chip are prone to have some amount of noise around the true value due to imperfect
sensitivity (9,10). Relatedly, if the measurement of biological interest is the methylation level in a T cell, then
measurement error of this value can be introduced by using methylation levels from whole blood samples
because the measured value will be an assay of many cell types (11).
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Measurement error will of course arise in other types of data too. For example when measuring BMI one is
typically interested in using this as a proxy for adiposity, but it is clear that the correlation between BMI
and underlying adiposity is not perfect (12). A similar problem of biological misspecification is unavoidable
in disease diagnosis, and measuring behaviour such as smoking or diet is notoriously difficult to do accurately.
Measurement error can also be introduced after the data have been collected, for example the transformation
of non-normal data for the purpose of statistical analysis will lead to a new variable that will typically incur
both changes in scale and imprecision (noise) compared to the original variable. The sources of measurement
error are not limited to this list (8), and its impact has been explored in the epidemiological literature
extensively (13,14). Given the near-ubiquitous presence of measurement error in phenomic data it is vital to
understand its impact on the tools we use for causal inference.

An established study design that can provide information about causality is randomisation. Given the
hypothesis that trait A (henceforth referred to as the exposure) is causally related to trait B (henceforth
referred to as the outcome), randomisation can be employed to assess the causal nature of the association
by randomly splitting the sample into two groups, subjecting one group to the exposure and treating the
other as a control. The association between the exposure and the outcome in this setting provides a robust
estimate of the causal relationship. This provides the theoretical basis behind randomised control trials,
but in practice randomisation is often difficult or impossible to implement in an experimental context due
to cost, scale or inability to manipulate the exposure. The principle, however, can be employed in extant
observational data through the use of genetic variants associated with the exposure (instruments), where
the inheritance of an allele serves as a random lifetime allocation of differential exposure levels (15,16). Two
statistical approaches to exploiting the properties of genetic instruments are widely used: mediation-based
approaches and Mendelian randomisation (MR).

Mediation-based approaches employ genetic instruments (typically single nucleotide polymorphisms, SNPs)
to orient the causal direction between the exposure and the outcome. If a SNP is associated with an exposure,
and the exposure is associated with some outcome, then it logically follows that in this simple three-variable
scenario the estimated direct influence of the SNP on the outcome will be zero when conditioning on the
exposure. Here, the exposure completely mediates the association between the SNP and the outcome,
providing information about the causal influence of the exposure on the outcome. This forms the basis of a
number of methods such as genetical genomics (17), the regression-based causal inference test (CIT) (4,18), a
structural equation modelling (SEM) implementation in the NEO software (5), and various other methods
including Bayesian approaches (6). They have been employed by a number of recent publications that make
causal inferences in large scale ‘omics datasets (6,19-23).

MR can be applied to the same data - phenotypic measures of the exposure and the outcome variables and a
genetic instrument for the exposure - but the genetic instrument is employed in a subtly different manner.
Here the SNP is used as a surrogate for the exposure. Assuming the SNP associates with the outcome only
through the exposure, the causal effect of the exposure on the outcome can be estimated by scaling the
association between the SNP and the outcome by the association between the SNP and the exposure. Though
difficult to test empirically, this assumption can be relaxed in various ways when multiple instruments are
available for a putative exposure (24,25) and a number of sensitivity tests are now available to improve
reliability (26).

By utilising genetic instruments in different ways, mediation-based analysis and MR models have properties
that confer some advantages and some disadvantages for reliable causal inference. In the CIT framework
(described fully in the Methods) for example, the test statistic is different if you test for the exposure causing
the outcome or the outcome causing the exposure, allowing the researcher to infer the direction of causality
between two variables by performing the test in both directions and choosing the model with the strongest
evidence. The CIT also has the valuable property of being able to distinguish between several putative causal
graphs that link the traits with the SNP (Figure 1). Such is not the case for MR, where in order to infer the
direction of causality between two traits the instrument must have its most proximal link with the exposure,
associating with the outcome only through the exposure.

Assuming biological knowledge of genetic associations can be problematic because if there exists a putative
association between two variables, with the SNP being robustly associated with each, it can be difficult to
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determine which of the two variables is subject to the primary effect of the SNP (i.e. for which of the two
variables is the SNP a valid instrument? Figure 1). By definition, we expect that if the association is causal
then a SNP for the exposure will be associated with the outcome, such that if the researcher erroneously uses
the SNP as an instrument for the outcome then they are likely to see an apparently robust causal association
of outcome on exposure. Genome-wide association studies (GWASs) that identify genetic associations for
complex traits are, by design, hypothesis free and agnostic of genomic function, and it often takes years of
follow up studies to understand the biological nature of a putative GWAS hit (27). If multiple instruments
are available for an hypothesised exposure, which is increasingly typical for complex traits that are analysed
in large GWAS consortia, then techniques can be applied to mitigate these issues (16). But these techniques
cannot always be applied in the case of determining causal directions between ’omic measures where typically
only one cis-acting SNP is known. For example if a DNA methylation probe is associated with expression
of an adjacent gene, then is a cis-acting SNP an instrument for the DNA methylation level, or the gene
expression level (Figure 1)?

MR has some important advantages over the mediation-based approaches. First, the mediation-based
approaches require that the exposure, outcome and instrumental variables are all measured in the same
data, whereas recent extensions to MR circumvent this requirement, allowing causal inference to be drawn
when exposure variables and outcome variables are measured in different samples (28). This has the crucial
advantage of improving statistical power by allowing analysis in much larger sample sizes, and dramatically
expands the breadth of possible phenotypic relationships that can be evaluated (26). Second, the mediation-
based approach of adjusting the outcome for the exposure to nullify the association between the SNP and the
outcome is affected by unmeasured confounding of the exposure and outcome. This is because adjusting the
outcome by the exposure induces a collider effect between the SNP and outcome (29), and the in order to fully
abrogate this association one must also adjust for all (hidden or otherwise) confounders. MR, does not suffer
from this problem because it does not test for association through adjustment. Third, when MR assumptions
are satisfied the method is robust to there being measurement error in the exposure variable (30). Indeed
instrumental variable (IV) analysis was in part initially introduced as a correction for measurement error in
the exposure (31), whereas it has been noted that both classic mediation-based analyses (13,14,32,33) and
mediation-based methods that use instrumental variables (34,35) are prone to be unreliable in its presence.

Using theory and simulations we show how non-differential measurement error in phenotypes can lead to
unreliable causal inference in the mediation-based CIT method. We then present an extension to MR that
allows researchers to ascertain the causal direction of an association even when the biology of the instruments
are not fully understood, and also a metric to evaluate the sensitivity of the result of this extension to
measurement error. Together these extensions improve the utility of MR in cases where mediation based
methods might have otherwise been used preferentially. Finally, we apply this method to infer the direction
of causation between DNA methylation levels and gene expression levels. Our analyses highlight that because
these different causal inference techniques have varying strengths and weaknesses, triangulation of evidence
from as many sources as possible should be practiced in causal inference (36).

Model

We model a system whereby some exposure x has a causal influence g, on an outcome y such that

y:ar+ﬁm$+€m

In addition, the exposure is influenced by a SNP g with an effect of 3, such that

T =0y + Bg9 + €

The ., terms represent intercepts, and henceforth can be ignored. The ¢, terms denote random error,
assumed independently and normally distributed with mean zero. Mediation-based analyses that test whether
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x causally relates to y rely on evaluating whether the influence of g on y can be accounted for by conditioning
on x, such that

cov(g,y — ) =0

where § = BII’ and assuming no intercept y — § = €. MR analysis estimates the causal influence of x on y
by using the instrument as a proxy for z, such that

I
™

z 99
Yy = BMRE + €MR

where Byrr # 0 denotes the existence of causality, and ;g is an estimate of the causal effect.

Measurement error of an exposure can be modeled as a transformation of the true value (z) that leads to the
observed value, x, = f(x). For example, following Pierce and VanderWeele (30) we can define

f(.’L’) = Qe + Bma® + €ma

where a,,; and S,,, influence the error in the measurement of x by altering its scale, and €,,, represents
the imprecision (or noise) in the measurement of . The same model of measurement error can be applied
to the outcome variable y. In this study we assume there is no measurement error in the SNP, and that
measurement error in the exposure and the outcome are uncorrelated.

Methods
CIT test

First we describe how the CIT method (4) is implemented in the R package R/cit (18). The methodology
of the CIT is as follows. Assume an exposure z is instrumented by a SNP g, and the exposure = causes an
outcome y, as described above. The following tests are then performed:

1. Hy: cov(g,z) = 0; Hy : cov(g,x) # 0; the SNP associates with the exposure

2. Hy:cov(g,y) = 0; Hy : cov(g,y) # 0; the SNP associates with the outcome

3. Hp : cov(x,y) = 0; Hy : cov(x,y) # 0; the exposure associates with the outcome

4. Hy : cov(g,y — §) # 0; Hy : cov(g,y — §) = 0; the SNP is independent of the outcome when the outcome
is adjusted for the exposure

Cco
Cco

where y —§ =y — Gy + Bgm is the residual of y after adjusting for x, where = is assumed to mediate the
association between the SNP and the outcome. The 4th condition is formulated as an equivalence testing
problem that is estimated using simulations, comparing the estimate against from the data against empirically
obtained estimates for simulated variables where the independence model is true (full details are given in
(4)). We note here that this approach is liable to fail, even when there is a true causal relationship, when
confounders of the exposure and outcome are present, as these will induce collider bias.

If all four tests reject the null hypothesis then it is inferred that x causes y. The CIT measures the strength of
causality by generating an omnibus p-value, porr, which is simply the largest (least extreme) p-value of the
four tests, the intuition being that causal inference is only as strong as the weakest link in the chain of tests.

Now we describe how we used the CIT method in our simulations. The cit.cp function was used to obtain an
omnibus p-value. To infer the direction of causality using the CIT method, an omnibus p-value generated by
CIT for each of two tests - porr,o—sy, Was estimated for the direction of  causing y (Model 1), and for the
direction of y causing x, pcrr,y—s (Model 2). The results from each of these methods can then be used in
combination to infer the existance and direction of causality. For some significance threshold « there are four
possible outcomes from these two tests, and their interpretations are as follows:
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o If porre—sy < o and porr,y—az > « then model 1 is accepted

o If pcrr,s—y > o and porr,y—a2 < « then model 2 is accepted

o If pcrr,z—y > @ and porr,y—a > o then no evidence for a causal relationship

o If porrp—y < @ and porry—e < « then the confounding model is accepted (z < g — y).

For the purposes of compiling simulation results we use an arbitrary « = 0.05 value, though we stress that
for real analyses it is not good practice to rely on p-values for making causal inference, nor is it reliable to
depend on arbitrary significance thresholds (37).

MR causal test

Two stage least squares (2SLS) is a commonly used technique for performing MR when the exposure, outcome
and instrument data are all available in the same sample. A p-value for this test, py;r, was obtained using
the system fit function in the R package R/system fit (38). Note that the value of pysr is identical when
using the same genetic variant to instrument the influence of the exposure z on the outcome y, or erroneously,
instrumenting the outcome y on the exposure x.

The method that we will now describe is designed to distinguish between two models, z — y or y — x. Unlike
the CIT framework, this approach cannot infer if the true model is x < g — y. We also assume all genetic
effects are additive.

To infer the direction of causality it is desirable to know which of the variables, = or y, is being directly
influenced by the instrument g. This can be achieved by assessing which of the two variables has the biggest
absolute correlation with g (Appendix 2), formalised by testing for a difference in the correlations pg, and
pgy using Steiger’s Z-test for correlated correlations within a population (39). It is calculated as

N -3
Z = (Zgx — Zgy)—r——=
2(1 = pay)h
where Fisher’s z-transformation is used to obtain Zg, = %ln (}ir';g’; ),
b 1 — (frm?)
T 1—rm?
where
1— pay
f= 2(1 —rm?2)
and
Tm2 _ 1( 2 + 2 )
- 2 pga: pgy .
The Z value is interpreted such that
>0, z—=y
Z<¢ <0, y—=x
=0, zly

and a p-value, pgieiger is generated from the Z value to indicate the probability of obtaining a difference
between correlations pg, and pg, at least as large as the one observed, under the null hypothesis that both
correlations are identical.
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The existence of causality and its direction is inferred based on combining information from the MR analysis
and the Steiger test. The MR analysis indicates whether there is a potential causal relationship (parr), and
the Steiger test indicates the direction (sign(Z)) of the causal relationship and the confidence of the direction
(Psteiger)- For the purposes of compiling simulation results, these can be combined using an arbitrary o = 0.05
value:

o If psieiger < v and pyrr < o and Z > 0 then a causal association for the correct model is accepted,
T =y

o If psteiger < @ and pyr < @ and Z < 0 then a causal association for the incorrect model is accepted,
y—x

o Otherwise if psieiger > @ Or prrr > «, neither model is accepted

Note that the same correlation test approach can be applied to a two-sample MR (28) setting. Two-sample
MR refers to the case where the SNP-exposure association and SNP-outcome association are calculated in
different samples (e.g. from publicly available summary statistics). Here the Steiger test of two independent
correlations can be applied where.

Loy — 2,

gxr 9y

7= VI/ (N1 =3)+ 1/(N; — 3)

An advantage of using the Steiger test in the two sample context is that it can compare correlations in
independent samples where sample sizes are different. Steiger test statistics were calculated using the r.test
function in the R package R/psych (40).

Causal direction sensitivity analysis

The Steiger test for inferring if « — y is based on evaluating pge > pgy. However, pg, (or pgy) are
underestimated if x (or y) are measured imprecisely. If, for example, = has lower measurement precision than
y then we might empirically obtain py ., < pg,y, because pg ., could be underestimated more than pg,, .

As we show in Appendix 2 it is possible to infer the bounds of measurement error on z, or y, given known
genetic associations. The maximum measurement imprecision of z, is pg 4, because it is known that at least
that much of the variance has been explained in x, by ¢g. The minimum is 0, denoting perfectly measured
trait values (the same logic applies to y,). It is possible to simulate what the inferred causal direction would
be for all values within these bounds.

To evaluate how reliable, R, the inference of the causal direction is to potential measurement error in x and y
we need to predict the values of pgy, — pg. for those values of measurement error. We integrate over the entire
range of pgy — pgo values for possible measurement error values. We find the ratio of the volume that agrees
with the inferred direction of causality over the volume that disagrees with the inferred direction of causality.
A ratio R = 1 indicates that the inferred causal direction is highly sensitive to measurement error, with equal
weight of the measurement error parameter space supporting both directions of causality. In general, the R
value denotes that the inferred direction of causality is R times more likely to be the empirical result than
the opposite direction. Full details are provided in Appendix 2.

Simulations

Simulations were conducted by creating variables of sample size n for the exposure x, the measured values of
the exposure z,, the outcome ¥, the measured values of the outcome y, and the instrument g. One of two
models are simulated, the “causal model” where z causes y and ¢ is an instrument for x; or the “non-causal
model” where g influences a confounder u which in turn causes both = and y. Here x and y are correlated
but not causally related. Each variable in the causal model was simulated such that:
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g ~ Binom(2,0.5)
T =ag+ fBy9+ €

To = Umg + Bma® + €ma
Y=0ag+ ﬁajx + €z

Yo = Qmy + Bmyy + €my

where €,,. ~ N(0,02,,), Gmz and By, are parameters that represent non-differential measurement error into
the exposure variable z, and ou,, and f,,, are parameters for non-differential measurement error in the
outcome y. Similarly in the non-causal model:

g ~ Binom(2,0.5)
u =0y + 349 + €4
T =0y + Puut ey,
To = Qmg + BmaT + €ma
Y=y + Butt + €y,
Yo = Qmy + Bmyy + €Emy

All « values were set to 0, and 3 values set to 1. Normally distribted values of €, were generated such that

cor(g,z)? = 0.1
cor(g,u)? = 0.1
cor(x,y)? = {0.2,0.4,0.6,0.8}
o2 =1{0,0.2,0.4,0.6,0.8,1}
oy =10,0.2,0.4,0.6,0.8,1}
n = {100, 1000, 10000}

giving a total of 432 combinations of parameters. Simulations using each of these sets of variables were
performed 100 times, and the CIT and MR methods were applied to each in order to evaluate the causal
association of the simulated variables. Similar patterns of results were obtained for different values of cor(g, x)
and cor(g,u).

Applied example using two sample MR

Two sample MR (28) was performed using the summary statistics for genetic influences on gene expression
and DNA methylation. To do this we obtained a list of 458 gene expression - DNA methylation associations
as reported in Shakhbazov et al (41). These were filtered to be located on the same chromosome, have
robust correlations after correcting for multiple testing, and to share a SNP that had a robust cis-acting
effect on both the DNA methylation probe and the gene expression probe. Because only summary statistics
were available (effect, standard error, effect allele, sample size, p-values) for the instrumental SNP on the
methylation and gene expression levels, the Steiger test of two independent correlations was used to infer the
direction of causality for each of the associations. The Wald ratio test was then used to estimate the causal
effect size for the estimated direction for each association.

All analysis was performed using the R programming language (42) and code is made available at https://
github.com/explodecomputer/causal-directions and implemented in the MR-Base (http://wwww.mrbase.org)
platform (26).
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Results
Mediation-based causal inference under measurement error

In the causal inference test (CIT), the 4th condition (see Methods) employs mediation for causal inference,
and can be expressed as cov(g,y — §) = 0, where § = &, + Bzxo. When measurement error in scale and
imprecision is introduced, such that y, is the measured value of y, it can be shown using basic covariance
properties (Appendix 1) that

cov(g,y — 7)) = cov(g, yo) — cov(g, 7o)
= ﬁmyﬁgﬁxvar(g) - D/Bmyﬂgﬁwvar(‘g)

where

2 var(x)

- B2, var(x) + var(ems)

D

Thus an observational study will find cov(g, yo — ¥») = 0 when the true model is causal only when D = 1.
Therefore, if there is any measurement error that incurs imprecision in z (i.e. var(ém,) # 0) then there will
remain an association between g and y,|z,, which is in violation of the the 4th condition of the CIT. Note
that scale transformation of x or y without any incurred imprecision is insufficient to lead to a violation of
the test statistic assumptions, and henceforth mention of measurement error will relate to imprecision unless
otherwise stated.

We performed simulations to verify that this problem does arise using the CIT method. Figure 2 shows that
when there is no measurement error in the exposure or outcome variables (p; 5, = 1) the CIT is reliable in
identifying the correct causal direction. However, as measurement error increases in the exposure variable,
eventually the CIT is more likely to infer a robust causal association in the wrong direction. Also of concern
here is that increasing sample size does not solve the issue, indeed it only strengthens the apparent evidence
for the incorrect inference.

We also performed simulations to compare the performance of MR against CIT in detecting a causal association
between simulated variables under different levels of imprecision simulated in the exposure. Figure 3 shows
the true positive rates between the CIT and MR for detecting a causal association. We observe that the
CIT has lower power in all cases, with performance declining as measurement imprecision increases in the
exposure. When MR, assumptions are satisfied, notably that it is known on which of x and y the SNP g has
a primary influence, the performance of MR in detecting an association is unrelated to measurement error
in the exposure. Measurement error in the outcome does reduce power, but does not induce a substantive
difference in performance between CIT and MR.

Using MR Steiger to infer the direction of causality

If we do not know whether the SNP ¢ has a primary influence on x or y then CIT can attempt to infer the
causal direction. Here we introduce the MR, Steiger approach to similarly orient the direction of causality but
in an MR analysis when the underlying biology of the SNP is not fully understood.

For a particular association, it is of interest to identify the range of possible measurement error values agree
and disagree with the empirically inferred causal direction (Figure 4a, Appendix 2). This metric can be used
to evaluate the reliability of MR Steiger.

We show that in the presence of measurement imprecision, d = pg », — Pa,yPy.y, (Appendix 2) determines the
range of parameters around which the Steiger test is liable to provide the wrong direction of causality (i.e. if
d > 0 then the Steiger test is likely to be correct about the causal direction). Figure 4b shows that when
there is no measurement error in x, the Steiger test is unlikely to infer the wrong direction of causality even
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if there is measurement error in y. It also shows that in most cases where x is measured with error, especially
when the causal effect between x and y is not very large, the sensitivity of the Steiger test to measurement
error is relatively low.

Comparison of CIT and MR Steiger for obtaining the correct direction of causality

We used simulations to explore the performance of the MR Steiger approach in comparison to CIT in terms
of the rate at which evidence of a causal relationship is obtained for the correct direction of causality, and
the rate at which evidence of a causal relationship is obtained where the reported direction of causality is
incorrect. Simulations were performed for two models, one for a “causal model” where there was a causal
relationship between x and y; and one for a “non-causal model” where x and y were not causally related, but
had a confounded association induced by the SNP ¢ influencing a confounder variable w.

Figure 5a shows that, for the “causal model”, the MR analysis is indeed liable to infer the wrong direction
of causality when d < 0, and that this erroneous result is more likely to occur with increasing sample size.
However, the CIT is in general more fallable to reporting a robust causal association for the wrong direction
of causality. When d > 0 we find that in most cases the MR method has greater power to obtain evidence for
causality than CIT, and always obtains the correct direction of causality. The CIT, unlike the Steiger test for
MR, is able to distinguish the “non-causal model” from the “causal model” (Methods, Figure 5b), but it is
evident that measurement error will often lead the CIT to identify the causal model as true, when in fact the
underlying model is this non-causal model.

The causal relationship between gene expression and DNA methylation levels

We used the Steiger test to infer the direction of causality between DNA methylation and gene expression
levels between 458 putative associations. We found that the causal direction commonly goes in both directions
(Figure 6a), but assuming no or equal measurement error, DNA methylation levels were the predominant
causal factor (p = 1.3 x 107°). The median reliability (R) of the 458 tests was 3.92 (5%-95% quantiles 1.08 -
37.11). We then went on to predict the causal directions of the associations for varying levels of systematic
measurement error for the different platforms. Figure 6a shows that the conclusions about the direction of
causality between DNA methylation and gene expression are very sensitive to measurement error.

We performed two sample MR (28) for each association in the direction of causality inferred by the Stieger
test. We observed that the sign of the MR estimate was generally in the same direction as the Pearson
correlation coefficient reported by Shakhbazov et al (41) (Figure 6b). There was a moderate correlation
between the absolute magnitudes of the causal correlation and the observational Pearson correlation (r =
0.45). Together these inferences suggest that even in estimating associations between ‘omic’ variables, which
are considered to be low level phenotypes, it is important to use causal inference methods over observational
associations to infer causal effect sizes.

We also observed that for associations where methylation caused gene expression the causal effect was more
likely to be negative than for the associations where gene expression caused methylation (OR = 0.61 (95% CI
0.36 - 1.03), Figure 6¢), suggesting that reducing methylation levels at a controlling CpG typically leads to
increased gene expression levels, consistent with expectation (43).

Discussion

Researchers are often confronted with the problem of making causal inferences using a statistical framework
on observational data. In the epidemiological literature issues of measurement error in mediation analysis
are relatively well explored (44). Our analysis extends this to related methods such as CIT that are widely
used in predominantly ’omic data. These methods are indeed susceptible to the same problem as standard
mediation based analysis, and specifically we show that as measurement error in the (true) exposure variable
increases, CIT is likely to have reduced statistical power, and liable to infer the wrong direction of causality.
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We also demonstrate that, though unintuitive, increasing sample size does not resolve the issue, rather it
leads to more extreme p-values for the model that predicts the wrong direction of causality.

Under many circumstances a practical solution to this problem is to use Mendelian randomisation instead of
methods such as the CIT or similar that are based on mediation. Inferring the existence of causality using
Mendelian randomisation is robust in the face of measurement error and, if the researcher has knowledge
about the biology of the instrument being used in the analysis, can offer a direct solution to the issues that
the CIT faces. This assumption is often reasonable, for example SNPs are commonly used as instruments
when they are found in genes with known biological relevance for the trait of interest. But on many occasions,
especially in the realm of ’omic data, this is not the case, and methods based on mediation have been valuable
in order to be able to both ascertain if there is a causal association and to infer the direction of causality. Here
we have described a simple extension to MR which can be used as an alternative to or in conjunction with
mediation based methods. We show that this method is still liable to measurement error, but because it has
different properties to the CIT it offers several main advantages. First, it uses a formal statistical framework
to test for the reliability of the assumed direction of causality. Second, after testing in a comprehensive range
of scenarios the MR based approach is less likely to infer the wrong direction of causality compared to CIT,
while substantially improving power over CIT in the cases where d > 0.

We demonstrate this new method by evaluating the causal relationships of 458 known associations between
DNA methylation and gene expression levels using summary level data. The inferred causal direction is
heavily influenced by how much measurement error is present in the different assaying platforms. For example,
if DNA methylation measures typically have higher measuremet error than gene expression measures then
our analysis suggests that DNA methylation levels would be more often the causal factor in the association.
Indeed, previous studies which have evaluated measurement error in these platforms do support this position
(45,46), though making strong conclusions for this analysis is difficult because measurement error is likely to
be study specific. We also haven’t accounted for the influence of winner’s curse, which can inflate estimates
of the variance explained by SNPs, with higher inflation expected amongst lower powered studies. Using
p-values for genetic associations from replication studies will mitigate this problem.

In our simulations we focused on the simple case of a single instrument in a single sample setting with a view to
making a fair comparison between MR and the various mediation-based methods available. However, if there
is only a single instrument it is difficult to separate between the two competing models of g instrumenting a
trait which causes another trait, and ¢ having pleiotropic effects on both traits independently (47). Under
certain conditions of measurement error the CIT test can distinguish these models. We also note that
it is straightforward to extend the MR Steiger approach to multiple instruments, requiring only that the
total variance explained by all instruments be calculated under the assumption that they are independent.
Multiple instruments can indeed help to distinguish between the causal and pleiotropic models, for example
by evaluating the proportionality of the SNP-exposure and SNP-outcome effects (16). Additionally, if there
is at least one instrument for each trait then bi-directional MR can offer solutions to inferring the causal
direction (16,48,49). We restricted the simulations to evaluating the causal inference between quantitative
traits, but it is possible that the analysis could be extended to binary traits by using the genetic variance
explained on the liability scale, taking into account the population prevalence (50). However, our analysis
goes beyond many previous explorations of measurement error by assessing the impacts of both imprecision
(noise) and linear transformations of the true variable on causal inference.

In this work we assumed that pleiotropy (the influence of the instrument on the outcome through a mechanism
other than the exposure) was not present. Recent method developments in MR (24,25) have focused on
accounting for the issues that horizontal pleiotropy can introduce when multiple instruments are available,
but how they perform in the presence of measurement error remains to be explored. An important advantage
that MR confers over most mediation based analysis is that it can be performed in two samples, which can
considerably improve power and expand the scope of analysis. However, whether there is a substantive
difference in two sample MR versus one sample MR in how measurement error has an effect is not yet fully
understood. We have also assumed no measurement error in the genetic instrument, which is not unreasonable
given the strict QC protocols that ensure high quality genotype data is available to most studies. We have
restricted the scope to only exploring non-differential measurement error and avoided the complications
incurred if measurement error in the exposure and outcome is correlated. We have also not addressed
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other issues pertaining to instrumental variables which are relevant to the question of instrument-exposure
specification. One such problem is exposure misspecification, for example an instrument could associate
with several closely related putative outcomes, with only one of them actually having a causal effect on the
outcome. This problem has shown to be the case for SNPs influencing different lipid fractions, for example
(51,52).

Mediation based network approaches, that go beyond analyses of two variables, are very well established (35)
and have a number of extensions that make them valuable tools, including for example network construction.
But because they are predicated on the basic underlying principles of mediation they are liable to suffer from
the same issues of measurement error. Recent advances in MR methodology, for example applying MR to
genetical genomics (53), multivariate MR (52) and mediation through MR (54-56) may offer more robust
alternatives for these more complicated problems.

The overarching result from our simulations is that, regardless of the method used, inferring the causal
direction using an instrument of unknown biology is highly sensitive to measurement error. With the presence
of measurement error near ubiquitous in most observational data, and our ability to measure it limited, we
argue that it needs to be central to any consideration of approaches which are used in attempt to strengthen
causal inference, and any putative results should be accompanied with appropriate sensitivity analysis that
assesses their robustness under varying levels of measurement error.
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Figure 1: Gene expression levels (blue blocks) and DNA methylation levels (green triangles) may be correlated
but the causal structure is unknown. If a SNP (yellow circle) is associated with both DNA methylation and
gene expression levels then it can be used as an instrument, but there are three basic competing models for
these variables. The causal inference test (CIT) attempts to distinguish between them. a) Methylation causes
gene expression. The left figure shows that the SNP influences methylation levels that in turn influence
gene expression levels. The right figure shows the directed acyclic graph that represents this model. Faded
symbols represent the measured values whereas solid symbols represent the true values. b) The same as in A,
except the causal direction is from gene expression to DNA methylation. ¢) A model of confounding, where
gene expression and DNA methylation are not causally related, but the SNP influences them each through
separate pathways or a confounder.
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Figure 2: The CIT was performed on simulated variables where the exposure influenced the outcome and
the exposure was instrumented by a SNP. The test statistic from CIT when testing if the exposure caused
the outcome (the true model) is in red, and the test for the outcome causing the exposure (false model) is
in green. Rows of plots represent the sample sizes used for the simulations. As measurement imprecision
increases (decreasing values on x-axis) the test statistic for the incorrect model gets stronger and the test
statistic for the correct model gets weaker.
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Figure 3: Outcomes were simulated to be causally influenced by exposures with varying degrees of measurement
imprecision applied to the exposure variable (x axis). True positive rates (y axis) for MR and CIT were
compared for varying levels of measurement imprecision in the outcome variable (rows of boxes) and sample
sizes (columns of boxes).
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Figure 4: a) We can predict the values the Steiger test would take (z-axis) for different potential values of
measurement error (x and y axes), drawn here as the blue surface. When py,, > pg ., as denoted by the
range of values where the blue surface is above the red plane, those values of measurement error lead to our
observed Steiger test inferring the wrong causal direction. Where the blue surface lies below the red plane,
these measurement error values support the inferred causal direction of X to Y. A measure of reliability,
therefore, is the ratio of the negative and positive volumes of the total space bound by the blue and red
surfaces, R = _V(fo In this case, where pg » = 0.01 and px 5= = 0.1, the R = 4.40, which means that 4.40
times as much of the possible measurement error values are in support of the x — y direction of causality than
y — x. b) Plots depicting the parameter space in which the function d = cor(z,zo) — cor(x,y)cor(y,yo) is
negative. When d is negative the Steiger test is liable to infer the wrong direction of causality. Shaded regions
show the parameter space where d is negative. The graph shows that for the majority of the parameter space
of the function, d is positive, especially where causal relationships are relatively weak.
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Figure 5: a) Outcome y was simulated to be caused by exposure x as shown in the graph, with varying
degrees of measurement error applied to both. CIT and MR were used to infer evidence for causality between
the exposure and outcome, and to infer the direction of causality. The value of d = pg o, — Pz,yPy.y,, SUCh
that when d is negative we expect the Steiger test to be more likely to be wrong about the direction of
causality. Rows of graphs represent the sample size used in the simulations. For the CIT method, outcome
1 denoted evidence for causality with correct model, outcomes 2 or 3 denoted evidence for causality with
incorrect model, and outcome 4 denoted no evidence for causality. b) As in (a) except the simulated model
was non-causal, and a genetic confounder induces an association between x and y. MR is unable to identify
this model, so any significant associations are deemed to be incorrect. Outcome 3 denotes evidence for the
correct model for the CIT method.
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Figure 6: Using 458 putative associations between DNA methylation and gene expression we used the
Steiger test to infer the direction of causality between them. a) The rightmost bar shows the proportion of
associations for each of the two possible causal directions (colour key) assuming no measurement error in
either gene expression or DNA methylation levels. The proportions change when we assume different levels of
measurement error in gene expression levels (x-axis) or DNA methylation levels (columns of boxes). If there
is systematically higher measurement error in one platform than the other it will appear to be less likely to
be the causal factor. b) The relationship between the Pearson correlation between DNA methylation and
gene expression levels (x-axis) and the causal estimate (scaled to be in standard deviation units, y-axis). c)
Distribution of estimated causal effect sizes, stratified into associations inferred to be due to DNA methylation
causing expression (blue) and expression causing DNA methylation (red).
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Appendix 1

We assume the following model

T =09+ Bgg +¢g

To = Omz + PmazT + €mz
Yy=a;+ Ber+ €

Yo = Qmy + Bmyy + €my

where z is the exposure on the outcome y, g is an instrument that has a direct effect on z, x, is the
measured quantity of x, where measurement error is incurred from linear transformation in «y,; and G,
and imprecision from €,,;, and y, is the measured quantity of y, where measurement error is incurred from
linear transformation in a,, and B, and imprecision from €,,,. Our objective is to estimate the expected
magnitude of association between g and y after conditioning on xz. Under the CIT, this is expected to be
cov(g,Yo — Jo) = 0 when x causes y, where §, = d,, + Bloaro is the predicted value of y, using the measured
value of z,.

We can split cov(g,y, — J,) into two parts, cov(g,y,) and cov(g, Jo)-

Part 1
cov(g, yo) = COU(Q, ﬁmyy)
- cov(g, Bmyﬁwx)
= cov(g, BmyBabqeg)
= Bmyﬂm/@gvar(g)
Part 2

cov(g,9o) = COU(Q,B%%)
= cov(g, Bu, Bmat)
= cov(g, Be, BmzBq9)
= Bzoﬁmmﬂgvar(g)

Simpifying further

5 cov(Yo, To)

To var(z,)
. COU(Bmyya 6mzx)
B2 var(z) + var(eme)
_ Bmmﬁmycov(:% LU)
- B2, var(x) + var(ems)
_ ﬂmxﬂmyﬁxvar('x)

B2 var(z) + var(ems)

which can be substituted back to give

By BuByvar(g) e, var(x)
cov(g, Jo) = ﬂ;nzvaqr(x) +var(€ms)

_ 2 var(x)
B ﬁ,zmvar(x) + var(€eme) X ﬁmyﬁxﬁgva’r’(g)
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Finally

mavar(z)
Lvar(z) + var(en)

COU(g, Yo — go) = Bmyﬁzﬁgva’r(g) - 52 X ﬂmyﬁmﬁgvar(g)

thus cov(g,yo — §o) = 0 if the measurement imprecision in z, is var(e,) = 0. However if there is any
imprecision then the condition cov(g, y, — §,) = 0 will not hold.

Appendix 2

Assuming that either + — y or y — z, the causal direction can be inferred by evaluating which of p, . and
Pg,y is larger in magnitude. The Steiger test is a hypothesis test that provides a p-value for observing the
difference in these correlations under the null hypothesis that they are equal.

Assuming the causal direction is z — y, two stage MR is formulated using the following regression models:

r=o01+Big+er

for the first stage and

y=as+ ol + e

where T = &1 + 31 g. Writing in scale free terms, p, , denotes the correlation between g and the exposure
variable z, and it is expected that pg . > py, because pyy = pg ops,y, Where p, ., is the causal association
between x and y (which is likely to be less than 1).

In the presence of measurement error in x and y, however, the empirical inference of the causal direction will
instead be based on evaluating pg ., > pg.y,, Which can be simplified:

Pg.zo = Pgyo
Pg.xPz,30 = PgyPyyo
PgzPz,30 > PgxPryPyyo
Pz.xo > Pz,yPyyo
In order to assess how reliable the inference of the causal direction is in the presence of measurement

imprecision, we can evaluate the range of potential values of measurement error in x and y over which the
empirical difference in pg ., and pg,, would return the wrong causal direction.

For different values of ps z., pg,z = Zi’fii and pg.z, < pzz, < 1. For different values of py 4., pg.y = ZiZZ and
Poyo < Py, < 1.

Call z = pg.y — pg,» the true difference in the variance explained by the genetic variant in y and . If 2 <0
then we infer that x — y. There will be some values of p, ., and p,,,, that do not alter whether z < 0. To
evaluate the reliability, R, of the inference of the causal direction with regards to measurement error, the
objective is to compare the proportion of the parameter space that agrees with the inferred direction against
the proportion which does not:

VZZO

—Vz<0

R =

If R =1 then the direction of causality is equally probable across the range of possible measurement error
values. If R > 1 then R times as much of the parameter space favours the inferred direction of causality. V,
the total volume of the function (Figure 4), can be obtained analytically by solving:
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1 1
Yo _ Pgizo

VZ - / / fo - dpyayodp:r,:co
p Pgyo Pyyo Pz,

9,To

= 0g.2,109(Pg.x,) = Pg.y.109(Pg.y,) + Pg.zoPg.y. (109(Pg.y,) — 10g(pg.z,))

V.>0, the proportion of the volume that lies above the z = 0 plane, can also be obtained analytically. The
region of this volume is bound by the values of p; ., and py,,, where 0 = pgy — pg,2, which can be expanded

t0 Py.y, = Pg.yoPr,z,/ Py, Hence,

Pg,yo Pz, w0

1
Pozo Pgy,  Pg,o
Vazo = / —nEe — 28 dpyy,dpy g,

Pg.zo Y Pg,yo Py,yo Px,x,

=2pg.2,P9,y0 — 2Pg,50 — Pg.y.109(Pg,2,) = Pg,20Pg.4,109(Pg,z.,)

Thus Voo =V, — V.>o0.
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