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 2

Abstract 12 
Agricultural land is typically managed based on visible plant life at the 13 

expense of the belowground majority. However, microorganisms mediate processes 14 
sustaining plant life and the soil environment. To understand the role of microbes we 15 
first must understand what controls soil microbial community assembly. We assessed 16 
the distribution and composition of prokaryotic communities from soils representing 17 
four geographic regions on the South Island of New Zealand. These soils are under 18 
three different uses (dairy, sheep and beef, and high country farming) and are 19 
representative of major soil classification groups (brown, pallic, gley and recent). We 20 
hypothesized that pH would account for major community patterns based on 16S 21 
profiles, but that land use and location would be secondary modifiers. Community 22 
diversity and structure was linked to pH, coinciding with land use. Soil classification 23 
correlated with microbial community structure and evenness, but not richness in high 24 
country and sheep and beef communities. The impact of land use and pH remained 25 
significant at the regional scale, but soil classification provided support for 26 
community variability not explained by either of those factors. These results suggest 27 
that several edaphic properties must be examined at multiple spatial scales to robustly 28 
examine soil prokaryotic communities.  29 
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Introduction 30 
 31 

Sustained population growth has placed a major strain on food production, 32 
forcing the development of intensive land use practices that maximize yields1. This 33 
includes use of heavy machinery and extensive applications of chemical amendments 34 
such as fertilizers and herbicides. This intensification of agricultural production has 35 
drastically altered soil conditions, causing physicochemical changes (e.g. compaction, 36 
decreased organic matter and erosion)2, 3, 4 that have led to well-documented losses in 37 
biodiversity, including that of belowground microbial communities5, 6, 7. Microbes are 38 
known to be important to maintaining ecosystem processes8, 9. As a result, 39 
understanding the consequences of these anthropogenic changes is essential for 40 
sustained soil health.  41 

Microorganisms are keystone species that contribute to soil health through 42 
bioremediation of contaminants10, 11,12 and regulation of nutrient cycling13, 14,15. 43 
Despite this, the factors that control their distribution and composition are highly 44 
contested. Many studies have shown that land use changes influence belowground 45 
communities16, 17, 18, while pH is a consistent and dominant driver of microbial 46 
assemblages on a continental scale and across a range of environments19, 20, 21, 22. 47 
However, other edaphic factors like C:N ratio23 and soil texture24, 25 can affect 48 
microbial communities. The confounding effects of specific soil factors draws 49 
attention to a major gap in prediction and interpretation of microbial community 50 
responses to land use change. 51 

Despite the vast number of studies linking individual environmental factors to 52 
changes in microbial community structure, the mechanisms underlying these 53 
relationships have not been resolved. For example, though there is a widely reported 54 
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relationship between pH and microbial community structure, it is currently not clear 55 
whether pH itself is the most important factor, or if individual chemical and physical 56 
factors that contribute to pH are driving this variation19. Additionally, many studies 57 
concerning land use change focus on a single practice at a particular site24, 26, 27, 28. 58 
While such analyses provide insight into small-scale microbial community responses 59 
to land use intensification, information regarding the comparative responses of 60 
communities at multiple scales and across land use types is limited. Moreover, while 61 
microbial ecologists seek to capture any and all drivers of belowground communities, 62 
it is nearly impossible to measure all environmental factors in a given soil. Most 63 
studies evaluate physical factors in terms of soil texture, which is limited in its 64 
representation of the complexity of soil. Soil classification provides a more complete 65 
description of soils that takes into account the parent material, particle size and 66 
permeability, as well as major chemical traits29. This parameter also relates soil 67 
profiles to climactic and physicochemical features such as weathering, leaching, soil 68 
moisture, metal oxides and clay mineral content30 and might provide additional 69 
resolution for characterizing prokaryotic communities. 70 

To this end, our study used 16S rRNA gene profiles to investigate prokaryotic 71 
community composition and distribution in soils on both landscape and regional 72 
scales. We examined soils across a series of sites comprising three land use types and 73 
four geographic regions. We assess the relationship between prokaryotic communities 74 
in these soils with several abiotic factors including pH, land use and soil 75 
classification. We hypothesized that prokaryotic community structure would be 76 
primarily correlated to pH, while land use would have a secondary relationship with 77 
community structure. Furthermore, we hypothesized that soil classification—78 
evaluated at the soil order and subgroup levels—would account for much of the 79 
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variation in prokaryotic communities not described by either land use or pH. Finally, 80 
we sought to understand how individual taxonomic groups responded to these factors.  81 
 82 
Results 83 
 84 
Soil Characteristics 85 

We sampled soils under three land uses: dairy, sheep and beef, and high 86 
country. These uses differ in stock type as indicated by their names, but also in their 87 
management intensity (i.e. low country = highly managed soils with high stocking 88 
rates) as well as location (high country agriculture is carried out on high altitude 89 
pastures). Soil physicochemical characteristics varied across land uses, soil order and 90 
soil subgroup (Table S1). The sampled soils represented a range of pH values (5.1-91 
6.3). High country soils had, on average, 1.08-fold lower pH than dairy and sheep and 92 
beef soils, which were similar in this respect. Soil classification varied within land 93 
uses, but most soils are classified within the brown and pallic soil orders, with a few 94 
dairy soils representing the recent and gley orders. 95 
 96 
Prokaryotic community structure varies with pH and land use  97 

We examined prokaryotic communities from sites representing three land uses 98 
and four geographic regions. A total of 115,445 OTUs (at 97% sequence similarity) 99 
were detected within 72 samples representing 24 sites. OTUs per sample ranged 100 
between 2,414 and 3,641. Prokaryotic alpha diversity was estimated across all 101 
samples and correlations with soil parameters were determined using linear 102 
regressions. Richness was correlated with land use (Figure 1A) (Kruskal-Wallis chi-103 
squared = 11.3, p < 0.004), with increasing richness from high-country sites to sheep 104 
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and beef sites. This trend was related to pH (Figure S1A) (regression R2 = 0.23, p < 105 
0.001) with richness increasing as pH became more neutral. Trends for the Shannon 106 
diversity index were similar to those observed for richness with diversity being 107 
correlated to both land use (Kruskal-Wallis chi-squared = 26.1, p < 0.001) and pH 108 
(Figure S1B) (regression R2 = 0.48, p < 0.001). The remaining chemical data 109 
measured in this study (Table S1) did not account for as much variability as pH and 110 
land use. 111 

Detrended correspondence analysis (DCA) confirmed trends observed using 112 
alpha diversity, with both land use and pH linked to clustering of samples (Figure 113 
1B). Samples from across the three land uses formed a gradient indicating that 114 
differences in prokaryotic communities were primarily correlated with changes in pH 115 
(Mantel R2 = 0.63, p < 0.001). While three land uses are included in the study, 116 
analysis of similarity (ANOSIM) testing indicated only two major categories: high 117 
and low country soils (sheep and beef, and dairy) (Figure S2A, B) (ANOSIM R2 = 118 
0.52, p < 0.001). Hierarchical clustering of Bray-Curtis distances (Figure S3) 119 
confirms the strength of high country and low country environments in explaining the 120 
variance in prokaryotic communities (70% confidence). However, sub-clusters 121 
representing individual replicates from a site within the high/low country split are 122 
better supported using these methods (95% confidence), suggesting unaccounted for 123 
factors that are linked to changes in community structure. 124 
 125 
Variation in community composition within land uses is explained by the 126 
underlying soil classification. 127 

To assess relationships between soil properties and community variation, and 128 
observed clustering of samples, within the three land uses data was subset by land use 129 
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and analyzed independently. Major differences in community structure within the 130 
same land use were correlated with soil order, while soil subgroup resolved only a 131 
few clusters (Figure 2). Soil subgroup has a significant effect on both the observed 132 
species count (Kruskal-Wallis chi-squared = 32.4, p < 0.006) and the Shannon 133 
diversity index (Kruskal-Wallis chi-squared = 50.6, p < 0.001) (Figure 2A). 134 
Interestingly, samples grouped based on soil order (Figure 2B) do not have 135 
significantly different richness values (p > 0.05). However, soil order does correlate 136 
weakly with Shannon diversity (Kruskal-Wallis chi-squared = 8.2, p < 0.05).  137 

DCA reveals that prokaryotic communities form distinct clusters based on soil 138 
order (Figure 2C, D), though all land use sub-communities have statistically 139 
significant relationships with both soil subgroup and soil order (ANOSIM p < 0.001). 140 
Soil order has a slightly stronger correlation with high country soils (R2 = 0.91) 141 
(Figure S4A), while sheep and beef communities (R2 = 0.58) (Figure S4C) have a 142 
slightly stronger relationship with soil subgroup. Hierarchical clustering confirms 143 
these results, where high country communities form two clusters (Figure S5), and 144 
sheep and beef communities form two (Figure S6). On the other hand, dairy 145 
communities do not separate according to soil classification, despite significant 146 
correlations with soil order and subgroup (R2 = 0.30, 0.67) (Figure S7). These 147 
communities remain stable across a wide geographic range, forming one large cluster 148 
indicating that an unknown factor reduces variation in dairy soils. 149 

 150 
Influences of pH and land use are stable across multiple spatial scales, but soil 151 
classification provides additional support 152 
 To determine the impact of geographic scale on observed patterns (based on 153 
pH, land use and soil classification), we individually examined the communities from 154 
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the four geographic regions (Figure S8 and S9). Prokaryotic community changes 155 
within regions confirm that pH and land use are the most significant predictors of 156 
community structure at multiple scales, while soil classification accounts for the 157 
remaining variation (Figure S10-13, Table S2). ).  Interestingly, land use has the most 158 
significant relationships with regional communities where pH was the most 159 
significant variable at the multi-region scale. 160 
 161 
Prokaryotic indicators of pH, land use and soil order 162 

Prokaryotic taxa (OTUs) significantly correlated (p <0.001) to changes in pH, 163 
land use, or soil order were identified using Spearman’s correlations, the Wald test or 164 
the Kruskal-Wallis test respectively. The taxa were then mapped onto cladograms 165 
(Figure 3; taxa with correlations are provided in Supplementary Table S3).  166 

Overall, we found 678 OTUs (0.6% of total OTUs) that were correlated with 167 
one or more edaphic properties. 34% of these OTUs correlated with pH, 27% 168 
correlated with land use and 40% correlated with soil order. The most represented 169 
phyla were the Proteobacteria (31% of significant OTUs), Acidobacteria (22%), 170 
Actinobacteria (17%), Bacteroidetes (6%) and Planctomycetes (5%). A consistent 171 
response to specific edaphic properties was not observed at the phylum level.  172 

At the genus level, there was significant overlap between OTU’s identified 173 
based on soils classification, pH and land use. Generally, high pH, low country soils, 174 
pallic, gley and recent soils shared correlated OTUs (e.g. Adhaeribacter and 175 
Revranella) while low pH, high country soils and brown soils had significantly 176 
correlated OTUs in common (e.g. Bryobacter, Acidothermus, Koribacter, 177 
Telmatobacter, Mycobacterium and Candidatus Methylacidiphilum).  178 
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However, the relative abundances of several genera correlated with only one 179 
edaphic property. Anaeromyxobacter, Singulisphaera and Rhodanobacter had 180 
positive correlations with pH, while Rhizobium, Variovorax and Flavobacterium were 181 
negatively correlated to pH. High country soils were correlated with 182 
Frigoribacterium, Jatrophihabitans and Massilia, while low country soils had 183 
correlations with Janibacter, Pseudonocardia and Pelobacter. Lastly, Rubrobacter, 184 
Defluviicoccus and Parasegetibacter were most strongly correlated with brown soils 185 
while Marmoricola, Nocardiodes and Gemmatimonas had significant correlations 186 
with the other three soil orders. 187 
 188 
Discussion 189 
 190 

Results revealed that: prokaryotic assemblages differed significantly between 191 
land uses and across a pH gradient, however much of the variation within land uses 192 
and regions was better accounted for by soil order. Additionally, taxonomic profiles 193 
revealed that while overlap exists between OTUs identified as being correlated with 194 
pH, land use and soil classification, each parameter identified specific populations not 195 
correlated with either of the remaining two. 196 

The studied soils harbored distinct prokaryotic communities, revealing 197 
consistent impacts of pH and, to a lesser extent, land use across spatial scales. Our 198 
results also confirm the notion that acidic soils support a smaller breadth of diversity. 199 
These results are in agreement with many previous studies that have established the 200 
role of pH and land use on prokaryotic communities19, 20, 21.  It has been previously 201 
suggested that soil texture is an important predictor of prokaryotic community 202 
structure24, 31, 32. To build on this relationship, we evaluated the potential link between 203 
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soil classification (soil order and subgroup) and prokaryotic communities. This 204 
allowed us to investigate the extent to which agricultural intensification impacts the 205 
relationship between inherent soil properties, like soil texture, and prokaryotic 206 
communities. The rationale was that soil classification provides a more thorough 207 
representation of the soils’ physical and chemical factors including those not 208 
measured (e.g. metal oxides), as well as the geological origins of the soils.  209 

We observed strong relationships between soil classification and prokaryotic 210 
community diversity and structure. Brown soils had the lowest diversity, while pallic 211 
soils had the highest. The low pH values of the sampled brown soils, combined with 212 
the wet climate where some of the brown soils are commonly found30, results in low 213 
nutrient levels compared to other NZ soils leading to conditions that select for a less 214 
diverse community of microbes. In contrast, pallic soils have higher pH values and 215 
are only weakly leached, retaining more nutrients allowing for a more diverse 216 
community. While richness levels between the two soils were comparable, Shannon 217 
diversity differed, indicating changes in evenness. As exemplified by the evenly high 218 
levels of iron oxides in brown soils, depleting nutrient stocks and low pH lead to 219 
uniform conditions favoring a smaller subset of taxa as shown in our study.  220 

The analysis of sub-communities within each of the four regions suggests that 221 
both land use and soil classification have strong relationships with prokaryotic 222 
communities. Southland soils had the strongest relationship with land use, but soil 223 
order resolved some differences between clusters along the second axis, where 224 
communities from a recent soil clustered away from the brown soils. Recent soils are 225 
unique in that they are weakly developed, meaning the soil has fewer horizons than 226 
the moderately or well-developed soils comprising the other soil orders in this study33. 227 
Prokaryotic communities from Otago soils were most strongly correlated with soil 228 
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subgroup. This is especially interesting, as in this region, one of the low country sites 229 
grouped with the high country soils on the first DCA axis, but formed their own 230 
cluster on the second axis. This cluster happens to contain communities from the only 231 
brown soils in this particular region, providing further evidence for soil order as a 232 
strong predictor of prokaryotic community structure. In Otago, the two pallic soils 233 
clustered quite distantly from one another, explained by the distinction in soil 234 
structure between laminar and fragic pallics; laminar soils have layers of clay in the 235 
subsoil, while fragic soils are brittle, hard and contain a compacted pan in the 236 
subsoil33.  237 

Our finding that prokaryotic communities within land uses and regions 238 
correlated with soil order indicates that soil classification is a good predictor for 239 
prokaryotic communities that are geographically distant from one another. However, 240 
we found that dairy communities do not separate clearly based on soil classification. It 241 
is possible that the high stocking rates that are characteristic of dairy farms34, 35 cause 242 
heightened deposition of manure and urine, creating a new soil layer that is 243 
fundamentally disconnected from the parent material. It has been shown previously 244 
that dairying does impact soil ecosystems in ways that high country, and sheep and 245 
beef management does not. For example, Barkle and colleagues observed that 246 
application of dairy farm effluent (a mixture of water, urine and manure) onto pasture 247 
leads to the accumulation of nutrients and increased prokaryotic biomass36. Haynes 248 
and colleagues found similar results in camp areas (where livestock tends to 249 
congregate) when compared to non-camp soils, which provides further insight into the 250 
discrepancy in stocking rate as it affects prokaryotic communities37. As a result, the 251 
inherent properties expected for soils subjected to dairy management wouldn’t have a 252 
relationship with prokaryotic communities. This also gives insight into pH, since soil 253 
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orders differ in this regard. While it is well established that soil pH is linked to 254 
prokaryotic communities on a continental scale, the factors that contribute to pH 255 
changes are unresolved 19. We can hypothesize that the pH of sheep and beef, and 256 
high country soils is connected to inherent soil properties, represented by soil 257 
classification, while the pH of dairy soils has been modified by increased agricultural 258 
intensification, impacting prokaryotic communities accordingly.  Furthermore, while 259 
we can be confident in the predictive power of soil order for other land uses, there is 260 
less resolution when using soil subgroup. Current methods (charting latitude and 261 
longitude onto LRIS soil maps) may not be precise enough to accurately classify soils 262 
at this level. 263 

While we have established that pH, land use and soil order are good predictors 264 
of prokaryotic community structures, little is known about the mechanisms that 265 
account for these relationships. It is possible that pH, land use and soil order serve as 266 
integrative variables for multiple chemical and physical characteristics that 267 
individually impact prokaryotic communities. Our results suggest that land use, pH 268 
and soil order each exert direct pressure on certain prokaryotic taxa, but also contain 269 
some overlap in their taxonomic profiles, indicating that they may also integrate some 270 
of the same soil properties.  271 

Members of both Firmicutes (Bacillus) and Thaumarchaeota (uncultured 272 
representative) are significantly represented in low country soils, but not at high pH 273 
levels. This is interesting, as many members of these phyla are thought to thrive at 274 
high pH levels38, 39, suggesting that the members detected here have different life 275 
strategies that are selected for by land use. Additionally, DCA plotting showed that 276 
high country soils are strongly correlated with low pH, which is supported by their 277 
shared relationship with several Acidobacteria groups. However, there were several 278 
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members from the Proteobacteria (e.g. Massilia), Actinobacteria (e.g. 279 
Frigoribacterium), and Chloroflexi (e.g. Ktedonobacter) that were significantly 280 
represented in high country soils but not at low pH levels. Little is known about the 281 
ecophysiology of many of these genera. However, Massilia are copiotrophs, and are 282 
sensitive to nutrient availability. It is established that high country rangelands are 283 
subjected to less rigorous management regimes compared to their low country 284 
counterparts40. This management strategy may give rise to a nutrient profile that is 285 
preferable for the maintenance of Massilia populations41. Selection by land use is 286 
further evidenced by the strong correlation between high country soils and the 287 
verrucomicrobial phylotype Da101 and, contrastingly, a positive correlation with pH. 288 
As high country soils tend to have lower pH values, and Verrucomicrobia are thought 289 
to persist in low-nutrient environments42, 43, it can be inferred that the stable nutrient 290 
status of high country soils explains the abundance of this phylotype rather than pH.  291 
Other taxa, like Gaiella (originally isolated from an aquifer44) and Nitrospira, which 292 
are normally found in wet environments45, were most significantly correlated with 293 
gley soils. These soils are known to have high water tables30, which would likely 294 
provide preferable conditions for these microbes to thrive.  295 

Our results confirm soil pH is the strongest predictor of community structure, 296 
diversity and composition across multiple spatial scales, but we also show strong 297 
relationships with land use and soil order. We propose that soil order may serve as an 298 
integrative factor that accounts for physical and chemical properties and can be used 299 
when direct assessment of specific edaphic factors is not possible. Further, the 300 
identification of specific OTUs correlated to more than one factor suggests that 301 
spurious correlations are highly likely and other factors besides pH might better 302 
explain observed patterns. 303 
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 304 
Materials and methods 305 
 306 
Soil sampling 307 

A total of 24 field sites across four regions on the south island of New Zealand 308 
were sampled in this study (Figure 1). Sites were chosen to represent: the three main 309 
land uses in New Zealand agriculture (dairy, sheep and beef, high country farming), a 310 
wide range of edaphic parameters (Table S1), and four major regions of New Zealand 311 
(North Canterbury, South Canterbury, Otago, Southland). Samples were collected at 312 
the beginning of the growing season, between May 5 and May 16, 2014. Sites were 313 
delineated in the field by twelve replicate plots (1m2 each) within a gridded area 314 
enclosed by a 6.5 by 5 m fence. Biological replicates from each site were collected by 315 
sampling three random plots for a total of 72 samples in the study (24 sites x 3 plots at 316 
each site). Each sample comprised a composite of four cores (7.5 cm depth and 2.5 317 
cm diameter) that were taken 0.4 m apart diagonally across the 1m2 plot. Cores were 318 
screened prior to compositing to remove roots, worms and rocks. Samples were kept 319 
on ice while in the field and stored at -20 degrees until returning to the lab for final 320 
storage at -80 degrees.  321 

Chemical analyses were performed by R.J. Hill Laboratories (Hamilton, NZ). 322 
For soil pH determination, a 1:2 soil: water slurry was prepared followed by 323 
potentiometric titration (CITE). Data for soil physical properties were obtained from 324 
the New Zealand Land Resource Information Systems Portal 325 
(https://lris.scinfo.org.nz/). 326 
 327 
DNA extraction and sequencing 328 
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 Genomic DNA was extracted from 0.25 g of soil using the Mo Bio PowerSoil-329 
htp 96-well soil DNA isolation kit (Carlsbad, CA, USA) according to the 330 
manufacturer’s instructions, but with a modification at the lysing step. Samples were 331 
placed on a Geno/Grinder homogenizer (SPEX Sample Prep, LLC, Metuchen, NJ, 332 
USA) for two rounds of fifteen seconds at 1750 strokes/minute. One extraction was 333 
performed on each sample. DNA concentration and purity was determined using a 334 
Nanodrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 335 
Absorbance was observed at 230, 260, 280 and 320 nm.  336 

The V4 region of the 16S rRNA gene was amplified using the universal 337 
primer pair 515F (5′-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3′) and 806R 338 
(5′-GGACTACHVGGGTWTCTAAT-3′) following the Earth Microbiome Project 339 
barcoded conditions46. Each sample was given a barcode sequence on the 5’ end of 340 
the forward primer for multiplexed sequencing and loaded onto a single Illumina 341 
MiSeq 2 × 151 bp run (Illumina, Inc., CA, USA). Sequences were deposited at the 342 
Sequence Read Archive (NCBI) with the accession numbers: 5902515-5902586 under 343 
the BioProject ID: PRJNA348131.  344 
 345 
Sequence processing 346 

All sequences were initially processed using a QIIME 1.9.0 open-reference 347 
OTU-picking workflow47. In brief, raw sequences were first demultiplexed. Forward 348 
sequences were then clustered into OTUs (97% similarity) against the SILVA 349 
database release 11948 using UCLUST49. Reads that failed to hit the reference 350 
database were clustered de novo. Taxonomy assignments were determined using 351 
BLAST50 with a maximum e-value of 0.001 against the SILVA database. The 352 
resulting OTU table was then subsampled to an even depth of 12,000 sequences per 353 
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sample ten times followed by merging of the resulting ten OTU tables to reduce 354 
biases that arise from unequal library sizes. All data was then exported as a biom file. 355 
 356 
Statistical analyses 357 

Sample counts were transformed by dividing the individual OTU abundances 358 
by the number of rarefactions (10) followed by rounding prior to downstream analysis 359 
using the phyloseq package51 in R52, 53. Diversity estimates were determined using 360 
observed richness and the Shannon index, as calculated and plotted in phyloseq and 361 
ggplot254. Regression analyses and Kruskal-Wallis tests were performed in R to 362 
assess the relationships between environmental variables and richness and diversity. 363 
Prokaryotic community differences were represented on a two-dimensional ordination 364 
plot using Detrended Correspondence Analysis (DCA) with the Bray-Curtis distance 365 
between samples in phyloseq and ggplot2. Analysis of Similarity (ANOSIM) was 366 
used to quantify the relationships between significant differences in community 367 
structure and categorical variables (land use and soil classification) within the vegan 368 
package55. The Mantel test was performed in vegan with 999 permutations to assess 369 
relationships between continuous variables (pH) and community structure. To identify 370 
consistent clustering patterns in the data, hierarchical clustering was performed in the 371 
pvclust package56 using Ward’s method and Bray-Curtis distances. To examine 372 
significant differences in the abundance and distribution of taxa between land uses, 373 
the data were transformed to relative abundance in phyloseq. The Wald chi-squared 374 
test was applied to the data using the DESeq2 package57. Spearman’s rank 375 
correlations were used to test differences in taxa distributions along the pH gradient. 376 
The Kruskal-Wallis test was used to observe differences in OTU abundances of 377 
significance between the soil orders, and was performed in QIIME. Cladograms were 378 
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generated in GraPhlAn58. Mapping was done using GADM59 in RStudio with 379 
packages: ggplot2, sp60, 61, raster62, rgdal63 and ggsn64.  380 

 381 
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Figure legends 639 
 640 
Figure 1 Relationships between bacterial communities under different land uses and 641 
pH. Changes in Alpha (Richness and Shannon Diversity) (A) and Beta (Detrended 642 
correspondence analysis based on Bray-Curtis dissimilarity) diversity metrics in 643 
response to land use and pH (B).  644 
 645 
Figure 2 Soil classification predicts prokaryotic community structuring within each 646 
land use. Comparison of diversity metrics for each soil subgroup (A) and (B) soil 647 
order. High country (C), Sheep and Beef (D), and dairy (E) soil communities 648 
evaluated using DCA ordination based on Bray-Curtis dissimilarity with color 649 
representing soil subgroup and shape representing soil order. 650 
 651 
Figure 3 Cladograms showing relationships between key taxa and edaphic properties. 652 
(A) OTUs (97% sequence similarity) significantly correlated with high or low country 653 
soils and are strongly correlated with changes in pH. Significance for land use 654 
preference was determined using the Ward method with a Z lower-limit of 6 and a p-655 
value of <0.001. Correlation with pH was determined by a Spearman’s correlation 656 
with a Rho lower-limit of 0.5/-0.5 and a p-value of <0.001. Light blue indicates a 657 
negative correlation with pH, and dark blue is positive (B) OTUs significantly 658 
correlated with specific soil orders.  Significance was determined using the Kruskal-659 
Wallis test with a chi-squared lower-limit of 27 and a p-value of <0.001. Brown soils 660 
are indicated by yellow, pallic by red, gley by green and recent by blue. A gradient of 661 
8 shades for each color was generated to indicate abundance, where white indicates an 662 
abundance of 0 and the darkest shades indicate an abundance >100. 663 
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 664 
Figure 4 Map of sampling sites throughout the South Island of New Zealand. High 665 
country, dairy, and sheep and beef sites are indicated by triangles, circles and squares, 666 
respectively. 1-North Canterbury, 2-South Canterbury, 3-Otago, 4-Southland. The 667 
map was generated using shapefiles from GADM (v. 2.8, https://www.gadm.org) in 668 
RStudio (v. 0.99.903, https://www.rstudio.com/) using ggplot2 (v. 2.1.0), sp (v. 1.2-669 
3), raster (v. 2.5-8), rgdal (v. 1.2-4) and ggsn (v. 0.3.1). 670 
 671 
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