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Abstract

An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually.
There is growing alarm that a significant portion of this investment is wasted, due to problems in repro-
ducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent
years have seen a flurry of activities focusing on standardization and guideline development to enhance the
reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual
artifacts, ranging from grant applications to journal publications. These artifacts can be both the source
and the end result of practices leading to research waste. For example, an article may describe a poorly
designed experiment, or the authors may reach conclusions not supported by the evidence presented. In
this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders
in the biomedical research enterprise in doing their part towards enhancing research integrity and rigor. In
particular, we identify four key areas in which text mining techniques can make a significant contribution:
plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload, and
accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if
they exist, or discuss relevant research that can provide guidance for future work. With the exponential
increase in biomedical research output and the ability of text mining approaches to perform automatic tasks
at large scale, we propose that such approaches can add checks and balances that promote responsible re-
search practices and can provide significant benefits for the biomedical research enterprise.
Supplementary information: Supplementary material is available at BioRxiv.

1 Introduction

Lack of reproducibility and rigor in published research, a phenomenon sometimes referred to as the “re-
producibility crisis”, is a growing concern in science. In a recent Nature survey, 90% of the responding
scientists agreed that there was a crisis in science (Baker, 2016a). It has become routine in recent years
for scientific journals as well as for news media to publish articles discussing various aspects of this crisis
as well as proposals and initiatives to address them. The reproducibility problem is perhaps most acutely
felt in biomedical research, where the stakes are high due to the size of research investment and impact on
public health. In 2010, the global spending on research in life sciences (including biomedical) was US$240
billion (Røttingen et al., 2013). The problems in reproducibility and rigor of published research means that a
portion of this expenditure is wasted. Chalmers and Glasziou (2009) estimate that avoidable waste accounts
for approximately 85% of research investment.

A variety of factors, occurring at various stages of research and attributable to different stakeholders, can
lead to reproducibility issues and, ultimately, waste. For example, at the conception, the scientist, unaware
of the published literature, may propose to address a research question that can already be answered with
existing evidence, or may fail to select the appropriate experimental design and methods (Chalmers and
Glasziou, 2009; Collins and Tabak, 2014). As the research is being conducted, the investigator, overwhelmed
with administrative tasks, may not be able to provide adequate training/supervision to lab staff (Barham
et al., 2014), who do not validate their experiments sufficiently. Only a subset of data that yields statistical
significant results may be reported, while negative results may be discarded completely (p-hacking, selective
reporting, or publication bias) (Head et al., 2015; Dwan et al., 2014; Chan et al., 2004). The authors may
fail to identify the model organisms, antibodies, reagents necessary for other researchers to replicate the
experiments (Vasilevsky et al., 2013). Journal editors, valuing novelty over reproducibility, may be reluctant
to publish negative results or replication studies (Collins and Tabak, 2014). A peer reviewer may miss
methodological problems with the manuscript. An institutional review board (IRB) may fail to follow up
on biased underreporting of the research that they approve (Chalmers, 2002). Funding agencies may put
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too much emphasis on number of publications, citation counts, and research published in journals with
high impact factors for rewarding research grants (Collins and Tabak, 2014; Bowen and Casadevall, 2015).
The so-called “publish or perish” culture at academic institutions can create pressure to maximize research
quantity with diminishing quality (Collins and Tabak, 2014).

While research rigor and reproducibility in biomedical research is not a recent problem, discussions of
the “reproducibility crisis” are largely due to several recent high-profile studies. In one of the pioneering
studies, Ioannidis (2005) demonstrated how reliance on hypothesis testing in biomedical research frequently
results in false positive results, which he attributed to a variety of factors, such as effect size, flexibility
in study design, and financial interest and prejudice. More recently, Begley and Ellis (2012) were unable
to reproduce the findings reported in 47 of 53 landmark hematology and oncology studies. Studies with
similar findings were conducted in other fields, as well (Kyzas et al., 2007; Prinz et al., 2011; Open Science
Collaboration, 2015). Lack of reproducibility and rigor can mostly be attributed to questionable research
practices (honest errors, methodological problems). At the extreme end of the reproducibility spectrum,
fraudulent science and retractions constitute a small but growing percentage of the published literature. The
percentage of retracted articles in PubMed has increased about 10-fold since 1975 and 67.4% are attributable
to scientific misconduct: fraud, duplicate publication, and plagiarism (Fang et al., 2012). Due to their
pervasiveness, however, questionable research practices can be much more detrimental to science (Bouter
et al., 2016). Biomedical research outcomes, estimated by life expectancy and novel therapeutics, have
remained constant despite rising investment and scientific knowledge in the last five decades, partly attributed
to non-reproducibility (Bowen and Casadevall, 2015). Such evidence establishes the lack of reproducibility
and rigor as a major problem that can potentially undermine trust in biomedical research enterprise. All
stakeholders involved in the biomedical research enterprise have a responsibility to ensure the accuracy,
verifiability, and honesty of research conduct and reporting to reduce waste and increase value.

Towards increased rigor and reproducibility, initiatives focusing on various aspects of reproducible science
have been formed and they have been publishing standards, guidelines, and principles. These include ICMJE
trial registration requirement (De Angelis et al., 2004), NIH efforts in enhancing research reproducibility
and transparency (Collins and Tabak, 2014) and data discovery (Ohno-Machado et al., 2015), in addition
to reporting guidelines (Simera et al., 2010; Nosek et al., 2015), data sharing principles (Wilkinson et al.,
2016), conferences (e.g., World Conference on Research Integrity), journals (e.g., Research Integrity and
Peer Review), and centers (e.g., Center for Open Science, METRIC) dedicated to these topics.

We have used several terms (reproducibility, replication, rigor, integrity) somewhat interchangeably to
describe related phenomena that differ in some fundamental aspects. The semantics of these terms are
still somewhat muddled, leading to confusion and potentially hampering efforts to fix the problems (Baker,
2016b). To better focus the remainder of this paper, we use the definitions below, provided in Bollen et al.
(2015).

• Reproducibility: The ability to duplicate the results of a prior study using the same materials and
procedures as were used by the original investigator.

• Replicability: The ability to duplicate the results of a prior study if the same procedures are followed
but new data are collected.

• Generalizability: Whether the results of a study apply in other contexts or populations that differ
from the original one (also referred to as translatability).

Results that are reproducible, replicable, and generalizable are referred to as being robust.
The notions of rigor and integrity are also invoked to discuss related phenomena. The definitions below

are taken from NIH’s Grants and Funding resources:

• Rigor: Strict application of the scientific method to ensure robust and unbiased experimental design,
methodology, analysis, interpretation and reporting of results1.

• Integrity: The use of honest and verifiable methods in proposing, performing, and evaluating research,
reporting results with attention to adherence to rules, regulations, guidelines, and following commonly
accepted professional codes and norms2.

While reproducibility is often used as an umbrella term to cover all these related issues, in the remainder
of this paper, we use it in the limited sense given above. Instead, we focus on the notions of research rigor
and integrity, because i) these notions emphasize reporting over duplication of prior experiments, and ii) we
are mainly interested in whether/how mining of textual research artifacts can contribute to openness and
transparency in biomedical science.

Mining of textual biomedical research artifacts is in the purview of biomedical natural language processing
(referred to as bioNLP henceforth), a field at the intersection of natural language processing (NLP) and
biomedical informatics. In this article, we assume basic knowledge of bioNLP; for introductions and recent
surveys, see Ananiadou and McNaught (2006); Cohen and Demner-Fushman (2014); Gonzalez et al. (2016).
In the next section, we turn to our original question: can bioNLP provide tools that can help stakeholders
in enhancing rigor and integrity of biomedical research?

1https://grants.nih.gov/reproducibility/index.htm
2https://grants.nih.gov/grants/research_integrity/whatis.htm
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2 BioNLP for Research Rigor and Integrity

Text mining is largely concerned with unstructured text, the primary means of communication for biomedical
research. Unstructured biomedical text comes in various forms of textual artifacts, including:

• Proposals (grant applications, protocols) authored by scientists and assessed by funding agencies,
reviewers, and IRBs

• Manuscript submissions, authored by scientists and evaluated by journal editors, program chairs, and
peer reviewers, edited by journal staff

• Publications, authored by scientists, read and assessed by other scientists, systematic reviewers, database
curators, funding agencies, IRBs, academic institutions, and policymakers

Clark et al. (2014) conceptualize the ecosystem of biomedical communication as a cycle of nine activities,
with inputs and outputs (the output of the last activity feeding back into the first):

1. Authoring

2. Reviewing for Publication

3. Editing and Publishing

4. Database and Knowledge-base Curation

5. Searching for Information

6. Reading

7. Discussion

8. Evaluating and Integrating Information

9. Experiment Design and Execution

Textual artifacts are primary inputs and outputs of some of these activities. For example, inputs for authoring
include other relevant publications in the research space, as well as experimental data and observations,
and the output is a manuscript for submission. By providing the ability to automatically process such
artifacts at a large scale and extract relevant information for subsequent activities, bioNLP methods have
the potential to assist scientists with the entire lifecycle of biomedical communication. Though not explicit
in Clark et al.’s conceptualization, the same capabilities can also benefit other stakeholders (journal editors,
reviewers, funding agencies, etc.), who need to evaluate such artifacts based on their scientific merit.

What kinds of text mining tools can be envisioned? What kinds of benefits can they provide? We briefly
outline several categories of tools and their potential benefits below.

1. Plagiarism/fraud detection: Although plagiarism and outright fraud are relatively rare (though seem-
ingly growing (Fang et al., 2012)) in scientific literature, tools that can detect plagiarism/fraud can
be helpful to journal editors in catching research misconduct before publishing an article and avoiding
later retractions, which may reflect badly on the journal.

2. Adherence to reporting guidelines: Tools that can assess a manuscript against the relevant reporting
guidelines and flag the issues would be useful for journal editors, who can then require the authors to
fix the problems for publication.

3. Managing information overload: Text mining tools can help in managing information overload by
summarizing and aggregating salient knowledge (e.g., hypotheses, claims, supporting evidence) in
textual artifacts, a capability that can benefit all stakeholders. Efficient knowledge management can
help research rigor and reduce research waste by ensuring that, for example, scientists are aware of all
relevant studies before embarking on a research project (Lund et al., 2016) or that funding agencies
are not awarding funds to redundant or unjustified proposals (Robinson and Goodman, 2011; Habre
et al., 2014).

4. Accurate citation and enhanced bibliometrics: Tools that can verify whether the authors cite relevant
literature (or omit) accurately would be beneficial in reducing citation distortion, which has been shown
to lead to unfounded authority (Greenberg, 2009). Advanced citation analysis tools that can recognize
the function of a citation and its significance for the publication can help funding agencies and academic
institutions move beyond simple citation counts and make more informed decisions about the impact
of a particular study.

Although text mining has been used to address a variety of tasks that can be subsumed by the categories
outlined above, there is little research on using text mining for broadly addressing research integrity and rigor
issues in biomedical science. One nascent effort is a collaboration between the academic publisher Elsevier
and Humboldt University3, which aims to use text/data mining for early detection of integrity issues, focusing
mainly on plagiarism/fraud, image manipulation, and data fabrication, although no published results were
available at the time of this writing.

In the remainder of this section, we review the existing NLP/bioNLP research on the four categories of
tasks that we outlined above.

3http://headt.eu
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2.1 Plagiarism/Fraud Detection

Plagiarism is “the appropriation of another person’s ideas, processes, results, or words without giving appro-
priate credit” (Habibzadeh and Shashok, 2011). A serious problem in academia, especially with regards to
student writing, plagiarism also occurs in medical publications (Habibzadeh and Shashok, 2011). Plagiarism
comes in several forms: at one end of the spectrum is copy-paste plagiarism, which is relatively easy to
detect, and on the other end is paraphrased or translated plagiarism, which can be very challenging. Pla-
giarism detection is a well-studied information retrieval task and dedicated tools have been developed (e.g.,
TurnItIn4, Plagramme5). CrossRef Similarity Check6, a TurnItIn-based tool used by publishers, specifically
targets plagiarism in scholarly communication. It generates an overall similarity score between a manuscript
and the articles in a large database of publications and flags the manuscript if its similarity score is over a
publisher-determined threshold.

Generally, two plagiarism detection tasks are distinguished: extrinsic and intrinsic plagiarism detection.
In extrinsic plagiarism detection, a document is compared to other candidate documents in a reference collec-
tion. Approaches to this task differ with respect to how documents are represented: document fingerprints
based on substring hashing (Hoad and Zobel, 2003) or vectors (Stein and Meyer zu Eissen, 2006). Vector
representations can be based on characters, words, word sequences (n-grams), or stopwords (Stamatatos,
2011). High number of candidate documents can pose challenges in extrinsic plagiarism detection (Stein
and Meyer zu Eissen, 2006); therefore, efficient document representations and candidate document selection
can be critical. In intrinsic plagiarism detection, the goal is to recognize shifting writing styles within a
document to spot plagiarism (Meyer zu Eissen and Stein, 2006). Methods for this task rely on stylometric
features, such as word class usage and average word frequency, which indicate the author’s vocabulary size
and style complexity. Plagiarism detection has been the topic of PAN shared task challenges7, the last
edition of which took place in 2016 (Rosso et al., 2016). Performance for extrinsic plagiarism detection in
these competitions has reached an F1 score of 0.88 (Sanchez-Perez et al., 2014), while the state-of-the-art
performance for intrinsic plagiarism detection is much lower at an F1 score of 0.22 (Kuznetsov et al., 2016).
Plagiarism in the PAN corpora was simulated, whereas Nawab et al. (2016) used a corpus of PubMed ab-
stracts that were deemed to be suspiciously similar to other abstracts and used a query expansion approach
based on UMLS Metathesaurus (Lindberg et al., 1993) to detect plagiarism. Plagiarism detection tools are
most beneficial to journal editors and peer reviewers, though scientists can also benefit from using such tools
to prevent inadvertent plagiarism or self-plagiarism.

Plagiarism accounts for a relatively small fraction of retractions in biomedical research articles (9.8%),
while the fraud accounts for 43.4% (Fang et al., 2012). Such cases often involve data fabrication or falsifi-
cation (Fanelli, 2009), types of misconduct that would typically be difficult to flag with text analysis alone.
Focusing on text only, Markowitz and Hancock (2015) investigated whether scientists write differently when
reporting fraudulent research. They compared the linguistic style of publications retracted for fraudulent
data with that of unretracted articles and articles retracted for reasons other than fraud. They calculated a
linguistic obfuscation score based on stylistic and psycholinguistic characteristics of a document, including
ease of reading, rate of jargon, causal and abstract words. They found that retracted articles were writ-
ten with significantly higher levels of linguistic obfuscation and that obfuscation was positively correlated
with the number of references. However, their score-based method had a high false-positive rate and they
suggested that NLP techniques could achieve higher classification performance. A task similar to fraud
detection, considered in open-domain NLP, is deception detection, generally cast as a binary classification
task (deceptive vs. true) (Mihalcea and Strapparava, 2009). Supervised machine learning techniques (Sup-
port Vector Machines (SVMs), Naive Bayes) using n-gram and psycholinguistic features have been applied
to this task (Mihalcea and Strapparava, 2009; Ott et al., 2011), the latter achieving F1 score of 0.90 (Ott
et al., 2011). Interestingly, inter-annotator agreement (Fleiss’ κ=0.11) and human judgements (0.60 F1)
were found to be lower than machine performance.

The classification approach used for deception detection is likely to be beneficial in detecting fraudulent
articles. Similarly to plagiarism detection, fraud detection tools would be most useful to journal editors. We
note that, in general, decisions regarding fraud or plagiarism should ultimately only be made by humans,
since such accusations can be damaging to a scientist’s career. However, text mining approaches can, to
some extent, flag suspicious manuscripts, which can then be given extra scrutiny.

2.2 Adherence to Reporting Standards and Guidelines

The EQUATOR Network (Simera et al., 2010) has promoted transparent and accurate reporting, and guide-
lines for various study types have been developed under its umbrella (e.g., CONSORT for randomized
clinical trials (RCTs) (Schulz et al., 2010), ARRIVE for preclinical animal studies (Kilkenny et al., 2010)).
For example, the CONSORT Statement consists of a 25-item checklist and a flow diagram. The CONSORT
checklist for Methods sections is provided in the Supplementary File as an example.

Although a large number of journals have adopted or support such guidelines, adherence to them re-
mains inadequate (Turner et al., 2012). As a solution, structured reporting of key methods and findings

4http://www.turnitin.com
5http://www.plagramme.com
6http://www.crossref.org/crosscheck
7http://pan.webis.de
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has been proposed (Altman, 2015). Until such proposals gain currency, however, most methodological in-
formation is likely to remain buried in narrative text or, in the worst case, be completely absent from the
publication. Text mining tools can help journal editors enforce adherence to reporting guidelines by locating
key statements corresponding to specific guideline items or giving alerts in their absence. For example, per
CONSORT, the method used to generate the random allocation sequence as well as statistical details critical
for reproducibility can be identified. Recognition of description of limitations and sources of possible bias
can be beneficial for broader rigor and generalizability. Additionally, medical journals require or encourage
inclusion of certain types of meta-information, such as funding, conflicts of interest, trial registration, and
data access statements. Identifying such meta-statements and locating statements corresponding to guide-
line items can both be categorized as information extraction tasks, and similar techniques (text/sentence
classification, sequence labeling) can be applied to them. The difficulty of extracting these items varies
widely: locating trial registration information seems relatively easy, since the trial registration numbers
have a standard format, whereas extracting statements that indicate that interpretation is “consistent with
results, balancing benefits and harms, and considering other relevant evidence” (a CONSORT checklist
item) seems challenging, since some subjectivity may be involved and a deeper text understanding may be
needed. Commercial software has been developed to address adherence issues to some extent (e.g., Penelope
Research8, StatReviewer9); however, they currently have limited capabilities and information about the un-
derlying technologies is sparse. Tools that can address the guideline adherence would be useful not only for
journals and reviewers, but also to authors of systematic reviews, who aim to identify well-designed, rigorous
studies, and to clinicians looking for the best available clinical evidence.

We are not aware of any published bioNLP research that aims to determine whether a manuscript fully
complies with the relevant set of reporting guidelines. However, some research attempts to identify some
guideline items as well as other meta-information, often for the purpose of automating systematic review
process (Tsafnat et al., 2014). We discuss such research below; see O’Mara-Eves et al. (2015) for a general
discussion of using text mining for systematic reviews.

In the simplest case, some statistical details, such as p-values and confidence intervals, can be identified
with simple regular expressions (Chavalarias et al., 2016). Some meta-information, such as funding, conflict
of interest, or trial registration statements, often appear in dedicated sections and are expressed using a
limited vocabulary; hence, simple keyword-based techniques could be sufficient. For example, Kafkas et al.
(2013) mined data accession numbers in full-text articles using regular expressions.

Other items require more sophisticated techniques, often involving machine learning. For example, Kir-
itchenko et al. (2010) extracted 21 key elements (e.g., eligibility criteria, sample size, primary outcomes,
registration number) from full-text RCT articles, some of which are included in CONSORT. Their system,
trained on an annotated corpus of 132 articles, used a two-stage pipeline: first, given a particular element, a
classifier predicted whether a sentence is likely to contain information about that element. Second, regular
expressions were used to extract the exact mention of the element. Some meta-information (DOI, author
name, publication date) was simply extracted from PubMed records. For each remaining element, an SVM
model with n-gram features was trained for sentence classification. A post-hoc evaluation on a test corpus of
50 articles yielded a precision of 0.66 for these elements (0.94 when partial matches were considered correct).

Névéol et al. (2011a) focused on extracting deposition statements of biological data (e.g., gene sequences)
from full-text articles. They semi-automatically constructed a gold standard corpus. Their approach con-
sisted of two machine learning models: one recognized data deposition components (Data, Action, General
Location, Specific Location) using the Conditional Random Fields (CRF) sequence labeling algorithm. The
main model, a binary classifier, predicted whether a sentence contains a data deposition statement. This
classifier, trained with Naive Bayes and SVM algorithms, employed token, part-of-speech, and positional
features as well as whether the sentence included components identified by the CRF model. An article was
considered positive for data deposition if the top-scored sentence was classified as positive. Their system
yielded an F1 score of 0.81.

PICO frame elements (Problem, Population, Intervention, Comparison, and Outcome) are recommended
for formulating clinical queries in evidence-based medicine (Sackett et al., 1996). They often appear in
reporting guideline checklists (e.g., Participants in CONSORT vs. Population in PICO). Some research
focused on PICO and its variants. Demner-Fushman and Lin (2007) identified PICO elements in PubMed
abstracts for clinical question answering. Outcomes were extracted as full sentences and other elements
as short noun phrases. The results from an ensemble of classifiers (rule-based, n-gram-based, position-
based, and semantic group-based), trained on an annotated corpus of 275 abstracts, were combined to
recognize outcomes. Other elements were extracted using rules based on the output of MetaMap (Aronson
and Lang, 2010), a system that maps free text to UMLS Metathesaurus concepts (Lindberg et al., 1993).
Recently, Wallace et al. (2016), noting that PICO elements may not appear in abstracts, attempted to extract
PICO sentences from full-text RCT articles. They generated sentence-level annotations automatically from
free-text summaries of PICO elements in the Cochrane Database of Systematic Reviews (CDSR), using a
novel technique called supervised distant supervision. A small number of sentences in the original articles
that were most similar to CDSR summary sentences were identified and a manually annotated subset was
leveraged to align unlabeled instances with the structured data in CDSR. Separate models were learned for
each PICO element with bag-of-words and positional features as well as features regarding the fraction of

8http://www.peneloperesearch.com/
9http://www.statreviewer.com/
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numerical tokens, whether the sentence contains a drug name, among others. Their technique outperformed
models that used direct supervision or distant supervision only. A PICO variant, called PIBOSO (B:
Background, S: Study design, O: Other) was also studied (Kim et al., 2011). A corpus of 1,000 PubMed
abstracts were annotated with these elements (PIBOSO-NICTA) and two classifiers were trained on this
corpus: one identified PIBOSO sentences and the other assigned PIBOSO labels to these sentences. A
CRF model was trained using bag-of-words, n-gram, part-of-speech, section heading, position, and sequence
features as well as domain information from MetaMap. With the availability of the PIBOSO-NICTA corpus,
several studies explored similar machine-learning based approaches (Verbeke et al., 2012; Hassanzadeh et al.,
2014), state-of-the-art results, without using any external knowledge, were reported by Hassanzadeh et al.
(2014) (0.91 and 0.87 F1 scores on structured and unstructured abstracts, respectively).

Marshall et al. (2015) developed a tool called RobotReviewer to identify risk of bias (RoB) statements
in clinical trials. They used seven risk categories specified in the Cochrane RoB tool (e.g., random se-
quence generation, allocation concealment, blinding of participants and personnel, and selective outcome
reporting) and labeled articles as high or low risk with respect to a particular category. Similar to their
approach for extracting PICO statements, they semi-automatically generated positive instances for training
by leveraging CDSR, where systematic reviewers copy/paste a fragment from the article text to support their
RoB judgements. An SVM classifier based on multi-task learning mapped articles to RoB assessments and
simultaneously extracted supporting sentences with an accuracy of 0.71 (compared to 0.78 human accuracy).

Considering research rigor broadly, Kilicoglu et al. (2009) developed machine learning models to recognize
methodologically rigorous, clinically relevant publications to serve evidence-based medicine. Several binary
classifiers (Naive Bayes, SVM, and boosting) as well as ensemble methods (stacking) were trained on a
large set of PubMed abstracts previously annotated to develop PubMed Clinical Queries filter (Wilczynski
et al., 2005). The base features used included token, PubMed metadata as well as semantic features, as
extracted by MetaMap and SemRep (Rindflesch and Fiszman, 2003), a biomedical relation extraction tool.
Best results (F1 score of 0.67) were achieved with a stacking classifier that used base models trained with
various feature-classifier combinations (e.g., SVM with token features only).

2.3 Managing Information Overload

Tasks we discussed so far did not require much deep natural language understanding; surface-level features,
such as n-grams and part-of-speech tags, positional information and limited semantic knowledge, extracted
with tools like MetaMap, were mostly sufficient for models that yielded reasonable performance. In this
section, we turn to tasks aiming to address information overload caused by the considerable size and the
rapid growth of the biomedical literature.

A strategy for efficient management of the biomedical literature should support extraction of the hy-
potheses and the key arguments made in a research article (referred to as knowledge claims (Myers, 1992)
henceforth) as well as their contextualization (e.g., identifying the evidence provided to support these claims,
the level of certainty with which the claims are expressed, and whether they are new knowledge). It should
also allow aggregating such knowledge over the entire biomedical literature. A deeper text understanding
is required for such capabilities and we argue that the key to them is normalization of claims and the
supporting evidence into computable semantic representations that can account for lexical variability and
ambiguity. Such representations make the knowledge expressed in natural language amenable to automated
inference and reasoning (Blackburn and Bos, 2005). Furthermore, they can form the building blocks for
advanced information seeking and knowledge management tools, such as semantic search engines, which can
help us navigate the relevant literature more efficiently. For example, formal representations of knowledge
claims can underpin tools that enable searching, verifying, and tracking claims at a large scale, and summa-
rizing research on a given biomedical topic; thus, reducing the time spent locating/retrieving information
and increasing the time spent interpreting it. Such tools can also address siloization of research (Swanson,
1986; Editorial, 2016), putting research questions in a larger biomedical context and potentially uncovering
previously unknown links from areas that the researcher does not typically interact with. Literature-scale
knowledge extraction and aggregation on a continuous basis can also facilitate ongoing literature surveil-
lance, with tools that alert the user when a new knowledge claim related to a topic of interest is made,
when a claim of interest to the user is discredited or contradicted10, increasing research efficiency. Ad-
vanced knowledge management tools would be beneficial to all parties involved in biomedical research: i)
to researchers in keeping abreast of the literature, generating novel hypotheses, and authoring papers, ii) to
funding agencies, IRBs, and policymakers in better understanding the state-of-the-art in specific research
areas, creating research agendas/policies, verifying claims and evidence presented in proposals, assessing
whether the proposed research is justified, iii) to journal editors, peer reviewers, systematic reviewers, and
database curators in locating, verifying, and tracking claims and judging evidence presented in manuscripts
and publications.

What do we mean by normalization of knowledge claims and evidence? With normalization, we refer
to recognition of biomedical entities, their properties, and the relationships between them expressed in text
and mapping them to entries in a relevant ontology or knowledge-base. As the basis of such formalization,
we distinguish three levels of semantic information to be extracted: conceptual, relational, and contextual.
Roughly, the conceptual level is concerned with biomedical entities (e.g., diseases, drugs), relational level

10A service similar to Crossref’s CrossMark, which indicates updates on a given publication, can be envisioned.
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with biomedical relationships (e.g., gene-disease associations), and the contextual level with how these
relationships are contextualized and related for argumentation. A knowledge claim, in the simplest form,
can be viewed as a relation. We illustrate these levels on a PubMed abstract in the Supplementary File.

Conceptual level is in the purview of the named entity recognition and normalization (NER/NEN) task,
while relation extraction focuses on the relational level. These tasks are well-studied in bioNLP. We provide
a brief overview in the Supplementary File; see recent surveys (Gonzalez et al., 2016; Luo et al., 2016) for
more comprehensive discussion. In the remainder of this subsection, we first briefly discuss tools that address
information overload using concepts and relations extracted from the literature and then turn to research
focusing on the contextual level.

2.3.1 Literature-scale relation extraction

Literature-scale relation extraction has been proposed as a method for managing information overload (Kil-
icoglu et al., 2008). SemMedDB (Kilicoglu et al., 2012) is a database of semantic relations extracted with
SemRep (Rindflesch and Fiszman, 2003) from the entire PubMed. In its latest release (as of December 31th,
2016), it contains about 89 million relations extracted from more than 26 million abstracts. It has been used
for a variety of tasks, such as clinical decision support (Jonnalagadda et al., 2013), uncovering potential drug
interactions in clinical data (Zhang et al., 2014), supporting gene regulatory network construction (Chen
et al., 2014), and medical question answering (Hristovski et al., 2015). It also forms the back-end for the
Semantic MEDLINE application (Kilicoglu et al., 2008), which integrates semantic relations with automatic
abstractive summarization (Fiszman et al., 2004), and visualization, to enable the user navigate biomedical
literature through concepts and their relations. Semantic MEDLINE, coupled with a literature-based dis-
covery extension called “discovery browsing”, was used to propose a mechanistic link between age-related
hormonal changes and sleep quality (Miller et al., 2012) and to elucidate the paradox that obesity is bene-
ficial in critical care despite contributing to disease generally (“the obesity paradox”) (Cairelli et al., 2013).
Another database, EVEX (Van Landeghem et al., 2013), is based on the Turku Event Extraction System
(TEES) (Björne and Salakoski, 2011) and includes relations extracted from the full-text articles in PMC-
OA as well as PubMed abstracts. It consists of approximately 40 million bio-molecular events (e.g., gene
expression, binding). A CytoScape plugin, called CyEVEX, is made available for integration of literature
analysis with network analysis. EVEX has been exploited for gene regulatory network construction (Hakala
et al., 2015). Other databases, such as PharmGKB (Hewett et al., 2002) and DisGeNET (Piñero et al.,
2015), integrate relationships extracted with text mining with those from curated resources.

2.3.2 Contextualizing Biomedical Relations

Contextualizing relations (or claims) focuses on how they are presented and how they behave in the larger
discourse. Two distinct approaches can be distinguished.

The first approach, which can be considered “bottom-up”, focuses on classifying scientific statements or
relations along one or more meta-dimensions aiming to capture their contextual properties; for example,
whether they are expressed as speculation or not. One early task adopting this approach was distinguishing
speculative statements from facts (hedge classification). For this task, weakly supervised learning tech-
niques (Szarvas, 2008), as well rule-based methods using lexical and syntactic templates (Kilicoglu and
Bergler, 2008; Malhotra et al., 2013) have been explored, yielding similar performance (0.85 F1 score)11.
Semantically more fine-grained, speculation/negation detection task has focused on recognizing speculation
and negation cues in text (e.g., suggest, likely, failure) and their linguistic scope, often formalized as a
relation (Kim et al., 2008) or a text segment (Vincze et al., 2008). Speculation/negation detection has
been studied in the context of BioNLP Shared Tasks on event extraction (Kim et al., 2009, 2012) and
the CoNLL’10 Shared Task on Hedge Detection (Farkas et al., 2010). Supervised machine learning meth-
ods (Björne and Salakoski, 2011; Morante et al., 2010) as well as rule-based methods with lexico-syntactic
patterns (Kilicoglu and Bergler, 2012) have been applied to this task. The interaction of speculation and
negation has been studied under the notion of factuality and factuality values (Fact, Probable, Possible,
Doubtful, Counterfact) of biological events were computed using a rule-based, syntactic composition ap-
proach (Kilicoglu et al., 2015).

Focusing on a more comprehensive characterization of scientific statements, Wilbur et al. (2006) catego-
rized sentence segments along five dimensions: Focus (whether the segment describes a finding, a method, or
general knowledge), Polarity (positive/negative), Certainty (the degree of speculativeness expressed towards
the segment on a scale of 0-3), Evidence (four levels, from no stated evidence to explicit experimental evi-
dence in text), and Direction (whether segment describes an increase or decrease in the finding). A similar
categorization (“meta-knowledge”) was proposed by Thompson et al. (2011), who applied it to events, rather
than arbitrary text segments. They also proposed two hyper-dimensions that are inferred from their five
categories: one indicates whether the event in question is New Knowledge and the other whether it is a
Hypothesis. Studies that focused on predicting these meta-dimensions have been trained on the annotated
corpora and used supervised machine learning techniques (Shatkay et al., 2008; Miwa et al., 2012b). The

11Interesting from a research integrity/transparency perspective, the system developed in (Kilicoglu and Bergler, 2008) was used
to compare the language used in reporting industry-sponsored research and non-industry-reported research, which found that the
former was on average less speculative (ter Riet et al., 2013).
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Claim Framework (Blake, 2009) proposed a categorization of scientific claims according to the specificity of
evidence, somewhat similar to Focus dimension in the schema of Wilbur et al. (2006). Five categories were
distinguished (explicit claim, implicit claim, observation, correlation, and comparison). A small corpus of
full-text articles was annotated with these categories and an approach based on lexico-syntactic patterns
was used to recognize explicit claims.

The second approach (“top-down”) focuses on classifying larger units (sentences or a sequence of sen-
tences) according to the function they serve in the larger argumentative structure. Proposed by Teufel et al.
(1999, 2009) for scientific literature on computational linguistics and chemistry, argumentative zoning assigns
sentences to domain-independent zone categories based on the rhetorical moves of global argumentation and
the connections between the current work and the cited research. The proposed categories include, for ex-
ample, Aim (statement of specific research goal or hypothesis), Nov Adv (novelty/advantage of the approach),
Own Mthd (description of methods used), among others. Mizuta et al. (2006) adapted this classification to
biology articles and presented an annotated corpus. Guo et al. (2011) adopted a simplified version of ar-
gumentative zoning with seven classes (e.g., Background, Method, Result, and Future Work). They used
weakly supervised SVM and CRF models to classify sentences in abstracts discussing cancer risk assess-
ment, which yielded an accuracy of 0.81. The CoreSC schema (Liakata et al., 2010) is an extension of the
argumentative zoning approach, in which sentences are classified along two layers according to their role in
scientific investigation. The first layers consists of 11 categories (e.g., Background, Motivation, Experiment,
Model, Result, Conclusion) and the second layer indicates whether the information is New or Old. A corpus
of chemistry articles annotated with these layers was presented. SVM and CRF classifiers that recognize the
first layer categories were developed (Liakata et al., 2012a), achieving best results with Experiment, Back-
ground, and Model classes (0.76, 0.62, 0.53 F1 scores, respectively). N-gram, dependency, and document
structure features (section headings) were found to be predictive. Such top-down classifications are similar to
but more fine-grained than IMRaD rhetorical categories (Introduction, Methods, Results, Discussion) that
underlie the structure of most scientific articles. Since the sentences may not conform to the characteristics
of the section that they appear in, some research considered classifying sentences into IMRaD categories. For
example, Agarwal and Yu (2009) compared several rule-based and supervised learning methods to classify
sentences from full-text biomedical articles into these categories. The best results reported (0.92 accuracy
and F1 score) were obtained with a Naive Bayes classifier with n-gram, tense, and citation features, and
feature selection. Other similar categorizations have also been proposed (e.g., (de Waard et al., 2009)). Note
that the methods applied in these approaches are largely similar to those discussed earlier for identification
of specific statements, such as PICO or data deposition statements. Finally, a comprehensive, multi-level
model of scientific argumentation, called Knowledge Claim Discourse Model (KCDM), has been proposed
by Teufel (2010). Five levels varying in their degree of abstraction have been distinguished. At the most
abstract level, rhetorical goals are formalized into four categories, often not explicit in text (“Knowledge
claim is significant”, “Knowledge claim is novel”, “Authors are knowledgeable”, “Research is methodologi-
cally sound”). Next level, rhetorical moves, addresses the properties of the research space (e.g.,“No solution
to new problem exists”) and the new knowledge claim (e.g., “New solution solves problem”). The third
level, knowledge claim attribution, is concerned with whether a knowledge claim is attributed to the author
or others. At the fourth level are hinge moves, which categorize the connections between the new knowledge
claim and other claims (e.g., “New claim contrasts with existing claim”). The bottom and the most con-
crete layer, linearization and presentation, deals with how these rhetorical elements are realized within the
structure of the article. Teufel reported the results of several annotation studies focusing on argumentative
zoning and knowledge claim attribution (κ values of 0.71 to 0.78), and her argumentative zone detection
system, based on supervised learning with verb features, word lists, positional information, and attribution
features, achieved a κ value 0.48, with respect to the annotated corpus.

Similarly taking a top-down approach but focusing on the relations between individual discourse segments
(similar to KCDM hinge moves) are models of discourse coherence. Such relations include elaboration, com-
parison, contrast, and precedence and are often indicated with discourse connectives (e.g., furthermore, in
contrast). Linguistic theories and treebanks have been proposed to address these relations, including Rhetori-
cal Structure Theory (RST) (Mann and Thompson, 1988) and the Penn Discourse TreeBank (PDTB) (Milt-
sakaki et al., 2004), each assuming a somewhat different discourse structure and relation inventory and
differing in their level of formalization. In the biomedical domain, discourse relations remain understudied,
with the notable exception of the Biomedical Discourse Relation Bank (BioDRB) corpus (Prasad et al.,
2011), in which a subset of PDTB relation types were used to annotate abstracts in the GENIA corpus.
Detection of discourse connectives was explored on this corpus and an F1 score of 0.76 was achieved with a
supervised learning approach and domain adaptation techniques (Ramesh et al., 2012).

Some research considered combining bottom-up and top-down approaches for a fuller understanding
of scientific discourse or contextual meaning. For example, a three-way characterization, based on meta-
knowledge dimensions (Thompson et al., 2011), CoreSC (Liakata et al., 2010), and discourse segment classi-
fication (de Waard et al., 2009), was attempted and these components were shown to be complementary (Li-
akata et al., 2012b). The Embedding Framework (Kilicoglu, 2012) proposed a unified, domain-independent
semantic model for contextual meaning, consolidating the meta-dimensions and discourse coherence re-
lations. A fine-grained categorization of contextual predicates was presented, with 4 top-level categories
(Modal, Valence Shifter, Relational, Propositional), where the Modal and Valence Shifter categories
overlap with meta-dimensions and the Relational category overlaps with discourse relations. A dictionary of
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terms, classified according to this fine-grained categorization, was constructed and a rule-based interpretation
methodology based on this dictionary and syntactic dependency composition was proposed. The framework
is designed to complement existing relation extraction systems. While no specific corpus annotation was
performed, the methodology has been applied to relevant tasks, such as speculation/negation detection (Kil-
icoglu and Bergler, 2012), factuality assessment (Kilicoglu et al., 2015), and attribution detection (Kilicoglu,
2012), yielding good performance.

Although not a text mining approach, an effort that deserves discussion here is Micropublications (Clark
et al., 2014), a semantic model of scientific claims, evidence, and arguments. Built on top of Semantic Web
technologies, micropublications are intended for use in the research lifecycle, where scientists create, publish,
expand, and comment on micropublications for scientific communication. They have been proposed as a
potential solution to improve research reproducibility and robustness. At a minimum, a micropublication
is conceived as a claim with its attribution, and in its full form, as a claim with a complete directed-
acyclic support graph, consisting of relevant evidence, interpretations, and discussion that supports/refutes
the claim, either within the publication or in a network of publications discussing the claim. It has been
designed to be compatible with claim-based models formalizing relationships (e.g., Nanopublications (Mons
and Velterop, 2009)), as well as with claims in natural language text. The model can accommodate artifacts
such as figures, tables, images, and datasets, which text mining approaches generally do not consider. While
it has been used for manual annotation (Schneider et al., 2014), to our knowledge, the Micropublications
model has not been used as a target for text mining. An example micropublication is presented in the
Supplementary File.

2.4 Accurate Citation and Enhanced Bibliometrics

Citations are important for several reasons in ensuring research integrity/rigor. First, the performance
of a scientist is often measured by the number of citations they receive and the number of articles they
publish in high impact-factor journals. Count-based measures, such as the h-index (Hirsch, 2005), are often
criticized, because they treat all citations as equal and do not distinguish between the various ways and
reasons a paper can be cited. For example, a paper can be appraised in a positive light or criticized, it
can be cited as the basis of the current study or more peripherally. Such differences should be accounted
for enhanced bibliometric measures. More sophisticated measures have been proposed in response to such
criticism (e.g., (Hutchins et al., 2016)). Secondly, from an integrity perspective, it is important to ensure
that all references in a manuscript (or any other scientific textual artifact) are accurately cited. Two kinds
of reference accuracy problems are distinguished (Wager and Middleton, 2008): citation accuracy refers to
the accuracy of details, such as authors’ names, date of publication, and volume number, whereas quotation
accuracy refers to whether the statements from the cited papers are accurately reflected in the citing paper.
Reference accuracy studies were found to have a median error rate of 39% and quotation accuracy studies a
median error rate of 20% (Wager and Middleton, 2008). Greenberg (2009) highlighted some types of citation
distortions (i.e., quotation accuracy problems) that lead to unfounded authority. For example, citation
transmutation refers to “the conversion of hypothesis into fact through act of citation alone”, and dead-end
citation to “citation to papers that do not contain content addressing the claim.” Another rigor issue is the
continued citation of retracted papers, which may lead to spreading of misinformation. A study of retracted
paper citations found that 94% of the citing papers did not acknowledge the retraction (Budd et al., 2011).
Automated citation analysis tools and accuracy checkers would be beneficial for journal editors and staff
in their workflows, as well as for scientists in authoring manuscripts and academic institutions and funding
agencies in considering quality of impact rather than quantity and improving decision-making.

Most text mining research on citations has focused on the computational linguistics literature, an area in
which a corpus of full-text articles is available (ACL Anthology Corpus (Radev et al., 2009)). Citation anal-
ysis has been proposed for enhancing bibliometrics as well as for extractive summarization (Qazvinian and
Radev, 2008). Several aspects of citations have been studied. Research on citation context detection aims to
identify the precise span of the discussion of the reference paper in the citing paper. For example, to detect
the surrounding sentences that discuss a reference paper, Qazvinian and Radev (2010) proposed a method
based on Markov Random Fields using sentence similarity and lexical features from sentences. Abu-Jbara
and Radev (2012) focused on reference scopes that are shorter than the full sentence. They explored several
methods for this task: word classification with SVM and logistic regression, CRF-based sequence labeling,
and segment classification which uses rules based on CRF results, achieving best performance with segment
classification (F1 score of 0.87). Other studies explored citation significance. Athar (2014) presented a text
classification approach to determine whether a citation is significant for the citing paper and achieved 0.55
F1 score with a Naive Bayes classifier that used as features number of sentences with acronyms, with formal
citation to the paper and to the author’s name, as well as average similarity of the sentence with the title.
Similar text classification techniques were used to identify key references (Zhu et al., 2015) and meaningful
citations (Valenzuela et al., 2015); the number of times a paper is cited was identified as the most predictive
feature. Citation sentiment (whether the authors cite a paper positively, negatively, or neutrally) has also
been proposed to enhance bibliometrics. Athar (2011) annotated the ACL Anthology Corpus for citation
sentiment and used an SVM classifier with n-gram and dependency features extracted from the citation
sentence for sentiment classification, achieving a macro-F1 score of 0.76. In the biomedical domain, Xu et al.
(2015) annotated the discussion sections of 285 RCT articles with citation sentiment. Using an SVM clas-

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2017. ; https://doi.org/10.1101/108480doi: bioRxiv preprint 

https://doi.org/10.1101/108480
http://creativecommons.org/licenses/by-nc/4.0/


sifier with n-gram and various lexicon-based features (e.g., lexicons of positive/negative sentiment, contrast
expressions), they reached a macro-F1 score of 0.72. A more fine-grained citation classification concerns
citation function, for which many classifications have been proposed. For example, Teufel et al. (2006a)
presented a scheme, which contained 12 categories (e.g., Weak (weakness of the cited approach), PBas (cited
work as the starting point), CoCo- (unfavorable comparison/contrast)) and measured inter-annotator agree-
ment (κ=0.72). Later, Teufel et al. (2006b) used a memory-based learning algorithm to recognize these
categories. They used features based on cue phrases in the citation sentence, position of the citation, and
self-citation, which yielded a κ of 0.57. In the biomedical domain, Agarwal et al. (2010) presented a corpus
of 43 biomedical articles annotated with eight citation roles (e.g., Background/Perfunctory, Contempo-
rary, Contrast/Conflict, Evaluation, Modality, Similarity/Consistency), achieving moderate inter-annotator
agreement (κ=0.63), though it seems difficult to think of some of their categories (Contemporary, Modality)
as citation roles in a traditional sense. Using n-gram features with SVM and Naive Bayes classifiers, they
obtained a macro-F1 score of 0.75.

The first type of reference accuracy, referred to as citation accuracy above, is studied under the rubric
of citation matching. We do not discuss this task here, as NLP has little relevance to it; see Olensky et al.
(2016) for a comparison of several citation matching algorithms. Ensuring quotation accuracy, on the other
hand, can be viewed as a text mining task, in which the goal is to identify the segments of the reference paper
that are discussed in the citing paper. Inability to find such a segment would indicate a dead-end citation,
while finding inconsistencies between how a claim is presented in the reference paper versus the citing paper
with respect to its factuality might indicate a citation transmutation (Greenberg, 2009). However, identifying
reference paper segments precisely can be challenging, as the citing paper usually does not simply quote
the reference paper verbatim, but rather paraphrases its contents, and commonly, refers to its contents
in an abstract manner. In the Text Analysis Conference (TAC) 2014 Biomedical Summarization shared
task12, one subtask involved finding the spans of text in reference papers that most accurately reflect the
citation sentence and identifying what facet of the reference paper it belongs to (e.g., Hypothesis, Method,
Results, Implication). The task focused on a corpus of 20 biology articles, each with 10 corresponding
reference articles. The inter-annotator agreement was found to be low. The results of this shared task
were not available at the time of this writing; however, one of the reported systems (Molla et al., 2014)
relied on calculating text similarity between the citation sentence and the sentences in the reference paper,
using tf.idf, as well as various methods to expand the citation context and the reference paper context for
similarity calculation. The best results (F1 score of 0.32) were obtained when using 50 sentences surrounding
the citation sentence and all sentences from the articles that cite the reference paper for context. The same
task has also been adapted to the computational linguistics literature (Jaidka et al., 2016); even though the
results have been poorer, with the top-ranking system obtaining 0.1 F1 score (Cao et al., 2016).

3 Challenges and Directions

We examined four areas of concern for biomedical research integrity and rigor and discussed existing text
mining research that has the potential to address them. We discuss below several general challenges facing
bioNLP research focusing on these areas and highlight some promising avenues for future research.

The first challenge is concerned with availability of artifacts that can be used to train text mining methods.
While most text mining research has focused on PubMed abstracts due to their availability, most biomedical
knowledge relevant to the tasks discussed, including study details, knowledge claims, and citations, can only
be located in full-text. Blake (2009) found that only 8% of the explicit claims were expressed in abstracts.
Furthermore, biomedical abstracts differ from full-text in terms of structure and content (Cohen et al., 2010).
The PMC-OA subset is amenable to automated approaches without much additional pre-processing effort;
however, it contains only about a million full-text articles (4% of all PubMed abstracts). Due to availability
and access difficulties, researchers often use non-standard PDF-to-text conversion tools to extract full-text
from PDF files (e.g., (Marshall et al., 2015; Jimeno-Yepes and Verspoor, 2014)). Considering that the
progress in bioNLP is partly attributed to public accessibility of biomedical abstracts, a similar mode of
access can further stimulate research in mining of full-text articles. We are not aware of research focusing on
other textual artifacts discussed, though abstracts of NIH grant applications and the resulting publications
are available via NIH RePORT13 and some journals (e.g., British Medical Journal) publish pre-publication
manuscripts and reviewer reports for transparency.

Collecting bibliographic data at a large scale also remains challenging. Two sources of scholarly citation
considered most authoritative, Web of Science and Scopus, are neither complete nor fully accurate (Frances-
chini et al., 2016) and require high subscription fees. Others, like Google Scholar, have license restrictions.
Open Citations Corpus (OCC) has been proposed as an open-access repository of citation data to improve
citation access (Peroni et al., 2015). They rely on the SPAR ontologies (Peroni, 2014), which define char-
acteristics of the publishing domain. Citation information in PMC-OA has been made available in OCC.
Although this is a small subset of the biomedical literature, the movement towards open-access citation data
is encouraging for research.

12http://www.nist.gov/tac/2014/BiomedSumm
13https://report.nih.gov/
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Even when the text sources are plentiful, restrictions may apply to text mining of their contents. Pub-
lishers often adopt a license-based approach, allowing researchers from subscribing institutions to register
for an API key to text-mine for research purposes. Negotiating a separate license with each publisher is not
only impractical for both researchers and publishers but also ineffective, since some tasks (e.g., plagiarism
detection, managing information overload, citation analysis) presuppose text mining at the literature scale
with no publisher restrictions. The Crossref Metadata API initiative (Lammey, 2016) aims to solve this
problem by providing direct links to full-text on the publisher’s site and a common mechanism for recording
license information in Crossref metadata. Several publishers (e.g., HighWire Press, Elsevier, Wiley) as well
as professional societies (e.g., American Psychological Association) have been involved in this initiative.

The next set of challenges are concerned with the text mining approaches themselves. Most approaches
depend on annotated corpora and sizable corpora based on full-text articles or other text sources we dis-
cussed are lacking. The largest full-text corpus, CRAFT (Bada et al., 2012), contains 67 articles and the
annotation focuses mostly on low-level semantic information, such as named entities and concepts. Some
tasks we discussed require higher level annotation, such as annotation of argumentation, discourse structure,
citation function and quotation, and are much more challenging since they are less well-defined and some
subjectivity is involved in annotating them. Collaborative, cross-institution efforts would be beneficial for
consolidating existing research in these areas and proposing more comprehensive characterizations. Ontology
development research should also be taken into account, since some existing ontologies focus on scholarly
discourse (e.g., SWAN (Ciccarese et al., 2008)), and annotation efforts would benefit from the insights of
such research. Another promising avenue is crowdsourcing of annotation, where the “crowd” (a mix of lay
people, enthusiasts, experts), recruited through an open call, provide their services for a given task. In the
biomedical domain, crowdsourcing has been successfully applied to relatively low-level tasks such as named
entity annotation, while it has been considered less suitable for complex, knowledge-rich tasks (Khare et al.,
2015). However, the design of crowdsourcing experiments plays a significant role in their success and creative
crowdsourcing interfaces could make collection of complex data (e.g., argumentation graphs) more feasible.
It is also worth noting that frameworks like Nanopublications (Mons and Velterop, 2009) and Micropubli-
cations (Clark et al., 2014) advocate the use of semantic models of scientific statements and argumentation,
respectively, in the workflows of scientists as a means of knowledge generation and exchange. If such mod-
els are adopted more widely (not only among scientists but also publishers and other stakeholders), the
knowledge generated would also be invaluable as gold standard data. The Resource Identification Initia-
tive (Bandrowski et al., 2016) promotes such a model for research resources (e.g., reagents, materials) and
can be informative in this regard.

Representativeness and balance of a corpus is important for the generalizability of tools that are trained
on it. Though corpus linguistics literature addresses the construction of balanced and representative corpora
(e.g., (Biber, 1993)), in practice, most biomedical text corpora focus on a restricted domain of interest. For
example, CRAFT (Bada et al., 2012) contains biology and genetics articles, while GENIA (Kim et al., 2003)
contains abstracts about biological reactions involving transcription factors in human blood cells. Lippin-
cott et al. (2011) showed that subdomains in biomedical literature vary along many linguistic dimensions,
concluding that a text mining system performing well on one subdomain is not guaranteed to perform well
on another. Construction of wide-coverage, representative biomedical full-text article corpora, while clearly
very challenging, would be of immense value to text mining research in general. Also note that a subfield of
machine learning, domain adaptation, specifically focuses on model generalizability. Various methods (some
requiring data from the new domain and some not) have been proposed (e.g.,(Daumé, III, 2007)), and such
methods have been applied to biomedical text mining tasks (e.g., (Miwa et al., 2012a)). Independently, some
systems provided machine learning models that can be retrained on new annotated corpora (e.g., (Björne
and Salakoski, 2011; Leaman and Lu, 2016)), while others attempted to generalize by appealing to linguistic
principles (e.g., (Rindflesch and Fiszman, 2003; Kilicoglu and Bergler, 2012)).

Important information in biomedical articles may only appear in tables, graphs, figures, or even supple-
mentary files. There is relatively little research in incorporating data from such artifacts into text mining
approaches, even though some semantic models, such as Micropublications (Clark et al., 2014), support
them. Figure retrieval has been considered, mainly focusing on using text from figure captions (Hearst
et al., 2007), text within figures (Rodriguez-Esteban and Iossifov, 2009), as well as text from paragraphs
discussing the figures and NER (Demner-Fushman et al., 2012). Research on information extraction from
tables is rare (Wong et al., 2009; Peng et al., 2015; Milosevic et al., 2016), though this may change with
recent availability of corpora (Shmanina et al., 2016). Jimeno-Yepes and Verspoor (2014) showed that most
literature-curated mutation and genetic variant existed only as supplementary material and used open-source
PDF conversion tools to extract text from supplementary files for text mining.

The accuracy of text mining approaches vary widely depending on the task. In some classification tasks
(e.g., identifying PICO categories), state-of-the-art performance is over 0.9 accuracy, whereas in recognition
of citation quotation, the state-of-the-art performance is just over 0.3. Although text mining tools have
shown benefits in curation and annotation (Alex et al., 2008; Névéol et al., 2011b), it is critical to educate
the users about the role of such tools in their workflows and their value/limitations, and not alienate them by
setting their expectations impossibly high. It is also worth pointing out that human agreement on some tasks
is not high; therefore, it may be unrealistic to expect that automated tools do well (e.g., Fleiss’ κ of 0.11 for
deceptive text annotation (Ott et al., 2011)). Depending on the task, a user may prefer not the setting which
yields the highest F1 score, generally considered the primary performance metric, but rather high recall or
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high precision. Providing the ability to tune a system for high recall or precision is likely to be advantageous
for its adoption. Most machine learning systems are essentially black-boxes, and the ability of systems to
provide human-interpretable explanations for their predictions may also affect their adoption. Curation
cycles, in which experts or the crowd manually “correct” text mining results, providing feedback that is
automatically incorporated into machine learning models, can also be effective in incrementally improving
performance of such models.

4 Conclusion

Towards enhancing rigor and integrity of biomedical research, we proposed text mining as complementary
to efforts focusing on standardization and guideline development. We identified four main areas (plagia-
rism/fraud detection, compliance with reporting guidelines, management of information overload, and accu-
rate citation), where text mining techniques can play a significant role and surveyed the state-of-the-art for
these tasks. Among the tasks we discussed, we believe that the following can have the biggest and most im-
mediate impact: given a document (e.g., manuscript, publication), i) checking for adherence to all elements
of the relevant reporting guideline, ii) generating document-level and literature-level argumentation graphs,
iii) constructing citation quotation networks. For some tasks, current state-of-the-art text mining techniques
can be considered mature (e.g., extrinsic plagiarism detection, extracting PICO sentences); while for other
tasks, substantial research progress is needed for practical tools (e.g., construction of argumentation graphs,
identifying citation quotations). We argued that the main advantage of text mining comes in its ability to
facilitate performing tasks at a large scale. By shortening the time it takes to perform tasks needed to en-
sure rigor and integrity, text mining technologies can promote better research practices, ultimately reducing
waste and increasing value.
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Névéol, A., Islamaj Doğan, R., and Lu, Z. (2011b). Semi-automatic Semantic Annotation of PubMed
Queries. Journal of Biomedical Informatics, 44(2), 310–318.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S., Chambers,
C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J., Glennerster, R., Goroff,
D., Green, D. P., Hesse, B., Humphreys, M., Ishiyama, J., Karlan, D., Kraut, A., Lupia, A., Mabry, P.,
Madon, T., Malhotra, N., Mayo-Wilson, E., McNutt, M., Miguel, E., Paluck, E. L., Simonsohn, U.,
Soderberg, C., Spellman, B. A., Turitto, J., VandenBos, G., Vazire, S., Wagenmakers, E. J., Wilson, R.,
and Yarkoni, T. (2015). Promoting an open research culture. Science, 348(6242), 1422–1425.

Ohno-Machado, L., Alter, G., Fore, I., Martone, M., Sansone, S.-A., and Xu, H. (2015). bioCADDIE white
paper - Data Discovery Index. Technical report, Figshare.

Olensky, M., Schmidt, M., and van Eck, N. J. (2016). Evaluation of the citation matching algorithms of
CWTS and iFQ in comparison to the Web of science. Journal of the Association for Information Science
and Technology , 67(10), 2550–2564.

O’Mara-Eves, A., Thomas, J., McNaught, J., Miwa, M., and Ananiadou, S. (2015). Using text mining
for study identification in systematic reviews: A systematic review of current approaches. Systematic
Reviews, 4(1), 5.

Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science,
349(6251).

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2017. ; https://doi.org/10.1101/108480doi: bioRxiv preprint 

https://doi.org/10.1101/108480
http://creativecommons.org/licenses/by-nc/4.0/


Ott, M., Choi, Y., Cardie, C., and Hancock, J. T. (2011). Finding deceptive opinion spam by any stretch of
the imagination. In Proceedings of the ACL:HLT 2011 , pages 309–319.

Peng, J., Shi, X., Sun, Y., Li, D., Liu, B., Kong, F., and Yuan, X. (2015). QTLMiner: QTL database
curation by mining tables in literature. Bioinformatics, 31(10), 1689.

Peroni, S. (2014). The semantic publishing and referencing ontologies. In Semantic Web Technologies and
Legal Scholarly Publishing , pages 121–193. Springer.

Peroni, S., Dutton, A., Gray, T., and Shotton, D. (2015). Setting our bibliographic references free: Towards
open citation data. Journal of Documentation, 71(2), 253–277.
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