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Abstract 

Molecular heterogeneity in tumours leads to variability in drug response both between patients and 

across lesions within a patient. These sources of variability could be explored through analysis of 

routinely collected clinical trial imaging data. We applied a mathematical model of tumour growth to 

analyse both within and between patient variability in tumour size dynamics to clinical data from 

three drugs, Vemurafenib, Dabrafenib and Trametinib, used in the treatment of metastatic 

melanoma. The analysis revealed: 1) existence of homogeneity in drug response and resistance 

development within a patient; 2) tumour shrinkage rate does not relate to rate of resistance 

development; 3) Vemurafenib and Dabrafenib, two BRAF inhibitors, have different variability in 

tumour shrinkage rates. Overall these results show how analysis of the dynamics of individual lesions 

can shed light on the within and between patient differences in tumour shrinkage and resistance 

rates, which could be used to gain a macroscopic understanding of tumour heterogeneity. 
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Introduction  

Tumour heterogeneity at the molecular level is known to exist not only between patients but also 

between lesions within a patient and within an individual lesion (Heppner, 1984; Nicolson, 1984; 

Tabassum and Polyak, 2015). At the individual lesion level we can envisage that the molecular 

heterogeneity is likely to lead to differential cell killing, under a given treatment, within the lesion 

(Dexter and Leith, 1986). The differential killing is likely to vary across lesions within a patient and 

also across patients. This variability in cell killing could well be visible at the whole tumour level via 

measurements obtained through routine clinical imaging. Data from clinical trials is likely to be the 

best source for exploring the variability described as the imaging data collection process is 

standardised for a large number of patients. This is due to most clinical trials employing the 

Response Evaluation Criteria In Solid Tumours (RECIST) (Eisenhauer et al., 2009). This criterion 

however limits the analysis of variability to the between patient and within patient level, as we now 

explain.  

In most cancers, response of a tumour to treatment is predominantly measured through quantifying 

images taken of it over time. A standardised methodology to quantify patient response to a 

treatment that is routinely applied in clinical trials is RECIST. The criterion involves taking 

information at the individual lesion level and combining it to produce a single value, response 

category, at each imaging visit for a patient in the following way. The tumours within a patient are 

first classified as either target or non-target lesions based on whether a lesion is repeatedly 

measurable or not. Target lesions are then recorded quantitatively by taking the longest diameter of 

each of them and summing them together to produce the Sum of Longest Diameters (SLD) value at 

each imaging visit. Non-target lesions are not recorded quantitatively but are recorded qualitatively 

by assessing whether they have disappeared, still visible/partially shrunk but not grown or 

experienced unequivocal growth. The information on target lesions, non-target lesions and whether 

a new lesion has occurred is combined, such that at each visit the patient is placed into one of the 

following four categories: Complete Response (CR), Partial Response (PR), Stable Disease (SD) or 

Progressive Disease (PD). This categorisation scheme is further simplified by combining CR and PR to 

create the Objective Response Rate (ORR). Once a patient enters the PD category or the patient dies 

all imaging stops. This brief introduction to the RECIST criteria clearly highlights that quantitative 

information at the individual lesion level, through measurement of the target lesions, is available. It 

is this information that can be leveraged to explore quantitatively the dynamics of response and 

resistance of tumours at both the between patient and within patient level.   

The goal of this study is to explore the variability in the dynamics of the time-series of these target 

lesions under treatment. This will be done by placing a mathematical model of tumour growth 

within a statistical framework used routinely for population analysis. The model and statistical 

framework will allow us to explore the following three biological questions: 1) is there a degree of 

correlation in the dynamics of tumour size within a patient; 2) if so what is the difference in between 

and within patient variability in tumour shrinkage and resistance rates; 3) is there a correlation 

between tumour shrinkage and resistance rates at either the individual lesion level or patient level. 

The framework described in this study is applied to three treatments currently used within the 

metastatic melanoma setting, Vemurafenib (BRAF/CRAF inhibitor) (Bollag et al., 2010; Sala et al., 

2008), Dabrafenib (BRAF inhibitor) (Laquerre et al., 2009)  and Trametinib (MEK inhibitor) (Gilmartin 
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et al., 2011). These compounds were chosen as the pathway under target is the same, and all three 

are used within the same patient population (McCain, 2013).       

Patients and Methods 

Patients 

Data from the Vemurafenib (Chapman et al., 2011), Dabrafenib (Hauschild et al., 2012) and 

Trametinib (Flaherty et al., 2012) arms of their corresponding phase III studies was collected through 

clinicalstudydatarequest.com. For full details of the studies and patient demographics we refer the 

reader to the previous three articles, which published the results of the phase III studies. Only 

patients who had a SD, PR or CR response at the first visit were taken forward for the model-based 

analysis, as our interest is in the response to the treatment followed by tumour resistance. 

Derivation of mathematical model of tumour growth 

The choice of growth law to be used to analyse the data was based on prior knowledge of our 

understanding of tumour growth based on empirical observations and biological understanding. 

If cells have a cell cycle length td, then the total number of growing cells will double every td hours, 

so their volume will be given by  

, 

where  

 

While this suggests that tumour volume will grow in an exponential or modified-exponential fashion 

(Collins et al., 1956; Laird, 1964; Yorke et al., 1993), it has often been observed empirically that 

tumour diameters, as opposed to volumes, appear to grow in a roughly linear fashion (Brú et al., 

2003). Indeed, this has been known since at least the 1930s. As (W. V. Mayneord, 1932) proposed, it 

was because growth was concentrated in an outer layer of proliferating cells, with cells inside that 

layer necrotic or quiescent.  

Following Mayneord, if we assume that the proliferating layer has thickness d, which is assumed to 

be small relative to the radius r, and is growing at a rate a, then the volume of the layer is 

approximately (see Figure 1) 

 

and it is growing at a rate  

 

Since all growth is coming from this proliferating layer, we can therefore write 

att
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𝑑𝑉

𝑑𝑡
=
𝑑𝑉𝑝

𝑑𝑡
= 𝑎4𝜋𝑟2𝑑 

The growth equation for the radius of the whole tumour is given by 
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𝑑𝑟
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𝑑𝑡
=
𝑑𝑟

𝑑𝑉

𝑑𝑉𝑝
𝑑𝑡

= (
1

4𝜋𝑟2
) 𝑎4𝜋𝑟2𝑑 = 𝑎𝑑 

which is solved to give the linear equation 

 

To translate from cell population growth (with growth rate a) to tumour growth, we therefore need 

just two additional parameters, which are the thickness of the growing layer d, and the initial radius 

R0. The linear growth in diameter translates to cubic, rather than exponential, growth of the tumour 

volume. 

 

Figure 1 Shows a schematic of the geometrical assumptions of the mathematical model. 

This idea that tumour growth is driven by an outer layer of proliferating cells, surrounding a 

quiescent or necrotic core, has been featured in recent mathematical models that simulate 

treatment of tumours by anti-cancer drugs (Checkley et al., 2015). From a data analysis perspective, 

it also offers a number of clear advantages, since it allows the use of easily-understood statistical 

techniques (this is not a justification, but it is certainly a convenience). It also requires a minimal 

number of parameters, which is appropriate for the analysis of clinical studies that are subject to a 

high degree of noise and are susceptible to over-fitting. 

The linear growth equation will of course not be a perfect fit for the growth of all tumours. It 

assumes that the thickness of the growing layer is small relative to the overall tumour radius (small 

tumours will see volume grow in a more exponential fashion). Also it does not account for the 

saturation observed at larger volumes, so only applies for tumours of intermediate size. Most 

relevantly for this study, as with any other simple growth law, it does not account for the effects of 

resistance. As seen next, we have therefore modified it in the simplest way possible, by introducing a 

separate linear growth rate for the resistant phase. 

Individual Lesion Time-Series 

adtRr  0
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Individual lesion time-series were modelled using a piece-wise linear model, and this was done in 

two parts. In the first part we treated each lesion as being independent from each other, i.e. we did 

not account for which patient the lesions belonged to. This model was represented by the following 

pair of equations, 

Ljk = BSLj + dj tk    if tk < sp, 

Ljk = BSLj + dj sj + gj tk   if tk ≥ sp, 

where subscript j represents each lesion (j = 1,…,m), subscript k represents each time-point (k = 

1,…,n), Ljk is the longest diameter for lesion j at time k, BSLj, dj and gj are the initial longest diameter 

value, decay rate and re-growth rate respectively for lesion j. The switching time-point, sp, 

represents the switch from decay to re-growth. The value of sp was determined in the following 

way. We created a small set of possible sp values, day 63, 116 and 179, by taking the mid-point 

between on-treatment imaging visit time-points, on days 42, 84, 147 and 210. For each sp value we 

fitted the pair of linear equations and chose the sp value which gave the best fit according to the log-

likelihood; higher log-likelihood implies better fit. This approach gives an approximate switching 

time-point rather than an exact value.   

The second part involved accounting for which patient the lesions belonged to. This was done by 

modifying the above pair of equations by introducing a new level of hierarchy i, which represents 

each patient (i = 1,..,p), 

Lijk = BSLij + dij tk if tk < sp, 

Lijk = BSLij + dij sij + gij tk if tk ≥ sp. 

Both models were placed within a mixed-effects statistical framework. Within this analysis 

framework the parameter BSL was assumed to follow a log-normal distribution, chosen to ensure 

positivity of lesion size values, and all other parameters assumed to be normally distributed. The 

residual error model used was additive. The within and between patient variability in decay and re-

growth rates was explored through the distribution of the model parameters, using the coefficient of 

variation (standard deviation divided by the mean).   

All analyses were done in R v 3.0.2 with the nlme package used for the mixed-effects analysis. 

Results 

Patients and Data 

The imaging characteristics for all the patients used in the analyses here can be seen in Table 1. The 

table highlights that in terms of treatment response, either via Objective Response Rate (ORR) or % 

change in the sum of longest diameters (SLD) at week 6 (when the first on-treatment imaging visit 

occurred), Dabrafenib and Vemurafenib showed very similar outcomes compared to Trametinib.  

These findings mirror the full original study results. It is also noticeable that the number of patients 

is larger in the Vemurafenib study than the Dabrafenib and Trametinib studies; again this mirrors the 

original studies.  

 Vemurafenib Dabrafenib Trametinib 
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Patients 
  N 

 
203 

 
165 

 
157 

SLD (mm) 
  Median 
  (25th, 75th percentile) 

 
72 

(39, 122) 

 
62 

(34, 100) 

 
64 

(32, 106) 

ILD (mm) 
  Median 
  (25th, 75th percentile) 

 
17 

(10, 29) 

 
21 

(16, 34) 

 
18 

(12, 30) 

ORR (CR + PR) WK6 
  N 
 (%) 

 
121 
(60) 

 
104 
(63) 

 
46 

(29) 

% Change SLD WK 6 
  Median 
  (25th, 75th percentile) 

 
-34 

(-47, -21) 

 
-39 

(-53, -22) 

 
-18 

(-31, -4) 

Table 1 Imaging characteristics for patients used within the analysis. SLD: Sum of Longest 

Diameters, ILD: Individual Longest Diameter, ORR: Objective Response Rate and WK6: Week 6. 

The time-series of the individual longest diameters for all lesions across the three studies can be 

seen in Figure 2. It shows that the frequency of data collection is consistent over time and that the 

distribution of initial values is similar across all studies. Figure 3 shows the number of lesions per 

patient across the studies; which highlights that 80 percent of patients across the studies have more 

than one target lesion. Overall, the visual analysis of the imaging data suggest that the patients 

selected for the time-series analysis were well matched across all three studies with respect to 

imaging data collection. 

 

Figure 2 Plots showing the temporal evolution of the individual longest diameters (ILD) for all lesions for A) 
Vemurafenib, B) Dabrafenib and C) Trametinib. 
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Figure 3 Pie-charts showing the number of patients (percentage of study population) with 1, 2, 3, 4, 5 or 7 
lesions at start of treatment for A) Vemurafenib, B) Dabrafenib and C) Trametinib. 

Individual lesion time-series analysis 

The piece-wise linear models for the individual lesion time-series described in the Methods section 

were fitted to tumour data, and the final models (used throughout the rest of the study) were 

chosen based on the higher log-likelihood (see also the Supplementary tables S1, S2 and S3). The fits 

to the final piece-wise linear model for each study, can be seen in Figure 4. Each point in the plots 

represents a pair of values, observed and fitted. All the points in each plot lie close to the line of 

unity which implies that the final model describes the data well. Notably, the final model for each 

study included information on which patient the lesions belonged to, suggesting there is a degree of 

correlation in tumour size dynamics under treatment within a patient. 

 

Figure 4 Plot showing the observed individual lesion values against the fitted values, from the final model, for 
A) Vemurafenib, B) Dabrafenib and C) Trametinib together with the line of unity. 

Having established that the extra information on which lesion belongs to which patient is important, 

we next explore the between and within patient variability of tumour decay and resistance growth 

rates through model parameters, see Figure 5. (For a full table of model parameter values, see 

Supplementary information Table S4.) In regard to the rate at which the tumour shrinks we find that 

both within and between patient variability (coefficient of variation) are considerably different for 

each drug. The variability is highest for Vemurafenib, followed by Trametinib and finally by 

Dabrafenib (for which the variability can be considered quite low). However, for a given drug, no 

difference in the between and within patient variability was found. Similarly, for the tumour re-

growth rate, we find that different inferences can be made for the different drugs. Notably, no 
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variability in the tumour re-growth rate (between and within patient) was observed for Vemurafenib 

(see Supplementary Table S1 for more details).  Moreover, no difference similar to the extent seen 

within the decay rate between Dabrafenib and Trametinib was found.  

By fitting the best model (as determined by the log-likelihood) to clinical data, we obtained that the 

switching point between tumour decay and re-growth, at 63 days, is the same for all drugs. This 

value is in-between the first, week 6, and second, week 12, on-treatment imaging visits; see 

Supplementary Tables S1, S2 and S3 for log-likelihood values at other time-points.  

Overall, these results show that the piecewise linear model highlights both qualitative and 

quantitative differences between these drugs, when comparing both between and within patient 

variability of tumour size dynamics. 

  

Figure 5 Plot showing the model derived between- and within-patient variability in tumour shrinkage and re-
growth. 

The final question to address in this study is whether there is any correlation between the decay rate 

and re-growth rate of tumour lesions. For Vemurafenib, no distribution was required for the re-

growth rate in the final model (since there was no variability in these rates; see Figure 5). In Figure 6 

we focus on Dabrafenib and Trametinib (where a distribution on the re-growth rate was required in 

the final model; see Figure 5), and find that there is no correlation between tumour shrinkage and 

re-growth rate (coefficient of determination: r2<0.1). These findings suggest that how quickly a 

tumour shrinks under treatment has no relationship to how quickly resistance within that lesion 

occurs for any of the drugs. 
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Figure 6 Plot showing the correlation between the decay rate and re-growth rate for each lesion, for 
Trametinib (left-panel) and Dabrafenib (right-panel). 

Discussion 

The analysis of tumour heterogeneity within a patient has been predominantly explored at the 

molecular level using various genetic techniques (Burrell and Swanton, 2014; Fisher et al., 2013). 

Measuring the complete heterogeneity of all the lesions within a patient at the genomic level is 

clearly a difficult task for which no known accurate well-validated method currently exists. However, 

exploring heterogeneity in tumour response to treatment via measuring the size of individual lesions 

over time is achievable using routinely collected clinical trial imaging data (van Kessel et al., 2013).  

Clearly, this does not provide details on the mechanisms of resistance. However, it may provide 

details on the behaviour of the resistant phenotypes through analysis of re-growth rates. It may also 

allow us to look at how heterogeneous drug response within a patient relates to drug response 

across patients. The purpose of the analysis conducted here was to explore the dynamics of tumour 

size using a mathematical model derived based on empirical observations and biological 

understanding. This model was subsequently placed within a mixed effects statistical framework to 

analyse the variability in dynamics at the between patient and within patient level.  

As an exemplar of the approach we applied it to three phase III studies, Vemurafenib (BRAF/CRAF 

inhibitor) (Chapman et al., 2011), Dabrafenib (BRAF inhibitor) (Hauschild et al., 2012) and Trametinib 

(MEK inhibitor) (Flaherty et al., 2012). All three drugs target the same pathway, Mitogen Activating 

Protein Kinase (MAPK), but in slightly different ways. The three studies were conducted in a similar 

patient population, BRAF mutant positive metastatic melanoma patients, with RECIST criteria used 

for imaging data collection. As our goal was to analyse the dynamics of lesions that have quantitative 

data over time, we restricted our analysis to patients who had more than a minimum of one on-

treatment imaging visit, and to their RECIST defined target lesions. As well as the patient population 

being similar, data collection and initial distribution of target lesion size were also similar across all 

three studies.  

In order to analyse the target lesion size time-series data we derived an empirical model based on 

biological observations and mechanistic insights on tumour growth. The empirical model, which was 
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piece-wise linear, was then placed within a mixed-effects framework in order to analyse the data.  

The main results of the analysis were: 

1) Knowing which lesion belongs to which patient improved our ability to describe the data 

over assuming all lesions are independent of each other.  

2) The within and between patient variability in decay rates is different for all 3 drugs. 

3) For the re-growth rate no variability was required for Vemurafenib, and the within and 

between patient variability was similar for Trametinib and Dabrafenib. 

4) Finally, no correlation was found between target lesion shrinkage and resistance growth 

rate. 

The first result suggests that although there is heterogeneity in the dynamics of tumour size over 

time, there is also some degree of correlation in these dynamics across lesions within a patient. This 

suggests that there may be a degree of homogeneity across lesions, which is likely the result of the 

system-level effect that the drug has on the patient (i.e., inactivates the same components of the 

MAPK pathway across all lesions). This system-level effect seems to be more pronounced in 

Dabrafenib and Trametinib (low tumour shrinkage variability) and less pronounced in Vemurafenib 

(high tumour shrinkage variability). These conclusions are relevant in the context of recent studies 

(Menzies and Long, 2014) which showed an improved overall survival in metastatic melanoma with 

Dabrafenib (18.2 months) and Trametinib (15.6 months) versus the survival with Vemurafenib (13.6 

months).   

The differences seen across treatments, in terms of shrinkage and resistance dynamics (points 2 and 

3), could be attributed to the fact that these drugs have different pharmacological profiles. Indeed 

there have been reports highlighting the subtle difference between the two BRAF inhibitors, 

Vemurafenib and Dabrafenib, both preclinically and clinically (Menzies et al., 2012; Chatelle et al., 

2016; Schilling et al., 2014; Rizos et al., 2014). Overall the differences highlight that drugs that 

appear to give the same study level results, Vemurafenib and Dabrafenib, can be differentiated at 

the individual lesion level. 

The final result was that there was no correlation between the rate of tumour shrinkage and the 

growth rate of the resistant clone. This result is quite important as it highlights that the rate at which 

drug sensitive cells are killed has no bearing on how quickly a resistant clone will grow. This result 

could have implications for how these drugs and maybe new treatments are dosed. That is there 

may be no need to use doses and schedules that aim to eradicate tumour cells quickly. This could 

lead to treatments being less toxic to a patient and increase the options for combination therapies.   

In summary, the mathematical modelling and analysis approach undertaken here highlights how 

more information can be gained from routinely collected clinical data. We hope this encourages the 

community to consider analysis at the individual lesion level in addition to the patient level results 

that are routinely reported. 
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Supplementary Information 

Model Development Tables 

Tables S1, S2 and S3 go through the step-wise improvements in the log-likelihood as the piece-wise 

linear model was developed. A cross in the Fixed Effects column corresponds to whether that 

parameter is included in a model e.g. Model 1 across all studies is simply a constant model. A cross 

in the IL Random Effects column corresponds to treating lesions as independent from each other, 

whereas a cross in the PT and IL in PT Random Effects column corresponds to accounting for which 

patient the lesions belong to when specifying the distribution for a given parameter.   

For each structural model (constant, linear, piece-wise linear) we assessed the difference in 

likelihood between accounting for which lesion belongs to which patient versus treating lesions as 

they are independent from each other.  In all cases knowing which lesion belongs to which patient 

gave a favourable change in the log-likelihood. During the development of the Vemurafenib model 

we noticed on several occasions that the variance on a certain parameter shrunk to zero. This 

indicates that a distribution on that parameter was not required and indeed when we removed the 

distribution on that parameter the log-likelihood did not change.  For example compare models 3 

and 4 in Table S1. They show that if using a linear model to fit to the data adding a distribution on d 

makes no difference to the log-likelihood.  

Table S1 Table shows the development of the final model for Vemurafenib. The final model is highlighted in 
green. The IL random effects column corresponds to the first part of the analysis, not accounting for which 
lesion belongs to which patient, whereas the IL in PT column does. 

Vemurafenib 

Fixed 
Effects 

IL Random 
Effects 

PT and IL in 
PT Random 

Effects 

SP 
Log-

Likelihood Notes BSL d g BSL d g BSL d g 

Model 1 x 
  

x 
      

-9841 
 Model 2 x 

     
x 

   
-9750 

 Model 3 x x 
 

x x 
     

-9800 variance on d shrinks to 0 

Model 4 x x 
 

x 
      

-9800 
 

Model 5 x x 
    

x 
   

-9731 
 

Model 6 x x 
    

x x 
  

-9623 
 Model 7 x x x x x x 

   
63 -9793 variance on d and g shrinks to 0 

Model 8 x x x x x x 
   

116 -9677 variance on g shrinks to 0 

Model 9 x x x x x x 
   

179 -9731 variance on g shrinks to 0 

Model 10 x x x x 
     

63 -9793 
 

Model 11 x x x x X 
    

116 -9677 
 

Model 12 x x x x x 
    

179 -9731 
 Model 13 x x x 

   
x x x 63 -9386 variance on g shrinks to 0 

Model 14 x x x 
   

x x x 116 -9548 variance on g shrinks to 0 

Model 15 x x x 
   

x x x 179 -9609 variance on g shrinks to 0 

Model 16 x x x       x x   63 -9386 final model 

Model 17 x x x 
   

x x 
 

116 -9548 
 

Model 18 x x x 
   

x x 
 

179 -9609 
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Table S2 Table shows the development of the final model for Dabrafenib. The final model is highlighted in 
green. The IL random effects column corresponds to the first part of the analysis, not accounting for which 
lesion belongs to which patient, whereas the IL in PT column does. 

Dabrafenib 

Fixed 
Effects IL Random Effects 

PT and IL in PT Random 
Effects 

SP 
Log-

Likelihood Notes BSL d g BSL d g BSL d g 

Model 1 x 
  

x 
      

-6681 
 

Model 2 x 
     

x 
   

-6672 
 

Model 3 x x 
 

x x 
     

-6568 
 

Model 4 x x 
    

x x 
  

-6545 
 Model 5 x x x x x x 

   
63 -6435 

 Model 6 x x x x x x 
   

116 -6499 
 Model 7 x x x x x x 

   
179 -6566 

 
Model 8 x x x       x x x 63 -6404 final model 

Model 9 x x x 
   

x x x 116 -6477 
 

Model 10 x x x 
   

x x x 179 -6531 
  

 

Table S3 Table shows the development of the final model for Trametinib. The final model is highlighted in 
green. The IL random effects column corresponds to the first part of the analysis, not accounting for which 
lesion belongs to which patient, whereas the IL in PT column does. 

Trametinib 

Fixed 
Effects IL Random Effects 

PT and IL in PT Random 
Effects 

SP 
Log-

likelihood Notes BSL d g BSL d g BSL d g 

Model 1 x 
  

x 
      

-6179 
 

Model 2 x 
     

x 
   

-6164 
 

Model 3 x x 
 

x x 
     

-6073 
 Model 4 x x 

    
x x 

  
-6031 

 Model 5 x x x x x x 
   

63 -5972 
 

Model 6 x x x x x x 
   

116 -6004 
 

Model 7 x x x x x x 
   

179 -6057 
 

Model 8 x x x       x x x 63 -5899 final model 

Model 9 x x x 
   

x x x 116 -5968 
 Model 10 x x x 

   
x x x 179 -6018 
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Final Model Parameter Values 

 

 log(BSL (mm) ) d 
(mm/day) 

g 
(mm/day) 

SP 
(Days) 

 mean s.d. 
(BP) 

s.d. 
(WP) 

mean s.d. 
(BP) 

s.d. 
(WP) 

mean s.d. 
(BP) 

s.d. 
(WP) 

 

Vemurafenib 
  Value 
  (95% CI) 

 
3.38 
(3.3, 
3.46) 

 
0.41 
(0.35, 
0.48) 

 
0.34 
(0.30, 
0.37) 

 
-0.26 
(-0.33, 
-0.20) 

 
0.38 
(0.34, 
0.44) 
 

 
0.32 
(0.29, 
0.35) 

 
0.02 
(0.003, 
0.04) 

 
NA 

 
NA 

 
63 

Dabrafenib 
  Value 
  (95% CI) 

 
3.25 
(3.19, 
3.31) 

 
0.26 
(0.19, 
0.34) 

 
0.40 
(0.36, 
0.44) 

 
-0.24  
(-0.26, 
-0.21) 

 
0.11 
(0.08, 
0.14) 

 
0.11 
(0.09, 
0.14) 

 
0.06 
(0.04, 
0.08) 

 
0.09 
(0.06, 
0.14) 

 
0.07 
(0.04, 
0.10) 

 
63 

Trametinib 
  Value 
  (95% CI) 

 
3.22 
(3.16, 
3.29) 

 
0.26 
(0.20, 
0.34) 

 
0.42 
(0.39, 
0.47) 

 
-0.13 (-
0.15, -
0.11) 

 
0.09 
(0.07, 
0.11) 

 
0.13 
(0.11, 
0.15) 

 
0.05 
(0.03, 
0.07) 

 
0.12 
(0.09, 
0.15) 

 
0.03 
(0.01, 
0.07) 

 
63 

Table S4 Parameter estimates for the between patient (BP) and within patient (WP) distributions, 
mean and standard deviation (s.d.), for each parameter in the final model, for each drug with 95% 
confidence intervals.  
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