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General Article Summary

Circadian clocks impact health and fithess by controlling daily rhythms of gene-
expression through complex gene-regulatory networks. Deciphering how they work
requires experimentally tracking changes in amounts of clock components. We
designed FlyClockbase to simplify data-access for biologists and modelers, curating
over 400 time series observed in wildtype fruit flies from 25 years of clock research.
Substantial biological model curation was essential for identifying differences in peak
time variance of the clock-proteins ‘PERIOD’ and ‘TIMELESS’, which probably stem
from differences in phosphorylation-network complexity.

We repeatedly encountered systemic limitations of contemporary data analysis
strategies in our work on circadian clocks. Thus, we used it as an opportunity for
composing a panoramic view of the broader challenges in biological model curation,
which are likely to increase as biologists aim to integrate all existing expertise in order to
address diverse grand challenges. We developed and tested a trans-disciplinary
research workflow, which enables biologists and compiler-architects to define biology-
friendly compilers for efficiently constructing and maintaining Versioned Biological
Information Resources (VBIRs). We report insights gleaned from our practical clock
research that are essential for defining a VBIRs infrastructure, which improves the
efficiency of biological model curation to the point where it can be democratized.
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Abstract

Biological model curation provides new insights by integrating biological knowledge-
fragments, assessing their uncertainty, and analyzing the reliability of potential
interpretations. Here we integrate published results about circadian clocks in Drosophila
melanogaster while exploring economies of scale in biological model curation. Clocks
govern rhythms of gene-expression that impact fitness, health, cancer, memory, mental
functions, and more. Human clock insights have been repeatedly pioneered in flies.
Flies simplify investigating complex gene regulatory networks, which express proteins
cyclically using environmentally entrained interlocking feedback loops that act as clocks.
Simulations could simplify research further. We found that very few computational
models test their quality directly against experimentally observed time series scattered
in the literature. We designed FlyClockbase for integrating such scattered data to
enable robust efficient access for biologists and modelers. To this end we have been
defining data structures that simplify the construction and maintenance of Versioned
Biological Information Resources (VBIRSs) that prioritize simplicity, openness, and
therefore maintainability. We aim to simplify the preservation of more raw data and
relevant annotations from experiments in order to multiply the long-term value of wet-lab
datasets for modelers interested in meta-analyses, parameter estimates, and
hypothesis testing. Currently FlyClockbase contains over 400 wildtype time series of
core circadian components systematically curated from 86 studies published between
1990 and 2015. Using FlyClockbase, we show that PERIOD protein amount peak time
variance unexpectedly exceeds that of TIMELESS. We hypothesize that PERIOD’s
exceedingly more complex phosphorylation rules are responsible. Variances of daily
event times are easily confounded by errors. We improved result reliability by a human
error analysis of our data handling; this revealed significance-degrading outliers,
possibly violating a presumed absence of wildtype heterogeneity or lab evolution.
Separate analyses revealed elevated stochasticity in PCR-based peak time variances;
yet our reported core difference in peak time variances appears robust. Our study
demonstrates how biological model curation enhances the understanding of circadian
clocks. It also highlights diverse broader challenges that are likely to become recurrent
themes if models in molecular systems biology aim to integrate ‘all relevant knowledge’.
We developed a trans-disciplinary workflow, which demonstrates the importance of
developing compilers for VBIRs with a more biology-friendly logic that is likely to greatly
simplify biological model curation. Curation-limited grand challenges, including
personalizing medicine, critically depend on such progress if they are indeed to
integrate ‘all relevant knowledge’.
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of significance:

Are VBIRs like FlyClockbase
The New Genome Projects?

Laurence Loewe and Kate Scheuer

Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison

Overview: Most humans are quick to spot differences, but it takes statistics to see if they matter on average.
Many statistical tests detect differences between means. Robust tests for differences in variance are more
difficult to find. Yet their use does not guarantee meaningful results, because data errors can easily bias
observed variances beyond recognition. We demonstrated how to resolve these challenges for documenting
statistically significant differences between the peak time variances of the circadian clock proteins PERIOD and
TIMELESS from observations of wildtype control Drosophila melanogaster over 25 years of clock research. For
our analyses we used FlyClockbase, a new Versioned Biological Information Resource (VBIR) with 400+
time series relevant to fly clocks. We have been designing a VBIR format for maximizing ease of use and
reliable access to data in order to simplify directly integrating observed time series into parameter estimates for
mechanistic fly clock models. The challenges we faced inspired us to improve the efficiency of biological model
curation, an activity that will become increasingly important as we strive to make better use of all available
expertise. We continue to improve the definition of VBIRs and explore ways in which they can be used more
efficiently to address the grand challenge of mechanistically mapping genotypes to phenotypes.
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Figure 1: Transdisciplinary workflow improving reproducibility of data analyses. Well-curated VBIRSs, like
FlyClockbase, boost reproducibility and hypothesis testing speed, like genome projects. We show this by inte-
grating into FlyClockbase 86 studies observing time series of (A) wildtype fly circadian clock molecular
components, inferring (B) the peak hours of proteins PER and TIM, revealing differences in variances. (€) Our
need for reducing data errors inspired compiler designs for simplifying biological model curation. We found this
requires cross-disciplinary effort: real-world bioresearch must meet compiler design for inspiring the complex
error checks required by (usually) imperfect biodata. We have been developing a VBIR data-format that helps
biologists to capture relevant (bio) domain expertise in ways that are more accessible to experts and compilers.

Q Genetics

Why VBIRs?

Genome projects convincingly show
that batch processing of similar tasks
boosts biological research efficiency.
Costly reads of single genes shrank to
simple queries in the post-genomics
era, changing biology profoundly.

Why is batch-processing efficient?
It inspires tools and workflows that
speed-up tasks and reuse setup
overheads. It improves quality by
standardization. It inspires useful
division of labor: a few can improve
genome quality (via updates), used by
many for testing hypotheses. Bundling
updates into versions helps to improve
quality by archiving and citing well-
defined genome states reproducibly.
We extend these ideas to other bio

data types by introducing the VBIR
concept for supporting FAIR data,

Versioned €-> Findable
Biological €= Accessible
Information  €=>» Interoperable
Resource €= Reusable,

highlighting rich interactions. Serving
its well-defined scope, a VBIR stores
all integrated data and updates in
reproducibly versioned states of a well-
structured biological info resource.

VBIRSs vary widely in scope, size,
implementation approach, etc. Yet, as
indicated by the 'V', they provide past
versioned variants via long-term,
stable, reproducible URLs. Stable
causal VBIRs inspire construction of
consequential VBIRs, and help capture
complex biological expertise in
causality networks. Reproducibility of
overall conclusions depends on the
stability of VBIR data formats and the
reliability of recalculations after auto-
importing changed causal VBIRs.
Such active networks of VBIRs can
infer values, test hypotheses, or
simulate complex biological systems.
VBIR stability is key for efficient
computing in evolutionary systems
biology and personalizing medicine.
They are also critical for meeting the
grand challenge of reducing the
~$7bn/yr invested in studies with
irreproducible data analyses.

More details? See BioRxiv.org:

https://doi.org/10.1101/099192
We acknowledge NSF Career Award 1149123 to L.L.
for support, and many others as listed in our full report.
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INTRODUCTION

Several grand challenges of our time, such as personalizing medicine or mapping
genotypes to phenotypes, critically depend on the careful curation of biological
knowledge-fragments into integrated resources of intermediate size that are easier to
handle. Such resources can provide comprehensive overviews of integrated models or
experimental results on a given topic. If these resources are organized well enough and
are machine readable, then biological models and datasets can be explored in more
automated ways and thus greatly accelerate biological discovery.

We aim to make it easier to create such intermediate resources by improving the
efficiency of high-quality biological model curation. The goal of such curation work is to
integrate ‘all current knowledge’ that is relevant for a research topic of reasonable
complexity while keeping all deposited information well-organized and machine
readable. This requires computational solutions that are best developed while
simultaneously engaging deeply with the complexities of real-world biological research
where results can be less than clear-cut and relevant data may be scattered across
diverse sources. Curating such diffuse and scattered data can be prohibitively
complicated without appropriate strategies for handling recurrent problems.

We chose the study of circadian clocks in fruit flies as our area of in-depth
biological research in order to provide a real-world context for developing strategies that
improve curation efficiency. While climbing onto the shoulders of giants in fly clock
research, we integrated as much fly clock expertise as we could. In our opinion, a full
integration is currently far beyond the scope of any single study if it is to efficiently point
readers to the detailed, evidence-based evaluations of the strengths and weaknesses of
a state-of-the-art fly clock model. Thus, we focused on integrating all Drosophila
melanogaster wildtype time series observations from 25 years of research (often
reported as wildtype control experiments for evaluating effects of mutants). Despite this
substantial reduction of scope, our integration task is far from trivial if we aim to ensure
the reproducibility, stability, and rigor of integration.

Reproducibility is pivotal for science. It also does not come easy. We aimed to
increase the reproducibility of results from our research in fly clock biology while
exploring strategies for simplifying reproducibility in research. Our main biological
findings are differences in variances of certain time series traits that we observed
between different clock components. We hypothesize that these differences hold
important clues for improving our mechanistic understanding of circadian clocks.
Variances are easily affected by errors that also affect reproducibility and are
independent from underlying biological mechanisms. Therefore, we deem it essential to
include our progress towards reproducibility in the scope of this study. We mitigate the
inevitable increase of length with headings that simplify navigating its various aspects.
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Our study contributes to the foundations of a system for integrating all expertise
on the fly clock. We provide detailed experimental observations of time series ready for
linking to statements in ‘big-picture’ fly clock models. We simultaneously explore how to
integrate more efficiently the underpinning diffuse and scattered data. We find that such
integration work is best accomplished by biological model curators with a deep
biological interest in the research results that are being integrated. We also find that the
efficiency of integrating and curating results can be greatly increased by access to
strategies and tools designed to handle complex biological observations. We note that
current computational tools repeatedly restrict representation possibilities to options that
almost fit observed data — but not entirely. Such cases force model curators to
inappropriately ignore data or subtly bias results by defining the closest representation
as ‘good enough’. We ask if well-known data structures and logic formalisms originally
developed outside of biology can appropriately capture real-world observations in
biology. If not, is there merit in breaking the mold? Can economies of scale be
leveraged in model curation? Abstraction is critical. If solutions are too abstract, they
work everywhere — albeit poorly; if not abstract enough, they work perfectly for one
problem — but force reinventing the wheel next time. To guide our development of
computational abstractions, we find it essential to constantly face the challenging
complexities of real-world experimental data as we work to advance biological research
in circadian clocks of flies. This is where useful abstractions emerge naturally.

Accordingly, this study has three strands: (i) introduce FlyClockbase, the new
resource we produced, and measure its reliability; (ii) present new biological insights on
clocks in flies from analyzing data in FlyClockbase; (iii) evaluate emergent opportunities
for abstraction as seen by a programming language compiler architect aiming to
improve the efficiency of navigating the tension between the clear-cut logic formalisms
in computers and the uncertain, incomplete and noisy biological data. We found that all
three strands significantly strengthened each other. Each presents a distinct view on the
integrated body of trans-disciplinary research presented here.

Circadian clocks are biochemical pathways characterized by cyclical protein
expression. They play a critical role in a wide variety of behavioral and physiological
processes, and a better understanding of their genetic and biochemical bases could
advance research in many areas (PREUSSNER AND HEYD 2016; SHARMA et al. 2016),
including consciousness and sleep (CIReLLI 2009), feeding and metabolism (Xu et al.
2008; HURLEY et al. 2016), learning and memory (XU et al. 2008; CHOUHAN et al. 2015),
stress and immunity (DUMBELL et al. 2016), inflammation (CARTER et al. 2016), cancer
(SEPHTON AND SPIEGEL 2003; MASRI et al. 2015; SALAVATY 2015; MOLINA-RODRIGUEZ AND
ALvAREZ 2016), and psychological functioning (MCCLUNG 2013; PAREKH et al. 2015;
COOGAN et al. 2016).
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Model organisms. Many model organisms have been used to study circadian
rhythms, including Synechococcus elongatus, Neurospora crassa, Arabidopsis thaliana,
Mus musculus, and D. melanogaster (BELL-PEDERSEN et al. 2005). Each model
organism presents benefits and challenges. Here we focus on D. melanogaster, which
is known for its ease of genetic manipulation (STANEWSKY 2003; OzZKAYA AND ROSATO
2012) and its well-characterized genome (DOS SANTOS et al. 2015). Human circadian
rhythms are certainly more complex than those of D. melanogaster. For example, it is
not uncommon for one fly circadian clock component (e.g., period or cryptochrome) to
correspond to multiple mammalian circadian clock components (e.g., period7 and
period2, or cryptochrome1 and cryptochrome?2) as reviewed elsewhere (YOUNG AND KAY
2001). Despite these differences in complexity, the D. melanogaster clock is similar in
many aspects to the mammalian clock (YOUNG AND KAY 2001; ROSATO et al. 2006).
Insights from the fly clock have substantially contributed to understanding aspects of the
mammalian clock in general and in particular related disorders such as familial
advanced sleep phase syndrome (FASPS) (RosATO et al. 2006), pancreatic cancer
(POoGUE-GEILE et al. 2006), and bipolar disorder (Ko et al. 2010; McCLUNG 2013).
Increased knowledge of the D. melanogaster circadian clock could continue to provide
important information for future work in a variety of areas pertaining to the mammalian
clock, including sleep disorders (WAGER-SMITH AND KAY 2000), Alzheimer’s disease
(LONG et al. 2014), and psychiatric disorders (MCCLUNG 2013; ZORDAN AND SANDRELLI
2015).

Math models. Computer simulations of mathematical models are powerful tools
for studying the dynamics of complex non-linear systems such as circadian clocks. They
have been used for decades in many disciplines (KurRTz 1972; CROSBY 1973;
TARANTOLA AND VALETTE 1982; ASCHER AND PETzOLD 1998; LAW AND KELTON 2000;
ZEIGLER et al. 2000; TARANTOLA 2005; ANDERSON 2007; GILLESPIE 2007; GILLESPIE 2008;
ANDERSON ef al. 2011; KARR et al. 2012; MAVELLI 2012; WILKINSON 2012; ZEIGLER 2012;
DISTEFANO 2013; GILLESPIE et al. 2013; SANGHVI et al. 2013; KARR et al. 2014; CHYLEK
et al. 2015; KARR et al. 2015a). To be useful for the study of circadian clocks,
mathematical models need to mirror relevant aspects of real-world clocks, which may
include key mechanisms, reaction rates, and/or other parameters or traits. Models
integrate the specified details to enable simulations of time series of amounts of
circadian clock components that are based on the assumptions of the in silico model.
The simulated distributions of amounts of different clock components at specified times
is expected to match observable real-world time series if a model’'s assumptions are
correct. Such simulations are facilitated by rigorous simulation algorithms that have a
rich history in modeling biochemical reaction networks (KurRTz 1972; GILLESPIE 1977,
ANDERSON 2007; GILLESPIE 2007; GILLESPIE 2008; ANDERSON et al. 2011; KARR et al.
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2012; MAVELLI 2012; WILKINSON 2012; DISTEFANO 2013; GILLESPIE et al. 2013; SANGHVI
et al. 2013; KARR et al. 2014; CHYLEK et al. 2015; KARR et al. 2015a).

Estimating unknown rates from observed time series. If the structure of a
model is essentially correct but its parameter values are not, then time series observed
in the real world can, in principle, be used to narrow the margins of uncertainty around
poorly-known rate parameters (TARANTOLA AND VALETTE 1982; TARANTOLA 2005). Thus,
access to a high-quality collection of observed time series could substantially contribute
to improving the quality of biological insights gained from computational models.
Mechanistic models with firm mathematical underpinnings can be used to explore
hypotheses that are impractical to investigate in the laboratory for reasons that may
include the effort required to produce mutants or the difficulty of measuring particular
clock features experimentally (LOEWE AND HiLLSTON 2008; LoewE 2009; LOoEWE 2016).
By exploring potential hypotheses of interest in silico, models ideally inform future wet-
lab experiments.

Biological example. The clock component clockwork orange (cwo) was thought to
indirectly inhibit transcription of a number of key clock genes, including period (per),
PER-aryl-domain protein 1 (pdp1), and vrille (vri) (KADENER et al. 2007; Lim et al. 2007),
so flies with decreased cwo expression were expected to show increased levels of per,
pdp1, and vri. Experimental results, however, indicated that cwo mutants exhibited
decreased expression of these clock components (MATSUMOTO et al. 2007; RICHIER et
al. 2008). In an attempt to explain these results, FATHALLAH-SHAYK et al. (2009) created
a clock model that included cwo. This model was able to predict the experimental
results previously shown and was used to develop a novel hypothesis which described
a more complex interaction between cwo and the rest of the clock. Rather than simply
repressing a transcriptional activator, the authors of this model postulated that the
interaction between weak repression by cwo and strong activation by the transcriptional
activator led to indirect activation of a different part of the clock. This explained the
experimental results from cwo mutants and suggested that cwo plays a role in reducing
minor variations in the clock known as “jitters” ((FATHALLAH-SHAYKH 2010); more details
(SCRIBNER AND FATHALLAH-SHAYKH 2011)). This is just one example of the powerful ways
in which modeling can act as a thinking tool, helping us to understand biology better.

Models and reality. Computational models simulations models are fundamentally
attempts to represent a simplified version of reality, and their utility hinges on their ability
to faithfully capture the most important aspects of reality (TARANTOLA AND VALETTE 1982,
TARANTOLA 2005). Complex processes with well-defined inputs and outputs are easily
simplified by assuming that the timing of these processes remains essentially
unchanged; then complicated sub-models of such processes can be substituted by
simple transformations that merely reproduce the correct timing. If a model is to help
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understand, describe, or predict a biological system, such simplifications must be
grounded in observations and a biological understanding of the phenomena to be
modeled (WOOLEY AND LIN 2005; BRODLAND 2015). For example, a model for predicting
credible functions for cwo in the clock (FATHALLAH-SHAYKH et al. 2009) needed to be
able to replicate previous experimental results first, before it could make useful
predictions. Such work is facilitated by the simplifying assumption that transcription,
translation, and degradation in clock models can be replaced by simple reactions with
rates appropriately chosen to match experimental data. Thus, access to a broad array
of curated, high-quality experimental observations is critical for efficiently constructing
and refining computational models.

Reproducibility of research. The advanced mechanistic simulations and complex
statistical inference methods above are necessary for arriving at a rigorous
understanding of circadian clocks. They require a complex software stack and
substantial efforts to implement dedicated code, workflows, and data organization
schemes. It is not easy to develop scientific computing solutions of such complexity
without loss of usability or sacrificing the reproducibility of earlier results. Yet the
importance of reproducibility for science is undisputed and has recently received some
attention (IOANNIDIS 2005b; JASNY et al. 2011; HUANG AND GOTTARDO 2013; MCNUTT
2014; AARTS et al. 2015; FREEDMAN et al. 2015a; ALLISON et al. 2016; BAKER 2016;
BARBA 2016; LEwIS et al. 2016; STODDEN et al. 2016). Reproducibility is an extremely
broad topic that frequently requires input from many experimental, statistical,
computational, theoretical and applied disciplines to arrive at rigorous solutions (HUANG
AND GOTTARDO 2013). Conducting research reproducibly requires more effort than
commonly realized (DoNOHO 2009; STODDEN et al. 2014; JAMES et al. 2015; LOEWE
2016; MESNARD AND BARBA 2016). Yet, the steep upfront costs of entry seem to pay off:
research teams with a reproducible research workflow report substantial benefits
(DoNoHO 2009; MESNARD AND BARBA 2016). Evaluations of computational tools Such
reports inspired us to work towards improving reproducibility in our efforts. While useful
recommendations and tools exist e.g. see https://www.xsede.org/web/reproducibility
and (INCE et al. 2012; STODDEN et al. 2014; POLDRACK AND POLINE 2015; LEwIS et al.
2016; STODDEN et al. 2016), there is no silver bullet and standards are still evolving. We
aimed to keep computational requirements to a minimum.

Firm foundations. Here we cannot investigate the reproducibility of complex
mechanistic circadian clock simulations or their underpinning parameter estimates.
However, we can prepare a firm foundation for later studies. Rigorous reproducible
reports of new parameter estimates need to provide many of the details reported here.
This includes details on (i) literature database search strategies, (ii) initial screening
processes and criteria, (iii) filtering of candidate studies and other special selection
methods, (iv) reasons for combining some datasets but not others, (v) justifications for
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approaches that handle noise, outliers, or other complications, (vi) bibliographic
references, (vii) a version of all raw data before preprocessing, and (viii) a well-
integrated final version of the modified data used for inference after preprocessing.
Ideally, such a study would include additional analyses like (ix) a human error analysis
providing estimates of some low-level error rates quantifying the quality of internal raw
data handling, (x) an error analysis and justifiable correction strategies for errors
inherent to the raw data as received by this study, (xi) some high-level summary
statistics description of the observed data, (xii) justifications and results from conducting
various reasonable consistency checks, (xiii) reviews of reasonable biological
interpretations of typical observations, outliers, or other patterns of interest, (xiv) critical
assessments summarizing sufficient biological and other context to help readers
evaluate thoroughly, skeptically, and efficiently how much trust is justified by the quality
of the best and most complete dataset in this study, and (xv) any other potential
limitations. Since circadian clocks in flies have been an active area of research for some
time, a substantial number of studies report time series of potential interest. Time series
of clock components are foundational for understanding circadian clocks. Appropriately
integrating them raises various subtle issues that require decisions in order to build a
strong foundation for further studies. We initially underestimated the complexity of
dealing with their combined impact on the reproducibility of a steep data processing
pyramid that aims to eventually integrate parameter estimation and biologically
reasonable fly clock model ensembles. Since later steps such as parameter estimation
cannot correct quality problems at earlier steps, we decided to dedicate this study to
ensuring the availability of a durable high-quality set of time series observations ready
to serve beyond this study. Such efforts rival the complexity of wet-lab experiments,
except that they occur in a dry lab. The substantial investments in manual curation of
high quality datasets are thus justified by the well-known GIGO principle that applies to
simulations and experiments alike (Garbage In, Garbage Out). We next present some
background on questions of basic reproducibility and data quality that arise for
integration efforts at the scale of our study.

Problems with label reproducibility. Irreproducibility can be caused by seemingly
trivial errors while executing deceptively simple work, such as pipetting errors (BROMAN
et al. 2015) or (mis)labeling a line of descent in the lab (LORSCH et al. 2014; FREEDMAN
et al. 2015b). Assigning sequence annotations in GeneOntology databases is neither
trivial nor always correct (JONES et al. 2007); incorrect assignments can replicate via
uninformed users and can also be generated easily by using spreadsheets with
inappropriate auto-conversion (ZEEBERG et al. 2004; ZIEMANN et al. 2016). Activities like
labeling or pipetting in array shaped micro-titer plates appear simple, but their simplicity
is deceptive because they involve naming — an often-underestimated problem of
extremely varying complexity (LOEWE 2016). The stakes are high and have led to calls
for systematically improving research at the bench and beyond (COLLINS AND TABAK
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2014; LoRscH et al. 2014; ALLISON et al. 2016). The impact of these problems on our
study is immediate. We have little choice but to start with the assumption that all errors
had been corrected by the time of publication, implying correctness of all name-related
operations of all researchers involved in the production of the over 400 time series we
report below. Time of publication matters, as authors and readers might struggle to get
errors corrected if found later (ALLISON et al. 2016). The list of implications is long: no
accidental swaps anywhere, neither in any fly strain used throughout its relevant history
of descent, nor in the vials of final experiments, nor in the raw data, nor in averaging
repeated observations, nor in labeling the final plots for publication. We appreciate that
every single team of authors did their best to ensure that all errors were corrected in the
final publication. Also, label-errors in published time series of clock components are
probably less frequent than extrapolations of single-person initial error rates might
suggest (assuming scrutiny from co-authors and peer review). However, human error
analyses performed over decades in very diverse disciplines and for tasks of varying
complexity have quantified in numerous experiments that “to err is human” (PANKO
2016). Measured error rates observed in one type of experiment do not easily transfer
to other contexts, but the existence of labeling errors in labs is well documented
(LORsCH et al. 2014; BROMAN et al. 2015). Thus, it would be surprising if not a single
error existed in the published time series data we integrated. Equally, it would be
surprising if such a complex set of diffuse and scattered data could be integrated
without adding a single error from data handling. These observations highlight the
importance of assessing error rates and providing a defined protocol for reducing data
handling errors. Thus, high-quality data curation requires (in reverse order) mature
strategies for efficiently

e monitoring and handling all relevant error types,

¢ defining data structures that enable true data integration (and efficient querying)

e collecting all relevant scattered data in one place (and pre-sort for integration).
All this requires substantial efforts and biological model curators could probably learn
from the substantial methodologies for human error analysis that have been developed
elsewhere (NASA et al. 2006-07; NASA et al. 2011). Some of these approaches are too
complex for the application to individual studies in biology. However, meta-analyses
aiming to draw conclusions from noisy biological data need to find a way of handling the
errors that occur during data handling. They also have to address reproducibility in the
domain of statistics.

Statistical reproducibility. A substantial fraction of recent problems with
reproducibility is caused by a lack of statistical reproducibility (AARTS et al. 2015;
HALSEY et al. 2015; STODDEN 2015). These problems easily arise while designing
experiments or analyzing data without the necessary statistical background (SALSBURG
1985; VAux 2012). Here, interpretations of ‘necessary’ are the subject of much
discussion (STERNE 2003; CUMMING 2013; SHARPE 2013; LEEK AND PENG 2015) as
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guidelines on statistical best practices are being updated (ALTMAN et al. 1983; MiLLIS
2003; PLowMAN 2008; MAZUMDAR et al. 2010; CUMMING 2013; DRUMMOND AND VOWLER
2013; JOHNSON 2013; CUMMING 2014; HUANG et al. 2015; SAVALEI AND DUNN 2015;
TRAFIMOW AND MARKS 2015; WOOLSTON 2015; TARONI et al. 2016; WASSERSTEIN AND
LAzAR 2016), but not necessarily followed everywhere (LEw 2012; TRESSOLDI et al.
2013). For example, a short-sighted over-reliance on P-values easily generates
irreproducible or misleading results (LEw 2012; CUMMING 2013; Nuzzo 2014; HALSEY et
al. 2015; LEEK AND PENG 2015), a criticism with history (LoFTus 1993; STERNE 2003).
Briefly, P-values are the probability that an observation can be explained by a given
null-hypothesis, which usually represents the ‘most boring explanation’. Thus, P-values
are often seen as ‘null-hypothesis significance tests’, but they do not make any
statements about alternative hypotheses, of which there could be many. Yet
researchers often use P-values to draw unsafe conclusions of deceptive simplicity about
their respective favorite alternative hypotheses (LEw 2012; TRESsOLDI et al. 2013). They
do so with such regularity that this error’s pervasiveness might one day motivate a
fascinating human error analysis. P-values may offer substantial attractions as they
combine the apparent reassurance of a precise number, the obvious simplicity of a
single dimension, and the clear choice between a boring and a seemingly interesting
option. In comparison, careful time-consuming analyses might be less appealing as they
often reveal complex ensembles of less-than-clear-cut alternatives in a world of multi-
dimensional trade-offs, requiring qualitative reasoning to decide which quantitative
methods to use for producing precise numbers. Such analyses offer more nuance,
albeit at greater cost and require more expertise in advanced statistics (WiLcox 2012),
and aspects of type systems (PIERCE 2002), semantics, and naming (LOEWE 2016).
These complex analyses underscore a conclusion that is intuitively well understood:
biology does not present itself in a black and white picture of only interesting or boring
parts. Instead it offers not only shades (allowing for gradients in addition to cutoffs at
significance thresholds), but also colors (additional dimensions that otherwise might be
inappropriately collapsed into a single dimension). The recent interest in statistical
reproducibility has produced guidelines that recommend a closer look at some of these
additional dimensions by estimating confidence intervals and other measures instead of
testing arbitrary significance thresholds (KILLEEN 2005; NAKAGAWA AND CUTHILL 2007;
CURRAN-EVERETT 2009; CUMMING 2013; CUMMING 2014; DEMIDENKO 2016). This does
not mean that P-values have no merit (MURTAUGH 2014; STANTON-GEDDES et al. 2014)
and hence a pragmatic approach might be most appropriate (BOOS AND STEFANSKI
2011), if the high variability of P-values is accounted for (HALSEY et al. 2015). In either
case, close attention to the robustness of statistical methods is warranted (WiLcox
2012), and any statistical conclusions should be supported by some analysis of their
statistical reproducibility (HALSEY et al. 2015). Finally, showing more raw data is
preferable (LOFTUS 1993; DRUMMOND AND VOWLER 2011).
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Statistical error iceberg. Recent interest in statistical reproducibility has drawn
attention to other aspects of statistical analysis workflows. In this context, P-values have
been described as the tip of the iceberg (LEEK AND PENG 2015). To arrive at fully
rigorous conclusions requires investigating numerous detailed decisions about which
data to include, which outliers to remove, which tests to use, and which simplifying
assumptions to employ. Such analyses are more complex to produce and read, but they
are currently essential for exploring the most efficient approaches for arriving at reliable
statistical results. The fundamental nature of time series data for understanding clocks
in flies motivated us to invest in corresponding statistical reliability. Therefore, we
explore below several alternative ways to construct the statistical analysis pipeline for
this study.

Reproducibility in genetics. The recent surge of interest in reproducibility has
resulted in a number of studies of additional relevance to FlyClockbase. For example,
the reproducibility of genotype-phenotype associations has been investigated (NCI-
NHGRI WORKING GROUP ON REPLICATION IN ASSOCIATION STUDIES et al. 2007; IOANNIDIS
et al. 2009b; JANSSENS et al. 2009; KrRAFT et al. 2009). Analysis of gene expression are
an important tool of genetic analysis and have therefore seen substantial standardizing
efforts (BAMMLER et al. 2005). Analysis of standardized and non-standardized
measurements have found improved reproducibility when standardized experimental
protocols were used (BAMMLER et al. 2005). For independent studies collected from the
literature, repeatability of microarray gene expression analyses has met limited success
(loANNIDIS et al. 2009a). Reasons for failure included the unavailability of data,
incomplete annotations, and missing documentation on data processing (IOANNIDIS et al.
2009a). Other relevant observations that can hamper reproducibility include pipetting
errors (BROMAN et al. 2015) and pedigree errors (BROMAN 1999).

Versioned Biological Information Resources (VBIRs). The importance of
biological information resources is undisputed and has motivated the construction of
hundreds of heterogeneous resources as reviewed elsewhere (BROOKSBANK et al. 2005;
NG et al. 2006; LAIBE AND LE NOVERE 2007; WIERLING et al. 2007; VAN GEND AND SNOEP
2008; SULLIVAN et al. 2010; DRAGER AND PALSSON 2014; NAJAFI et al. 2014). Sizes vary,
as do scope and topics ranging from general (e.g. https://datascience.nih.gov/commons
; https://kbase.us ), to organism specific (e.g. http://flybase.org organized around
Drosophila genomes (GRAMATES et al. 2016; MARYGOLD et al. 2016)), modeling specific
(LE NOVERE et al. 2006; CHELLIAH et al. 2015), approach specific (Cusick et al. 2009),
and down to pathway or molecule specific resources (e.g. ClotBase (SONAWANI et al.
2010) or SwissLipids (Aimo et al. 2015)). Their heterogeneity remains a challenge and
motivated development of the FAIR Principles (WILKINSON et al. 2016). The FAIR
Principles were designed for evaluating credible solutions for the problem of exchanging
data in biology and emphasize important principles that make data sharing FAIR and
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data Findable, Accessible, Interoperable, and Reusable (WILKINSON et al. 2016). The
FAIR Principles do not aim to provide any standards or implementations, but leave the
actual development of solutions to others, such as the proposed standard for Minimal
Information Requested In the Annotation of biochemical Models (MIRIAM) (LAIBE AND LE
NovVERE 2007), Brief, Explicit, Summarizing, Technical (BEST) Names (LOEWE 2016),
and the many proposals reviewed elsewhere (DRAGER AND PALSSON 2014). Overall
solutions will need to solve the extraordinarily difficult challenge of data integration
(DoAN et al. 2012). Accordingly, efforts to exchange detailed data more efficiently in
these complex contexts have become top priorities in biological research contexts (NIH
et al. 2012; DRAGER AND PALSSON 2014; NIH 2015; NIH 2016; WILKINSON et al. 2016).

Importance of versioned data integrators. Versioned interoperable information
resources of intermediate size are likely to play a permanent role as hubs of integration
for the biological expertise in an area. The versioning is important to enable users to
access a stable state of information, without the unrealistic demand that these
resources have reached their final stage of development. Any VBIR worth developing
will likely be updated and improved for an extended period of time. While rates of such
change are likely to vary substantially, none of these changes should imperil the
reproducibility of some result that is based on the earlier state of the resourced as
accessed by the authors of that result. How to achieve interoperable long-term stable
versioning that is flexible enough to accommodate the broad range of needs of
resources as heterogeneous as VBIRs is an open question for research in the
semantics of naming. Currently, innumerable, incompatible, and inconsistent versioning
systems are actively used by numerous projects. Integrating them without reflection
would create a system that is almost incomprehensible and inflict on users intolerable
amounts of inessential complexity. Experience has shown that such a complex system
would be very brittle and would jeopardize reproducibility by its complexity. However,
the value of consistent easily reproducible integration is in the quality to which usable
resources offer expert curated relevant data that is continuously updated. Updates
could be triggered by detecting errors or integrating future experiments, possibly
expanding scope or precision through improved data models (but always increasing
some versioning number). Managing such updating processes works best for VBIRs of
some intermediate size. Thus, VBIRs size is defined at the lower end by exceeding the
limited scope of single publications, reviews, or meta-analyses that are all frozen in time
once completed. At their typical size, VBIRs enable the functional, ongoing integration
of information evaluating multiple studies and reviews from the perspective of a well-
defined scope. At the upper end, VBIRs generally remain at a much lower complexity
than grand challenges, and thereby avoid many additional complications caused by
their excessive complexity. This intermediate size and their stability enables VBIR to act
as reliable building blocks for accumulating biological expertise and address existing
grand challenges more efficiently.
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Flexibility of VBIRs. These minimal constraints allow VBIRs to take on a great
diversity of organizational forms and the size of their scope may vary widely. However,
not all biological information resources currently perceived as useful do satisfy these
requirements. For example, not all repositories and databases in biology that aim to
continually integrate information provide reliable access to clearly defined states in the
past that are easy to access and to cite. Traditionally, the biological information
resources that are easiest to cite are journal articles, but these do not usually provide
information in a form that is structured enough for further processing and they do not
usually update information (ALLISON et al. 2016). Some authors complement their
articles with online databases or more static resources that can contain valuable
material. However, the lack of standards and tools that are easy to use means that such
efforts usually require substantial programming and data science expertise when they
are set up and when they are to be maintained. Such barriers of entry make it very
difficult for non-programming biologists with interesting datasets to set up and publish a
VBIR in a form that facilitates further data integration.

Database integration is a special case of data integration. Both are enormous
general challenges, whenever non-trivial datasets are to be used together (DOAN et al.
2012). For example, a substantial research collaboration worked towards integrating
data scattered across 81 geospatial temporal ecology datasets from 7 provider types in
an effort to build LAGOS, the LAke multi-scaled GeOSpatial & temporal database
(SORANNO et al. 2015). The substantial supporting online material of the initial LAGOS
description (SORANNO et al. 2015) provides an impression of the numerous data-
handling and type system synchronization challenges the LAGOS team had to face in
order to obtain some state of data integration (see
http://csilimno.cse.msu.edu/lagos_status.php for updates).

Cochrane reviews provide a completely different approach to data integration. To
reduce arbitrary bias that easily arises in more limited non-systematic reviews,
http://www.cochranelibrary.com aims to stimulate the use of systematic methods for
finding and integrating all peer-reviewed information about a given topic. The resulting
retrospective and prospective meta-analyses have substantially advanced the
integration of biomedical observations. Ongoing development of methodologies for
systematic bias reduction has greatly increased awareness and approaches available
for reducing the influence of important biasing factors (THARYAN 1998; ADES et al. 2008;
McKENzIE et al. 2013; Dol 2014; ONITILO 2014; DEBRAY et al. 2015; EFTHIMIOU et al.
2016). This success does not imply that further improvements are impossible; there are
biases that are notoriously difficult to address, such as certain types of ascertainment
bias (Amos et al. 2003; CLARK et al. 2005; LACHANCE AND TISHKOFF 2013; MINIKEL et al.
2014) and biases against the publication of negative results (JOHNSON AND DICKERSIN
2007). In fact, it can be argued that biases are almost everywhere (e.g.: IOANNIDIS
2005a; PATIL et al. 2015). Thus, quantifying biases and analyzing their impact
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appropriately may be more important than demanding their absence. Cochrane reviews
are not VBIRs, because traditional publications cannot be updated regularly. If VBIRs
could be published easily, without the currently required database programming
overheads, then Cochrane reviews with a reasonably well-defined data model could in
principle become VBIRs.

Genome projects as a model for VBIRs development on a broader scale.
VBIRs increase the speed of hypothesis testing and greatly add to the long-term value
of properly annotated wet-lab data. They offer the raw material for diverse meta-
analyses, opening up entirely new research perspectives. In this respect, VBIRs mirror
similar efficiencies known from genome projects. The similarities do not end here.
VBIRs development also shows similar strong dependencies on software and data
organization. Genome projects demonstrated efficiencies of scale by separating data
collection and various stages of data interpretation (LANDER et al. 2001; VENTER et al.
2001). The efficiency of post-genomic sequencing workflows critically depends on the
development of appropriate data structures, processing tools and exchange protocols
(WILKINSON et al. 2016). We expect similar boosts to efficiency from developing VBIR-
tools. For example, they could support more biology-friendly data structures to increase
the efficiency and precision of integrating inherently imprecise biological observations.
They could also greatly accelerate the adoption of sophisticated statistical analysis by
the biological community, simply by implementing the appropriate statistical methods
into the corresponding automated workflows. This would reduce problems of confusing
SD and SEM (SALsSBURG 1985), and opens up a new avenue for communicating
recommended best practice for statistical analyses, that could be provided right next to
a user-friendly implementation (MAZUMDAR et al. 2010; SHARPE 2013).

Genome projects have revolutionized biology. Here we want to explore whether
efficiencies of scale in biological model curation organized in a VBIRs project might hold
a similar potential for accelerating the pace of biological discovery. The success of
genome projects and other targeted efforts has been built on efficiently organizing and
exchanging new data and interpretations (WILKINSON et al. 2016). For VBIRs
exchanging data is more complicated, because their data is more structured and more
diverse than typical genome data. Accordingly, efforts to exchange details data more
efficiently in these complex contexts have become top priorities (NIH et al. 2012;
DRAGER AND PALSSON 2014; NIH 2015; NIH 2016; WILKINSON et al. 2016). Such work is
essential for progress towards meeting increasingly complex grand challenges like
personalizing medicine, constructing genotype-phenotype-maps, or predicting how
cancer cell populations evolve using mechanistic models in evolutionary systems
biology (LOEWE 2016). By definition, these grand challenges all exceed the problem-
solving skills of any single research unit, and therefore critically depend on the efficient
communication of the latest progress. This progress could be captured in high-quality
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VBIRs that probably will bring the same efficiency benefits as genome projects, once
corresponding tools become available for dealing with their more diverse data types.

Importance of biological model curation. None of the benefits above can be
realized without substantial human input in the form of biological model curation.
Despite many advances in machine learning, the gold standard for data curation is still
the eye of a domain expert. While machines are extraordinary in exploiting regular
patterns, it has been difficult to teach machines how to correctly handle the many
exceptions that are readily recognized by human experts as deviations from ‘common
sense’ (BURKHARDT et al. 2006; SALIMI AND VITA 2006). Biological model curation by itself
is not new. In fact, one could argue that very essence of research is the construction
and curation of biological expertise that could also be described as a model. Thus, the
curation of biological information is at least as old as Linnaean taxonomy (LINNE 1758).
None of the recent resources that systems biology depends on could have been put
together without substantial model curation efforts (see e.g. DRAGER AND PALSSON
2014). The work of biological model curators, or biocurators, has only recently come
into focus as an increasingly important avenue of biological research (BOURNE AND
MCENTYRE 2006; BURKHARDT et al. 2006; SALIMI AND VITA 2006; HOWE et al. 2008; ST
PIERRE AND McQUILTON 2009; BATEMAN 2010; BURGE et al. 2012; HIRSCHMAN et al. 2012;
ZHANG et al. 2014b; MITCHELL et al. 2015; ORCHARD AND HERMJAKOB 2015; RODRIGUEZ-
ESTEBAN 2015; GIBSON et al. 2016; Kim et al. 2016; REISER et al. 2016; SINGHAL et al.
2016). By now biocurators have an international society ( http://biocuration.org ) and an
official journal ( http://database.oxfordjournals.org ). Funding for digital depositories in
biology has historically been complicated because few have realized the essential
contributions of biological model curators to the overall scientific enterprise. This
problem has been recognized and efforts are underway to address this discrepancy
(EMBER et al. 2013). One potential contribution to these efforts could be to find a way
that substantially reduces the cost of initiating, growing, and maintaining VBIRs. We
explore a potential approach for simplifying model curation by exploiting advances in
computer science that have greatly simplified the design and construction of compliers
for new programming languages.

How a compiler could help in biological model curation. Programing
language compliers are extraordinary efficient tools for guaranteeing that a given
collection of texts (source code) conform to a well-defined standard (the complier’s
language) and are transformed into output that is guaranteed to conform to strict rules.
The construction of compliers requires an advanced understanding of computer
science, but decades of research have produced a substantial body of data structures,
algorithms, and tools that greatly simplify the construction of compilers today (e.g.
CooPER 2012; GRUNE 2012). Thus, the question today is not if a compiler can be
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constructed for a given language, but rather what should a language look like for which
it is worth constructing a compiler. After the construction of uncounted programing
languages each with their own strengths and weaknesses, rather compelling reasons
are necessary for creating a new one and any such efforts should learn from the diverse
shortcomings of their many predecessors (MANDRIOLI AND PRADELLA 2015). Traditional
approaches to designing new programming languages have not included the very large
amounts of feedback from research biologists that are necessary for creating a
language design that could efficiently support biologists in their work (LOEWE 2016).

Enforce best practices. For example, such a compiler could greatly reduce the
confusion between SD and SEM that has plagued the reporting of biological results for
some time (SALSBURG 1985). A compiler that implements the latest statistical testing
methods could greatly improve the adoption of statistical best practices in the biological
research community (MAzZUMDAR et al. 2010; SHARPE 2013). Such a compiler could also
advance standards for facilitating interoperability in systems biology (DRAGER AND
PALssON 2014) and thereby contribute towards solving the extraordinarily difficult
challenge of data integration (DoAN et al. 2012), improve the semantic reproducibility of
biological data (LoEwEe 2016), facilitate the sharing of meaningful data based on the
FAIR Principles (WILKINSON et al. 2016), and encourage biologists to provide the
Minimal Information Requested In the Annotation of biochemical Models (MIRIAM)
(LaBE AND LE NoVERE 2007). VBIRs construction does not require the existence of such
a compiler, as every task can also be performed manually. Manual work is slower, but
also more flexible, and can therefore better attend to the needs of high-quality biological
model curation of a given data set. If such curation work is combined with the
perspective of a compiler architect, then it provides extraordinary opportunities for
designing efficient abstractions for data structures and tasks that can later be supported
by a fully automated compiler.

Efficiencies of scale. Many VBIRs are likely to have similar needs that can be
served by the same compiler if they share a standard for storing data. Thus, the costs of
compiler development can then benefit several VBIRs where they reduce the cost of
VBIR development and maintenance, which have been difficult to fund (EMBER et al.
2013). Compiler development is also an excellent opportunity for detecting problems in
logic formalisms; such errors have the potential for causing exorbitant costs (e.g. HOARE
2009; Kamp 2011; Loewe 2016). Therefore, constructing such a compiler could already
be a cost-effective decision for the longer-term development and maintenance of a
single VBIR alone. We aim to observe during our biological research where commonly
used logic formalisms made it more complicated to accurately represent biological
observations with their usual uncertainty. Representing uncertain biological data in
computational structures is a sufficiently frequent problem to cause substantial
frustration in efforts towards curating biological models at a reasonably high quality.
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Opportunity. Our systematic study of circadian clock gene expression patterns
offers intriguing opportunities for engaging with the timely questions of reliable data
handling, control experiment repeatability, human error analysis, reproducible
computing, statistical reproducibility, and the semantic reproducibility of source code in
research computing. These questions might be easy to dismiss at first sight, but as
discussed above, in the broader context of growing data sets in VBIRs, low rates of
diverse and individually rare errors can combine into a pervasive fog of confusion that
can render a valuable collection of scientific results unusable. Usually these problems
cannot be investigated at the level of a single experimental study, but this does not
imply that errors in VBIRs are rare, or without consequence (e.g. see (ZEEBERG et al.
2004; JONES et al. 2007; SCHNOES et al. 2009)). The resulting irreproducibility is not
cheap. For example, non-clinical biomedical studies with an estimated cost of about
$7Bn/yr throughout the US come with difficulties in data analysis and reporting that
hamper their reproducibility (FREEDMAN et al. 2015a). Pervasive biases in biological
datasets (I0oANNIDIS 2005a) and statistical difficulties that can lead to substantially wrong
conclusions (IOANNIDIS 2005b) can interfere with scientific discovery. To address these
problems, it is important to invest in efforts towards opening science (BARTLING AND
FRIESIKE 2014), sharing data (PACKER 2016; WILKINSON et al. 2016), and improving
reproducibility in various areas (I0ANNIDIS 2005b; DONOHO 2009; HUANG AND GOTTARDO
2013; LOoEWE AND KEEL 2014; STODDEN et al. 2014; FREEDMAN et al. 2015a; JAMES et al.
2015; STODDEN 2015; BARBA 2016; LOEWE 2016; LOEWE et al. 2016; LOEWE et al. 2017).
Reproducibility frameworks greatly facilitate individual scientific research studies, but
take much more effort to put into place than could possibly be expected of the
investigators in any individual study. Therefore, it is important to find efficient ways to
achieve these goals at institutional and national scales (NIH et al. 2012; NIH 2015; NIH
2016). Our study is different from many typical studies in that we have attempted to
simultaneously conduct high quality research while working towards a framework for
improving reproducibility.

Purpose of this study. Here we interweave several perspectives integral to one
body of trans-disciplinary research. We aim to improve amount and quality of
experimental time series available for parameter estimation in mechanistic simulations
along with our overall understanding of D. melanogaster circadian clock models. To this
end we present FlyClockbase, a new carefully curated biological information resource
designed to maximize accessibility and ease of use for experimental biologists and
modelers. We show how to use it for testing hypotheses and report our own new
findings about the variability of peak times in the clock. Finally, we make trans-
disciplinary observations at the interface of experimental biology, data curation,
reproducibility, and the applicability of logic formalisms in biology. We present our
process for working towards constructing a compiler that would substantially reduce the
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effort required for developing and maintaining data resources like FlyClockbase. These
perspectives are next explained in a more detailed overview.

Formal organization of Versioned Biological Information Resources (VBIRS).
FlyClockbase is a VBIR. VBIRs store biological information using controlled immutable
versioning numbers for marking each publicly released variant of the resource to ensure
that previously released data remains accessible under that number. As we developed
FlyClockbase, we aimed to separate the special from the general VBIR aspects to help
make our design more applicable to the development of future VBIRs. Below we
discuss why more VBIRs are needed. For ease of use, quality control, and future
maintainability, we designed FlyClockbase as a file-based data resource that follows a
well-defined scheme for collecting tables in text files grouped in folders. This
organization as a set of tables is conceptually similar to the structure of a relational
database, albeit without the speed, rule enforcement, and other amenities provided by
modern database systems. As a result, our approach maximizes flexibility and
openness, while minimizing certain types of administrational and long-term maintenance
costs (to increase chances of long-term survival; see Discussion). The resulting system
is even more general than VBIRs and we nicknamed it “TabFS’. The name TabFS
highlights the central role of tabs (for delimiting), table-files (for storing) and the file-
system (for organizing data). To simplify the implementation of other VBIRs, we have
been separating the specific details of implementing FlyClockbase from general abstract
features. In TabFS we aim to capture the abstractions and rules required for
implementing VBIRs with a long-term view to developing a reliable VBIR standard. Our
goal is to provide the simplest and most efficient organization possible without
sacrificing the flexibility curators need for defining new data types that represent diverse
types of complex and uncertain biological observations. Efficiently integrating new
datasets in FlyClockbase requires this flexibility. It facilitates focusing on clock biology
and minimizes distractions from defining or decoding data types. This approach enables
FlyClockbase to integrate a diverse array of wildtype and wildtype-like time series along
with the attributes necessary for documenting a broad range of experimental details.
Each time series records the relative amount of a clock component as observed at
various points in time.

Data integrated by curation. In FlyClockbase we provide a curated overview of 25
years of published observations of D. melanogaster clock components, which we use
for retrospective meta-analyses. The types of molecules reported in FlyClockbase are
based on the biological D. melanogaster clock model we abstracted from the relevant
literature (see Table 1 for brief descriptions of core clock components). FlyClockbase
contains more than 400 time series curated from the wildtype control experiments of 86
circadian clock studies. They can be compared in many ways within or between clock
components for testing diverse hypotheses of potential interest for fly clock research.
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Hypothesis tested: biological variability. We use FlyClockbase for comparing the
variance of times at which the circadian mRNAs and proteins period (per) and timeless
(tim) reach their relative daily peak and valley. We find significant differences in
variance that are not easily explained as a statistical fluke and survived several rounds
of in-depth error checking (which led to interesting conclusions in their own right). Thus,
we hypothesize that the larger variance of peak times for the protein PER in comparison
to TIM might have mechanistic reasons that could help illuminate interesting aspects of
the clock if recovered in mechanistic models.

Hypothesis tested: observation method. The confluence of many diverse
independently observed time series in FlyClockbase provides a unique resource for
understanding such variability of fly clocks in a broad range of settings, as documented
in the attributes of FlyClockbase time series. This variability can also be used for
comparing the reproducibility of different approaches to measuring time series. We
compared time series measured by PCR based methods (QPCR, RT-PCR) with
methods that do not include self-replication (Northern Blot, RNAse Protection Assay).
The variability of PCR-based time series in FlyClockbase exceeds that of non-PCR
based methods; though originally surprising, this is consistent with both the exponential
nature of amplification in PCR and previous reports on the reproducibility of quantitative
measurements from PCR-based methods.

Human error analysis. We measured human error rates for a given set of tasks in
FlyClockbase. Our results are broadly comparable to previous observations. The
findings suggest that VBIRs would benefit from developing methods for ensuring that
scientific conclusions are not affected by human errors that inevitably occur when
handling or analyzing data and corrupt content or type. Designing a formal type system
capturing relevant expert insights for FlyClockbase could facilitate and ultimately
automate searches for logical inconsistencies.

Compiler logic design. We developed FlyClockbase while simultaneously
exploring design options for programming language compilers that could help construct
and maintain VBIRs. We have identified numerous pivotal features for supporting the
long-term stability of FlyClockbase that are most efficiently implemented by a
correspondingly designed compiler. We discuss how these and other practical aspects
of working with VBIRs can improve the usefulness and chances of longer-term survival
for VBIRs. We use an analogy to well-known results from population genetics to
illustrate what the future might hold for a newly-born VBIR, such as FlyClockbase.
These considerations show that cumulative practical impacts from many small
complications or innovations can be unexpectedly large. We illustrate using
FlyClockbase how it can be difficult to represent uncertain biological data in the
certainty-demanding logic formalisms of the data types commonly used in
computational tools. Most of the data types we need in FlyClockbase fall into two
categories. Some are very general data types that are very common and thus ideally
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designed for interoperability (e.g. bibliographic references, tables, etc., see TabFS).
Other data types are specific to FlyClockbase and therefore are not reusable. These
types need to be defined by those expert biologists who curate FlyClockbase, and best
understand the relevant biology. To facilitate these discussions, we developed a trans-
disciplinary collaboration model to help with the necessary communication of biological
curators with a compiler architect, who needs to be capable of bridging biology and
aspects of designing compiler logic. If such a communication approach is used by a
compiler architect for informing important decisions about the relevant logic formalisms
to be implemented, then our observations suggest that the efficiency of biological model
curation could greatly increase once a user-friendly VBIR compiler becomes available.
Such a compiler will empower biological model curators to define their own data types
that can be shaped to more appropriately representing the uncertainty of the biological
observations they curate — without violating biological or computer science logic. Such
compilers will also allow biologists to define their own consistency checks, which can
then be automatically maintained by a correspondingly designed compiler. If this
compiler also implements sufficiently reviewed standards for interoperability and data
exchange, biological research will benefit from an unprecedented ability to combine
models and analyses from different VBIRs.

Importance of efficient biological model curation. Our work highlights why topic-
specific VBIRs like FlyClockbase have an essential, irreplaceable role to play in
biological research — once curated to high quality by expert biologists. As we illustrate in
FlyClockbase, VBIRs increase the speed of hypothesis testing and greatly add to the
long-term value of properly annotated wet-lab data. They offer the raw material for
diverse meta-analyses, opening up entirely new research perspectives. In this respect,
VBIRs mirror similar efficiencies previously observed in genome projects. Our trans-
disciplinary analysis suggests that the most efficient route for integrating biological
information requires more work on type systems and logic formalisms in order to better
capture the many uncertainties regularly found in biological data. To sample the
problem space well enough, more studies like ours are needed that report how in-depth
biological research challenges the expressivity of logic formalisms that have become
candidates for implementation in the discussed compiler. Combining such observations
with a rigorous in-depth usability and expert review process as defined elsewhere
(LoewEe 2016) will greatly accelerate the definition of more appropriate logic formalisms,
VBIRs compiler design, biological model curation, and thus progress towards meeting
the grand challenges of our time. This new efficiency would indeed allow us to stand on
the shoulders of giants and no longer have to start crawling upwards from the elbow
whenever a new question arises.

Overview of Sections. In the next Section, we review biological and computation
clock models, as well as the data model of FlyClockbase from a biological perspective.
We then describe how we selected the data in FlyClockbase, how we processed time
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series and which statistical methods we used. Our Results Section first quantifies the
historic use of direct experimental time series observations in modeling studies. It then
reviews the number of time series observed for each core clock component in
Drosophila melanogaster. It provides an overview of the variability in all components
before presenting a human error analysis investigating potential impacts of data
handling errors in FlyClockbase on the variances of peak and valley timings of the
period and timeless gene products, which are compared after defining a basic null-
hypothesis for data in FlyClockbase. Our last result compares methods for observing
mMRNA. We start our Discussion Section by explaining, how FlyClockbase facilitates
hypothesis-driven research. We then discuss the two hypotheses tested in this study
and suggest mechanistic models for further testing. Next, we broaden our view to
discuss the importance of model curation for molecular systems biology data. We then
highlight observations that illustrate, how a tool with the capabilities of a specially
crafted programming language compiler could advance work in FlyClockbase and
beyond. We will pay attention to aspects like efficiency, error detection, and formal logic.
Given the high likelihood of long-term loss of biological information resources, we finally
discuss population genetics modeling results with some applicability to the fate of
FlyClockbase. We do so in order to prioritize and motivate the next steps. We conclude
with a list of the various disciplinary areas engaged by this study and how biological
model curation will facilitate critical progress towards various grand challenges of our
time. Our online material includes additional text with a more computational perspective
and a supplementary statistical analysis to which we frequently refer in our results
(including R source and data).
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MODELS
Biological model of fly circadian clocks

The D. melanogaster clock is a gene regulatory network that receives environmental
inputs (such as light and temperature) and produces its hallmark cyclical behavior
through various interlocking positive and negative feedback loops (KUCZENSKI et al.
2007; WANG AND ZHou 2010). Table 1 lists the most important clock components, and
Figure 1 represents their key interactions in the Systems Biology Graphical Notation
(MoopIE et al. 2011). The timing of various clock sub-processes is essential for any
clock. Circadian clocks critically depend on generic cellular processes of importance in
the information processing associated with proteins, such as transcription, translation,
and degradation. Thus, mutations disrupting critical functions in these generic
processes are also likely to affect the clock. However, they are also likely to have many
other harmful consequences; hence, we do not consider them as core clock
components (which are the exclusive focus of our study here).

Place TABLE 1 about here.
Place FIGURE 1 about here.

Main loop. Briefly, in the core (negative) feedback loop, the proteins CLOCK
(CLK) and CYCLE (CYC) form a heterodimer and promote the transcription of period
and timeless (DARLINGTON et al. 1998; RUTILA et al. 1998). PER protein is increasingly
phosphorylated by DOUBLETIME (DBT) and several other kinases. Fully
phosphorylated PER interacts with the F-box protein SLIMB (SLMB) to be marked for
degradation unless TIM protein is present to form a PER/TIM complex. This complex
represses the effects of the transcriptional activator CLK to form a negative feedback
loop (GEKAKIS et al. 1995; KLoss et al. 1998; LEE et al. 1998; PRICE et al. 1998; LEE et
al. 1999; KLoss et al. 2001; CHiu et al. 2008). When light is present, the protein
CRYPTOCHROME (CRY) undergoes a conformational change that renders it active. As
a final step before TIM degradation, activated CRY and the kinase SHAGGY (SGG)
cause TIM in its phosphorylated form to interact with the F-box protein JETLAG (JET)
(MARTINEK et al. 2001; KoH et al. 2006). If TIM is degraded thought its phosphorylated
form, this will limit the formation of the PER/TIM complex. If this complex cannot form,
then PER will be left in an isolated form in which it can be further phosphorylated (and
thus be moved closer to its degradation). If PER pairs with TIM to form this complex,
then PER cannot be phosphorylated, and it will temporarily stop its progress towards
degradation. Thus degrading TIM facilitates the degradation of PER by allowing PER to
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become fully phosphorylated (EMERY et al. 1998; NAIDOO et al. 1999; Busza et al. 2004;
OzTUuRK et al. 2011). Consequently, PER/TIM complexes no longer repress CLK
transcriptional activity, and CLK proceeds to start a new cycle by again promoting again
the transcription of per and tim.

Other loops. A second feedback loop primarily concerns clk transcription. CLK
promotes transcription of both PAR-domain protein 1 (pdp1) and vrille (vri) (BLAU 19909;
McDoNALD AND RosBAsSH 2001; CYRAN et al. 2003). PDP1 protein then promotes the
transcription of clk, while VRI represses the activity of PDP1 and inhibits the
transcription of clk, creating positive and negative feedbacks, respectively (CYRAN et al.
2003; GLossor et al. 2003). The relatively recently discovered clockwork orange (cwo)
modulates both feedback loops by weakly repressing CLK-mediated transcription of per,
tim, pdp1, vri, and cwo itself (KADENER et al. 2007; Lim et al. 2007; MATSUMOTO et al.
2007; RICHIER et al. 2008). The interplay between strong transcriptional activation
promoted by CLK and weak repression from CWO protein counteracts “jitters,” or small
variations in period (FATHALLAH-SHAYKH et al. 2009; FATHALLAH-SHAYKH 2010; SCRIBNER
AND FATHALLAH-SHAYKH 2011). Other notable circadian products involved with post-
translational modification, synchronization of clock neurons, and other processes
include casein kinase 2 alpha (ck2a), protein phosphatase 2a (ppZ2a), pigment-
dispersing factor (pdf), nemo (nmo), and others (GRIMA et al. 2002; Ko et al. 2002; LIN
et al. 2002a; SATHYANARAYANAN et al. 2004). A more detailed review of the clock can be
found elsewhere (HARDIN 2011; OzKAYA AND ROSATO 2012).

In silico models integrating fly clock observations

Mathematical models of circadian clocks have been contributing to our understanding of
clock biology for decades.

Biological results overview. The origins of many fly clock models can be traced
back over 50 years to work by PITTENDRIGH & VICTOR (PITTENDRIGH AND VICTOR 1957;
GOODWIN 1964; GOODWIN 1965) and GOODWIN (PITTENDRIGH AND VICTOR 1957; GOODWIN
1964; GoobwIN 1965). Then GOLDBETER (1995) developed a model with five ordinary
differential equations that use per mRNA and PER protein (in various phosphorylation
states) to describe a negative feedback loop created when PER represses per mRNA
transcription. LELOUP (1998a) expanded this model to include tim mRNA and TIM
protein. Later models such as those published by UEDA (2001) and SMOLEN (2001)
again expanded the feedback loops by adding CLK, and more recent models added a
feedback loop based on vri, pdp1 (SMOLEN et al. 2004; XIE AND KULASIRI 2007; KULASIRI
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AND XIE 2008) and CWO (FATHALLAH-SHAYKH et al. 2009). Two other common points of
interest for clock models were the importance of a positive feedback loop (TYSON et al.
1999; SMOLEN et al. 2001; KuczeNnski et al. 2007; WANG AND ZHoU 2010) and the
influence of post-translational modifications such as phosphorylation (LEISE AND MOIN
2007; RisAu-GUsMAN AND GLEISER 2012). Because the clock is able to adjust to
temperature variations, a number of models further investigated the role of temperature
on the clock (KIDD et al. 2015). Some temperature models, such as those by HONG
(HONG AND TYsON 1997) and LELOUP (LELOUP AND GOLDBETER 1997), are based on
GOLDBETER’S 1995 model, while others (RUOFF AND RENSING 1996; RUOFF et al. 1997;
RUOFF et al. 1999) use the more general GoOobwIN (1965) oscillator as a foundation.
While models have become sophisticated enough to explain observable biological
phenomena, methods have improved for choosing more realistic values for model
parameters (KURATA et al. 2007; XIE et al. 2010; LEBIEDZ et al. 2012). A number of
review articles compare the various clock models and present more details on their
history (SMOLEN et al. 2000b; SMOLEN et al. 2000a; GOLDBETER 2002; KUROSAWA et al.
2002; OGAWA et al. 2008; GERARD et al. 2009; LELour 2009; GONzE 2011; SCRIBNER AND
FATHALLAH-SHAYKH 2011).

Role of stochasticity. Researchers have also been using increasingly
sophisticated computational approaches for simulating the clock. Many early models
were constructed using deterministic ordinary differential equations, but some of their
underlying assumptions are not always applicable to the clock. In particular,
deterministic models assume large enough numbers of molecules so that any random
variations caused by stochastic changes in the state of individual clock components are
compensated at the level of the whole clock. Such large numbers of molecules may not
be realistic for clocks at the cellular level (RUOFF et al. 1999). More recently, stochastic
models have been constructed to overcome these limitations; these models are often
derived from previously published deterministic equivalents (BARKAI AND LEIBLER 2000;
ZAK et al. 2001; GONZzE et al. 2002a; GONZzE et al. 2002b; UEDA et al. 2002; VILAR et al.
2002; GoNze et al. 2003; GONZzE et al. 2004; MIURA et al. 2008). This allowed for a better
understanding of how intracellular stochasticity generates noisy clock observations
(BARKAI AND LEIBLER 2000; GONZE et al. 2002b; Y1 et al. 2006; LI AND LANG 2008; LERNER
et al. 2015) and how this noise can be reduced by synchronizing clocks across groups
of neurons (KATAKURA AND OHMORI 2006; BAGHER!I et al. 2007; BAGHERI et al. 2008b;
DIAMBRA AND MALTA 2012; RiISAU-GUSMAN AND GLEISER 2014).

Shared problems. The models above examine different aspects of the clock, but
they all face two common modeling challenges: estimating parameters and testing the
quality of models. Both issues require the ability to access and use high-quality
experimental data, yet there is a painful lack of experimentally measured rate
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parameters for important circadian clock processes. Researchers have used a wide
range of methods to find potentially realistic parameters (LELouP AND GOLDBETER 1998a;
LELOUP AND GOLDBETER 2000; SMOLEN et al. 2001; SMOLEN et al. 2002; SMOLEN et al.
2004; RUOFF et al. 2005; XIE AND KULASIRI 2007; BAGHERI et al. 2008a; KULASIRI AND XIE
2008; WANG AND ZHou 2010). These include trial-and-error approaches, but even the
best systematic methods cannot guarantee finding rates that reflect nature’s values. In
principle, such searches aim to find combinations of input parameter values that cause
models to produce time series mirroring those observed experimentally. This ideally
provides ensembles of realistic parameter combinations that cannot be ruled out by
experimental evidence. It is immaterial, whether such ensembles were generated by
testing deterministically or stochastically proposed parameter combinations. However,
in no case is it possible to “validate” any parameter combination on principal grounds
due to the open nature of the models as discussed elsewhere (ORESKES et al. 1994;
TARANTOLA 2006). The best parameter estimates are thus “realistic” (up to a given
stringency), and conclusions based on simulations using them are reasonable (up to the
usually unknown degree to which these parameter combinations represent reality). This
indirect approach has been successful in a wide range of disciplines for estimating
parameters in complex models (e.g. (STAINFORTH et al. 2005)). The remaining
‘unknown” degree can be narrowed for a given model with unknown parameters by
using statistically rigorous approaches (TARANTOLA AND VALETTE 1982; JAYNES AND
BRETTHORST 2003; TARANTOLA 2005; TARANTOLA 2006; MOURA NETO AND SILVA NETO
2013). The problem of unknown model parameters is widespread in many disciplines
that use modeling approaches and has also become known as the “inverse problem”; it
can be can be solved in principle by probability theory (TARANTOLA AND VALETTE 1982;
JAYNES AND BRETTHORST 2003; TARANTOLA 2005; TARANTOLA 2006). Concisely stated,
the inverse problem is the challenge to use all known data about a system for restricting
the ranges of unknown causal input factors for a model that produces simulation output
that is equivalent to data observed in the real system itself (even though the latter
ultimately remains unknown). Solving the inverse problem for increasingly realistic
biological models using growing datasets of varying quality quickly exceeds current
mathematical and computational capabilities and thus remains a research challenge.
Additional limits for such reverse-engineering of systems biology models may come
from the large variability of their kinetic rates (ERGULER AND STUMPF 2011).

Parameter estimation in complex models. Numerous algorithms can propose
sequences of input parameter combinations that repeatedly reduce computed distances
between simulated and observed data. However, few frameworks can rigorously
estimate the statistical uncertainty associated with their point estimates. Maximum
likelihood and Bayesian statistics are currently the frameworks that are most advanced
(EDWARDS 1992; HEYDE 1997; JAYNES AND BRETTHORST 2003; BisHoP 2006). They
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usually require a function that directly computes the likelihood that a given system will
produce a given set of observations for a given set of input parameters. However, this
likelihood function is increasingly difficult to specify for non-linear stochastic models of
growing complexity such as the circadian clock models of interest. Help may come from
formalized frameworks for Approximate Bayesian Computation (ABC) that have been
developed in various disciplines and do not require explicit likelihood functions (TONI et
al. 2009a; CsILLERY et al. 2010a; ROBERT et al. 2011; SUNNAKER et al. 2013; WILKINSON
2013; LEE et al. 2014b; STuMPF 2014; BuzBAS AND ROSENBERG 2015). In theory, ABC
can solve inverse problems for all simulation models capable of producing output that is
comparable to real observations. Briefly, ABC approximates likelihoods by (i) proposing
new potentially realistic input parameters, (ii) simulating the model to predict
corresponding results, (iii) calculating the distance of these results to experimentally
observed data, and (iv) deciding which input parameters are actually supported by
experimental evidence, based on comparing these distances to predetermined
acceptance criteria. Thus, ABC generates ensembles of model variants, which describe
sets of biologically realistic parameter combinations that quantify the uncertainty
associated with a given model in the light of available data. Recent progress on
uncertainty quantification via ensemble analysis has been reviewed by BAUER et al.
(BAUER et al. 2015). The accuracy of such ensembles depends on the quality of
distance measures, acceptance criteria, and sampling density in relevant regions of
parameter space. The statistical, numerical and computational challenges associated
with ABC increase with model complexity and data diversity. In practice, sampling
speed is often limiting, and distances to observed data might have to rely on summary
statistics that can create complicated biases. These biases will matter when models
with different structures are compared and these summary statistics do not capture all
information that is relevant for fully evaluating the models (ROBERT et al. 2011).
Fortunately, these problems can be solved for simulations of biochemical systems (TONI
et al. 2009a; ROBERT et al. 2011). Generally, ABC benefits from access to raw
experimental observations such as time series to maximize the information used to
estimate parameters and minimize bias from incompletely processed data. Estimating
parameters using ABC in fly clock models of realistic complexity is very challenging and
has not yet been attempted (to the best of our knowledge; recent work in Neurospora
clocks (DENG et al. 2016) demonstrates some of the challenges). While the full potential
of ABC still waits to be realized, the clock modeling community has estimated
parameters either by fitting model output to abstract time series traits or by using time
series data more directly. These approaches are discussed next.

Using abstract time series traits. The use of higher-level abstractions of time

series traits can greatly simplify assessing the realism of a given circadian clock model,
at least when compared to data-intensive work with raw time series. Despite the very
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general nature of abstract traits (e.g. “oscillates” or “has feedback loops”), they can

provide powerful filters for removing biologically uninteresting parameter combinations

when analyzing circadian clocks. More specific examples of such abstract traits are:

1. period close to 24 hours or modified as observed in mutants (GOLDBETER 1995;
LELOUP AND GOLDBETER 1998a; LELOUP AND GOLDBETER 1998b; ROENNEBERG AND
MERROW 1998; LELOUP AND GOLDBETER 2000; UEDA et al. 2001; FATHALLAH-SHAYKH
et al. 2009; WANG AND ZHoU 2010; RISAU-GUSMAN AND GLEISER 2012),

2. phase changes based on light exposure (ROENNEBERG AND MERROW 1998; SMOLEN
et al. 2004),

3. ability to account for responses to light, including light pulses (ROENNEBERG AND
MERROW 1998; TYSON et al. 1999; LELOUP AND GOLDBETER 2000; LELOUP AND
GOLDBETER 2001; PETRI AND STENGL 2001; SMOLEN et al. 2001; SMOLEN et al. 2002;
SMOLEN et al. 2004; RUOFF et al. 2005; BAGHERI et al. 2008a; FATHALLAH-SHAYKH et
al. 2009)

4. ability to be properly entrained (SMOLEN et al. 2001; SMOLEN et al. 2002),

5. robustness to small parameter changes (SMOLEN et al. 2001; SMOLEN 2002; SMOLEN
et al. 2004),

6. ability to replicate the behavior of mutants (ROENNEBERG AND MERROW 1998; TYSON
et al. 1999; SMOLEN et al. 2004; RUOFF et al. 2005; BAGHERI et al. 2008a; FATHALLAH-
SHAYKH et al. 2009; RISAU-GUSMAN AND GLEISER 2012),

7. delay between the peaks of a given mRNA and its protein (LELOUP AND GOLDBETER
1998b; SCHEPER et al. 1999a; SCHEPER et al. 1999b; SMOLEN et al. 2001; SMOLEN et
al. 2002; Xie AND KULASIRI 2007; WANG AND ZHOU 2010; RiSAU-GUSMAN AND GLEISER
2012),

8. dynamics of the combined amounts of all forms of PER protein (PETRI AND STENGL
2001; SMOLEN et al. 2004), and

9. time at peak expression of a given clock component (PETRI AND STENGL 2001;
FATHALLAH-SHAYKH et al. 2009).

Comparing simulation results and observed values for such abstract clock traits is

generally easier than comparing simulations with complex experimental data. However,

it is unclear how much information about circadian clocks is preserved and how much is
biased or lost when reducing all relevant circadian clock output to the abstract
measures given here.

Using complete observed time series. To reduce these uncontrollable biases
from using abstract traits, researchers might seek to incorporate all available time series
data in more direct tests to compare the distance between observed and simulated time
series. The core idea is to increase statistical power by including as much information
as possible when estimating parameters and to use repeated observations to obtain
better estimates of the underlying distributions. It is therefore desirable to integrate all
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observed time series of clocks in flies in a single biological information resource. More

time series also facilitate recognizing genuine clock signals among the experimental

noise inevitably associated with all biological observations and thus help avoid
overfitting. In practice, creating models based on experimental time series is
complicated by diverse challenges:

(i) All challenges of inverse problems with many dimensions discussed above are (or
seem) exacerbated because time series usually provide more degrees of freedom
than lower-dimensional summaries of their features. Parameter estimation is
particularly difficult due to the complex, non-linear relationships between clock
components (TARANTOLA AND VALETTE 1982; FORGER et al. 2005). While recent
progress in developing statistical frameworks like ABC is encouraging, these are not
straightforward to use for models with more than a dozen unknown parameters (TONI
et al. 2009b; CsILLERY et al. 2010b; SOUBEYRAND et al. 2013; SUNNAKER et al. 2013;
Wu et al. 2014). Exploring such techniques is beyond the scope of this paper; here
we aim to present a real-world, research-grade dataset that provides a non-trivial
versatility and complexity test for candidate methods.

(i) 1t can be difficult to choose optimal measures for comparing time series, regardless
of whether applied to simulations or experimental data. There are many “standard
measures” for comparing time series in general (e.g. the Euclidian distance,
equivalent to the assumption that amounts follow a Normal distribution), and
circadian clock time series in particular (e.g. period length). Selecting one or more
appropriate measures is not trivial (GLYNN et al. 2006; REFINETTI et al. 2007; DING et
al. 2008; BATISTA et al. 2011; JIN 2011; SuN et al. 2014; YIN et al. 2014; BANKO AND
ABONYI 2015; KOTSIFAKOS et al. 2016; MOoRI et al. 2016). This is particularly true
when comparing time series with differently calibrated, non-linear scales that may be
associated with substantial measurement errors, as is often the case for
experimental observations. Thus, many diverse quantitative methods can be used to
calculate diverse measures of distance between time series. However, this does not
solve the substantial qualitative need for arguing which quantitative approaches are
appropriate, if any.

(iii) It is challenging to compile all relevant time series observations into one place and
organize them in a uniformly accessible manner, as pertinent time series were
observed using different methods in diverse contexts and span a rich body of
literature across many years. Furthermore, data processing is complicated by many
obstacles associated with scattered big data, which characterizes many types of
biological information. Practical challenges include the degrees to which
a. datais rarely compiled in a uniform, directly usable data format,

b. different datasets require diverse manual corrections for special cases that are
individually rare but aggregately comprise a substantial part of the data and are
hence not ignorable,
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c. time series data is always incomplete and gaps between observed time points
are irregular,

d. data is often insufficiently documented such that it becomes impossible to
determine essential information about the precise types and attributes that we
collect (and which document the precise meaning of the data),

e. data has ascertainment and other biases as well as error rates that are poorly
documented and difficult to control (see reports (CLARK et al. 2005; LACHANCE
AND TISHKOFF 2013) of biases in initial samples of human genomes),

f. there are other practical problems that are often associated with scattered big
data (see, e.g. (GITELMAN 2013; McCALLUM 2013)), or that require too much data
wrangling before a given information resource becomes useful (GoLDSTON 2008).

The aggregated difficulties of navigating all these challenges make it much easier to
understand why only a minority of circadian clock modelers chose to estimate
parameters directly from such time-series data, and why many others preferred to
match abstract time series traits (see Results below).

Using both, complete observed time series and abstract traits. It is obvious
that both types of observations presented above have advantages and disadvantages.

Complete experimentally observed time series increase the information available
for parameter inference, but bring the costs of handling more complex, yet incomplete
datasets associated with the inevitable problems of real-world measurements. Due to
experimental challenges, almost all such time series report relative amounts that are
comparable within a specific observed time series. It is rarely possible to obtain
reasonably precise calibrations those absolute units that matter most for modeling: the
counts of different types of molecules within their respective cellular compartments.
Furthermore, experiments may only report aggregated amounts, averaging over cells or
other biological units. Such practical details can substantially complicate the
computation of the likelihood that a given model will produce a certain observation.
Solving these problems does not determine the weights of different points of
observation in time series. Ideally, such weights maximize the impact of key information
while minimizing noise to avoid overfitting from algorithms that focus on unimportant
details, especially if no absolute calibration is available (as usual). Thus, many
researchers have historically avoided raw time series and used higher-level abstractions
of time series traits to assess the realism of circadian clock models. The relative
difficulties of implementation may have contributed to this trend reported in the Results.

Working with abstract time series traits provides the ease of using higher-level
traits, but comes at a price of its own. Abstract traits usually require fewer dimensions to
be managed and could minimize overfitting if they provide a focused view of important
clock features. However, abstract clock traits are difficult to choose and can easily omit
potentially pivotal information. Higher levels of abstraction can make it easier to find
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parameter combinations that mimic observed ones ‘reasonably well’. Since the quality
of such fits to observations can be judged in many ways, abstract traits might make it
too easy to produce a ‘working clock’. Such model can easily omit details that are
essential for understanding a particular biological circadian clock. In the worst case they
degenerate into descriptions of artificial circuits that oscillate, but are unlikely to help us
understand the carbon-based circadian clocks studied in biology. Abstract time series
traits can reject many parameter combinations as biologically irrelevant and thus
pivotally contribute to the construction of useful clock models. Any given abstract trait is
not likely to extract all statistical information from the data. Thus, combining many such
traits is essential for successful modeling, yet there is no guarantee that any
combination will be statistically sufficient such that it can extract all relevant statistical
information.

Distances. Furthermore, the use of multiple abstract traits raises the question of
how to compute distances among and between simulated models and independent wet
lab observations. Many summary statistics provide distance measures that can be
adequate for some questions, yet cannot extract all information from the data and are
therefore not adequate for other questions. The pervasive non-linearity of circadian
clock systems complicates combining multiple traits into one reliable overall summary
distance statistic. This results in unknown, unpredictable and hence uncontrollable
biases when estimating parameters for clock models. To reduce these uncontrollable
biases caused by abstract traits with imperfect statistical properties, researchers have
started to incorporate more time series data in more direct comparisons of distances
between observed and simulated time series (see below).

Both sides offer advantages. It might eventually be possible to combine their
insights for improving the accuracy and robustness of parameter estimates in circadian
clocks. It often appears easier to compare abstract clock traits than the data-rich
simulated time series and corresponding experimental observations that necessarily
come with many gaps and complex nuances. However, potentially important aspects of
circadian clock mechanisms might be impossible to uncover, except by using a more
data-rich time series based approach. This extra data often adds many more
dimensions, uncertainties and complexities. It can easily overburden modeling studies
with irrelevant details and noise that may lead to overfitting. To counter such difficulties,
abstract traits may complement full time series data by acting as powerful filters that
remove unrealistic models, which might be difficult to identify in other ways. Combining
both appropaches could provide a powerful set of tests for detecting realistic oscillation
patterns in new circadian clock models. Increasing the statistical power of such tests will
make it increasingly difficult for them to be passed by random parameter combinations.
To find values that pass all filters and move beyond a given local optimum, researchers
can now use a broad array of optimization techniques combined with raw computational
power (BUSSIECK AND MEERAUS 2004; BAGHERI et al. 2008a; LEUGERING 2012; 2016).
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However, finding parameter combinations that have extremely rare desired properties
does not guarantee the correctness of a model (see discussion in (LOEWE 2016)). The
vastness of parameter spaces requires caution when claiming that useful parameter
combinations for circadian clock models describe biological reality (see ORESKES et al.
(1994)), even if it was difficult to find working parameter combination. Other input might
pass the same set of tests and thus have the same claim to be in an ensemble that
might be used to represent biological reality. The purpose of FlyClockbase is to improve
the availability of data for testing clock models that might be part of such ensembles.

Studies integrating time series data. The challenges above present significant
barriers to the incorporation of experimental data into models of the D. melanogaster
circadian clock. Thus it is not surprising that only three of the many modeling studies we
surveyed (see Results below) used experimentally observed fly time series to estimate
clock parameters in a more direct way. FATHALLAH-SHAYKH (2009) used published
microarray data from KADENER (2007) to fit parameters related to cry mRNA oscillation.
Kuczenskl (2007) used a Monte Carlo random walk method to find a set of parameters
most similar to time series of circadian mMRNA and proteins from twelve different
experimental studies (HARDIN et al. 1992; ZENG ef al. 1994; SEHGAL et al. 1995; MARRUS
et al. 1996; SO AND ROSBASH 1997; BAE et al. 1998; LEE et al. 1998; BLAU 1999; BAE et
al. 2000; Kim et al. 2002; CYRAN et al. 2003; GLoOsSSOP et al. 2003). LEISE (2007)
employed a coordinate search method to estimate parameters based on time series
from three papers (LEE et al. 1998; BAE et al. 2000; SHAFER et al. 2002). Both
KuczeNnski (2007) and LEISE (2007) point to the fit between the experimental and
simulation data as evidence of the quality of their models. While further discussion of
the many statistical challenges of parameter estimation in real-world datasets is beyond
the scope of this study, we note here that such discussion is rather hypothetical without
an actual real-world compilation of “all known” time series observations that can test
how many of the real-world complications can be handled by any given approach.

One purpose of our study is to provide such an integrated dataset that paves the
way for more thorough analyses of statistical approaches to assessing how good a
given simulation result might fit to “all known experimental observations” of wildtype and
wildtype-like D. melanogaster clocks. We created FlyClockbase to lower the barriers
that currently limit the use of real-world data for improving simulation models.

29


https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/099192; this version posted August 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

FlyClockbase data model overview

FlyClockbase is a file-based database for collecting and organizing experimentally
observed time series of D. melanogaster, reporting the core circadian clock
components, such as mRNAs and proteins in various states. FlyClockbase is dedicated
to circadian clock research in flies and can after sufficient stabilization accept
observations of circadian clocks in other organisms. It is publicly available at:

https://github.com/FlyClockbase

will become active some time before final publication. For reviewing purposes,
see the simultaneously submitted (not-yet-public) zip-archive; for pre-publication
access, please request a copy from Laurence Loewe, who will maintain
FlyClockbase for the foreseeable future.

Despite starting with a shared interest in the same model organism, FlyClockbase is
completely independent from FlyBase (DOs SANTOS et al. 2015), a portal for genomic
and other information about Drosophila as a model organism.

Place FIGURE 2 about here.

Overview. Constructing and maintaining a highly specialized biological information
resource like FlyClockbase is only feasible for skilled biologists with a passion for flies
and clocks. To improve the probability of finding capable biologist curators, we deemed
it important to minimize the computational expertise required for making substantial
contributions to FlyClockbase. We were aiming to minimize IT overheads of initial
construction and longer-term maintenance. As discussed below and in the
Supplemental Material, this goal informed important requirements for improving the
efficiency of biologists curating FlyClockbase and the accuracy with which its formal
type system can capture biologically relevant information. As a result, we have made a
number of unconventional database design decisions. Below we summarize key
differences between the FlyClockbase design presented here and other typical
database designs currently used. We provide more details in the Supplemental Material,
but a full technical description of FlyClockbase is beyond the scope of this study, nor
can we appropriately present the many considerations that informed the current design.
Instead, we focus here on how our choices help biologists, who are (i) interested in the
biological question of reliably observable variability in circadian clocks of flies, or are
(i) aiming to navigate FlyClockbase for using, building on, or contributing to the quality
of data in this new resource. Figure 2 provides an overview of high-level organization
and Table 2 lists the Brief and Explicit Names of various FlyClockbase data structures
(we use these ltalicized Proper Names to distinguish well-specified FlyClockbase data
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structures from the meaning of their generic English counterparts in usual orthography).
FlyClockbase is a Versioned Biological Information Resource (VBIR) with two Sections:

e SumsS, the Summary Section stores statistical summaries of time series, such as
arithmetic averages. We extracted these as they were presented in relevant
publications (see Materials and Methods).

e DetS, the Details Section stores all individual observations available at a stage
where they have not been aggregated into summary statistics. This enables
independent researchers to compute the best summary statistics for investigating
specific questions. Describing DetS is beyond the scope of this study (raw data is
almost never reported among the publications in FlyClockbase; see below).

Each Section stores variants of time series in the form of Raw and Modified
Observations (each in an ObsRaw or ObsMod TimeSeries ContentTable, respectively).
The big workflow steps of importing, fully integrating data, and extracting data for
analysis are marked in Figure 2 as steps D1-D10 and S1-S8. To facilitate comparisons
across different datasets, we refine ObsRaw into ObsMod data in our current workflow
Step S5 (for more details, see Materials and Methods Section below). Each TimeSeries
is further characterized by some Attributes and may exhibit certain Traits (see below for
details). Attributes denote inherent features that need to be stored and cannot be
computed, such an observed genotype. Traits capture emergent features that need to
be computed from the Content and Attributes of a time series, such as ‘peaks’.
Separating Attributes and Traits helps to keep FlyClockbase organized and simplifies
selecting relevant time series (see Steps S6-S8, D6-D8 in Figure 2).

Place TABLE 2 about here.

Logic in biology. Both, Attributes and Traits, may be absent in ways that may
be of biological interest and differ fundamentally between time series. These challenges
inspired us to investigate fundamental aspects of type systems and logic in
programming languages in a search for appropriate ways of quantifying various aspects
of uncertainty, unavailability, and inability to be tested shared among many scattered
and diverse datasets of biological interest. In the Supplemental Material we discuss a
new data type termed ‘BioBinary’ which stores one of the four alternative states termed
OK, OKO, KO, MIS, which are defined by an enumeration termed ‘OKScale’. The
BioBinary type is designed for handling statements in biology, where “completely true”
or “entirely false”, are less appropriate than “any transient intermediate” or “mistake”
(see also Discussion below, Supplemental Material, and p.16 of the online supporting
material in LOEWE et al. (2017); a full analysis is beyond our scope here).
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Other design decisions of interest to biologists discussed in the Supplemental

Material include:

e the intertwining and mutual stimulation of the development of FlyClockbase and the
unconventional way in which the Evolvix modeling language (http://evolvix.org), is
being developed (LoewEe 2016) from a first prototype for recording time series in
pure mass action models (EHLERT AND LOEWE 2014) towards adding general-
purpose programming capabilities with the triple goal of maximizing expressivity,
usability, and long-term backwards compatibility;

e the use of a stabilizing versioning number system for facilitating review processes in
ways that improve the possibilities of working towards long-term stability without
frustrating innovators by turning them away, based on the StabilizingZone of the
Project Organization Stabilizing Tool (POST) system (see p.74 of online supporting
material in (LOEWE 2016));

e reasons beyond ease of implementation and installation for not choosing a
conventional database system, but rather design-dedicated file-folder structures in a
file system that can be copied easily across system boundaries;

While these points are important for questions of reproducibility and programming

language development in biology and beyond, they do not directly apply to the biology

of circadian clocks and are hence discussed in the Supplemental Material. We next
highlight aspects of FlyClockbase that impact the ability of users to represent very
diverse data in a surprisingly direct way: our particular choice of basic storage
technology.

Simple file system storage. To increase flexibility, FlyClockbase stores data in

a simple, well-defined, stable layout of files and folders in standard file systems. This

design is intended to:

e maximize accessibility to biologists with very diverse levels of computational literacy
and who use many different computing platforms. On all of these platforms it should
be easy for any researcher to start FlyClockbase: experimental biologists, who
strongly prefer to work with standard spreadsheet software as well as computational
biologists, who strongly prefer direct programmatic access to raw data files to
implement their own analyses,

e minimize long-term maintenance costs by delegating storage to standard file
systems that maximize ease of distribution across diverse platforms,

e reduce the need for mandatory database updates that may require costly developer
time or endanger the accessibility of valuable data.

These advantages come at the cost of requiring the discipline necessary to maintaining

consistency, and expecting users to not irresponsibly alter data that is freely accessible

to them. We expect FlyClockbase mostly to be maintained by researchers with sufficient
experience and for submissions to be appropriately reviewed so it is always easy for
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beginners to get the last authoritative version in case they need a fresh start. Our
choices of technologies and formats have numerous strategic reasons further detailed
in the Supplemental Material.

Flexibility. In light of the enormous logic and error-reporting challenges faced by
any application (see Supplemental Material), our decision to design FlyClockbase
around the simpler and less restrictive technology of a filesystem has provided us with
an open field of efficient experimentation to improve our way of handling the challenges
of data curation. Our key insight here is the importance to empower experimental
biologists with little or no computing background to efficiently launch important decisions
about the type system and controlled lists used in FlyClockbase. Launching is not
landing; developing a stable type-system requires more experience than launching the
decision to consider adding a new biological special case. The importance of efficiently
communicating and collaborating across very different disciplines cannot be over-
emphasized: most people with enough formal experience to understand formal type
systems (PIERCE 2002; PIERCE 2005) cannot imagine the many special biological cases
that a corresponding logic would have to be able to handle. This is different for
experimental biologists: if they cannot recall these from the top of their head, a few days
or weeks in the lab will quickly help them to remember. However, acquiring the
necessary biological expertise, usually comes at the cost of less training in the abstract
art of designing consistent and stable type systems.

Practically, we developed FlyClockbase’s flexible file system folder-structure to
enable the storage of content in standardized spreadsheet files easily modified by
common spreadsheet programs. We found this easy to use by experimental biologists
who regularly experience (and thus are best positioned to help reduce) the tension
between the abstract type system (aiming to restrict chaos by setting some rules) and
reality (with its own rules). Their contributions are best recorded on the spot in the most
flexible form possible to ensure they are captured at all. This requires maximal flexibility
and permissions and is simplest to implement by providing every local user of a local
FlyClockbase installation the equivalent of full (FlyClockbase-)system administrator
rights (including the ability to add, change, delete, or wreck anything and everything in
their local copy of FlyClockbase). Please consult the Supplemental Material for a
discussion of permissions, backups and the reliability of data storage.

These and other reasons beyond the scope of this study have motivated us to
forgo the obvious speed advantages of well-known standard databases. We do this to
gain the potential for a reduction in the cost of maintenance and an increase in stability,
combined with the flexibility to experiment with more nuanced type systems. These type
systems can better represent the complexity, diversity, uncertainty and occasional
contradictions that are so pervasively found in biological data. While working on
FlyClockbase, we encountered such problems regularly, as we tried to integrate all
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available information about the circadian clock of D. melanogaster. The Discussion
reviews some of these experiences, but a full analysis is beyond the scope of this
paper.

Data types for organizing content. FlyClockbase is organized around a few
data types that help to structure its data (see Figure 2 for overview of components,
highlighted as ltalicizedProperNouns). These are presented below after briefly
discussing the fundamental recurring concepts of Content, Attribute, and Trait, which
simplify navigating FlyClockbase data structures. Without loss of generality, we illustrate
our definitions using observed time series as an example:

e Content (Cnt): a container for directly storing ‘the data’ describing items of primary
interest. For example, the Content of a time series observation in FlyClockbase is
given by a series of pairs, each storing a time and a number - ordered so times keep
increasing.

o Attribute (Att): data about data. Each Attribute stores a type of value describing a
fragment of information ‘inherent’ to a given data item, such as one of its owners,
methods of observation, contexts, or types. The inherent nature of Aftributes implies
that they always have to be stored in addition to, and can never be derived from the
Content they describe. Sometimes also called ‘metadata’, Attributes provide informal
descriptions of the type or history of an item that can be essential for the correct
interpretation of Content. For example, using the Content of time series requires
Attributes describing which type of clock component was observed and in what
context — neither of these can be derived from the Content itself.

e Trait (Tra): data derived from data. Traits capture emergent features, which are
externally defined properties, patterns, or conclusions derived from a given set of
Content and its Attributes. For example, a time series that only records how some
amount changes over time may allow the observation of one or more peaks, but
neither the steps for recognizing such Traits, nor the annotations of peak presence
or absence are part of the Content to which they refer.

Irrespective of how data is packaged, Aftributes and Traits both characterize Content,

but do so in different ways. In FlyClockbase the trio Content, Attributes and Traits form

a causality chain. For example, the real-world circadian clocks of one or more flies X in

natura causally affect the observed time series Y in vivo, which causally affect results of

interest Z inferred in silico. Note that the flies X are described incompletely by Attributes,
the time series Y is observed incompletely as Content and the results of interest Z are
derived from Content and Attributes by using a set of steps that define this Trait.

Researchers often search for some Z useful for investigating a Y, only to find their

efforts undermined by loss of pivotal information on X (equivalent to missing type

information causing many computer bugs).
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FlyClockbase has been built to reduce this very problem for circadian clock
research in D. melanogaster by providing scientists with all information about X, Y, and
Z that has been made available, ideally without increasing, reducing, or biasing any
existing uncertainties about X or Y. It is possible to package the same information in a
myriad of different ways by nesting and re-packaging various combinations of these
three. However, their diverse nature would make the use and maintenance of
FlyClockbase unnecessarily complicated, as each type offers a distinct value: Content
stores each time series that meets the required specification (a big but doable task,
aiming for completion). Associated Attributes store as much biological and historic
context information as possible (often impossibly difficult, making available Attributes
very valuable). Traits are defined at will by active researchers investigating a given
biological question or in search of new interesting Traits (it is always possible to define
new ones, but few are interesting on the long run). Based on these, we define:

e ContentTable (CntThl): a table of frequently used data of type ‘content’ such as a
specialized TimeSeries ContentTable; Attributes and Traits are stored separately
(see below);

o AttributeTable (AttThl): a table of Attributes for a given ContentTable. Currently, the
most important Attribute Tables are those for References, and Summary TimeSeries;

e TraitTable (TraTbl): a table of Traits as determined from the Trait definition and a
given ContentTable. Currently, the most important TraitTables are those storing the
Peak and Valley timing for the first day of each TimeSeries of each clock component
after ObsMod6 refinement (as given in SearchResult);

e Reference (Ref): a specific set of Attributes, which combine to storing the
bibliographic information about a published study that reports Summaries of
experimentally observed TimeSeries or other data of interest (if not prohibited by
copyright, FlyClockbase includes the corresponding files as Content of a Reference);

o Reference AttributeTable (Ref AttTbl): stores each Reference (but not the files of its
study), determining once and for all its unique Reference_IDX, an index used
throughout FlyClockbase (the next largest integer available);

e Submission: here a submitted set of experimental observations reporting enough
Details to enable the independent computation of diverse Summary statistics of
individual observations;

e SearchResult: a set of tables compiled automatically or manually from each
TimeSeries in the Details and Summary Section, (i) by testing whether all Attributes
meet the search criteria and (ii) for those that do, by testing whether the Traits of
appropriately grouped individual or aggregated TimeSeries meets the Trait search
criteria. Our results below derive from a single SearchResult extracted from
ObsMod6, and analyzed in various ways as described.

The basic layout of the folder structure in FlyClockbase follows the layout specified in

the Project Organization Stabilizing Tool (POST) system described elsewhere (LOEWE
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2016). We next discuss additional data types of biological interest before returning to
the current scope and data collection strategy of FlyClockbase.

Identification of TimeSeries. This and future studies will need to refer to time
series in FlyClockbase unambiguously. This requires a user-friendly system of precise
and stable identification, in order to facilitate giving, using, and maintaining labels for
time series with minimal effort. Defining such a system is a challenge facing various
naming problems (see tables 1-2 in LOEwE 2016). We aimed to avoid two extremes: (i)
Using the next running number for the next time series creates efficient labels, but
complicates some frequent tasks, such as determining if a pair of time series belong to
the same study. (ii) Descriptive labels including author, year, figure-panel, plot-symbol,
etc. can be informative, but are often too tedious, hard to automate or difficult to
maintain (e.g. avoid synonyms). We therefore developed a system that combines
localized integers that stand for local /tems in different frames of reference, each of
which defines a Context that is itself an lfem, nested into a bigger Context. The resulting
nestable index integers gives the outermost local item identifier (IDLocal, IDL) as the
first, top, left-most integer. This top ID is separated by a dot (') from the next /D and
provides the Context necessary for interpreting this second, next-to-top, next-to-left-
most integer. This /D in turn is separated by a dot from the third, etc., creating as many
nested Contexts as needed (more details are beyond the scope of this study).

In practice, naming TimeSeries unambiguously in FlyClockbase requires the
following three types of local identifiers for these three levels of nesting in the Context
provided by FlyClockbase:

1. Reference_IDL, points to a bibliographic reference.
The Context for interpreting the IDLocal of a Ref is FlyClockbase itself; Ref IDL is
identical to Reference IDX introduced above.
2. Figure_IDL, points to a Figure in the Context of a study, given by its Ref IDL.
3. TimeSeries_IDL points to a TimeSeries in the Context of a figure panel,
given by its Figure_IDL.
Any contiguous sequence of the elements above forms an IDFragment (IDF), which
identifies its corresponding Items. To distinguish potentially ambiguous /IDFs from full
identifiers in a memory area, we denote the latter as ‘memory identifiers’, or IDMs for
IDMemory. IDMs are unambiguous /DFs guaranteed to refer to a unique ltem within a
defined memory area, like unique time series IDs in FlyClockbase. Thus, we can
unambiguously identify each TimeSeries by its TimeSeries_IDM in the FlyClockbase
SummarySection by using the following form:

TS_IDM
SumS.Ref_ IDL.Fig IDL.TS_IDL
SumS.Reference_IDL.Figure_IDL.TimeSeries_IDL
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where each IDL is replaced by its respective integer. Like all other IDs, these IDLs are
stored as TimeSeriesAttributes in the corresponding Attribute Table (SumS TS AttTbl),
along with Attributes for both identifying the figure in terms used in its publication, and
the time series in its figure (e.g. capturing line-type, color, plot-symbol, etc.). Thus, a
TimeSeries_IDM such as ‘SumS.1.2.3’ refers to time series 3 in figure 2 of reference 1
in the SummarySection of FlyClockbase. Since the numbering of time series in a figure
panel (etc.), and the numbering of the latter in a study is far from clearly determined, the
additional Attributes help identify the actual figure panel and time series denoted and
would also facilitate the generation of automated reports in the future. For simplicity, we
drop the leading “sums.” from TimeSeries _IDMs elsewhere in this text (all TS are
Summarized). This is appropriate until a DetailSection (DetS) is introduced for capturing
non-summarized time series measurements in FlyClockbase.

For example, four figures from one study (Reference_IDM “2”) may have the
Figure IDLs 1, 2, 5, or 8, resulting in FlyClockbase-wide Figure IDMs 2.1, 2.2, 2.5, or
2.8; currently, gaps in Figure_IDLs (such as 3, 6, or 7) are allowed if unavoidable and
may indicate that data has been excluded when we later found that it did not fit criteria
for inclusion. If the above FlyClockbase-wide Figure IDM 2.5 includes the pertinent
local TimeSeries _IDLs 3, 7, and 8, then their FlyClockbase-wide TimeSeries_IDMs will
be 2.5.3, 2.5.7, and 2.5.8. Each such TimeSeries _IDM points to a unique experimental
observation, unless marked in FlyClockbase as one of the rare cases where a review
re-publishes an older time series along with new data. In principle, a new /DL can be
any integer that has not yet been used in its local context. In practice, FlyClockbase will
critically depend on a single naming authority for assigning integers to their
corresponding items and ensuring that these assignments are never changed. Initially
this naming authority will be the maintainer of FlyClockbase, until this functionality can
be automated. Submissions of new studies to FlyClockbase can assign final /DLs for
figures and time series, but only a temporary IDL for a reference. The final
Reference_IDM can only be assigned once the new entry has arrived in memory area of
FlyClockbase. Following proper procedures for these naming issues is essential for the
integrity of FlyClockbase. Naming is complicated and the source of much concern for
managing biological data in VBIRs (NIH et al. 2012; Loewe 2016). Naming time series
IDs provides a microcosm of the many problems that complicate naming. Still, fully
specifying a concrete dataset for further analysis requires more than particular
TimeSeries_IDMs: it also requires specifying the type of observation, as discussed next.

Raw, Mod, and Odd Observations. In FlyClockbase, each Observation (Obs),
is a TimeSeries ContentTable with time values measured in in DZT or CZT (as defined
below), and an associated measure of the amount of mMRNA or protein at that time.
Each observation also includes measures quantifying imprecision and variability as
shown in the published figure (if any). ObsRaw (‘raw observations’) specify time as DZT
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and contain the amount values as collected (including negative numbers or imprecision
resulting from undetected human error during data collection). Each ObsMod (‘modified
observation’) is a TimeSeries ContentTable measuring time in CZT and transforming
observations to contain amounts of mMRNA or protein that are easier to compare across
time series (see steps S5,D5 in Figure 2). Recognizable problems with ObsRaw data
are appropriately corrected in ObsMod. ObsRaw time series over less than 6 hours or
with more than half of their Content marked as ‘unreadable’ were not simplified into
ObsMod. To identify and correct errors in FlyClockbase, we found it useful to pay close
attention to extreme values that might appear unusual or odd. We denote as ObsOdd.
This does not exclude them from analyses, but motivated us to revisit the whole
deduction chain that led to a given ObsOdd. Since any data collection will contain
human errors, we thought that users of FlyClockbase might find it useful to have
estimates of expected human error rates. We constructed repeated rounds of ObsMod
(see below), which were then used for our final analyses.

Data types of time measurements. We follow disciplinary conventions for
defining ZT (ZeitgeberTime) as hours since the last light period started (dawn). We
initially also defined this point in time as exactly ZT = 0. However, this resulted in
occasional unintended confusion of two very different meanings, simply because both
are conveniently denoted by zero: (i) a valid time measurement indicating an event
exactly at dawn as denoted by ‘0’ and (ii) the inappropriate use of ‘0’ for indicating that a
time was NotGiven. While the absence of a particular expected measurement is to be
indicated by the label ‘NotGiven’in FlyClockbase, it proved difficult to guarantee that no
unintended ‘0’ could slip in. Elsewhere, such as for elementary addition, the use of ‘0’
for indicating absence as in ‘0 apples’ is justified; it is also common enough and deeply
engrained, so that every new curator would have to spend significant learning effort to
avoid this ambiguity. Moreover, such errors are difficult to find, because a careful
analysis is required to determine, whether a particular ‘0’ indicates ‘Oh’ or ‘not given’. To
improve the long-term quality of FlyClockbase and reduce curation costs, we decided to
use a more robust Code2Brain interface (LOEWE 2016) instead. Hence, DZT=0h has
been declared a risky ambiguity to be removed from FlyClockbase as soon as possible,
whenever found (process is ongoing). The old DZT=0h is replaced by the new
DZT=24h, such that Oh < DZT < 24h, while absence continues to be denoted as
NotGiven. We think that this new approach has a robust Code2Brain interface (LOEWE
2016) and provides a high-quality representation of Null for DZT values (see Table 2
and Discussion of Errors in Compilers below and elsewhere (WHITE et al. 2013)). An
important difference exists between measuring fractions of hours in FlyClockbase and
outside. Usually, 1 hour comprises 60 minutes, but hours in FlyClockbase are
decimalized; thus, fractions of hours are measured in decimal fractions and not minutes
and the next hour is imminent at 0.99 h, not 59 min.
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CZT. To simplify analyzing several days of data in sequence, we define Continuous
ZT (CZT) to be an extension of ZT such that time increases without interruption at the
same rate over multiple days — instead of switching back to ZT = 0 at the start of each
new light period (dawn). Some studies use Circadian Time (CT), which can carry the
connotation of time series recorded in unusual light schemes such as 24-hour darkness
(DD) or 24-hour light (LL). CZT helps us to avoid any ambiguity. We use the term Daily
ZT (or DZT) when we mean ZT in this study and in FlyClockbase to reduce the potential
for confusion with CZT (also reduces ambiguity about types of time in code). Storing the
respective day together with DZT or ZT creates a 1:1 relation to CZT. For example, the
times of “lights on” (dawn) and “lights off” (dusk) over three days in the LD 12:12
scheme (12 hours of light (L) followed by 12 hours of darkness (D) each day) used in
the experiments of the initial FlyClockbase release can be given as DZT (24, 12, 24, 12,
24, 12), where days are implicitly assumed to form a sequence. These times are
equivalent to CZT (0, 12, 24, 36, 48, 60), using a different way of encoding days
implicitly. CZT time series simplify selecting observations only from the first day in any
given time series, as done in this study. We use italics for DZT, CZT, h, and hours to
indicate that these types are used as defined in FlyClockbase (see Table 2). We do not
italicize ZT, because we do not recommend its use in FlyClockbase.

Data types of amounts. None of the time series data collected reflected
absolute amounts or concentrations in a cell; rather, they show the amount of mMRNA or
protein relative to a reference. References are different for many time series, which
presents a significant challenge when attempting to compare time series. The relative
amount of MRNA or protein at a given time cannot be compared across studies, so we
instead turned to a trait-based comparison method. We used modified observation
tables to extract two Traits from each day of a given time series: time of maximum
expression (“peak”) and time of minimum expression (“valley”). We then combined
these two Trait values with time series Attributes to produce PeakValleyTables, which
represent SearchResults for further analysis. For more details, please refer to the
Materials and Methods.

Current definition of scope. Aligned with our interest to construct the best
possible circadian clock model for wildtype D. melanogaster, FlyClockbase currently
only includes time series from wild-type or wild-type-like flies (e.g., Canton-s, yw,
“control”) observed in a LD 12:12 environment from studies published between 1990
and 2015 (see search criteria below). Thus, we currently exclude on purpose any
mutants that are meant to carry changes in clock genes, diversity in light-dark regimes
and other species for reducing the complexity of data curation. We include as “wildtype-
like” any mutants that were constructed without the intention of altering the dynamics of
clock components, including reporter genes (e.g. luciferase) and modifications to body
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and eye color (e.g. yw). We thereby take the reported results at face value, implying that
such genetic engineering actually does not affect clock dynamics. Testing this
assumption is beyond the scope of this study and might become possible with the help
of large numbers of replicates collected in FlyClockbase. Measurement errors
associated with many observed time series are substantial and so is their variability
between time series. Thus we assume in this study that “wildtype” and “wildtype-like”
flies observed in the control experiments of many clock studies can be pooled. As a
result, we are including time series from the 86 studies cited below in the first public
release of FlyClockbase (QQv1 in the StablizingZone notation of the POST system
(LoewE 2016), see http://evolvix.org/post). Beyond historic accident, there is no
particular reason to limit FlyClockbase to this scope, as long as expansions of scope
are coordinated carefully with corresponding data structures that enable the selection of
desired datasets.

Collection of data. Unfortunately, only one study provided individual raw time
series observations in addition to summaries (SHi et al. 2014). For the 85 other studies,
we extracted observed amounts and times from the time series figures published in
these papers (by plot digitizing, see details below). Future releases of the database will
allow the inclusion of individual time series observations in the Details Section. This will
enable meta-analyses to customize the statistics they report in order to choose
measures of variation that may be more appropriate than the arithmetic mean and
standard deviation. In our experience not all studies specify the variation measures they
report with the appropriate care (e.qg. failing to specify whether a figure reports standard
devitations or standard errors of the mean; see SALSBURG (1985) for similar
experiences).
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MATERIALS AND METHODS

Literature search

We searched the literature databases PubMed and Web of Science to collect
references with time series data of the core components of the D. melanogaster
circadian clock. Time series were broadly defined as any timed measurements of
amounts of a relevant type of mMRNA or protein that showed a daily peak or valley time
for clock components, irrespective of the absence of scaling, calibration, and linearity.
Search terms focused on variations of the terms “drosophila melanogaster” and
“circadian clock” (plural, singular, or MeSH terms, or requiring any of the words in
“circadian clock”). Marking phrases as specifically being MeSH terms did not influence
the number of results. Using plural search terms (i.e., “circadian clocks,” “clocks”)
reduced the number of results, sometimes by hundreds of articles. Requiring both
words in “circadian clock” (as opposed to allowing either “circadian” or “clock”) also
decreased results by up to half. To reduce the likelihood that relevant data would be
excluded in the initial literature search, we chose terms that produced as many results
as possible. The final literature search occurred on March 26, 2015. After we removed
duplicate studies, this initial search produced 1249 results.

Initial eligibility assessment. We assessed the title and abstract of each study
identified in the literature search based on the following three factors:

1. Apparent content. We excluded articles focusing on organisms other than D.
melanogaster or centered on processes other than the core clock. We define the
“core clock” to be comprised of genes integral to the functioning of the circadian
clock in pacemaker cells, with a particular focus on the small ventral-lateral neurons.
These genes include those shown in Figure 1 as well as ck2a, sgg, and pdf (see
Table 1). Genes related to upstream or downstream clock processes were not
included as part of the core clock; neither were genes that affect transcription,
translation, or degradation rates in general. We also excluded papers if they were
deemed unlikely to contain relevant time series based on the title. The articles we
excluded based on this criterion focused on functional areas such as sleep, rest,
arousal, locomotor rhythms, the visual system, metabolism and feeding.

2. Type of data. We only included papers with experimental data. As simulation data is
beyond the scope of FlyClockbase, we excluded articles focusing solely on
mathematical models since simulation data is beyond the scope of FlyClockbase.

3. Format and availability. We excluded the following reference formats because they
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were unlikely to contain specific experimental data: book chapters and prefaces,
comments, dispatches, features, meeting reports, monitors, news, outlook articles,
prediction reports, perspective articles, and reports from workshops. We also
excluded one paper that was not available in English.

We then examined the full texts of the remaining 603 studies to determine which papers
contained time series data. We were able to find only one article with raw time series
data (SHI et al. 2014), so we used time series figures as a summarized proxy for raw
measurement data. We found 149 studies with at least one time series figure.

Biological eligibility assessment. We further filtered these 149 studies with
time series based on the following biological factors:

1. External conditions. We excluded time series with light schemes other than 12 hours
each of light and darkness (12:12 LD) or with temperatures that varied over the time
of collection.

2. Observed cell specimens. We required time series data to be based on
measurements taken from biological material including at least some of the neurons
closely related to the central clock in Drosophila (e.g., the small and large ventral-
lateral, dorsal, dorsal-lateral, and posterior neurons, and S2 cells). For example, we
included time series data taken from whole fly heads, whole flies, or the specified
cell groups but excluded data from fly eyes or wings.

3. Genotypes. We only collected time series of wild-type or wild-type-like fly strains. We
considered strains described as “wild-type”, “control”, “+/+”, or “Canton-s” to be wild-
type strains. We also included other fly strains if they were natural variants such as
CRY-H and CRY-s (time series IDs 9.1.1 and 9.1.2). We excluded genotypes with
mutations intentionally inserted to affect levels of protein expression,
phosphorylation, binding, or light response of core clock proteins. We characterized
wildtype-like flies as any animals with mutations not believed to interfere with the
operation of the clock. Examples include “yw” flies (have yellow bodies and white
eyes) and insertions of reporter genes such as luciferase, which are co-expressed
with clock genes.

4. Amount and type of data. We excluded time series if they were generated by
mathematical extrapolation, contained fewer than three data points, or covered less
than 12 hours.

The 86 remaining studies were defined as biologically eligible for inclusion in the initial

release of FlyClockbase and each study, relevant figure and relevant time series were

given a corresponding Reference_IDM, Figure IDL, and TimeSeries_IDL as described
above (see Figure 2, Steps S1-S4, and Section Identification of TimeSeries).
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TimeSeries data extraction

Since only a single study provided raw time series data in its online material (SHI et al.
2014), we extracted numbers for amounts and times from plotted time series in figures
as follows. We first extracted a screenshot of each figure from an appropriately
magnified downloaded PDF-formatted copy of the relevant study (using the Mac OSX
program “Grab,” a simple application for taking screenshots). We then extracted the
data from each individual time series from its corresponding image using the open
source program “Plot Digitizer” (version 2.6.3 available at
http://plotdigitizer.sourceforge.net/) and recorded the result in a SummarySection
ObsRaw TimeSeries ContentTable (Step S2 in Figure 2). Plot Digitizer requires users to
specify the plotted values and the physical locations of minima and maxima for each of
the x- and y-axes in the figure. We did not detect significant curvature in the planes of
plots (as might be added by careless digitizing of printed copies) and therefore assume
that Plot Digitizer’s linear interpolation provides reasonably accurate numerical x and y
coordinates of each point manually selected by the user. All y-axis values were directly
recorded using Plot Digitizer, unless a study specifically stated the value of mRNA or
protein at a given time. For x-axis, the value from Plot Digitizer was disregarded if the
value was noted in the text or clearly marked on the graph.

Accuracy estimates of digitized TimeSeries data. To assess the human
operator component of digitizing accuracy, we measured the variability of plot-digitizing
by three authors. Each operator plot-digitized the sample time series (63.1, WTLD,
green line with green squares) independently three times to produce a set of values
ready for inclusion as if it was true raw data. For each operator, time point digitized, and
axis, we calculated the following values: the mean of the absolute value of the relative
difference between each pair of the three independently produced values. Averaging
over all time points allowed us to calculate the average operator difference percentage
for the time axis, ts04, representing an estimate of the relative error that one might
expect for a new value added to a time series in FlyClockbase by plot-digitizing. We
observed these intra-operator averages for time (with a maximal value of t;ax = 48):

taod = 0.72%, 1.79%, 1.80%, including the first point, and
taod = 0.76%, 1.07%, 0.75%, excluding the first point of the time series for operator 1,

2, and 3, respectively.

We also observed the following equivalent measures for the amount values v,.q On the
y-axis (with the maximal value of viuax = 2), resulting in averages of
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Vaod = 0.95%, 1.15%, 1.11%, including the first point, and
Vaod = 1.00%, 1.23%, 1.16%, excluding the first point.

Operator 3 plot-digitized all values in FlyClockbase. We averaged all values digitized by
all operators and we found:

taod = 1.40% and Vaoq = 1.06%, including the first point, and
taod = 0.84% and Vaoq = 1.12%, excluding the first point.

Averaging coefficients of variation calculated separately for each time point by
combining data from all operators gives

tacv = 1.72% and vae, = 2.61%, including the first point, and
tacv = 0.90% and vae, = 2.79%, excluding the first point.

The drop in t,0q and s, When excluding the first point of the time series stems from the
uniformity of absolute errors (‘hit a point on screen’), which results in a proportionally
larger impact on small values; this can help estimating precise values near zero.

Overall, these measurements indicate that relative errors introduced by plot-
digitizing are small (1% or less) compared to the errors associated with the wet-lab
measurements. Thus, we conclude that errors from plot-digitizing can usually be
ignored. However, these are not the only potential errors in FlyClockbase. We refined
each ObsRaw TimeSeries ContentTable (direct from plot-digitizing) into a
corresponding ObsMod TimeSeries ContentTable (see Step S5 in Figure 2) by
correcting human errors associated with data extraction and annotation, as discussed
below.

Extracting TimeSeries Attributes. After extracting ObsRaw TimeSeries
Content from published figures, we extracted associated TimeSeries Attributes and
Reference Attributes from the corresponding published experimental studies (see Steps
S3-S4, Figure 2). Attributes relevant to a study as a whole is recorded in the Reference
AttributesTable, while Attributes specific to a given time series is in the TimeSeries
AttributesTable. We collected Attributes for each TimeSeries to serve two purposes:

(i) to help us to ensure TimeSeries fit the biological eligibility criteria previously
described;

(ii) Attributes enable later comparisons of biological, methodological, and other factors
that could result in variability between time series.
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We collected Aftributes related to these three categories of questions:

1. Information about the time series

a. Which MethodRealm does the time series belong to (in vitro, in vivo, ex vivo, post
mortem)?

b. What is the molecular type of the time series? Which protein or mRNA does it
represent? Which isoform or splicing variant, or phosphorylation state of a given
mMRNA or protein was measured (if relevant)?

c. Does the time series reflect data based on Zeitgeber Time (DZT or CZT)?

d. Do the amounts reported in the time series come provide any information for
limiting associated measurement errors? If yes, which types of errors are
reported: the standard error of the mean (SEM), the standard deviation (SD) or an
UnknownErrorMeasure (UKEM)?

2. Information about the method used to collect the time series
a. Which method was used to observe the time series?
Which machines, reagents, and software were used?
Which probes or antibodies and dilutions were used (if relevant)?
Which calibrations were applied, both mathematically (e.g., raw values were
scaled by the maximum value) and biologically (e.g., values measured are relative
to a specific standard mRNA or protein)?
How many repeats were observed, and how are those repeats defined?
When was the first and last data point recorded (CZT or DZT with days)?
How long did the overall experiment last (in hours)?
How long were the intervals between observed data points (if regular)?
At which specific times were observations recorded (if specified in the text of the
study or clearly marked on the time series figure)?
3. Biological and environmental information about flies used to collect time series data
a. Were flies exposed to light:dark schemes other than 12:12 L:D?
b. To which temperature were the flies exposed?
c. How long were the flies entrained?
d
e
f.

aoo

mTa ™o

. How old were the flies?
. What were the genotypes of the flies?
Which sex(es) of flies were used?

In some cases, longer Comments directly copied from the text of a study were the most
appropriate way of describing a given Attribute without introducing the potential for
errors from paraphrasing. To avoid visual clutter and unnecessary bloating of the
TimeSeries Attribute Table we introduced the notion of column locality, which is defined
by a locality index column that is allowed to have identical values in consecutive rows
and thereby define one LocalColumn for each such run of identical values. The purpose
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of this construct is to provide a formal check for the use of the equivalent of ‘ibid.’ in
FlyClockbase. For example, adding “See Method Comments, 2.5.1” in the column
“‘Method Comments” at time series row 2.5.2 indicates that the longer comment stored
in the row above (2.5.1) also applies to the next time series. To avoid loss of context,
the FlyClockbase look-up keyword “See” must be followed by an indication of the
column and row that are being referenced. To maintain readability for humans and
simplify the implementation of code that understands LocalColumns, such pointers to
previous cells of a column must not be interrupted by cells with unrelated content.

TimeSeries Traits analysis of Peaks and Valleys refined by ObsOdd checks

We manually compiled a set of SearchResultTables that integrated a simplified set of
Attributes describing the nature of a given time series. In addition, these included Traits
that computed the respective times where amounts show a peak or a valley on the first
observed day of an ObsMod time series in FlyClockbase. These SearchResultTables
were termed ‘PeakValleyTables’ and constructed for each given mRNA and protein.
Each row in a peak-valley table corresponds to one time series and records several
Attributes (from the SummarySection TimeSeries Attribute Table, see Steps S6 in Figure
2) and two Traits (peak and valley, from the ObsMod TimeSeries ContentTables, see
Steps S7-S8 in Figure 2 and Figure 3). Each row also stores a day index, indicating the
day during which the reported peak and valley were observed, counting from the start of
the experiment (CZT = Oh). For example, a day index of two would indicate that peak
and valley of the time series described by the Afttributes in the row were observed
between 24 and 48h CZT after initiating the observation of this time series.

Place FIGURE 3 about here.

Measuring a limit for maximal peak time variance. In an effort to limit
mistakes rising from human error, we refined the initially constructed PeakValleyTables
(‘Raw’) into a series of successively modified PeakValleyTables shown in Figure 3
(‘Mod1’ - ‘Mod6’). To create the first set of modified PeakValleyTables (Mod1), we
identified PeakValleyTables where the standard deviation of the peak value, valley
values, or both was greater than six hours. We based this threshold on two control
distributions. First, we created a uniform distribution with 25 artefactual regularly placed
observations covering every hour of the day effectively starting at Oh up to the very end
at 24h in 1h steps. This distribution had an average and median of DZT=12h + 7.36h
SD; omitting the first or last hour reduced the standard deviation to 7.07h. We also
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randomly sampled 1000 values from a uniform distribution with a range from Oh to 24h.
Repeating this exercise three times produced DZT medians of 11.66, 12.41, or 12.08 h,
averages of 11.85, 12.47, 12.01 h and standard deviations of 6.81, 6.92, 7.02 h,
respectively. We therefore concluded that observations of SD 2 6h effectively indicate
signals that are indistinguishable from randomly distributed impulses that are not
oscillating in any discernably coordinated manner. Assuming that clock researchers
were probably correct when they reported oscillations, we explored the hypothesis that
such high variation SDs might have been caused by errors in acquiring or interpreting
some aspect of the data.

Factors contributing to increased trait variance. An important early insight
was the necessity to exclude peaks or valleys that coincide with the first or last point of
a time series. Although these points might appear to report the maximum and minimum
expression of a clock component, the amounts following or preceding this value (not
shown in the figure) could easily continue the local trend. For example, a time series
figure could appear to show maximum expression at the final data point (e.g. 23 CZT)
but reflect a system where the next theoretical data point (e.g. 25 CZT) corresponds to
the “true” maximum expression. We excluded these time series and made additional
corrections of observed human errors to construct the refined dataset ObsMod7 from
ObsRaw. This early success in using odd observations for detecting potential lower-
level problems in datasets encouraged us to continue to investigate unusually extreme
values, which we then defined as ObsOdd peak or valley times outside of the range
defined by a given clock component’s observed Avg + 1 SD. Time series with ObsOdd
in Mod1 were recorded in the peak-valley table ‘Odd1’. After correcting mistakes in
Odd1, we combined the corrected values from Odd1 with the remainder of the data from
Mod1 to create Mod2. We repeated this cycle of checking for mistakes, recording
unusual values in Odd PeakValleyTables, and fixing errors until we created the final set
of modified and odd PeakValleyTables, Mod6 and Odd6. In addition to correcting more
unique human errors, we also made adjustments for these potential method-based
sources of errors:

1. Local minima in peaks: Some time series (e.g. 85.7.2, 65.1.3, 81.4.1) report a local
minimum, where it is easy to intuitively suspect a peak. We only adjusted our peak
estimate if (i) a peak was also expected based on other time series of the same
clock component, and (ii) the data points on either side of the local minimum are the
highest two values for the respective day in the time series. These local dips can
result from measurements outside of linear reporting ranges for time series
observation methods such as RNase protection assays (RPAs) and Northern Blots.
Increases beyond their linear range no longer produce linear increases in the
intensity of signals and might even decrease the signal if product inhibition
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phenomena occur. We therefore suggest these local minima reflect measurement
inaccuracies rather than actual decreases in amounts. To correct for this error, we
recorded peak time as the average time of the two surrounding near-peak amounts.

2. Luciferase initial spike: Time series observed using luciferase (e.g. 62.2.1) may
appear to report a peak shortly after starting to record data. The timing of this first
peak can be inconsistent with peaks on other days in the same time series and other
time series. Often the second peak has a DZT timing similar to peaks on subsequent
days and in other time series. Such odd initial maxima are likely to be artifacts of the
bioluminescence technique used to measure such a time series. They can be
caused by an initial adjustment period that is required for accurate measurements of
luciferase levels. Reported extra peaks occurs shortly after the arbitrary end of such
initial periods (PLAUTZ et al. 1997; STANEWSKY et al. 1997). In such cases, we ignore
the initial peak and record the values associated with the second peak on that day
(as opposed to the technical maximum).

3. Minimal Duration: Some time series (e.g. see Figure_|Ds 43.1 - 43.6, 61.1 - 61.4,
75.3) had a duration of twelve or fewer hours. Although minima and maxima can be
read from such figures, their use is questionable, in particular, when the actual peak
or valley times are not expected in the recorded time. Thus, we mark these peak or
valley times as not given.

Linearizing TimeSeries data. The cyclic nature of circadian rhythms must be
kept in mind when statistically describing the times of peaks or valleys in circadian time
series. To illustrate this point, we will use data from the first day of c/k mRNA time
series. With no alterations, mean peak time estimates suggest DZT = 8.79h + 8.59h
(SD), which is indistinguishable from randomly distributed peaks (see above). Closer
inspection of the data, however, shows that these values may be misleading.
Calculating the mean and standard deviation depends on finding differences between
values representing time, an operation that is substantially complicated by the circular
nature of hours in a day, where the value of 24h + 3 min results in 0.05h. This is in
sharp contrast to any linear expectation. For example, the central peak times for the clk
time series 35.2.1 and 35.2.2 (see Fig. S3B in KADENER et al. 2009) are observed at
about CZT 23 and about CZT 27, respectively. Translating them into circular circadian
time results in DZT 23 and DZT 3, respectively. If we then disregard the circular nature
of these values, we might infer a time difference of 20h between DZT 23 and DZT 3.
However, visual inspection quickly clarifies that the peak occurring at CZT 23 on the first
day is close to the early peak of the following day, which occurs at CZT 27h given by
the sum of (Day 1 DZT 24h) + (Day 2 DZT 3h). The difference between these peaks in
time series 35.2.1 and 35.2.2 is thus more accurately calculated as CZT 27 - CZT 23 =
4h. The corresponding change is equivalent to a local linearization of time when some
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part of the original day crosses over into the next or last day. Peak or valley times that
have been linearized in this way are hereafter called “linearized.”

We manually linearized all values in the Mod PeakValleyTables by moving the
minority of values to an earlier or later day (i.e. adding or subtracting 24 hours). Raw
PeakValleyTables are not linearized. Our current way of linearizing is geared towards
analyses of a single 24h period. Close direct visual inspection of all relevant time series
and claimed peaks makes it reasonably easy to linearize other periods; here it is
beyond our scope to conduct more general analyses. We found that linearization
greatly increases the overall reliability of representations of groups of time series. This
is of particular importance when estimating the variability of peak and valley times,
which is easily inflated artificially by omitting the linearization step.

Table S1 demonstrates the differences that can result from calculating summary
statistics for Raw (circular time, no value linearized) or Mod (linearized time) peak and
valley times of selected types of mMRNA and protein. Results show that median, mean,
and SD of linearized times may (but are not required to) differ dramatically from those
calculated for circular raw times. For example, the linearized mean peak time for clk
MRNA occurs 6 hours before its circular raw equivalent. Similarly, the SD of linearized
peaks is about one-third of the SD of peaks measured in raw circular time.

Comparisons to summary statistics of uniform random distributions (see above)
are instructive; as a rule of thumb, peak and valley times (or any daily event times) with
a standard deviation greater than six hours should be treated with suspicion; they might
be difficult to distinguish from randomly distributed times or could be the result of a lack
of linearization. The latter affects Raw SD values for clk mMRNA peak time, PER protein
peak time, and per mRNA valley time (Table S1), which are close to SD values for
uniform randomly drawn samples. In contrast, after linearization, SD for these Traits are
much more similar to the SD of Traits of other linearized time series. Overall, this and
other experiences suggest that linearization is an important step in obtaining trustworthy
summary statistics from circular values such as DZT, even though linearization makes
no difference in cases where times are already linear (e.g. TIM protein peak with peak
CZT 18.41 £ 2.54 in Table S1).

Statistical analyses

Our initial screening for variability of the Traits we call Peak time and Valley time
(observed on day 1) surprised us by suggesting that variability might differ significantly
among clock components. Given the various sources of spurious variability described
above, we aimed to remove all artifacts that might randomly inflate variability estimates,
including potential biases that might be introduced from analyzing more than the first
day of a time series (after entrainment). Our interest in reproducible results and
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disappointing experiences with large untested data collections has inspired various
rounds of error checking and increasingly rigorous statistical analysis.

Automated analysis with R script. The core results of our study (differences in
variance between peak times of PER and TIM proteins) have been tested independently
by three of us (KS, BH, LL). The most rigorous analysis is presented below and can
easily be reproduced by running the script

FlyClockbase PER_TIM Methods_PeakValley Comparisons_2016.txt
which is provided in the Supplemental Material along with input files and the
Supplemental Statistical Analysis, which is an annotated PDF, collating all pdf output
from our plotting and analysis script. We executed the script on R version 3.2.4 (as of
2016-03-10, https://www.r-project.org ). It requires the package “data.table” and the

library of robust statistical testing functions implemented by this script
http://dornsife.usc.edu/assets/sites/239/docs/Rallfun-v30.txt

All statistical analyses used data from PeakValleyTables, where our final results are
taken from ObsMod6 (see Figure 3 and text above). All corresponding input files are
provided next to the R script and are denoted as ObsMod7 and ObsMod8 as described
in the code. Times are given in CZT and have been linearized as described above.

While the script contains numerous comments, it does not attempt to be elegant
code. Much of its over 12,000 lines appear at first glance to be repetitive with small
variations. It is currently not clear how to simplify the documentation of this script or
whether the time required for substantial code improvements would be well invested.
The trade-off between readability and coding time is further discussed in the R-code
and Supplemental Material under the approach to documenting code denoted as
‘DISCOVARCY’-style.

Outlier analysis. We addressed above those irregular values in ObsOdd that
were demonstrably due to human errors from data processing, removing them from
considerations below. Due to the substantial variability of the reported time series and
the diversity of measurement methods used to collect them, we were concerned that a
few substantially different outliers might obscure a robust trend exhibited by the majority
of observations. Thus, we used the following three different approaches for testing the
impact of outliers when analyzing Trait X by removing as outliers all values Xj, where
(i) Xjis outside of the range of non-outliers given by

(gr-1.5"IQR) <Xi < (q3+1.5*1QR ), where IQR = (g3 - q1) is the
Inter-Quartile Range, and q; are the corresponding quartiles,

(i) X;is identified an ‘extreme value’ by close visual inspection and its extreme
difference to equivalent observations. This manual approach removed Protein time
series 14.1.1 for TIM, and 43.2.1, 43.3.1, 43.5.1 for PER, but none for the
corresponding mRNAs (see the BestNoXtrem input for the R-script above),
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(i) X;is identified as an outlier by Carling’s modification to the standard boxplot
approach (CARLING 2000; WiLcox 2012). This technique uses sample size to adjust
the range of outliers to account for the tendency to identify a greater number of
outliers at smaller sample sizes. We used the implementation described by Wilcox
(2012, see section 3.13.3 and 3.13.5 on p.97-98 as implemented in his R script
‘Rallfun-v30.txt” as function “outbox” when called with parameters
‘mbox=T, gval=NA", so that his eq. 3.45 on p.97 is applied). This method is
applied to the data analyzed by our R script described above.

Testing differences in variance. To test whether differences in variance are
statistically significant at the level of alpha = 0.05, we ran 100,000 bootstraps of the
percentile bootstrap method implemented by the function “comvar2” in the R script
‘Rallfun-v30.txt”, as described by WiLcox (2012) on p.175, section 5.5.2 and
elsewhere (WiLcox 2002). This function provides a 0.95 confidence interval for an
estimate of the difference between the variances of two groups, but was implemented in
a way that only detects significance at the 5% level (without giving P values). We used
this newer, more robust method to avoid problems associated with older methods such
as Levene’s test (NORDSTOKKE AND ZUMBO 2007).

Testing differences in mean. To test for 95% confidence in significantly
different locations when comparing distributions, we used (i) the Mann-Whitney-U test
as implemented in R (wilcox.test, 2 sided, unpaired), (ii) calculated 100,000
bootraps of the “bootdpci” difference as described on p.202 in section 5.9.12 of
WiLcox (2012), and (iii) 100,000 bootstraps of the “medpb2” difference of medians as
described on p.174 in section 5.4.3. of WiLcox (2012). Additional details of the function
calls are easily found in the source code of our R script that performs these calculations;
the results are given in the PDF output of this script, which is also available online as
collated and annotated Supplemental Statistical Analysis.

Supplemental Statistical Analysis. The same R script produced the results
plots shown in the main text below and the 81 pages of auto-generated plots shared
with 6 additional pages for navigation as Supplemental Statistical Analysis in the
Supplemental Material. It was generated by combining various snippets of code to test
for all combinations of input data, outlier removal, observed Traits, molecule types and
genes. This resulted in 32 distributions, combining the following features: input data
(with and without the manually identified BestNoXtrem outliers), outlier removal (with
and without applying Carling’s outlier removal), and all combinations of Traits (peak,
valley), molecule type (MRNA, Protein) and gene (per, tim). Method comparisons
employed the same set of statistical tests for comparing locations and variances of two
distributions (PCR vs non-PCR).
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RESULTS

Experimental observations used in modeling

In addition to experimental results, our extensive literature review identified 66 studies
published since 1995 which focused on modeling the D. melanogaster core circadian
clock. Figure 4 shows that about 75% (50/66) of all modeling studies reuse parameters
reported in other modeling studies. Of the remaining studies, 13 relied exclusively on
abstract time series traits for estimating parameters, two used exclusively direct
experimental observations of time series data (KuczeNnski et al. 2007; FATHALLAH-
SHAYKH et al. 2009), and one did both (LEISE AND MoIN 2007). In addition, one study re-
used parameters from one of the three studies mentioned above. Thus, only 6% (4/66)
of all simulation studies were based on direct experimental observations of time series.
This does not include the 13 studies that estimated parameters from abstract traits. The
substantially different numbers in each category might reflect difficulties inherent in
curating and incorporating experimental data into clock simulations (see above Section
on Models). We experienced first-hand many such difficulties. Although models will
never perfectly simulate reality and ‘validation’ is impossible on principal grounds
(ORESKES et al. 1994; BEERSMA 2005), we maintain that direct experimental evidence is
critical for increasing the relevance of models aiming to understand reality. Facilitating
the construction of more reliable models by including more direct observations
motivated us to build FlyClockbase. We found that FlyClockbase also enables
interesting retrospective meta-analyses, some of which we report below.

Place FIGURE 4  about here.
FIGURE 4. Where do models get their realism from?

Place FIGURE S5  about here.
FIGURE 5. Overview of experimental studies available in
FlyClockbase and their use for parameter estimation over time.
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FlyClockbase is a new resource enabling studies of circadian clock time series

FlyClockbase includes 403 time series covering 20 different mRNAs and proteins (13
and 7, respectively). An overview of its data model is given in Figure 2, relevant
abbreviations are summarized in Table 2. Table 3 shows its number of time series and
published studies corresponding to each type of mMRNA or protein in FlyClockbase.
Figure 5 summarizes publication years from 1990 to 2015 for its 86 experimental
studies observing time series of clock components. Figure 5 highlights publication years
of the 16% (14/86) experimental wildtype observations used to directly inform 5% (3/66)
of all computational model studies of D. melanogaster circadian clocks (see Figure 4).

Place TABLE 3 about here.

Hypothesis testing. FlyClockbase enables the study of many diverse biological
questions, making it impossible to present all corresponding biological results here (see
Discussion of using FlyClockbase for hypothesis testing). The analysis of most
biological questions, however, requires the computation of relevant Traits from the time
series stored in FlyClockbase. These Traits then need to be combined with the relevant
Attributes of the corresponding time series to form a row in the table of search results
(see Figure 2). We named these PeakValleyTables, since we constructed one for each
clock component in order to focus exclusively on analyses of the circadian timing of the
first peak and the first valley of each time series (defined by the respective maximal and
minimal amounts during the first day). After initially establishing FlyClockbase and
estimating the variability of all clock components, we limited the scope of this study to
the following two biological questions:

(i) Comparing the variability of daily peaks and valleys of per and tim mRNA and
protein, are there statistically significant differences in variance across
independent time series?

(i) Which differences (if any) occur in the timing of per mRNA peak times based on
different methods of observation?

We picked these specific questions because the initial release of FlyClockbase

contained the largest numbers of time series for these four components (ordered by

count we used 89 time series for per, 77 PER, 51 tim, 42 TIM). Thus, FlyClockbase
enables comparisons of variability of independently collected time series of circadian
clocks.
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Error analysis. We conducted our initial retrospective meta-analysis of the
questions above after compiling FlyClockbase and refining it to correct all errors in data
handling that were known at that time (which produced ObsMod5, see Figure 3). Since
these initial results surprised us, we wanted to test their reliability. We had no estimates
for the frequency of errors that might be expected in FlyClockbase. It was not clear
whether there was a faster way of obtaining error estimates for such a complex,
manually compiled resource designed to organize scattered data that is heterogeneous,
diffuse, and characterized by many complexities, uncertainties, and gaps. We thus
opted for the most reliable approach available and rechecked every processing step
that could have affected the accuracy of our data sources or every peak and valley
timing used in our final analysis (producing ObsMod6, see Figure 3). These tests
improved our accuracy and generated realistic error rates for users of comparable
resources (see below).

Place TABLE 4 about here.

Overview of TimeSeries Traits. The PeakValleyTables described above
allowed us to focus on efficient analyses of the timing of extreme amounts. These
prominent traits of time series have been used previously to estimate parameters and to
compare simulations and experiments (PETRI AND STENGL 2001; FATHALLAH-SHAYKH et
al. 2009). Table 4 provides summary statistics based on ObsMod6 PeakValleyTables
(see Figure 3) after applying outlier-removal method (i) described above. We will later
provide an independently computed overview of the mean and SD for the peak and
valley time of PER protein, TIM protein, per mRNA, and tim mRNA using outlier-removal
method (iii), see Figure 6 below. The amounts of c/k and cry mRNA peak during the day
and reach a valley during the night. The components per mRNA, tim mRNA, pdp1
mMRNA, PER protein, TIM, protein, and CRY protein display the opposite pattern: peaks
occur during the night and valleys during the day.

Variability of peak and valley times as measured by standard deviation varied
substantially from about one to four hours. This difference motivated us to determine
whether these differences in variability were statistically significant and might point to
mechanistic causes with implications for the inner workings of the clock. The most
frequently observed clock components were per and tim mRNA and protein, which
made them prime candidates for comparing their variability. However, one important
task remained before investigating our hypotheses: testing for errors.

Why estimate errors? We had to be reasonably certain that we could rely on
the values stored in our PeakValleyTables. This was particularly important for detecting
significant differences in variability, since random errors in the capture or processing of
data are known to easily generate spurious values that substantially impact observable

54


https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/099192; this version posted August 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

variability. As explored in the Discussion, attempts to detect and correct errors in
author-labs and distinguishing them from other potential sources of variability was
beyond the scope of our study. Thus, our goal was to be able to confidently exclude
errors during the capture and processing of data on our side. We defined as error in this
context any result that did not hold up to scrutiny, when rechecked using the rules we
had agreed on for processing time series data. These rules were set up after we gained
substantial experience with various counter-intuitive aspects of the data, as documented
in this study. Thus, our definitions of error were not arbitrary and therefore allow us to
contribute below a specific estimate of human error rates to the broader area of human
error analysis (see Discussion below).

Databases curated by human experts usually have substantially lower error rates
than those that were automatically compiled (SCHNOES et al. 2009; KOSKINEN et al.
2015). Still, the dangers of error accumulation in heterogeneous collections of data
contributed by humans are well known (CARTHEY et al. 2003; ZEEBERG et al. 2004;
PANKO AND AURIGEMMA 2010; PANKO 2016). It thus appears desirable to increase the
number of human error estimates available for biological information resources. The
analysis discussed next provided a unique point estimate of the error rates users might
want to expect when working with manually compiled resources of similar complexity. A
more thorough analysis of errors is beyond the scope of this study (and is likely to be
substantially affected by the compiler techniques discussed below). Nevertheless, our
results below support our claim that our main findings are probably not the result of a
unlucky confluence of statistical flukes generated by errors we could have detected
when reanalyzing the same data carefully.

Quality control in FlyClockbase and TraitTables. In order to detect and
reduce the number of errors in the PeakValleyTables used for computing variability, we
conducted four rounds of identifying values outside of the range defined by the mean +
1 SD of a Trait (Mod2, Mod3, Mod4, Mod5 in Figure 3); this was done for all clock
components in FlyClockbase and serves as the basic way of introducing all new data.
We used this as the starting point for obtaining the error estimates reported here. Since
time series TraitTables and search results tables are not strictly part of FlyClockbase
(see Figure 2), we separated our error estimates of FlyClockbase from those obtained
for TraitTables (see Results below) to improve the quality of our estimates. In a unique
effort, we then re-examined in-depth all relevant content, attributes and traits of each
time series that informed the four most important PeakValleyTables (per mRNA, tim
mRNA, PER protein, and TIM protein). We scrutinized each value representing a peak
or valley time. This required a substantial effort, which aimed at a twofold goal:

(i) removal of errors for improving our estimates of variability differences, and
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(i) providing an approximate estimate for the numbers of similar errors that users of
FlyClockbase (or similarly complex data resources) might expect in other areas,
where such error rates have not yet been determined.

Before presenting our findings, we submit to the reader that the researchers compiling
FlyClockbase had been very conscientious, brought a high degree of expertise and
enthusiasm to the project, and did their very best to avoid mistakes. Thus we thought
conditions were favorable and we were not sure if we would find errors. Unfortunately,
aiming to avoid and correct mistakes does not protect against the inevitable occurrence
of mistakes at low but predictable rates (see Table 5 and Discussion).

Place TABLE 5 about here.

Basic Null-Hypothesis Hp.sic. FlyClockbase includes a particularly large number
of repeatedly observed time series of per and tim mRNAs and proteins in wildtype (and
wildtype-like) circadian clocks of D. melanogaster. These time series were recorded as
wildtype control experiments while observing the effects of mutants in order to explore
circadian clock functions. We expect corresponding wildtype controls to produce similar
time courses that differ only by inevitable stochastic effects — in the absence of
experimental complications. Such complications would make flies non-comparable
across studies (see Discussion of potential causes, such as variable natural genetic
diversity across fly strains, developmental diversity, unknown environmental impact on
measurements, and others). We start by ignoring all such potential complications. Our
aim is to initially work with the simplest model that still appears somewhat useful. We
define a corresponding basic null-hypothesis Hpasic to inform our background time series
expectations and enable a defined starting point for hypothesis testing with the help of
appropriately selected data in FlyClockbase. In light of the types of observations and
available calibrations, we define Hpasic as:

The basic time series type in FlyClockbase is determined by the molecule type
observed and its context, which for Hpasic iS defined as the central core clock of
wildtype organisms of a defined taxonomic unit (like D. melanogaster) under
standard experimental conditions. Hpasic excludes time series that are (i) from
non-LD 12:12 observations, (ii) affected by the presence of mutations known to or
intended to alter the clock, (iii) measuring non-central circadian clocks that are
independent or merely derived from an organisms’ central clock, and (iv) any
complications from genotypes, phenotypes, environments, methods, or more.

For these basic time series types defined above, FlyClockbase reports as
Hpasic the ensembles below containing either dynamically changing amounts of
a specified molecule type, or values of corresponding time series traits.
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These ensembles of the most reliable observations in FlyClockbase are based
on time series that satisfy the following conditions: (i) Timed amounts are reported
as uncalibrated, relative measurements, which allow comparisons only within each
time series, not between time series. (ii) Comparisons of observed amounts indicate
all potential outcomes by drawing on as much evidence as possible and extracting
as much quality as reasonable from the available data. This requires that
comparisons define a method of incorporating such data appropriately. This data
includes quantifications of uncertainty in methods of measurement, observational
errors, replicates, accuracies of timed amounts, and methods of inference. (iij) When
using Hypasic, all relevant details need to be documented, including the data available
at the time, its state of refinement (ObsMod+), and the methods used.
Documentation requires specifying their stabilizing versioning numbers as defined by
the StabilizingZone of the POST system (see Table P1 in Supplemental Material).
(iv) Any observations included in either ensemble type exclude outliers using
Carling’s method (2000) to enable a focus on typical clocks.

Satisfying all these conditions, Hpasic assumes that the remaining variability
of observed amounts or traits is only caused by the natural stochasticity of
discrete molecular events inside of individual cells.

Hyasic is a powerful starting point for exploring clock biology. Next, we will use Hpasic to
compare typical Hpasic behavior of time series traits observed in different clock
components. We then relax assumptions of Hpasic to illustrate how FlyClockbase can
generate a variety of hypotheses about diverse subtleties that might be important for
generating high-quality observations of circadian clocks.

Hypothesis on Peak time variances: PER exceeds TIM

We initially screened for variability in the peak and valley times of all clock components
available (see Table 4). This analysis revealed substantial differences between the
standard deviations of peak times observed for PER and TIM respectively highlighted in
Figure 6. We hypothesized that these differences could have mechanistic causes and
might thus point to new insights into clock mechanisms (see Discussion). Before
exploring such mechanistic models, we wanted to know, whether our observations were
(i) statistically significant and (ii) not caused by low-level errors in data handling during
the construction of FlyClockbase in light of corresponding challenges with data quality
(McCaALLuM 2013) as faced by many biological information resources (see Discussion
and Supplemental Material for more details).

Place FIGURE 6 about here.
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Place FIGURE 7 about here.

Data quality. Since variances are easily inflated by outliers caused by errors in
data handling, we aimed to obtain assessments of peak and valley times that were as
accurate as possible given the observations reported by the studies in FlyClockbase.
The desire for improving the overall rigor of our variability assessment motivated the
various procedures described above for identifying outliers and investigating potential
errors that might have artificially inflated estimates of variability. Thus, we manually re-
inspected all steps of inference for each peak and valley data point that contributed to
our final calculations of timing statistics. We started with the already highly refined
dataset ObsMod5 and created ObsMod6 by correcting all irregularities from data
handling or processing on our side that we could detect in FlyClockbase or our
TraitTables (see Figure 3). Starting from the figures of publications, we checked the
results of all our manual operations that could have modified traits, up to the final values
used as input for our R script that produced Figure 7. The statistics of the resulting
human error analysis is shown in Table 5.

Main analysis with outlier robustness. We decided to carefully investigate the role
of outliers when analyzing variance in order to arrive at robust conclusions. We were
motivated by the following considerations:

1. Use of robust statistics. We aimed to use state-of-the-art statistical methods
designed for delivering robust conclusions that minimize the chances that a few odd
values have an unduly large impact on the overall conclusions (see Wilcox (2012)
for an introduction to robust estimation and hypothesis testing).

2. Dealing with rare ObsOdd. As described above, we checked and re-checked all
observed peak and valley times that entered our final comparisons between per and
tim components, aiming for the best interpretation of each reported time series.
Despite this scrutiny, there were four observed time series that we could not
interpret convincingly. All four extreme values pertain to protein peak time, with one
extreme for TIM (time series ID 14.1.1, peak at 6.966h linearized CZT) and three
extremes for PER (time series IDs 43.2.1, 43.3.1, and 43.5.1, all with a peak at 28h
linearized CZT and all from one study). All four also showed a clear signal in their
original figure that appeared to have been analyzed correctly (based on our reading
of the respective studies), yet all four reported times appeared to be clearly distinct
from the distribution of times reported by all other similar studies. For example, TIM
extreme outlier time series above observed a peak almost exactly 12h away from
the mean of the equivalent TIM distribution of peak timings without outliers. While we
could not find any indication that morning and evening had been flipped in the
corresponding study, it is very difficult to exclude such human errors in light of the
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many challenges that easily frustrate data analyses in spreadsheet software (see
Discussion below). We stopped further attempts of re-interpretation, since the
original raw data was not publicly available. As revisited in the Discussion, these
values could represent any of the following: genuine observations of typical behavior
of rare fly clocks, rare behavior of typical fly clocks (at least sustained for the length
of the time series), some rare combination of measurement protocol details that
conspired to systematically bias observations (which were correctly interpreted), or
human errors leading to misinterpretations in the complex chain of time series
observation and analysis. We could not find similarly extreme outliers in
corresponding observations of mMRNA. We consider the overall evidence to be too
incomplete, contradictory and therefore inconclusive to determine which process
may contribute most.

Observing these extreme outliers might raise the distant possibility that apparent
wildtype circadian clock systems can exhibit extreme deviations from their normal
timing behavior in a few percent of occasions. However, exploring the possibilities of
such exotic behaviors is beyond the scope of this study and not possible without a
more elaborate error-management for observation and analysis of time series in
circadian clock studies. It would also require a substantial number of individual time
series observations in the DetailSection of FlyClockbase to enable the independent
computation of summary statistics.

To test whether these handpicked extreme outliers made a difference to our
conclusions, we grouped and denoted them in our Statistical Methods Section as
‘outlier removal approach (ii)’. We then created a parallel analysis track in our R
script that took every computation on the full dataset (‘Mod7’) and repeated it on a
manually created copy of the input files (‘Mod8’), where this manual outlier removal
approach (ii) had been applied. To increase clarity, ‘Mod7’ or ‘Mod8’ are also
labeled, respectively, “BestEachObs” or “BestNoXtrem™ in our R code, and “with
Extremes” or “no Extremes” in the titles of the automatically generated plots. (‘Mod7’
is essentially identical with ‘Mod6’ except for trivial changes to facilitate automated
reading from R; the Mod7 and Mod8 files are only stored next to our R script that
reads them as input, they are not stored in the main time series trait folder).

As can be seen in the Supplemental Statistical Analysis online, the removal of
these four specific time series does not substantially change our conclusions.

3. We were unsatisfied with the subjective nature of the decisions summarized above
as ‘outlier removal method (ii)’. While extreme outliers are reasonably easy to detect,
there is a gradual transition to less extreme values, where subjective decisions
about the inclusion of particular time series could easily lead to a new set of
problems by creating ascertainment biases that are impossible to correct for
statistically. Thus, we decided to employ a principled method. After some
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experimentation, we arrived at outlier removal approach (iii) which has been
described elsewhere (CARLING 2000; WiLcox 2012); see Statistical Methods.

Our results in Table 6 report our current best analysis of the most reliable data on the
variability of per and tim protein and mRNA peak and valley timing accessible to us in
FlyClockbase. For the reasons given above, we decided to exclude outliers as identified
by our approach (iii) see Materials and Methods (CARLING 2000; WiLcox 2012).

Alternative handling of outliers. In the Supplemental Statistical Analysis we
compared results after removing outliers using approach (iii) as shown in Table 6 with
those obtained from the full dataset to investigate whether removing outliers affects
conclusions. Given the extraordinary range of timing variability for the peaks of PER and
TIM, it is unsurprising that the difference in variance reported in Table 6 loses statistical
significance when outliers are included. In Table 7 we summarize our results of
comparing different outlier approaches. Corresponding values for all other results in
Table 6 can be extracted from the Supplemental Statistical Analysis.

We conclude from Table 6 that the majority of circadian clocks in D.
melanogaster are significantly more variable in their timing of PER peaks in comparison
to TIM peaks (P<5%). In a minority of cases outliers can introduce such large amounts
of variability that indicators of significance are swamped and a loss of significance is
perceived (see Table 7 and Discussion). All other comparisons shown in the
Supplemental Statistical Analysis confirm this overview. Our observation of significant
differences in variability contrasts with the near absence of differences in the average
timing of these peaks.

Place TABLE 6 about here.

Place TABLE 7 about here.

Other peak comparisons. We find differences in the variability of mMRNA peak
times, albeit interestingly with inverted sign, compared across per-tim equivalent parts.
This means that significantly lower variability in per mRNA peaks precedes significantly
larger variability in PER protein. Conversely, significantly larger variability in tim mRNA
precedes significantly lower variability in T/IM protein. This flip indicates that the
differences in variability of the peaks for PER and TIM are not caused by corresponding
differences in the variance of their mRNA peaks. We therefore conclude that these
differences are caused by mechanisms affecting variances of peaks in the causal
reaction networks after the transcription of per and tim. These differences in variance
contrast with non-significant differences in the average peak timing of the same peak
time distributions.
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Valley comparisons. The valleys of PER and TIM occur at significantly different
average times, irrespective of how many outliers are included. However, the non-
significant differences in variances reported in Table 6 become barely significant at the
5% level when adding the two outliers observed in TIM. When comparing the valleys of
per and tim mRNAs, we found significant differences in average time; per valleys
precede tim valleys, even though averages do not differ among peaks. Valleys of per
and tim also showed significant differences in variance, with per being more variable
than tim. We also report an inversion of variances when compared to their
corresponding mRNA peaks. Our results for the valleys of per and tim mRNAs are not
impacted by outliers, since none of our approaches to outlier analysis could identify any
outliers among the 24 and 20 observations in FlyClockbase, respectively.

Comparing methods for measuring TimeSeries of per mMRNA

In addition to comparing different clock components, FlyClockbase can contrast
experimental details that differ between independently observed time series of the same
clock component. These experimental details are stored as TimeSeries Attributes in
FlyClockbase and used for extracting corresponding sets of TimeSeries or TimeSeries
Traits for additional statistical analyses. Here we compared per mRNA time series
recorded by different measurement methods. We chose per mRNA because it is the
most common time series in FlyClockbase and thus provides the largest statistical
power for detecting potential systematic biases. Given the differences in variances
between clock components reported above, we wanted to know if such differences
could have been produced by using different methods of obtaining time series.

Measurement methods: The following five measurement methods were used to
collect at least three per mRNA time series in FlyClockbase: microarray, nascent-seq
and RNA-seq, PCR, RNase protection assays (RPAs), and Northern Blots. Two of the
four time series measured with microarrays were outliers, and all four of the time series
measured with RNA-seq or nascent-seq were from a single study. These time series
were consequently eliminated from our analyses. Many time series did not include a
valley time for per mRNA, so we focused solely on per peak time.

Comparing means: As expected, we could not find any significant differences in
the averages of peak times observed by different measurement methods when
comparing PCR vs Northern Blot, PCR vs RNAse Protection Assay (RPA), and
Northern Blot vs RPA (using the Mann-Whitney-U test at the 5% level, see
Supplemental Statistical Analysis).
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Comparing variances: We found significant differences in variance (using
comvar?2) to compare measurement methods as above. Comparing the combined peaks
from time series measured with any PCR method to the pool of those measured with
RPA or Northern Blot resulted in significantly different variances for both. The 95% CI of
differences of variance reported by comvar? after 10° bootstraps for RPA and Northern
Blots are 0.4413 to 6.817 and 0.4764 to 10.586, respectively (for explanation on extra
digits, see Table 6). The histograms of the corresponding distributions are given in
Figures 8A and 8B.

Place FIGURE 8 ABCD about here.

The differences in variances are strongest for peak times measured with PCR or
Northern Blots. Comparing the nine qPCR observations with the nine Northern Blots
showed significantly higher variance in qPCR observations (comvar2, 10° bootstraps,
95% ClI for differences in variance: 0.353 to 7.598). Likewise, the 16 RT-PCR
observations in FlyClockbase are more variable than the nine Northern Blots (comvar2,
10° bootstraps, 95% Cl for differences in variance: 0.46889 to 11.486). As reported
above, comparing peaks from PCR to those from RPAs showed significant differences
in variance. We expected this pattern to hold also for non-pooled PCR, but found results
to be no longer statistically significant. Each type of PCR had a very skewed distribution
of differences in variance with a substantial bias similar to that of Northern Blots (see
comvar?2 results in the Supplemental Statistical Analysis). However, reduced sample
size diminished statistical power, so differences are no longer significant.

Method references. We were surprised by the larger variance in PCR results
compared to results from non-PCR methods. We speculated that this might not
necessarily be inherent to PCR but could be caused by a larger diversity of method
protocols. If this were general, we would expect studies with shared method protocol
references to report results with less variability than studies which did not share such
references. Therefore, in studies that did not cite any method references, we might
suspect a larger diversity of method protocol variants, and thus more diverse results.

Place FIGURE 9 about here.

Figure 9 provides detailed information about the method protocol references
cited in the studies we used. As before, we focused on the peak times of individual time
series as observed by PCR, RPAs, or Northern Blots. Some authors largely followed the
methods outlined in other referenced studies, while others only incorporated protocol
references for specific aspects such as probe development, the use of controls, or RNA
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extraction (see classification key in the caption of Figure 9 for a list of some
methodological aspects that might be of interest).

Table 8 provides summary counts of the time series represented in the various
broader categories of Figure 9 and the number of studies that observed them. Table 8
also provides summary counts of the time series from studies that either share or don’t
share references with each other (along with the corresponding numbers of studies; this
classification excluded studies with no references). The underlying network of protocol
identities is represented in Figure 9, and histograms of the corresponding distributions
are given in Figure 8CD.

Place TABLE 8 about here.

Presence or absence of method references: We grouped all analyzed time series
into two categories, which might be nicknamed “Any Method Ref’ if their studies
provided at least one reference for details of the experimental protocols used to observe
time series using a given broad type of method, or “No Method Ref’ if not a single
relevant experimental protocol reference was given. Comparing average peak times
among these groups showed no significant differences and no detectable indication of
bias (Mann-Whitney-U test, 95% CI: -1.00 to 1.00, p = 0.736). While differences in
variance were not significant, a clear bias in variance was noticeable in the distribution
of differences, possibly indicative of significance if higher sample sizes were available
(comvar2, 10° bootstraps, 95% Cl for differences in variance: -1.385 to 5.6876).

Presence or absence of shared method references: We subdivided all available
time series with at least one method reference into those with and without shared
method references (see Figure 9 and Table 8). Average peak times did not change
significantly if method references were or were not shared, but some bias could be seen
(Mann-Whitney test, 95% CI for difference in location: -2.00 to 5.4208x10°, P = 0.1829).
Similarly, variances of peak times showed bias but were not significantly different
(comvar2, 10° bootstraps, 95% Cl for differences in variance: -1.1045 to 6.325, see
Supplemental Statistical Analysis).

Reduction of statistical power by application of inappropriate logic? The
last groups above had both clear biases in their differences in variance as revealed by
comvar2, but neither test was significant at the 5% level. Combining both results in a
slightly different way might increase relevant sample sizes and significance. As shown
in Figure 10, we currently exclude studies with not a single method reference from our
analysis of studies with shared references. We initially justified this by assuming that
method references must be present for deciding whether studies could have used the
same methods at the lab-bench or not. It turns out that this line of reasoning might say
more about the need for greater clarify in logic formalisms than about the effects of
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sharing references or not. We will next make explicit, what we unknowingly implied
above; we do so in order to demonstrate the difficulties of creating clear statements in
words chosen adhoc and aimed at clarifying statements in a limiting logic formalism.

Above we assume implicitly that a study without any method protocol references
may or may not have used the exact same methodological procedures as another study
without method references. Applying Boolean logic here attempts to force a

Yes (OK)
No (KO)

answer to the question about the use of a common protocol. This logic fails here,
because it does not allow us to specify that we cannot provide any certain answer
based on the absence of a reference (we cannot exclude the possibility that two studies
may have shared the same protocol). Instead, we might consider the BioBinary logic
that FlyClockbase is adopting from Evolvix (see Supplemental Material). This is a step
forward, because it can distinguish the cases of

MIS (‘inapplicable’ because ‘no-method-given’)
OKO (‘somewhere between OK and KO’)

from the other cases (OK/KO), where we can reach relatively more clear decisions
because method protocol references are given. Our statistical analysis above can now
be rephrased as stating that the absence of a reference is a BioBinary ‘MIS’ (since we
formally cannot answer the question due to a missing value). As a result, we would
exclude such values, since it is always easy to name multitudes of irrelevant values that
clearly should not have any influence on our analysis. This interpretation might appear
unsatisfactory at first, but it is still a step forward, because it is explicitly stated and
therefore more tangible, which might attract further scrutiny.

If explained clearly, most experimental biologists will probably not hesitate to
point out that the chances of using identical experimental protocols in the lab are
miniscule unless there is a shared reference to a common protocol (which would
probably be referenced). There are simply too many variations that are done most
easily. Thus, instead of assuming the absence of evidence (which might allow for
shared protocols, even if no references are given), we can assume evidence of absence
(since it is rather unlikely that two labs use the same procedures, without sharing
references to a common protocols). Given the many variations of PCR that are easily
created in the absence of further detailed instruction, it is difficult to see, how labs might
accidentally share procedures. Thus, technically, this case must be classified as a
BioBinary OKO; however, overwhelming evidence suggests that a KO (not sharing) is
much more likely.
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Result: These considerations suggest that it would be more appropriate to add
the time-series with no references to the group of those that have only one (non-shared)
reference. This might increase statistical power enough to make tests significant that
compare “shared vs not shared references”. Pivotally, these considerations
demonstrate the importance of using the right type of logic and type system. It is easy to
miss important points in Boolean logic without appropriate visualization. Since logic
formalisms are best automatically supported at the compiler level, a step change in
speed and quality of many biological analyses could be facilitated by a compiler that
correctly map BioBinary and more expressive logic formalisms to data — out of the box.
This conclusion is general for the construction of VBIRs, and independent from the
particular outcomes of any specific tests that might be performed, because the
existence of such unresolved difficulties in representing formal logic can easily create
bugs that bind large amounts of research time, which could otherwise be dedicated to
VBIR development.

Place FIGURE 10 about here.

Comparing methods by study to reduce multiple comparisons. Figure 9
shows that a single study often reports multiple time series, which could bias the results
above (based on analyzing each time series individually without grouping into studies).
Thus, big studies contributing many time series might exert an unduly large influence on
the results. For example, nine of the 25 time series measured with PCR (36%) are from
a single study (MAJERCAK et al. 2004), but this study is only 1 of 13 (7.7%) that used
PCR to measure per mRNA. Given the many complexities of this system, the most
appropriate way to address this problem is unclear. Treating each time series
independently might give large studies too much influence. However, using only a single
value from each study (e.g. the mean), irrespective of how many time series it
represents, could give small studies too much weight and thus risk adding irrelevant and
noisy artificial variance. The latter approach is therefore an extreme approach of
countering potential problems with the former. We used this alterative study-based
approach to explore the robustness of our conclusions about measurement methods,
albeit with the added caution that the loss off statistical power might be too large for
reaching clear conclusions.

Indeed, using only a single average value from each study reduces the remaining
statistical power so much that no result remains significant (see Supplemental Statistical
Analysis). It is worth noting though that some comparisons of variance still showed such
a strong bias that the collection of additional observations might result in significance.
The comparisons that approached significance were these: Variance between PCR and
Northern Blots (comvar2, 95% CI: -0.281 to 13.340, with a point estimate for a
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difference in variance of 4.926 h?); Variance between PCR and RPA studies (comvar2,
95% Cl: -0.161 to 8.426, with a point estimate for a difference in variance of 4.065 h?).
Such comparisons of non-PCR methods vs PCR-methods were closer to significance
than the non-PCR method comparison of Northern Blots vs RPA studies (comvar?2,
95% Cl: -3.492 to 0.538, estimated difference -0.861 h?). Differences in variance based
on shared references produced even weaker signals (but see Figure 10 and Discussion
of Logic for a potential boost of statistical power). All corresponding details are recorded
in the Supplemental Statistical Analysis.
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DISCUSSION

We discuss the more technical aspects of our work in the context of three broader aims
of this study: (i) introducing FlyClockbase and connecting it to our current understanding
of circadian clocks; (ii) using FlyClockbase to ask new questions about variability in
circadian clock time series, possibly illuminating important aspects of clock mechanisms
and methods of observation; (iii) improve and simplify how FlyClockbase, and by
extension similar biological information resources (VBIRS), are constructed, expanded,
and maintained.

Why learn lessons on data? It would be easy to finalize this study without the
third aim. However, it is impossible to address the timely and relevant topic of
organizing biological data without the concrete context of a specific resource like
FlyClockbase. This discussion is relevant because the increasingly data-centric nature
of biological discovery has resulted in calls for improved access to existing data (NIH et
al. 2012; ReAD et al. 2015; WILKINSON et al. 2016), which is easier said than done
(GoLbsToN 2008; DoAN et al. 2012; GITELMAN 2013; HUANG AND GOTTARDO 2013;
McCALLuM 2013). As physical access to data is increasing, the next frontier is defined
by the ability to efficiently identify datasets of relevance for a given topic. The diversity
of biological questions would make any one single resource for all biologists too
cumbersome to use. Instead, this aim could be achieved more efficiently by
empowering research communities to construct resources for their own contexts, albeit
using a shared interoperable infrastructure. This infrastructure will be perceived as
useful to the degree it can provide standards that convincingly address common
challenges faced by all biologists aiming to construct VBIRs for organizing notoriously
uncertain biological data. Developing such standards is an enormous task that requires
the integration of lessons from many more studies than any single effort such as this
one could produce. Thus, our more modest aim here is to highlight lessons we learned
while constructing FlyClockbase, hoping they will be useful as the biological community
works towards finding more general solutions (NIH et al. 2012; READ et al. 2015;
WILKINSON et al. 2016).

Why do we need many VBIRs? Efficiently constructing many VBIRs like
FlyClockbase is necessary for integrating biological information at the scale needed for
current research. The need is driven by immense challenges, such as mechanistically
understanding and curing cancer (NIH et al. 2016; SAMUELS et al. 2016), mapping
genotypes to phenotypes in personalized medicine and elsewhere (RODEN 2011;
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MACKAY et al. 2012; KIRK et al. 2015; ASHLEY 2016), or the evolutionary systems biology
goal of mechanistically predicting realistic fitness landscapes (LOEWE 2016). Irrespective
of whether it is possible to realize these broader visions, any serious attempt will require
the diligent construction of many interoperable VBIRs that connect well to state of the
art expertise, and advance biological research in the relevant areas. Thus, we will next
examine FlyClockbase in this respect.

FlyClockbase is consistent with current hypotheses

Overall, time series in FlyClockbase are consistent with general published clock
knowledge and with mechanisms currently thought to control the clock. Informative
reviews of the clock that draw on previously published experimental studies are given
elsewhere (HARDIN 2011; OzKAYA AND ROSATO 2012). Conclusions from these reviews
are supported by FlyClockbase summary statistics given in Table 4.

CLK and other proteins. Increasing amounts of VRI protein between about ZT4
and ZT16 repress clk transcription, with an especially pronounced effect after ZT14
(CYRAN et al. 2003; GLossoP et al. 2003). Although CLK protein typically functions as a
transcriptional activator for vri, the formation of the PER/DBT/CLK/CYC complex
represses the activity of CLK between approximately ZT16 and ZT4 (HARDIN 2011). vri
transcription is therefore decreased, causing lower levels of VRI and reducing the
repression of clk transcription by VRI. This allows c/lk mRNA to increase and reach a
maximum around dawn (ALLADA et al. 1998; OzKAYA AND ROSATO 2012). clk mRNA
levels also increase due to the action of the transcriptional activator PDP1 protein,
which becomes especially strong around ZT18 (CYRAN et al. 2003). Time series in
FlyClockbase reflect this pattern of c/lk mMRNA reaching a maximum in the morning
(peak time = 2.79 DZT mean % 3.16 h SD), decreasing throughout the day into the early
night (valley time = 14.33 DZT mean + 1.67 h SD) and then beginning to increase again
in the late night. Although c/lk mRNA does show rhythmic expression, the amount of
CLK protein is not cyclic (Yu et al. 2006). Data from FlyClockbase support this constant
expression, as the n=5 peaks and n=9 valleys observed for CLK overlap almost
completely. However, there might not be enough observations to fully settle the issue,
since the variation for both CLK traits (£3.18h, £4.30h SD) is currently lower than
expected for peaks and valleys that are all drawn from one stable uniform distribution
(x>6.8h; see: Materials and Methods Section, Peak-Valley Section, Randomizing Time
Section).
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PER and TIM dynamics. PER protein, per mRNA, TIM protein, and tim mRNA
have expression patterns which are generally opposite to that of c/k mRNA.
Transcription of per and tim begins mid-morning and is promoted by the transcriptional
activator CLK (ALLADA et al. 1998; DARLINGTON et al. 1998). FlyClockbase shows the
peak time of per mMRNA at mean DZT = 14.61 £ 1.58 h SD and of tim mRNA at mean
DZT =14.59 £ 2.12 h SD (using outlier removal method (iii) as in Figure 6; for outlier
removal method (i) see Table 4). This supports data suggesting mRNA levels increase
through the day and into early evening (ALLADA et al. 1998; HARDIN 2011). Protein
accumulation reportedly lags behind that of mMRNA by about six to eight hours (ZWIEBEL
et al. 1991b; HARDIN 2011), though data from FlyClockbase support a shorter delay of
around four to five hours (delay from mean per mRNA peak to mean PER peak = 4.03
or 4.84 h, delay from mean tim mRNA peak to mean TIM peak = 4.33 or 3.82 h, from
Figure 6 or Table 4, respectively). Between approximately ZT18 and ZT4, the
PER/DBT/CLK/CYC complex represses the activity of CLK (LEE et al. 1998; LEE et al.
1999; BAE et al. 2000; HARDIN 2011). This leads to decreased transcriptional activation
of per and tim, causing a decrease in per and tim mRNA levels, which is reflected in
FlyClockbase as a mean per mRNA valley at DZT = 3.61 £ 2.32 h SD and a mean tim
mMRNA valley at DZT = 5.09 + 1.15 h SD (Figure 6; difference in variance significant at
5% level). During the day, TIM protein is degraded in response to light (NAIDOO et al.
1999; BuszaA et al. 2004; OzTURK et al. 2011), as indicated in FlyClockbase by an early
mean valley at DZT = 5.84 + 2.53 h SD. PER, which is typically stabilized by TIM, is
then destabilized and more prone to phosphorylation and subsequent degradation
(GEKAKIS et al. 1995; KLoss et al. 2001; MERBITZ-ZAHRADNIK AND WOLF 2015). This
finding is consistent with FlyClockbase reports of a late PER mean valley = 9.41 + 1.94
h SD (Figure 6). The PER valley is significantly different from the TIM valley (P =
1.489x107) as determined by the Mann-Whitney-U test. Unless specified otherwise,
similar subsequent tests are two-sided and unpaired. To minimize search time for
readers, we added a few non-significant digits to many results in the main text to help
streamline searches for the context of such results in the Supplementary Statistical
Analyses. As the amount of PER decreases, inhibition of CLK-mediated transcription by
the PER/CLK/CYC/DBT complex also decreases, and CLK resumes promoting
transcription of per and tim.

FlyClockbase facilitates hypothesis-driven research
Circadian clocks in D. melanogaster are molecular systems of substantial complexity
which have been inspiring generations of researchers to construct numerous

hypotheses about how they work. FlyClockbase can substantially contribute to various
life-stages of a hypothesis.
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Starting with a blank slate. FlyClockbase can set the stage by integrating
existing observations. It is beyond the scope of this paper to discuss the many ways of
extending FlyClockbase beyond its current goals, for example, by providing the
possibility to add time series from mutants. As FlyClockbase accumulates more
observations, its power will increase to help researchers to put new observations into
context by comparing them with already integrated data. Such comparisons can inspire
new hypotheses and help evaluate them quickly. For example, we discuss below the
hypothesis that significant differences in the timing variability of PER and TIM are the
result of mechanistic interactions integral to the operation of this clock. This hypothesis
grew out of our observation that the difference in variability of the peak time in these
proteins was larger than we expected.

Using Attributes to compare timing variability. Another way of generating
new hypotheses using FlyClockbase is to draw on the many attributes stored for time
series. This structured information classifies time series in FlyClockbase in rich ways:
many groups of column entries are easily combined into hypotheses for identifying
significant differences between different genotypes, strains, observation methods,
environmental conditions and more. Some hypotheses may not be tested easily, as
statistical significance may often require more data. However, FlyClockbase already has
enough data for testing some hypotheses, and insufficient data might inspire new
experiments for testing important ideas. In this way, FlyClockbase can even become a
tool for planning experiments.

Existing hypotheses on timing. Testing ideas against the data in FlyClockbase
will become increasingly efficient as increasing numbers of experimental results are
integrated into FlyClockbase. This results in a win-win for research productivity. The first
win is clear if sufficient data exists in FlyClockbase to test a hypothesis (saving time). If
the necessary data is not available in FlyClockbase, the second win is highlighting the
potential need for new experiments in areas with limited data. Researchers can then
decide whether to fill this gap with new experiments or prioritize other research. Again,
FlyClockbase can help propose experiments within its scope, which could broaden over
time.

The strength of FlyClockbase. Whether FlyClockbase will contain enough data
critically depends on (i) the ease of adding new studies in a consistent way, and (ii) the
effort required for checking the integrity of any data fragment. These two core
requirements drive our interests in usability and human error analysis as discussed
elsewhere throughout this study. Hence, work with FlyClockbase highlights how various
subtle yet time-consuming issues of data organization, automation, usability, and error
management that are usually classified as “non-biological” can easily become limiting
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factors for advancing circadian clock research. Our work on FlyClockbase suggest that
it is more efficient to use the rather systematic approach of automating as much as
reasonable and produce corresponding VBIRs in batches. This enables efficiencies of
scale similar to those necessary for completing the human genome project (LANDER et
al. 2001; VENTER et al. 2001). In similar ways, VBIRs could help compare data, evaluate
methodologies, extend current knowledge, stimulate new ideas, test hypotheses, and
create new routes of inquiry. We will next illustrate how FlyClockbase improves
scientific productivity for testing hypotheses in its scope, before returning to practical
questions of usability, appropriate data models, and efficient implementation for VBIRs.

Peak timing hypotheses and more: PER variance exceeds TIM variance

We chose to compare PER protein, TIM protein, per mRNA, and tim mRNA because
these components are integral to the circadian clock. They interact with many other
clock parts (Figure 1), and null mutants for each gene (per®’ and tim°') lead to
arrhythmicity (KONOPKA AND BENZER 1971; SEHGAL et al. 1994). Also, Table 4 shows that
peak and valley observations of these four components were among the most abundant
in FlyClockbase and thus best suited for testing differences for statistical significance.

Comparing averages. We first compared the mean peak and valley times for
PER and TIM protein and for per and tim mRNA amounts. Neither the proteins nor the
MRNA had significantly different mean peak times. The mean valley time for tim mRNA
is significantly later than for per mMRNA (Mann-Whitney-U test, P = 0.012835, see
Supplementary Statistical Analyses for context; two related tests were shy of
significance). It might be reasonable to expect this delay to propagate, such that first the
peaks of mMRNAs, then the peaks of proteins, and ultimately also the valleys of proteins
might show a similar pattern of tim preceding per. However, this pattern is quickly
broken, as the respective pairs of mMRNA and protein share essentially mean peak times
for TIM and PER that are statistically indistinguishable. Following the cycle to mean
valley times for proteins even reverses into the opposite pattern: PER mean valley time
is significantly later than TIM mean valley time (see Figure 6; P = 1.489x10™ as reported
above). Two related tests also indicated significance for all outlier removal approaches
tested (see context in Supplementary Statistical Analyses). These timing patterns defy
the simplistic expectation of merely propagating delays and suggest mechanistic
causes. Demonstrating statistical significance with the help of FlyClockbase suggests
that these patterns might be worth simulating in stochastic models that capture causal
mechanisms and respect the discrete nature of molecules (and resulting variability).
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Explaining averages. We propose that the earlier mean valley time for TIM can
be explained by the rapid degradation of TIM in response to light (BuszaA et al. 2004).
Still, TIM’s peak time at mean DZT 18.92 £ 0.94 h SD might deserve a closer look. TIM
peaks in the middle of the dark period and not at its very end as might be expected if
light was solely responsible for degrading TIM.

The TIM degradation pathway is well characterized and begins with the activation
of CRY via a light-dependent conformational change (BERNDT et al. 2007; OzTURK et al.
2011; VAIDYA et al. 2013). This change allows CRY to bind TIM in the nucleus (CERIANI
et al. 1999; Busza et al. 2004). The F-box protein JET then ubiquitinates TIM to promote
degradation by the COP9 signalosome (KoH et al. 2006; KNOWLES et al. 2009).
Following TIM degradation, CRY is also degraded in response to JET-mediated
ubiquitination (PESCHEL et al. 2009). In-depth reviews of the TIM degradation pathway
are given elsewhere (HARDIN 2011; PESCHEL AND HELFRICH-FORSTER 2011).

While light-dependent TIM degradation could explain why TIM reaches its valley
before PER, it cannot account for the observation that tim mRNA reaches its valley a bit
after per mMRNA. The discrepancy in valley time cannot be caused by differences in
mRNA production, as mean peak times for per and tim mRNA are not significantly
different. We found this irrespective of the test or outlier removal method. Differences in
variance barely exceeded 5% significance, albeit only if we remove outliers by approach
(iif). See Figure 6 for overview and Supplementary Statistical Analyses for details.
Therefore, we suggest considering differences in per and tim mRNA degradation. These
degradation patterns could be influenced by CURLED (see below).

Comparing variances. We also compared the variability of peak and valley
times for the proteins PER and TIM and for the mRNAs per and tim. Table 6 reports that
peak time is more variable for PER than TIM as indicated by differences in variance that
exceed P = 0.05, albeit only if we remove outliers using our approach (iii) as described
(CARLING 2000). Table 7 and the Statistical Methods present the necessary nuances. In
short, we are confident that the differences in variance that we observe in most time
series are significant, and not easily attributed to:

o Statistical flukes for the overwhelming majority of PER/TIM time series reported (see
Table 6 and Supplementary Statistical Analyses for details on the robust bootstrap-
based tests performed on the 84% relevant protein peak time series that were not
removed as outliers by Carling’s approach, i.e. 59 of 70 combined protein peak
times of PER or TIM); or

e Trivial data errors or inappropriate data handling at our end (see Figure 3 for the
substantial effort in checking FlyClockbase for errors that resulted in Mod5, which
was used as starting point for manually re-checking every single time series that
contributed to our observation of PER-TIM differences in variance and resulted in
the correction of all errors in Mod6 as reported in Table 5);
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Thus, we reject the explanations above based on our work. In contrast, the potential
explanations below for the origins of outliers are more difficult to reject and cannot be
tested on a routine basis. It also appears unlikely to us that these explanations
contribute more than occasional outliers to typical experimental observations. Therefore
Hpasic, the default basic null-hypothesis for data from FlyClockbase, recommends above
that outliers are removed as described by CARLING (CARLING 2000). This method is
‘approach (iii)’ in our Statistical Methods and was chosen after comparing the features
of related approaches for outlier removal as reviewed elsewhere (p. 97 in WILCOX,
2012).

Outliers. About 16% of all protein peak times (3/33 PER, 8/37 TIM) or 4.3%
(14/325) of all peak valley traits in Table 6 have been identified as outliers by Carlings
method. Including all outliers exhausts the statistical power that FlyClockbase can
currently provide for investigating our differences of variance. As a result, statistical
significance collapses (see Table 7; P > 5% in our tests). However, this observation is
unlikely to affect our conclusion that some systematic biological mechanisms are
probably responsible for producing the PER>TIM variance patterns we report. Indeed,
the outliers raise intriguing questions about the sources of their variability. We cannot
currently distinguish the following potential sources of variability that will be discussed
separately.

Genetic background differences. A substantial minority of flies that are currently
classified as wildtype could have circadian clocks with significant genetic differences.
This hypothesis might not be as unlikely as it may appear when only considering core
clock genes as shown in Figure 1. Carefully listing all genes with potential impact on
clock timing quickly reveals much larger mutational targets. Clock models also depend
on specific rates of transcription, translation and degradation. These processes are
governed by huge molecular machines. Unless otherwise more harmful, mutations that
significantly delay or accelerate these machines will affect circadian rhythms.
Frequencies are unknown, but such mutations in the genetic background of a clock
might occur more often than mutations in core clock genes with similar effects on timing.
If true, these clock background mutations could contribute much to the natural genetic
variation in fly sleep patterns, which can be substantial (HARBISON et al. 2009a;
HARBISON et al. 2009b; HARBISON et al. 2013). In addition, selective pressure on
circadian clocks is substantial (BEAVER et al. 2002; SHARMA 2003; YERUSHALMI AND
GREEN 2009). It generates observable latitudinal clines of allele frequencies (COSTA et
al. 1992; RosATO et al. 1996; SAWYER et al. 1997; SHARMA 2003; SANDRELLI et al. 2007;
HuT et al. 2013). Evolutionary importance of individual clock components has been
demonstrated for various clock genes (BEAVER et al. 2002), including tim (SANDRELLI et
al. 2007), and per, which contains a repetitive region that increases mutation rates for
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length polymorphisms. The resulting mutational effects are apparently large enough to
maintain a latitudinal cline (COSTA et al. 1992; ROSATO et al. 1996; SAWYER et al. 1997,
KYRIACOU et al. 2007; WEEKS et al. 2007; KYRIACOU et al. 2008). Thus, mechanistic
differences between the circadian clocks of flies from the wild are likely to exist and may
resurface unexpectedly in clock studies.

If relevant and substantial, such differences could greatly complicate construction
and parameter estimation in the “wildtype D. melanogaster circadian clock model”.
While numerous models have contributed towards this aim (see Figure 4), there has not
yet been a single model that integrates all known data on the clock of a single well-
defined natural genotype. This ambitious aim becomes much more complicated if
natural variability in clock genes makes time series more variable. Such variability from
natural clock variants could undermine the statistical power of parameter estimation
methods for constructing a single clock model for a well-defined genotype.

Controlled observations of all data in a single line of fly descent is — in theory —
an easy way out. However, it might be difficult in practice to observe one fly well enough
to match the statistical power of results from many years of research by many labs.
Such focus on a single genotype could also generate a rather unusual clock model if
one of many rare mutants with large effects is present (EYRE-WALKER AND KEIGHTLEY
2007; HARBISON et al. 2013). Developing models of such precision could advance
methods for personalized medicine (HoDSON 2016). However, most Drosophila clock
researchers will probably prefer less precise clock models that usually match more
observations in typical flies. Such general models could be inferred by parameter
estimation methods from sets of time series collected in many genotypes by various
methods but excluding outlier time series using the systematic approaches we
employed (CARLING 2000).

Environmental or developmental differences for measured flies. Unrecognized
environmental factors that vary among measurements might modulate genetically
identical circadian clocks. If true, experimental protocols for observing circadian rhythms
in Drosophila could be improved to increase accuracy of biological replicates. Given that
different authors do not necessarily report the same set of environmental attributes, a
first step towards improving experimental protocols might be to develop a standardized
set of TimeSeriesAttributes for FlyClockbase that improve the precision of reports from
ongoing studies. It has been demonstrated that age impacts the clock in flies (UMEZzAKI
et al. 2012). Environmental factors that affect development in ways that strongly impacts
circadian rhythms could be a potential source of outliers.

Evolution in different lab environments. Consistent differences in selection can
cause flies to follow different evolutionary trajectories and sometimes the results can be
observed in the lab over a number of years (LEROI et al. 1994; SHABALINA et al. 1997,
HOFFMANN et al. 2001; HAAG-LIAUTARD et al. 2007; KEIGHTLEY et al. 2009). The flies
generating the data in FlyClockbase might have lived in environments with differences
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significant enough to trigger some adaptive evolution over a number of years.
FlyClockbase does not yet have enough statistical power to detect significant
differences between strains — if they exist. For example, our initial internal screening
showed no differences between wildtype, color modified strains (yw or w1118) or other
strains. Currently, FlyClockbase does not have dedicated TimeSeriesAttributes for
characterizing the environmental history of flies from the decade leading up to the
measurements. FlyClockbase is ideally positioned for integrating such data, once it
becomes available, and the necessary TimeSeriesAttributes have been developed.
However, not all fly clock studies report the LD environment in which their strains
evolved for the previous 250 generations (KANNAN et al. 2012). We have no specific
evidence to support the claim that evolution in the lab produced the outliers we
observed. However, some statistically significant evolution of the D. melanogaster
circadian clock was observed after applying a relevant selective pressure for 80
generations in the lab (KANNAN ef al. 2012). Also, note that per contains repetitive
nucleotides in its DNA, which result in high mutation rates for repeat polymorphisms
with adaptive significance (ROSATO et al. 1996; SAWYER et al. 1997).

Human errors. Setting up, performing, or analyzing clock experiments are
complex tasks, as are reporting experimental procedures, relevant labels, or analyzed
data. Such operations are error-prone (see discussion below) and can make
reproducibility a challenge (BAMMLER et al. 2005; FREEDMAN et al. 2015a). If all 16%
were the result of combining all human errors before publication, then the overall rate
would be surprisingly close to the 14% human error rate that we measured in Table 5,
and corrected before our final test of the hypothesis that PER variance exceeds TIM
variance. Our ability to detect human errors before publication is very limited. Hence, we
took published plots and their attributes at face value. We excluded time series that had
ambiguities we could not resolve (e.g. from poor plot quality), however, this does not
exclude human errors before publication (see Section on human errors in Supplemental
Material).

Conclusion on outliers. Thus, we have no reason to assume that errors before
publication could not have produced some of the 16%. It also seems unlikely that none
of the other causes above could have contributed. Distinguishing between the
hypotheses above is currently beyond the statistical power of FlyClockbase. However,
this might be irrelevant for many of the aims for which FlyClockbase was developed for:
a broader understanding of circadian clocks, often intentionally ignoring the details of
many special cases. Thus, even if we had perfect knowledge of all potential sources of
variability above, we might still want to exclude outliers using a systematic approach
such as the one we employed here (CARLING 2000).
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Hypotheses on causes for differences in variance. An obvious explanation for
such differences in protein peak times between PER and TIM could be given by similar
differences in the mRNAs required for producing these proteins. This short-sighted
hypothesis is easily tested using FlyClockbase. It turns out to be demonstrably wrong.
As shown in Table 6 and Figure 6, the increased variance of PER relative to TIM cannot
be attributed to an overall greater variance of per mMRNA, because the peak time of per
MRNA has a significantly lower variance than tim mRNA. Therefore, we can rule out
carry-over from similar patterns of variance in mRNA peaks.

Phosphorylation network size. Here we propose that the increased relative
variance of PER can be explained by the larger number of post- translational
modifications for PER (relative to those observed for TIM). Post-translational
modifications such as phosphorylation play a critical role in in the clock (WEBER et al.
2011; Risau-GUsMAN AND GLEISER 2012). While the exact nature and mechanisms of
these modifications have yet to be fully resolved, there is strong evidence that PER
undergoes more post-translational modifications than TIM.

TIM protein is phosphorylated by SGG (Ko et al. 2010), which promotes nuclear
accumulation of PER/TIM complexes (MARTINEK et al. 2001), perhaps by allowing
interaction with the nuclear import protein IMPalpha1 (JANG et al. 2015). SGG-
dependent TIM phosphorylation has also been implicated in light-induced TIM
degradation, likely in conjunction with CRY and JET (ROTHENFLUH et al. 2000a; BAE AND
EDERY 2006; KoH et al. 2006; PEscHEL et al. 2009). TIM protein therefore undergoes
approximately two to three post-translational modifications.

PER protein, however, could be subject to ten or more post-translational
modifications. PER is initially phosphorylated by NEMO, which then promotes additional
phosphorylation by DBT (CHIU et al. 2011; Yu et al. 2011). DBT phosphorylates PER
multiple times and influences PER stability, nuclear translocation, and SLIMB-induced
degradation (BAYLIES et al. 1992; EDERY et al. 1994; ROTHENFLUH et al. 2000a;
MARTINEK et al. 2001; Ko et al. 2002; Kim et al. 2007; CHIU et al. 2008; KIVIMAE et al.
2008; Ko et al. 2010; CHIU et al. 2011; MEzAN et al. 2013). PER is also phosphorylated
by CK2A, which promotes nuclear import (LIN et al. 2002a; LIN et al. 2005; MEISSNER et
al. 2008). PP1 and PP2A both work against these kinases to dephosphorylate and
stabilize PER (HARMS et al. 2004; SATHYANARAYANAN et al. 2004; FANG et al. 2007; CHIU
et al. 2008; GARBE et al. 2012).

Mechanistic phosphorylation network stochasticity hypotheses. Post-translational
modifications could be opportunities for increasing the variability of timing. This is
especially true if a required molecular type only exists in low copy numbers per cell at
some relevant stages of a circadian cycle. As described above, PER protein is at the
center of a large network of potential phosphorylation patterns and proteins, which also
include dephosphorylations. This network of post-translational modifications dwarfs
those observed in TIM protein. A large number of different types of potential
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modifications will break a large population of PER molecules into much smaller sub-
populations, thereby greatly increasing stochasticity. The heterogeneity of this network
and the relevance of antagonistic forces (dephosphorylation delays degradation)
increase the potential for stochasticity and complicate predictions without detailed
stochastic simulations. In comparison, few rather large subpopulations for TIM probably
result in copy numbers that are high enough to substantially reduce stochasticity.

Previous simulations have highlighted the possibility of additional variability in the
time required for growing to a defined level, when amplification starts from smaller
amounts. For example, biochemical systems like signal-transduction cascades that
amplify very low molecular counts can easily generate differences in variance for times
to reach a peak (LOEWE et al. 2009a; LOEWE et al. 2009b; AKMAN et al. 2010; EHLERT
AND LOEWE 2014). The inherent stochasticity of circadian clocks might explain the
observed variability via various mechanisms. Potential explanations could include
systematic differences in the distributions of the low molecular counts at the start of the
respective amplifications. If this does not cause all observed differences in variability of
PER or TIM peak timing, differences could be further amplified by the nature of the
different reaction networks that generate the peaks of PER or TIM.

Future simulations. While beyond the scope of this present study, we think that
such mechanistic phosphorylation network stochasticity hypotheses are worth exploring
in reasonably realistic stochastic simulation models.

Expanding hypotheses on CURLED. The inversion of variance differences
seen when comparing mRNAs and proteins of PER and RIM suggests that the
variability discussed above is probably governed by the post-translational processes
described above. However, it is less clear how these processes might explain the
significant differences in the variance of valley timing for per and tim mRNA.

Circadian mRNA degradation might be influenced by CURLED (CU), which is
known to affect circadian rhythms. Although curled mutants have been known for
decades, CU was only recently identified as ANOCTURNIN (NOC), the D. melanogaster
homolog of the mammalian NOCTURNIN (GRONKE et al. 2009). NOC has been shown
to associate with the CCR4-NOT complex, which promotes deadenylation (and
subsequent degradation) of mMRNA (TEMME et al. 2010). While NOC is thought to
influence circadian gene control, specific NOC targets have yet to be identified (GODWIN
et al. 2013). The gene noc produces three transcripts (nocturnin-RD, nocturnin-RC, and
nocturnin-RE), and NOCTURNIN-RD is rhythmically expressed in DN3s (NAGOSHI et al.
2010), a subset of dorsal neurons which are part of the circadian circuit and contribute
to evening activity (STOLERU et al. 2004). NOCTURNIN-RD knockdown mutants have
abnormal responses to constant light exposure, suggesting that NOCTURNIN may play
a role in circadian light responses (NAGOSHI et al. 2010). GREEN et al. (GREEN et al.
2007) also noted changes in gene expression in response to a high-fat diet for mutant
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Noc™' mice, which could implicate NOC in circadian metabolic control. It would be
premature to postulate an interaction between NOC and per or tim mRNA. Instead, we
suggest here that NOC and other circadian proteins that influence mRNA degradation
might be a fruitful area of investigation, particularly given the connection between NOC,
light response, and metabolism.

Hypothesis: peaks from PCR methods are more variable

The Attributes collected for time series in FlyClockbase can be used to compare
different groups of time series for a given clock component based on biological,
methodological, or other factors. These comparisons can suggest sources of variability
that affect future experiments and the interpretation of simulations. To illustrate this
possibility, we compared different measurement methods for observing peaks and
restricted our analysis to per mMRNA time series, which produced 88 peaks, the largest
number we could extract from FlyClockbase.

Methods background. Five methods were used to collect at least three
independent time series: (i) Microarrays, (ii) RNA-seq and nascent-seq, (iii) PCR, (iv)
RNase protection assays (RPAs), and (v) Northern Blots. Each method provides
advantages and disadvantages. Historically, Northern Blots were the first of the five
methods to be developed. Although they can provide information about transcript size
(SHARKEY et al. 2004), they have low sensitivity (VANDENBROUCKE et al. 2001) and can
only be used to analyze one gene at a time (FRYER et al. 2002). RPAs were developed
after Northern Blots. They can analyze multiple transcripts (SHARKEY et al. 2004) and
can be used to determine absolute RNA levels (VANDENBROUCKE et al. 2001). However,
they might have low reproducibility (Qu AND BouTJDIR 2007), and RPA is time-intensive,
typically requiring about four days (STREIT et al. 2009). All three of the newer techniques
(PCR, microarrays, and RNA-seq) are high-throughput methods (BusTIN 2002; SHARKEY
et al. 2004; MorTAzAvI et al. 2008). PCR, RNA-seq and nascent-seq methods do not
require previous knowledge of specific genes or sequences to be identified (FRYER et al.
2002; MoRrTAzAVI et al. 2008). While automation can be difficult for PCR (FRYER et al.
2002), microarrays are typically automated. Although RNA-seq and nascent-seq are the
most newly developed methods, technical variability may be a concern, particularly
when using a low number of read counts (BULLARD et al. 2010; MCINTYRE et al. 2011).

Sensitivity vs reproducibility. When comparing measurement methods, it is
important to consider both the sensitivity and reproducibility of each method; methods
that have high sensitivity may or may not have high reproducibility. Northern Blots
generally have low sensitivity (GILLILAND ef al. 1990; WANG AND BROWN 1999; MALINEN et
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al. 2003). RPA is more sensitive than Northern Blots, but sensitivity remains a
challenge, especially when using low amounts of mMRNA (WANG AND BROWN 1999;
VANDENBROUCKE et al. 2001). PCR is considerably more sensitive than either RPA or
Northern Blots (WANG AND BROWN 1999; MALINEN et al. 2003). RNA-seq also shows
good sensitivity (MORTAzAVI et al. 2008), but RNA-seq sensitivity depends on
normalization techniques (BULLARD et al. 2010). There is mixed evidence for microarray
sensitivity. For example, some researchers found that Northern Blots were slightly more
sensitive than microarrays for 14 of 29 assayed genes (TANIGUCHI et al. 2001). Six of
the remaining genes, however, were detected by microarrays and not by Northern Blots,
suggesting microarrays were more sensitive to these genes (TANIGUCHI et al. 2001).
Older microarrays might only have been able to detect changes reliably if they were at
least two-fold (FRYER et al. 2002), but some newer Microarrays have become at least as
sensitive as RNA-seq (WILLENBROCK et al. 2009).

Poor reproducibility may be masked by biological variability. In addition to
differences in sensitivity, measurement methods vary in reproducibility, and the
procedures used in each measurement method point to different potential sources of
variability. For example, RNA-seq requires a small portion of the sample RNA to be
used to construct a library, and PCR used to create this library can introduce variability
through amplification bias (AIRD et al. 2011). However, biological variability typically
outweighs methodological variability for RNA-seq (BULLARD et al. 2010). A detailed
review of the reproducibility of RNA-seq is given elsewhere (SEQC/MAQC-III
ConsoRTIUM 2014). Reports of reproducibility for microarray studies have been mixed.
The 2005 Toxicogenomics Research Consortium raised concerns of variability between
laboratories and between platforms (BAMMLER et al. 2005), and cross-platform
reproducibility issues were echoed elsewhere too (CANALES et al. 2006). However,
simultaneously a large study by the MAQC Consortium found microarray experiments to
be reproducible both across platforms and across laboratories (SHi et al. 2006). We
expected time series measured with RNA-seq and microarrays to show the least
variability, but there was not sufficient data to test this hypothesis.

Experimental causes for PCR variability. A number of different factors have
been shown to influence the variability of PCR experiments (BusTIN 2002). For
example, different samples can have different amplification efficiencies (VANGUILDER et
al. 2008), and, as noted above, the percentage of GC bases can introduce amplification
bias (AIRD ef al. 2011; ORPANA et al. 2012). Others noted that, although PCR is often
thought to be a “gold standard”, extensive tests showed that calibration and selecting
appropriate primers and probes can be challenging (VANGUILDER et al. 2008;
SEQC/MAQC-III ConsoRrTIUM 2014). A low quantity of starting material can also
influence PCR variability (VANDENBROUCKE et al. 2001; BUSTIN AND NOLAN 2004).
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PCR and Northern Blot accuracy. Despite these challenges, PCR was
developed more recently than RPA and Northern Blots, and the latter have largely have
largely fallen out of favor, at least partially due to the greater degree of sensitivity
afforded by PCR. Northern Blots are also less accurate than PCR (VANGUILDER et al.
2008) and are considered to have low reproducibility (Qu AND BouTJDIR 2007). We
therefore expected to see greater variability in time series measured with RPA and
Northern Blot and less variability in those measured with PCR. However, our analysis
revealed that peak values for time series collected with PCR were significantly more
variable than those from time series measured with RPA or Northern Blot.

Differences between qPCR and RT-PCT? We subdivided time series measured
with PCR into those measured with real-time PCR (“RT-PCR”) and those not measured
with RT-PCR (“gPCR”). Neither type of PCR was more variable than the other.
Variability did not significantly differ between qPCR and Northern Blot or between gPCR
and RPAs, but careful inspection of the bootstrap distributions produced by comvar2
suggests that this could be merely an issue of statistical power (QPCR has fewer
samples than RT-PCR). Accordingly, RT-PCR was significantly more variable than
Northern Blot and RPA. Finding significantly higher variability for RT-PCR was also
surprising, given that real-time PCR was developed more recently than gPCR, and RT-
PCR is considered to be the standard for PCR, as it decreases experimental error by
requiring less data processing than gPCR (VANGUILDER et al. 2008).

Analysis of measurement protocol references using FlyClockbase. We
attempted to explain our observed increase of variability for time series traits observed
with PCR by examining the experimental protocol references cited by each type of
MRNA observation method. It is common for the methods section of studies in
FlyClockbase to reference the experimental protocol of previously published studies.
We hypothesized that differences in these protocol references could explain the
increased variability of time series measured with PCR. The time series identifier
structure, easy access to references, content of respective studies, and the overall
structure of FlyClockbase were instrumental for collecting and organizing information on
experimental protocol references, even though this data was not originally recorded.
The information on method references for per mMRNA time series is shown in Figure 9.
Table 8 provides overview counts that translate into statistical power when analyzing
each method, either based on counts of time series (bold numbers in Table 8), or based
on counts of studies (non-bold numbers in Table 8).
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Shared references are less frequent for PCR studies. Of the three methods
we analyzed, some methods generally cited more references than others. While all 45
time series using RPA cited at least one method reference, such references were cited
by only about 56% (5/9) of the studies using Northern Blots and about 72% (18/25) of
PCR based time series. Some of the method references were cited once, while others
were cited more frequently. We defined “shared method references” as references cited
by two or more studies which use the same measurement method. Studies using RPA
had 93% (42/45) shared method references. 40% (2/5) of studies that used Northern
Blots had at least one shared method reference, while only 17% (3/18) of PCR studies
had a shared method reference. We hypothesized that decreased variability for time
series measured with RPAs and Northern Blots could be attributed to increased number
of method references and shared method references. However, our statistical tests
found no significant differences between time series with or without method references
or shared method references. We therefore suggest that increased variability in time
series measured with PCR is not caused by a lack of properly documenting or a lack of
using shared protocols but rather stems from actual differences in variability based on
measurement method.

Explanation: large fluctuations from PCR stochasticity

Here we provide a mechanistic explanation for the increased variance of per mMRNA
peak times as measured by PCR (here brief for RT-PCR and gPCR) in comparison to
non-PCR methods (here brief for Northern Blot and RPAs). Briefly, repeated replication
required by PCR starts with substantial stochasticity at very low copy numbers before
reaching its deterministic exponential growth phase. Non-PCR methods for observing
per mRNA do not require replication and thus have less potential for variability. Thus,
non-PCR methods cannot distort peak timings as much as PCR can.

Exponential growth causes for PCR variability. As indicated above, many
different factors can influence PCR variability, including amplification bias, calibration,
primers, probe selection, operator experience, and importantly the overall quantity of
starting material. It is easy to compare at length potential reasons for variability in PCR
and in other methods. We suggest the following simplified analysis that relies on the
fundamentally different behavior of timing errors in exponential growth vs linear growth.
Such errors generate the larger variance of PCR-measured peak timings. Our
explanation requires three basic assumptions:

(i) Real-world individuals cannot be divided without destroying them.
(i) Replication without resource limits inevitably leads to exponential growth.
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(iif)  Timing of later events in an exponentially growing system are easily affected by
an earlier or later start of growth.

These assumptions define implicitly a theoretical model of exponential growth that can

explain the increased variability mechanistically. We then present evidence suggesting

the larger variability of PCR peak times should not come as a surprise.

Great sensitivity and poor reproducibility are linked. The goal of PCR is to
amplify rare nucleic acids by repeatedly replicating in well-defined rounds. During later
stages of growth many molecules are replicated simultaneously. Therefore, any
individual replication event will not significantly impact the overall population, as the
stochasticity of many individuals cancels out increasingly. Ordinary differential
equations work well for such large populations, because their constant violations of
basic assumption (i) are negligible here. The contrast of this precisely predictable
scenario could not be bigger when compared to the very early stages of a PCR reaction
designed to start with low copy numbers for maximal sensitivity. Here basic assumption
(i) severely constrains potentially parallel actions, because single molecules cannot be
broken up without affecting their functionality and are limited in what they can do
simultaneously. This limitation inevitably creates stochastic waiting times that lead to
larger or smaller growth delays that generate the initial timing differences at the root of
cascades of delay that propagate throughout the exponential growth phase due to
assumption (jii).

Amplifying single molecules is a hallmark of PCR’s exceptional sensitivity. It also
causes PCR'’s reproducibility problems for the reasons just explained, making it
extremely sensitive to early rare template numbers. Here timing differences in
polymerase access and replication speed can quickly snowball into faster or slower
growth, and thereby, lower or higher amounts inferred for the original molecules
investigated. These problems are highly relevant for all forms of quantitative PCR,
which are designed to operate completely under exponential growth for better
guantitation.

Circadian clock cycles with small variations of initial amounts inside of cells,
stochastic timing differences, variations in extracted volume, and other factors can
easily conspire to modify final amounts inferred by PCR (if stopped before resources
become scarce). PCR time series measurements rely on these final amounts to define
the PCR end results used for inferring how much may have been present at the
beginning. For this to work as a quantitative method, PCR has to be stopped in the
middle of exponential growth, implying it will inevitably experience substantial noise
from slight variations in the starting conditions under a broad range of circumstances.
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Observations of the theory. The strong impact of stochastic timing differences
in exponentially growing systems is easily demonstrated in stochastic simulations of a
very simple exponentially growing population (EHLERT AND LOEWE 2014). There the
initial amount is kept constant for all simulations, making timing differences the only
source of stochasticity. The same principles are responsible for translating the
stochasticity of low molecule counts at the input of sensitive signaling cascades into a
reliably transmitted signal, albeit with variation in the waiting time until the signal is
switched on completely (LOEWE et al. 2009a; LOEWE et al. 2009b). Thus it is not
surprising if experimental measurements show that different researchers with varying
PCR expertise can easily generate 100-fold differences in their inferred initial number of
molecules at the start of a PCR (BusTIN 2002). Such variability might stem from small
changes introduced to factors that impact the exponential growth essential to PCR in
subtle, but powerful ways; see (BUSTIN 2002; BUSTIN AND NOLAN 2004).

How this applies to amount peak timing observed by PCR. As shown by growth
mechanism discussed above individual PCR reactions bring individual challenges,
which complicates observations of time series. The main reason is that each time point
measured by PCR will require an independent PCR reaction probably starting with a low
molecular count as obtained from sacrificing an independently running circadian clock.
Thus, observing mRNA clock oscillations by some quantitative PCR method will
inextricably intertwine two processes of variation that inevitably interfere with each
other’s observation in these two ways:

(i) Oscillations of the clock itself may exhibit substantial stochasticity depending
on molecular amounts involved (AKMAN et al. 2010). This implies that the
peak itself as measured by PCR may vary, even if PCR were perfectly
precise.

(i) Low initial molecule counts of the templates that start any quantitative PCR
reaction cause substantial inherent stochasticity that can substantially affect
the final amount of PCR products measured. If this happens, researcher are
likely to infer corresponding deterministic changes in the initial molecular
counts (BUSTIN 2002).

Since every single time series observed by any quantifying PCR is inevitably impacted
by both, a substantial amount of random noise is added to each independently
observed time point. As a result, several time points might falsely appear to be peaks
(or the converse).

Summary. A low quantity of starting material can influence PCR variability to a
very large degree (VANDENBROUCKE et al. 2001; BUSTIN AND NOLAN 2004). Given the
systematically larger potential for measurement noise in PCR methods caused by the
low initial molecule count induced stochasticity, it might even be surprising that PCR is
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not noisier compared to methods like RPA or Northern Blots that do not require
exponential growth.

Model curation for integrating molecular systems biology data

The process of model curation inherently works towards integrating all data that is
relevant and available for a given model of interest. Models may be broadly defined as
systems, parts, processes or questions that are being represented from certain
perspectives to efficiently find particular types of answers deemed to be interesting. We
will next briefly discuss, how this view of model curation can facilitate the integration of
knowledge-fragments from molecular systems biology in order to enable the emergence
of expertise as represented by well-curated systems biology models (e.g. of circadian
clocks) or corresponding relevant sets of real-world observations (e.g. of time series in
FlyClockbase). We will first look at more specific followed by more general levels of
abstraction before discussing other fundamental aspects of model curation.

Related concrete solutions. At a more specific level, there is no shortage of
standards, formalisms, approaches, tools and other systems for supporting the
application of more abstract categories (like ontologies or models) to concrete problem
areas of interest. Examples include the Systems Biology Markup Language for
constructing simulation models (HUCKA et al. 2003; KRAUSE et al. 2010), Systems
Biology Graphical Notation for visually representing molecular reaction models (LE
NOVERE et al. 2009; MooDIE et al. 2011), UMLS and SNOMED for defining and using
medical reference terms with different approaches to synonyms (MAJOR et al. 1978;
MERRILL 2009), and specific ontologies for listing existing entities such as ‘all genes’ in
an area of interest (JONQUET et al. 2011; MUSEN et al. 2012).

At the most specific level are concrete collections of actual models implemented
in one of the formalisms described above. For example, BioBase, which collects and
curates published SBML models (LE NOVERE et al. 2006; CHELLIAH et al. 2015). This is
closer to the level of FlyClockbase, which collects and curates published time series
within its scope. The substantial number of different formalisms for describing models
can be very confusing. To get a clearer understanding of essential, non-redundant
aspects of model construction it can be useful to consider a more abstract perspective.

Related abstract frameworks. Several abstract perspectives exist. An ontology
is a list of potentially existing things. A taxonomy is a list of potentially existing species. A
type system is a classification of potentially existing types and how they could be used
to compose new types. Similarly, a model is a specification of potentially existing
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elements in the world of the model. At the most general level, ontologies and
taxonomies are fundamentally related (ARP et al. 2015). The same holds for type
systems, the semantic web, and models in general. All these could be described as
‘worlds’, as each of these is like a small description of its world. Unless otherwise
specified, they buy into the Closed World Assumption, which implies that nothing else
exists or matters except for the details explicitly specified. At this abstract level, worlds
are all equivalent to systems that encapsulate detailed statements about the conditional
existence of sub-systems, items or events that may be nested or composed from
defined structures, capabilities, and/or other properties. Such abstractions enable the
detection of isomorphisms that can facilitate the transfer of equivalent solutions across
problem domains and hence cut development costs by building on results obtained
elsewhere. For example, different elements or types can be grouped into a set in the
contexts of taxonomy, ontology, type system, or model construction. They each may use
different key words to describe this concept, but its core meaning, i.e. semantics, stays
the same. Each of these worlds comes with its own semantic formalism.

It can be challenging to navigate these abstract semantic formalisms for
representing the meaning of statements (VAN RENSSEN 2005). This resulted in the
paradoxical (non-expert) use of ‘'semantics’ as synonym for ‘meaningless’ in common
language. A semantic model that is genuinely useful to its writer but incomprehensible to
its reader is not useful to that reader and thus appears ‘meaningless, resulting in
semantic irreproducibility (LOEWE 2016). The resulting communication failure is a
substantial problem for modeling, programming, giving names and using names (LOEWE
2016). FlyClockbase has not been spared; we encountered a broad range of semantic
problems caused by naming, from trivial spelling errors (with non-trivial consequences
in database searches) to profound research questions about the nature of certain
molecules (see discussion of CURLED above). Related questions of naming and
nomenclature are of critical importance for biomedical research; correspondingly tools
that efficiently map local nomenclature to standard nomenclature have been identified
as critically important (NIH et al. 2012), and would have made development of
FlyClockbase substantially faster (e.g. by helping to manage changes in local names).

Baseline: conceptual unity of reality despite diversity of experimental
methods. Science builds on the physical unity of reality that is observed by different
persons using different methods. This principle is usually so compelling that it is
unconsciously assumed. It allows scientists to confidently assume the same conceptual
unity for aspects of reality that are challenging to study because they may present a
different view when investigated by different approaches. This principle of conceptual
unity is the foundation of model curation. For example, let Q be the amount of a given
protein type in a single cell specified by place and time. Then Q itself does not depend
on the various methods subsequently used to measure Q. If results from different
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methods of observation contradict each other, we can confidently search for errors. The
confidence is rooted in the conceptual unity of our world, or any cell, or Q.

Contradictory biological information. While developing FlyCockbase we
repeatedly encountered situations where there were contradictions between different
observations that appeared to be of equally high credibility. On some occasions, even
substantial efforts on our part to check each credible source of confusion we could think
of, did not identify any credible information on what could have gone wrong. Such
situations are profoundly confusing and cost substantial amounts of time. Handling such
difficult situations defines much of the quality of a VBIR and its underlying logic
formalism (see also Discussion below and in Supplementary Text).

Debugging time limits. We found it important to limit the time we used for
attempts to resolve such problems. In this we aimed to be generous yet responsible
with our resources. We also started to search for more formal ways of signaling among
curators when a particular set of problematic time series already had been investigated
sufficiently. The implications of this question for the reproducibility debate are unclear.
Should a seemingly solid experimental study be declared ‘irreproducible’ because an
apparently rushed, ill-conceived experiment failed to reproduce results? Probably not.
Should a seemingly rushed, ill-conceived original study be defended as a valid original
observation, despite the apparent inability of thorough, time-consuming attempts to
reproduce results? Probably neither. However, where is the line between these two
rather extreme scenarios? It is not the task of biological model curators to assess the
credibility of experiments by repeating them. Hence, they need other means of
assessing the quality and relevance of reported observations for the model they curate.
A more differentiated formalized way of communicating various perceived problems
could greatly increase the efficiency of curation work by relieving curators of the implied
unrealistic obligations to always get to the bottom of all inconsistencies or to invent a
reliable taxonomy of resulting errors.

Communicating errors. Developing a formalism for communicating clearly how to
handle errors efficiently is a complicated problem more closely related to compiler
construction than to biological questions. It requires expertise in both areas. We started
to search for efficient ways of how to best represent outcomes of error analyses for
particular time series. We aimed to formalize such communications with the intent to
enable a compiler to exclude certain types of errors from the results of time series
searches. It became increasingly clear that binary choices like “error: yes/no” were
inappropriately simplistic for many real-world uses of data in biology.

Types of problems with data. The discussion above demonstrates that a
differentiated approach is necessary for appropriately representing biological data. Not
all trustworthy biological expertise is documented by directly observed data and not all
data that is available has the quality most researchers would ideally aspire to. Statistical
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inference and logical deduction from experimental observations are also valuable tools
of biological discovery. However, they can only yield conclusions that are as strong as
the observations that support them. It is therefore of utmost importance for reliable and
reproducible research in biology to represent specific experimental observations and
general biological data as they are, including all known limitations and unforeseeable
circumstances, confounding variables, or event. From this perspective, almost all data is
imperfect to some degree. Imperfection in an imperfect world is not a problem, as long
as we are aware of the nature of the imperfections. The current reproducibility crisis
reflects in part the complicated nature of reporting the essence of research results
concisely, yet without ignoring their limitations or omitting potentially undermining details
(BAKER 2016). In our study, we have attempted to be as complete and open as possible,
e.g. by conducting a human error analysis for the raw data of our most important
conclusions and reporting multiple potential variations of our statistics (see
Supplemental Statistical Analysis); this has both substantially increased the length of
this report and the time to complete it. As can be seen in the overall structure of our R-
script that computed our final analysis, such work often requires exploring various
alternative analyses. These all initially appear to be equally valid ways of working
around a given imperfection of the data. Substantial parts of calculating all useful tests
can reasonably be delegated to a compiler for many frequently encountered scenarios —
assuming there is a formal way of communicating the type of data imperfection to the
compiler.

Using imperfect data. For the reasons above, imperfect biological data is
extremely valuable. Hence, no need to throw out baby hypotheses with imperfect data
bathwater. High-quality model curation considers what can reasonably be learned from
an imperfect dataset by describing as many quantitative aspects as reasonable,
reflecting ideas from the “New Statistics” (CUMMING 2013; CuMMING 2014). Often the
cutting edge of research is defined by situations where not enough high-quality data is
available for a final interpretation. In fact, the value of resources like FlyClockbase is
precisely in their ability to synthesize the limits of what is known and highlight
hypotheses that merit further experimentation. Ignoring imperfect data in this context
would be inappropriate.

Imperfection spelled out. Hence, FlyClockbase will require better ways of
representing confusing and uncertain real-world data at the current biological cutting
edge of research. Data there can be aggregated, biased, contradictory, diffuse,
exception-prone, false, generated, gap-ridden, hidden, imprecise, jumbled, limited,
missing, modified, noisy, objectionable, problematic, questionable, redundant, scattered,
swapped, tangential, transformed, uncertain, veiled, washed, wobbly, xeroxed, or
otherwise imperfect. A hallmark of good biologists is their ability to intuitively navigate
these difficulties appropriately in their study systems. The rise of big data has led to
substantial experience in how to deal with imperfect data (McCALLuM 2013).
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Problem type repository. Developing VBIRSs like FlyClockbase efficiently depends
critically on the ability of biological model curators to describe these intuitions in ways
that are formal enough, so that an automated solution can be developed eventually.
Biological experiences with rates of identifying new species in an ecosystem where
many of them exist (GROVE AND STORK 2000) indicate that eventually known species will
be resampled. The same can be expected for the varied number of data problems that
can be observed during the long-term development of VBIRs. VBIRs would greatly
benefit from a central repository for the logic problems associated with imperfect data.
Such a repository can substantially cut costs of identifying logic problems and would
help in compiler construction, simply by documenting the extent of the problem. It is
difficult, even for experienced biologists, to imagine many of the complications of real-
world data in the absence of actual research interactions with real-world data. It is near
impossible for complier constructers to do so without also being biologists who work
with real-world data.

The role of logic. Communicating errors in clear ways fuels our interests in
exploring logic formalisms beyond classic Boolean systems (see also below). Providing
a full formal definition for a chosen logic formalism, alongside all appropriate proofs and
consistency checks is clearly work best done by theoretical computer scientists with the
corresponding formal training. For the reasons discussed above, we do not think that
developing an appropriate logic can be reasonably delegated. As indicated above by the
idea of problem type repository, we found that one of the biggest challenges was the
need to realize the existence of a given problem. Typically, and trivially, biologists find it
easier to specify uncertainties and inconsistencies in real-world observations based on
their experience, while logicians find it easier to identify particular contradictions that
result from an inappropriately defined logic formalism. Our experience suggests that
their combined imagination and expertise will need to be complemented by a slow
careful collaborative review of the detailed problems in a sufficiently complex real-world
research scenario. To facilitate such collaboration, we have described elsewhere the
Flipped Programming Language Design approach (LoEwe 2016), which also inspired
our discussion below of Figure 11.

These complex efforts to develop a sufficiently expressive logic for problems with
biological observations contribute towards answering the next question that is in
principle very simple.

Simple question: how many molecules of a given type exist at a given time
in a given cell? Modern biology has invested much effort into developing many diverse
approaches for investigating intracellular quantities of interest. Such quantities often
relate to the simple question of amounts in one of the myriads of forms in which it is
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posed in biology today. Generating well-defined, credible answers that properly quantify
all relevant uncertainties would go a long way towards providing the data required for
algorithms aiming to solve the inverse problem (see Models Section). The answers to
this problem quantify the uncertainty of parameters, which are needed for simulating
models of molecular systems in cells. Such simulations can be seen as devices for
extending biologists’ thinking capabilities and enable investigating new areas of biology
(see comments on evolutionary systems biology (LOEWE 2016)). Unfortunately, it is
extremely challenging to answer the conceptually simple question above for real
molecules in real cells with reasonable quantifications of uncertainty.

Observations in FlyClockbase. Many of the practical challenges of determining
such amounts of molecules have been constant companions of our work with
FlyClockbase. For example, consider the differences in techniques used to measure
amounts of MRNAs or proteins produced by genes such as per or tim, (see Figure 10 or
TimeSeries Attribute Table in FlyClockbase for details on methods). While each
technique is limited in unique ways, a given quantity of interest can usually be
measured in several ways that vary in trade-offs between precision, cost, and other
method parameters. As a result, interesting quantities that can be measured in cells
have often been measured by dozens of methods, each of which may be implemented
by different independent experimental protocols and belong to one of several applicable
broader methodological approaches. Each of these may provide different answers to
the following practical questions that are highly relevant for model curation. Are amounts
of molecules in a single relevant core clock cell of D. melanogaster ...

e ... absolute counts (our preferred ideal) or relative (usually reported)?

e ... from a single cell (may be used to infer molecular noise) or from averaging over a
population of cells (or some other aggregation difficult to disentangle)?

e ... complete and direct raw observations (enabling independent statistical analyses)

or summatries of “typical plots” of “the most relevant data” (that can introduce
uncontrollable ascertainment biases as observed in other areas, e.g. (AMOS et al.
2003; CLARK et al. 2005; FoLL et al. 2008; LACHANCE AND TISHKOFF 2013; MINIKEL et
al. 2014))?

e ... appropriately annotated with all key details for maximizing long-term use in
diverse meta-analyses (rare; authors have little guidance on what to report) or
missing annotations for key details known to exist even if unreported (e.g. fly age,
sex), or not reasonably knowable (e.g. fly clocks were disturbed by unexpected and
unreported drastic changes in temperature)?

e ... reasonable approximations of reliable results (as would be expected from diligent
analyses of larger and higher-quality data sets if reproduced in the same system or
irreproducible (recent observations may give reason to pause (IOANNIDIS ef al.
2009a; SALANTIAND IOANNIDIS 2009; MOBLEY et al. 2013; FREEDMAN et al. 20153;
FREEDMAN et al. 2015b; HALSEY et al. 2015))?
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The unity of reality implies that similar representational approaches can contribute
towards rigorously assessing reproducibility and towards curating heterogeneous and
imperfect datasets into an internally consistent VBIR: both efforts would benefit from
explicitly stating all uncertainties and other problems associated with a given set of
observations.

Curation efforts for circadian clock research. FlyClockbase is unique in its
scope, datasets covered and many other aspects — as far as we can tell. In particular,
we are not aware of other circadian clock time series resources or meta-analyses that
bring similar numbers of replicate time-series or studies together in order to answer
questions about the differences in variances of peak times between different
components of the core circadian clock of D. melanogaster. However, FlyClockbase is
not the first biological information resource sharing observations about circadian
oscillations in gene expression. We will next discuss some examples of related efforts; a
review of additional bioinformatics resources relevant for clock research can be found
elsewhere (LOPES et al. 2013; Li et al. 2017).

® (CircaDB ( http://circadb.hogeneschlab.org ) is a publicly accessible web database
storing time series observations that record how gene expression changes in various
mammalian tissues throughout the day (P1zARRO et al. 2013). It has been used for
documenting the large extent to which gene expression in mice follows circadian
patterns — with interesting implications for drugs that target the products of
rhythmically expressed genes and that might benefit from timed dosage (ZHANG et
al. 2014a). While many genes in the mouse clock are homologous to fly clock genes,
there were no observations of non-mammalian gene oscillations in CircaDB at the
end of 2016. A strength of CircaDB is the availability of detailed tissue specific data
from mice.

® (CGDB, the Circadian Gene DataBase ( http://cgdb.biocuckoo.org ) version 1.0 (as
of 2017-01-14) contains information (i) on 1,382 instances where gene expression
followed circadian rhythms as observed by techniques like RT-PCR, Northern Blots
or in situ hybridization; (ii) on 26,582 observations of gene expression found in
transcriptome profiling studies to follow circadian rhythms; and (iii) on 44,836
potentially oscillating genes as identified in a search for orthologs of oscillating
genes (LI et al. 2017). A strength of CGDB s its broad coverage of 148 different
animals, plants, or fungi. Of the 27,964 genes with experimental evidence of
oscillatory gene expression, 3166 have been observed in D. melanogaster. Of these,
14 observations cover all isoforms of per and tim, but only 5 of these were recorded
in LD. The peak and valley times reported in CGDB do not contradict those reported
by us here; however, the reported sample size does not have the statistical power to
suggest new hypotheses on potential clock mechanisms.
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® Deep (machine) learning approaches were investigated for their capacity to predict
time and to distinguish rhythmic from arrhythmic time series (AGOSTINELLI et al.
2016). To this end BioCyclereal Was curated from 36 gene expression datasets,
including 32 from CircadiOmics ( http://circadiomics.igb.uci.edu/ ) (PATEL et al.
2012). Except for one from the plant Arabidopsis thaliana, all datasets came from
mice (AGOSTINELLI et al. 2016).

® SCNseq ( http://wgpembroke.com/shiny/SCNseq/ ) provides access to temporal
transcriptomics of circadian clock controlling cells in the suprachiasmatic nucleus of
the mouse brain at unprecedented precision (PEMBROKE et al. 2015).

® Bioclock ( http://www3.nd.edu/~bioclock/ ) is a repository of circadian transcriptional
profiling data from Anopheles gambiae and Aedes aegypti, mosquitoes acting as
vectors for malaria and yellow fever, respectively (RUND et al. 2011; RUND et al.
2013; LEMING et al. 2014).

® BijoDare ( http://biodare.ed.ac.uk/ ; http://millar.bio.ed.ac.uk/data.htm ) is an online
service for data-sharing and analysis of circadian time series observations. It's 10
datasets from A. thaliana were used for comparing period estimation methods and
other clock research (ZIELINSKI et al. 2014).

® dbCRY ( http://www.dbcryptochrome.org/ ) facilitates comparative genomics of
crypotchromes, the light-sensing proteins in clocks (KiM et al. 2014); see Figure 1.

® Diurnal 2.0 ( http://diurnal.mocklerlab.org/ ) provides access to observations of
circadian genome-wide gene expression patterns observed in several common
model plants (MOCKLER et al. 2007).

® FEUCLIS ( http://www.bioinfo.mpg.de/euclis/ ) is the ‘EU Clock Information System’.
It adapted an advanced database architecture from another systems biology project
for circadian clock researchers in order to combine modules for experimental data,
clock models, and a related digital library (BATISTA et al. 2007; LOPES et al. 2013).

Individual meta-analyses occasionally integrate different datasets in an effort to
increase the statistical power and reliability of conclusions. For example, combining and
curating data from five independent microarray studies in D. melanogaster confirmed
the rhythmical expression of 81 transcripts while also identifying 133 new cycling
transcripts (KEEGAN et al. 2007). To arrive at their conclusions, KEEGAN et al. had to
obtain data directly from the authors of the microarray studies they analyzed as not all
necessary data was available online (CLARIDGE-CHANG et al. 2001; MCDONALD AND
RosBAsH 2001; CERIANI et al. 2002; LIN et al. 2002b; UEDA et al. 2002). In turn, the
same happened with their results: “All data used to produce this report are available
upon request. Files that contain the individually formatted results from each of the
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original reports were too numerous and large to be included with this manuscript ...”
(KEEGAN et al. 2007). Some (non-meta-analysis) studies that generate substantial
amounts of new data put in the substantial additional work necessary for making
material available online (e.g. see http://biorhythm.rockefeller.edu/ (CLARIDGE-CHANG et
al. 2001)). Merely storing complex data in one or more file archives online is usually
easy, but organizing and documenting complex datasets for use by independent
researchers is not. This requires semantic reproducibility, which can quickly become
prohibitively complex (LOEWE 2016) if no existing conventions are shared with users.
Projects above have used database technology and/or web interfaces as shared
conventions facilitating communication; as argued elsewhere in our study, this is neither
ideal for all biologists nor for all work in biology. These problems are less acute for
studies that can fall back on using public repositories with an appropriate data format.
For example, a functional analysis study of fly genes expressed in response to the light-
induced resetting of the circadian clock (ADEWOYE et al. 2015) stored most data at the
NCBI-maintained Gene Expression Omnibus database (
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39578 ); NCBI GEO offers
semantics particularly well suited for describing typical microarray datasets (BARRETT et
al. 2005; BARRETT et al. 2011; BARRETT et al. 2013; CLOUGH AND BARRETT 2016).

Generic model organism repositories. Resources like the individual-study
repositories above, meta-analyses, and circadian research specific repositories are
complemented by generic model organism resources such as FlyAtlas
( http://flyatlas.org ) for gene expression information (CHINTAPALLI et al. 2007,
CHINTAPALLI et al. 2013a; CHINTAPALLI et al. 2013b; ROBINSON et al. 2013) and FlyBase (
http://flybase.org/ ) for genomic and other information (ASHBURNER AND DRYSDALE 1994;
ST PIERRE AND MCQUILTON 2009; GRAMATES et al. 2017).

Why curate circadian data? Without detracting from the important achievements
that continue to be enabled by the resources specified above, some points are worth
noting for further discussion. Scarcity is first. We attempted to be as inclusive as
possible and added resources far beyond the focus of our study on core clock genes in
flies; recent reviews (LOPES et al. 2013; LI et al. 2017) do not list much more. Yet
rhythmic gene expression is pivotal for fithess, health and more. This is underlined by
estimates of 10% or 43% of the expressed genome under rhythmic control (BOYLE et al.
2017) or of all protein coding genes showing circadian expression patterns somewhere
in the body (ZHANG et al. 2014a), respectively. Given this importance of circadian
biology, it seems surprising that not more circadian clock related repositories exist. One
potential reason is that the tools for managing data are inadequate and discourage
many biologists from getting involved. Secondly, the existing resources are scattered,
very heterogeneous with respect to their data structures resulting in poor
interoperability, and they are haphazardly reorganized (e.g. web addresses move,
internal structures are modified).
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Challenges. Circadian clock researchers have repeatedly stated over the years
that the arrival of new data due to experimental advances creates new challenges for
data management and data processing (ZIELINSKI et al. 2014). These could be
addressed by the development of a new infrastructure that standardizes data and
software to reduce re-implementation efforts, improve documentation, and increase
collaboration by sharing data (BATISTA et al. 2007; ZIELINSKI et al. 2014). This need for
improved and simplified infrastructure exists for systems biology in general (CASSMAN
2005) and similar ideas have been echoed in the debate about reproducibility (Buck
2015). The underlying issues have not yet been solved on a broader scale (NIH et al.
2012; NIH 2015; NIH 2016; WILKINSON et al. 2016). A recent review of additional
bioinformatics resources pointed out that tools cannot replace researchers, because it is
“often necessary to conduct an evaluation of the results of a data mining effort to
determine the degree of reliability” (LOPES et al. 2013). Indeed, experiences at UniProt
show that “expert curation is by far the most reliable method to report gold-standard
information and provide an up-to-date knowledgebase containing experimental
information” (THE UNIPROT CONSORTIUM 2017). We argue that much of the low-level
work of ensuring reproducibility and adherence to formal standards could be handled
reliably by a compiler that transparently executes well-defined recurring tasks (see
Discussion below and in Supplemental Material).

Perspectives on biological model curation. Circadian clocks control rhythmic
gene expression for a substantial and important fraction of the genome, approximating
half of all genes in mice (ZHANG et al. 2014a). It is thus difficult to isolate clocks from the
rest of the organism they govern. An overall assessment of the impact of circadian
clocks might thus require simulating whole cells or even whole organisms. This
perspective raises several questions.

Will this scale to real cells? The challenges of reproducibility for systems that are
comparatively small are multiplied on much more complex systems, such as the
molecular systems biology simulations of whole cells that have started recently at a
larger scale (KARR et al. 2012; KARR et al. 2013; LEE et al. 2013; PURCELL et al. 2013;
SANGHVI et al. 2013; KARR et al. 2014; KARR et al. 2015a; KARR et al. 2015b). The
ultimate aim of such studies is to understand in detail, how a real cell work and evolves
over time (LYNCH et al. 2014). However, the question is, whether our tools will be able to
scale in such a way that errors can be kept down and our toolchain remains reliable.
Hence, outstanding reproducibility of smaller models and datasets are a prerequisite for
any further integration. We have chosen to focus on the simplest possible
implementations when developing VBIRs to enable durability.
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Will tool development overwhelm biological goals? The essential requirement of
tools that handle biological data more accurately and with more ease could continue to
bind disproportional amount of resources through a lack of coordination (see eg.
(CAssmAN 2005)). Usually only one excellent tool for a given task is needed, not several
that are usually good enough but break down in some special cases, which then require
completely new implementations. It is encouraging that the accuracy of computational
tools in some areas converges towards that of high-quality experiments (e.g.
(LEJAEGHERE et al. 2016)); likewise, the development of more precise higher-level
abstractions simplifies much of the lower-level programming (e.g. (ARP et al. 2015)).
However, the need for new and more precise tools is vast, and only few biologists can
program well enough to contribute. Thus, support from computer scientists and
professional programmers will certainly be needed. However, without the extraordinarily
close collaboration described here it will be extraordinarily difficult to develop tools that
are efficient enough in real biological research in order to drive adoption. Only then will
tool development start to contribute to the overall biological goals. In our analysis, the
development of a VBIR compiler is a particularly efficient way of tool development (see
Discussion below). The efficiencies from compiler development might help with raising
the funding for VBIRs on a more permanent footing (EMBER ef al. 2013).
Simultaneously, experimental methods, their limits, and associated errors and biases
will require more rigorous analyses in order to contribute towards a more accurate
description of the precision associated with the actual observations (e.g. for sequencing
errors see (ROBERTS et al. 2013; ROBERT AND WATSON 2015), for n-fold gene expression
see (CANALES et al. 2006; CANALES 2016), for PCR see (BusTIN 2002; BUSTIN AND NOLAN
2004; VANGUILDER et al. 2008), for tests of a parameter estimation method, e.g. see
(DAIGLE et al. 2012); many more analyses for other methods are needed).

Will biology try to advance too fast for its own good? The 1970’s saw the rise of
systems theory in ecology, albeit arguably too early (WOLKENHAUER 2001). Now systems
biology has in principle a computational method at its disposal for every single step
along the causality chain from genotype and environment to phenotype and fitness
(LoewEe 2009; LoewEe 2012; Loewe 2016). However, what does not exist at the moment
is a rigorous and integrated problem management for the full causality chain. Clearly,
more uncertain output at more causal calculations will combine with additional
uncertainties at more consequential calculations. If this accumulation of uncertainties
occurs on the long causal chain from genotype to phenotype, then it is presently not
clear, which signal-to-noise ratio is to be expected. This question can only be resolved
by an integral management of uncertainties similar to what we propose. Advancing
simulations of whole cells or even organism too fast without allowing for appropriate
precision to grow in method development and curation might cause rigorous scientists
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to lose patience, throw out the baby with the bathwater, and thereby cause unnecessary
setbacks.

Balance. It is neither possible nor necessary to manage either of the extremes
above beyond being aware of them, to avoid falling into either trap. The dynamic nature
of biological research will then run its course. However, any foreseeable scenario will
have a very large need for biological model curation, which will require many well-
equipped biologists, as high-quality model curation will always remain a human task.
Similarly, in any credible scenario, biological model curators will greatly benefit from
support by a well-equipped VBIRs compiler.
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Towards a compiler for advancing FlyClockbase and biology

Working with FlyClockbase has given us ample opportunities to observe first-hand many
diverse problems that frequently complicate an otherwise efficient use of computers or
formal simulation methods for advancing biology. Below we highlight a few key
observations suggesting a greatly increased efficiency for integrating computers in the
workflow of FlyClockbase and similar VBIRs could be enabled by the construction of a
corresponding VBIR compiler. This requires paying the moderately increased cost of
constructing such a compiler only once. In return, the whole biological community could
substantially cut the excessive costs of manually constructing or maintaining VBIRSs.
The substantial costs of VBIRs construction conflict with the growing need of compiling
thousands of VBIRs that integrate in computable form the biological expertise
necessary for engaging the grand challenges of our time. Leveraging abstractions
developed in computer science for cutting through the complexities of data
management with the help of an appropriately designed compiler could greatly reduce
the costs of integrating biological expertise in order to address grand challenges more
efficiently.

History. Similar thoughts about better computing for biological discovery have
been recurring since the dawn of computing (TURING 1936), fueling many discussions of
chances and challenges in diverse areas and applications, including the following
examples: harness the precision of logic for biological discovery (WOODGER et al. 1937),
simulate genetic systems (CRoOsSBY 1973), open science (BARTLING AND FRIESIKE 2014),
improve reproducibility (IOANNIDIS 2005b; DONOHO 2009; HUANG AND GOTTARDO 2013;
LoewE AND KEEL 2014; STODDEN et al. 2014; FREEDMAN et al. 2015a; JAMES et al. 2015;
STODDEN 2015; BARBA 2016; LOEWE 2016; LOEWE et al. 2016), share data (WILKINSON et
al. 2016), and do so efficiently at larger scales (NIH et al. 2012; NIH 2015; NIH 2016).
To contribute to this debate that also affects FlyClockbase, the next sections distill the
essence of selected key challenges we observed. We connect our observations to
relevant research in other disciplines to reduce rediscovery where possible.

Unusual approaches to constructing an unusual compiler. We will conclude
that many or most of the problems below could be solved efficiently by carefully
constructing a corresponding compiler. Its specialty is to facilitate the implementation of
best-practice solutions for constructing VBIRs and addressing the many challenges
which biologists regularly face when they aim to use computers for advancing their
research. Our approach goes far beyond superficial reassignments of responsibility;
rather it proposes that broad classes of problems in biology could benefit from
computational solutions if the latter are designed with enough time and care for those
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abstractions that matter for real-world biology. Figure 11 illustrates key aspects of the
development process we used. It represents a very unique informal blend of two
opposite extremes in software development. The extreme known as ‘agile methods’
advocates for quick iterations that implement tangible improvements. Its successes
have made it popular, but it is not without a dark side that can stifle the development of
innovations and strategies needed for solving more complex problems (JANES AND SuUCCI
2012; ANNosI et al. 2016). The other extreme approach to software development is
known as the ‘water-fall method'. It emphasizes thorough planning of various stages,
and clearly separates developing a design from implementing it. As captured in Figure
11, data integration in FlyClockbase followed faster (internal) release cycles. Questions
of fundamental importance with implications for formal or theoretical aspects of compiler
design followed a much slower timeline. This allows us to focus our implementation
resources on the most promising and efficient formalisms, and avoid the need for
implementing potential solutions that appear attractive for some time, but are replaced
by the need for further improvements. In such situations, overall speed of compiler
development probably benefits from manual VBIR curation, since this allows the
compiler design the time it needs to mature. Working in a research setting, as we did
with FlyClockbase, creates additional challenges, simply from the unpredictability of
research. Classifying potential bugs in compiler construction can be seen as a problem
similar to the development of the taxonomy of beetles: both exist in exceedingly larger
numbers, and continued random sampling eventually leads to re-encountering similar
bugs. Constructing a compiler that can deal with biology’s uncertainty and complexity in
a stable and reliable way requires a very extensive sampling of these potential bugs (i.e.
logical program inconsistencies). We have developed the Flipped Programming
Language Design Approach in order to address this problem using repeated rounds of
rigorous review of proposed compiler designs from multiple usability and domain
experts (LOEWE 2016). Our work on FlyClockbase benefitted from this approach and
also contributed to its development. It illustrated for us, how developing good
abstractions can take a very long time, and how much finding them worth the effort.

Place FIGURE 11 about here.

Cost of not constructing a VBIR compiler. Research on circadian clocks in
flies can be used to illustrate some of the cost to biology if no VBIR compiler is
available. As explained above, time series observations are extremely valuable for
inferring mechanistic models of clocks in flies. Yet, in the last 25 years, the vast majority
of models of the core D. melanogaster circadian clock have been based on abstract
clock features, such as the response to light, the period and presence of oscillations.
We conducted an extensive search for such models, and only three of the 66 models
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identified used specific experimental time series to inform parameters (Figure 4). Even if
combined, these models only used a small fraction of all studies with time series data
they could have used (Figure 5). Specifically, parameters study A (FATHALLAH-SHAYKH et
al. 2009), B (LEISE AND MoOIN 2007), and C (KuczeNski et al. 2007) were based on time
series from, respectively, one study (KADENER et al. 2007), three studies (LEE et al.
1998; BAE et al. 2000; SHAFER et al. 2002), and 11 studies (HARDIN et al. 1992; ZENG et
al. 1994; SEHGAL et al. 1995; SO AND ROSBASH 1997; BAE et al. 1998; LEE et al. 1998;
BLAu 1999; BAE et al. 2000; Kim et al. 2002; CYRAN et al. 2003; GLossoP et al. 2003).

The sparse use of directly observed experimental evidence such as time series is
understandable in light of the many challenges that complicate the integration of messy
biological real-world observations into the abstract mathematical models that are often
extremely simplified to facilitate their mathematical analysis. In addition to such
conceptual problems, deceptively simple problems such as the storage and
organization of very heterogeneous, imprecise, noisy and contradictory experimental
datasets can easily create insurmountable practical challenges for directly using
experimental time series data to inform parameters in models.

FlyClockbase substantially lowers this barrier by providing a nucleus for
collecting, organizing, and curating relevant time series and their many potentially
informative Afttributes. If increasing numbers of experimental time series are deposited
in FlyClockbase and its organizational structures keep pace with this growth, then future
modeling studies could be structured in a way that enables the automated improvement
of some types of models in response to the submission of new data. Such data handling
capabilities are likely to enable the investigation of new biological aspects of circadian
clocks that are beyond practical limits of the complexity manageable by current tools. If
a reasonably well-working VBIRs compiler had been available for a long time, then the
substantially lower barrier to the development of a resource like FlyClockbase would
most likely have resulted in a more comprehensive use of hard won experimental data
in theoretical models. Even where datasets have been compiled and published under
open access, an unstructured way of storing them can very quickly make it prohibitively
complicated to keep them up-to-date on the longer-term (e.g. (WHITE et al. 2013; Supp
et al. 2015a)). Such problems also pose challenges for citizen science projects (e.g.
(LoewEe 2007; Supp et al. 2015b)). Even if computational results are fully structured from
one perspective, the lack of appropriate data structures for analysis from another
perspective, can create prohibitive barriers for some research (LOoEwe 2002).

Counter intuitive challenges and other work. However, before such a vision of
biological research can move closer to reality, a number of counterintuitive challenges
will need to be addressed. Since an appropriate discussion is beyond the scope of this
paper and more details are given in the Supplemental Material, we will merely touch on
the tips of several icebergs below by discussing a few illustrative examples. Despite
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great and sustained progress in logic research, much remains to be done to improve the
expressive power of known systems of logic (SMITH 2008).

More biological precision requires handling more imprecision more precisely. The
ultimate aim of FlyClockbase is to improve the precision of circadian clock models by
making all relevant data easily available for parameter estimation tool. Accomplishing
this goal goes far beyond compiling the data. It requires entirely new approaches for
dealing with uncertainty, imprecision, contradictions, gaps, and numerous exceptions
created by the astonishing diversity of methods used to observe biological systems.
These challenges belong to the many predictably unpredictable surprises that will be
encountered by any efforts for constructing VBIRs of substantial complexity, such as
FlyClockbase. Accurately describing biological observations made in this often-
confusing context is a substantial challenge we encountered while developing
FlyClockbase. We found that it is not enough to ‘describe the issues in words’; this
would merely create additional free-text repositories with unstructured information,
maybe with a bit more focus than a corresponding collection of PDF-files with the full
text of the study. Such free texts could not have enabled us to search efficiently for time
series. We found it extraordinarily useful to have key information in a more structured
form, e.g., to compare mRNA measurement methods (see above). However, such
structure must not come at the expense of the ability to efficiently represent newly
encountered imprecision or data. We found that a working biologist with sufficient
domain expertise is the best expert for choosing how to handle newly encountered
information: ignore, describe in unstructured comments, or create corresponding
Columns in an Attribute Table. Without a substantially sophisticated and extendable
system for dealing with imprecisions, very little information will become available for
automated processing in more coordinated ways. Ignoring such problems may be
reasonable in some cases, but eventually, the inability to handle such imprecisions
correctly will artificially narrow distributions and create illusory precision that wrongly
rejects simulations as unrealistic and can unnecessarily complicate parameter
searches. Conversely, allowing for too broad a margin of error can easily result in a
misleading model caused by biologically unrealistic parameters. Thus, appropriately
managing errors and uncertainties in observed time series is one important key to
improving mechanistic models of circadian clocks informed by the real-world time series
in FlyClockbase.

Logic in gene regulatory networks. The classical Boolean logic of compilers and
gene regulatory networks share an unexpected connection if the input, output, and
every step in between are well approximated by just two states (KARLEBACH AND SHAMIR
2008). Thus, compilers could provide unexpected help for modeling gene regulatory
networks. If provided with the right details, compilers could also automatically detect
situations where gene regulation becomes stochastic due to low molecule counts in a
cell (MACNEIL AND WALHOUT 2011). The help of compilers that automatically analyze
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complex logic constructs correctly could prove essential for understanding how
complicated binary gene regulatory networks behave if under the control of the daily
rhythms of a circadian clock (LOWREY AND TAKAHASHI 2004; DOHERTY AND KAY 2010;
ZHANG et al. 2014a). Logic modelling of various genetics problems has a long history
(CoTTERMAN 1983; OPITZ 1983; CROW 2001) and a bright future helping us to
understand many diverse aspects of gene networks and their modular structures (MITRA
et al. 2013; LE NOVERE 2015; SAEZ-RODRIGUEZ et al. 2016).

Formal systems of logic are usually not logical enough for biology. This
paradox is easily resolved by contrasting the complexity of biology with the simplicity
typical for formal logic systems. Errors of omission in formal logic limit its ability to
express corresponding biological statements efficiently. Omissions have been found to
be among those types of errors that are most difficult to detect (PANKO 2016).

Our own work on FlyClockbase confirms the substantial frequency and cost
associated with errors of omission. Table 5 reports a substantial discrepancy between
two types of error rates observed during our exhaustive in-depth re-check of each time
series that could in principle affect our main conclusions regarding the variances of
peak timing that differ between PER and TIM. Some types of errors could be
characterized as ‘simpler errors’ like obvious swaps or typos in FlyClockbase itself. As
expected (PANKO 2016), these simpler errors occurred at much lower rates (affecting
cells of spreadsheets at rates just below 1%). In contrast, we detected a bit over 10% of
all time series when re-checking our meta-analysis for systematic errors such as
inadvertently omitting agreed-upon steps from routine analyses by trained curators.
Much work in our study went into ensuring that important rules were indeed
implemented in all applicable cases.

The unlimited potential of omissions to confound biological results repeatedly
creates ‘important biological investigations’ aiming to determine whether a given
biological conclusion might have been compromised by faulty logic (see our own
examples above, where we excluded too much data). While these investigations can be
essential for progress in biology, execution often involves excessive, tedious, ‘non-
biological’ work towards finding elusive ‘needles in haystacks.’ This metaphor easily
takes on ever more complicating levels of nesting when the logical ‘needles’ in question
actually consist of errors of omission; finding them can be as challenging as identifying
entirely new logical blind spots for the first time. These challenges were felt throughout
the development of FlyClockbase from start to finish on numerous occasions, which
were too many to track beyond a few illustrative examples.

Data quality, plot quality, and task completion. One specific time series figure
seemed such a perfect interpretation nightmare that preventing publication of figures
like it might be counted as a donation towards supporting FlyClockbase. This figure
provided the initial illusion that it shouldn’t be too difficult to unambiguously decide
which data point belonged to each of its different time series. However, when actually
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attempting to extract the values, it slowly became clear that achieving unambiguity was
impossible because the figure had been irreversibly degraded to the point where its
semantic reproducibility was no longer complete (LOEwE 2016). The reason was an
unlucky combination requiring all the following factors controlled by different entities: (i)
the authors’ decision to combine all these time series into a single plot, (ii) miniscule,
similar plot symbols, chosen by the authors or the plotting software, (iii) a very low scan
quality for the figure, chosen by the publisher, and (iv) substantial overlaps of some of
the time series, chosen by nature.

Cost. Aiming to collect all relevant data, we did not want to allow for arbitrary
decisions that excluded plots due to a curator’s fleeting perceptions of potential
difficulties. It took several independent rounds of revisiting by the three most
experienced curators and repeated discussions among them before all agreed on the
irresolvable nature of this figure’s ambiguities. In total, we spent more than four hours
trying to resolve ambiguities (excluding time for finding and initial digitizing). In contrast,
it might only have required 10 min of the person producing the figure to choose plot
settings that would have completely eliminated more than four hours of work for us.
From this we concluded: (i) FlyClockbase needs a reliable mechanism to help future
curators avoid such known time killers (e.g.: ‘KK’ in POST LoeEwE 2016) in the absence
of substantial new information. (ii) Efforts such as FlyClockbase need to find principled
ways for protecting their limited time resources against irresolvable ambiguous plots or
dataset, without delegating decisions on the inclusion of data to a moment’s fleeting
perceptions of a single curator. (iii) It might pay huge dividends across all sciences if a
targeted effort could improve the clarity of plots produced by typical default settings.

Implications for Logic. This example highlights the recurring observation that
managing challenging tasks like the one discussed above might benefit from two
different dedicated BioBinary values, one for ‘progress of the work’, one for ‘results of
the work’. Using the OKScale in FlyClockbase, a ‘Progress BioBinary’ could store:
Progress: KO (not started), OKO (working), OK (done), MIS (incomplete because
problems occurred). Similarly, a ‘Result BioBinary’ could store: Result: KO (has errors),
OKO (intermediate), OK (completed), MIS (missing).

How to detect logic errors in FlyClockbase. The detection of logic errors can
be greatly accelerated by open discussions that invite outsiders to share their
observations freely. This could greatly improve the quality of FlyClockbase if this could
be made efficient. One of the most notorious bugs is error by omission. This is equally
true for omissions in typical program source code as it is in the analysis of biological
observations. Omissions are hard to find anywhere (PANKO 2016) and can affect the
reproducibility of results (HUANG AND GOTTARDO 2013) at great cost to science
(FREEDMAN et al. 2015a). Clearly, a well-defined formal system of logic that is capable of
handling biology’s complexities would be a great asset for FlyClockbase and VBIRs in
general. It's formal axioms and rules would exclude many options as impossible,
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thereby helping researchers to save time by avoiding many fruitless investigations and
focusing attention on options of likely interest. Pivotally, such a logic would achieve
these aims by providing a conceptual base-line for establishing the few potentially real
omissions that need to be considered, while keeping infinities of useless speculations
and contradictions from interfering with productive research. If correct, such a logic
would be extremely useful for FlyClockbase. However, to the degree that it is
misleading, its adoption would waste critical research capacity and lower the chances of
uncovering such problems, because people in general rarely question an adopted logic,
even if misleading. Thus, using any formal logic for understanding complex real-world
biology is a double-edged sword, which cannot be avoided when studying mechanisms,
including those of clocks in flies.

The idea that a formal logic for biology could facilitate biological research was
first expressed only a year after Turing defined the essence of computing (TURING 1936;
WOODGER et al. 1937). Yet, general mutual inspiration aside, it has been difficult to
develop a more general formal logic that “makes better logical sense in biology” Most
researchers strongly prefer to collaborate on much more specific questions they
understand comparatively well, and experts in logic do not often engage with the
uncertainty of biological observations. Hence, it has been much easier for most
researchers to produce successful special-purpose computing tools for biology, than to
arrive at more general solutions. For example, a sorely needed general-purpose
programming language designed by biologists for biologists is not available despite all
research in bioinformatics, computational biology, and systems biology so far.

A credible effort to produce such a language, requires experienced experimental
biologists as prime partners on the very same table, where expert logicians design the
formal aspects of a logic for biology in numerous iterations. The expressivity of such a
logic needs to be tested by its ability to represent actual real-world wet-lab or field-
expedition observations. Working on FlyClockbase as described in Figure 11 provided
us with such a rare opportunity.

Identifying omissions in the logic of a complex system does not necessarily
provide the right resolution and exceedingly many partial workaround solutions are
usually found much faster. Such quick-fixes offer immediate relief, albeit at the cost of
increasing accidental and historic complexity inessential to a system’s function
(RAYMOND 2003). Without mechanisms for removal, the accumulation of such special
case stop-gaps will eventually increase the complexity of a system until it collapses
under its own rules. At this point, new potential users will no longer be able or willing to
invest the time needed for learning how to navigate the system’s idiosyncrasies.
FlyClockbase will not be able to escape this eventual fate, if its data model is not
carefully guarded against these problems. Inessential complexity creates numerous
difficulties in many contexts, which include defining programming languages, logics, or
type systems in computer science (PIERCE 2002), rules of operator precedence (RAZALI

102


https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/099192; this version posted August 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

et al. 2015-10-26), designing data models, databases, or data integration frameworks
(DE TRE et al. 2004; DoAN et al. 2012), maintaining a user-friendly organization for large
libraries, information resources or hard drives, and constructing ontologies, taxonomies,
modeling frameworks, or query languages (VAN RENSSEN 2005; ZEIGLER AND HAMMONDS
2007; RuBINSON 2014; ARP et al. 2015; HAZBER et al. 2015). With a bit of abstraction, the
shared root of these problems might be summarized by asking: “What is the best
description of a complex world with all its possibilities for nesting, linking, traveling, and
communicating?” The relevance of such logic research for FlyClockbase, is that it
greatly simplifies managing the complexities of consistently handling inconsistent
biological data in FlyClockbase.

Error handling in the face of uncertainty. No VBIR of sufficient complexity will
be free of errors. This certainly also applies to FlyClockbase. The question is, how to
handle errors. Problems with tracing the identity, availability, accuracy, precision, and
reliability of data have been the topic of numerous investigations in various contexts,
some of which involve big data (e.g. see (REASON AND MYCIELSKA 1982; REASON 1990;
REASON AND HoBBS 2003; GoLDSTON 2008; DoAN et al. 2012; GITELMAN 2013; GRIMES et
al. 2013; McCaALLUM 2013; REASON 2013; BLANKENBERG et al. 2014; REASON 2015)).

Opportunities. FlyClockbase presented us with excellent opportunities for
exploring numerous important issues for complex VBIRs aiming to integrate data that is
imperfect in some form, such as being incomplete, uncertain, contradictory, erroneous
or scattered across a wide range of sources. Any of these conditions occur frequently in
biology. It is beyond the scope of this study to explore all such challenges faced by
every biologist, whether she’s aware or not; in the Supplemental Material we describe a
few of the insights gleaned from our work on FlyClockbase. These could be
summarized as follows.

Challenges. Any information resource of substantial biological interest will quickly
grow to a complexity at which it will inevitably accumulate a substantial amount of
human errors that are difficult to detect by human users. Many independent repeats of
biological information are typically associated with large amounts of genuine biological
variability. In many current biological databases, it can be difficult to distinguish such
genuine variability from artificial variability that is easily caused by human errors of
various well-known types. Such errors span a broad range of different complexities and
corresponding frequencies. For example, simple typos or label swaps usually occur at
low rates such as 1%, see (PANKO 2016). Simple logic errors occur at substantially
higher rates, especially in spreadsheets (PANKO 1998; PANKO AND AURIGEMMA 2010;
PANKO 2013; PANKO 2016). However, errors of omission are usually the hardest to find
(PANKO 2016). This is especially true, when an omission has become part of a logic
formalism. This is one reason, why it is so important to use good approaches to
represent Null (WHITE et al. 2013), and why it can be dangerous to confuse different
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types of Null (WARAPORN AND PORKAEW 2008; HOARE 2009; THALHEIM AND SCHEWE
2011). FlyClockbase has experienced Null-confusion already. Entries in a DZT column
define an hour of the day. We initially allowed DZT=0h as a valid time, excluded 24h,
and defined ‘absence’ as ‘NotGiven’, a particular type of ‘Nothing'. However,
understanding ‘Nothing’ correctly is difficult. Hence, it is unsurprising when biological
model curators occasionally allow well-known intuitive algebraic properties of addition to
affect their views of ‘Null’. As a result, ‘0 apples’ is correctly interpreted as ‘no apples’;
yet it may fuel the erroneous idea of equating ‘time not observed’ and ‘adding zero to a
list of hours. In this case, some DZT=0 values are correct and some are not, but
checking correctness is complicated and expensive. This test becomes trivial, if 24h is
included as a valid time, and Oh is defined as always invalid. For more details on such
challenges, see also discussion of the BioBinary data type in the Supplemental Material.

Trans-disciplinary solutions. Several non-biological areas of research and
technology, such as computer science, space flight, and nuclear reactor safety have
developed sophisticated approaches for detecting and correcting potential human errors
(NASA et al. 2001-09-30; NASA et al. 2006-07; NASA et al. 2011; PANKO 2016). While
designers of biological information resources can learn much from the decades of
research that informed the development of human error analysis tools in those areas, it
is less straight forward how these insights could be applied to improve the quality of
biological information available to most biologists. A source of concern is the substantial
complexity of many human error analysis frameworks (REASON AND MYCIELSKA 1982;
REASON 1990; NASA et al. 2001-09-30; REASON AND HoBBS 2003; NASA et al. 2006-07;
GoLDSTON 2008; NASA et al. 2011; GITELMAN 2013; GRIMES et al. 2013; McCALLUM
2013; REASON 2013; BLANKENBERG et al. 2014; REASON 2015; PANKO 2016). Most of
these frameworks will handle the complexity of biological data, but require near
prohibitive research and implementation efforts that make integration into grass roots
VBIR projects such as FlyClockbase not efficient if started by biologists. However, that
does not imply that sophisticated approaches cannot contribute to solutions, even if
VBIRs curators do not bring the expertise necessary for implementing a framework. To
see how this might work requires a look at an advanced area in computer science that
is not readily accessible to many: compiler construction.

Error analyses could be amortized across VBIRs by compilers. As argued
above, appropriate error analyses for a single VBIR are not feasible. However, our
experience with developing FlyClockbase suggests that a substantial number of
essential tasks are recurrent when compiling any VBIR of comparable complexity.

Efficiency. Thus, the most efficient solution to improving the quality of VBIRs
without exploding costs is to develop an automated compiler that can test for all known
VBIR problems and that supports a programming language that integrates biology
expertise (LOEWE 2016). Programmers frequently say that it is important to use the right
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tool for a given programming task. Despite numerous biology-oriented libraries for non-
biological programing languages (e.g. (STAJICH et al. 2002)) no general-purpose
programming language exists yet for supporting typical complier-style consistency
analyses for general complex biological datasets like VBIRs. We will not repeat here the
substantial number reasons why such a language would be helpful and why current
(non-biological) programming languages are insufficient (see Supplemental Material
and additional reasons discussed in LOEWE et al.(2017)).

Examples. Such a compiler could address tasks such as the following. There is a
need for handling missing data, inapplicable data and similar cases by choosing
appropriate representations that distinguish these cases instead of lumping them
together as ‘NA’ or the value zero (e.g. (CANDAN et al. 1997; WHITE et al. 2013)). All
biological measurements will always come as imprecise ranges, not as precise values.
Measurement methods for a given observation are usually heterogeneous and need
some description. Observations can be made in may be compared between various
MethodRealms, like in vitro, in vivo, or in silico. Comparisons between wildtypes and
mutants are frequent. Synonyms are almost ubiquitous. It is easy to continue this list
with many other aspects of biological interest. In addition, there are data processing
basics, such as the ability to read in all tables of FlyClockbase and produce a report of
all inconsistencies and errors that require human attention. The arrival of big data has
brought substantial experience with questions of data hygiene (GoLDSTON 2008; HOWE
et al. 2008; KRISHNAMURTHY et al. 2011; GITELMAN 2013; McCALLUM 2013; SCHUTT AND
O'NEIL 2013; MAHMOOD 2016; ZWEIG 2016). Most of this expertise is also essential for
correctly and efficiently handling data in VBIRs. For all features like those above and all
error types detected, a solution only needs to be implemented once for simultaneously
improving the reliability of all VBIRs.

PopGen predictions on FlyClockbase survival and success

Most new versioned biological information resources (VBIRs) such as FlyClockbase
face a dizzying array of potential paths into the future, not unlike newly mutated alleles
in a population. As population geneticists have learned, all this complexity can be boiled
down to two essential outcomes (KIMURA 1962): all alleles are either kept or lost
eventually. To explore other useful aspects of this analogy, we will abstract a few brief
lessons from population genetics that also apply to collections of information.

The stage. If seen in such a general way, a newly arisen DNA-allele could be

compared to a newly published VBIR similar to FlyClockbase or a newly developed tool
in bioinformatics (thereby accessing a broader pool of historic precedents). Both alleles
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and VBIRs contain new information, stored in DNA or on computer hard drives
respectively. Both are part of their ecosystems, which belong to different realms. An
allele exists in carbon-based organisms that compete for natural resources in a
population where the allele may be kept indefinitely. Omitting replication details allows
for simplification. One could think of alleles as replicators based on DNA; similarly,
memes were originally defined as replicators in mindspace (DAWKINS 1976). Thus like
FlyClockbase, each VBIR, can be seen as a meme that competes for the ‘mindshare’ of
humans potentially interested in a given topic. Technically, memes are units of
information that usually spread through communication and compete for the limited
attention of individuals and communities, irrespective of their success of replication
(DAWKINS 1976; LYNCH et al. 1989; GLEESON et al. 2014; DAWKINS 2016; HE et al. 2016).
These generic features result in mechanisms similar to those of population genetics,
which we use here to derive informal expectations for the future of FlyClockbase and
similar VBIRs (a formal theory is beyond our scope). We do so hoping to avoid the most
likely outcome, the complete loss of FlyClockbase, by aiming to increase the chances
that FlyClockbase will be kept in the population of useful VBIRs. We next reinterpret
concepts like aging, death, growth and reproduction from the perspective of VBIRs;
Incomplete Fitness Traits (IFT) like these combine with a given environmental context to
define fitness in biological evolution (LOEWE 2016). Even without a quantitative meme
model, we expect qualitatively similar outcomes when translating IFTs to the realm of
VBIRs memes. In many cases this will suffice to make decisions that increase the
chances of survival for FlyClockbase.

Aging and death. VBIRs are aging if they degrade without the time and energy
investments necessary for maintaining their semantic reproducibility (LOEWE 2016); they
are on their deathbed when nobody wants to use them anymore, and are buried once
nobody can remember them. Potential causes of death vary with age and include (i)
being locked into remaining an exploratory toy ‘too simple’ for any real use, (ii) being
‘too simple in comparison’ from a lack of features that could have helped fight
competing VBIRs and win over their human users, (iii) having become ‘too complicated’
for real-world users after years of accumulating inessential complexity (RAYmoND 2003),
and (iv) many other causes from internal specifics to external generics (such as political
decisions).

Growth and reproduction. VBIRs can grow in various respects, some helpful,
some harmful, and some hard to assess. We use ‘growth’ here only in a narrow sense
for helpful traits like features required by users. In contrast, we denote as ‘aging’ the
growth of harmful traits like inessential complexity, whereas the reduction of such
complexity can be seen as growth (e.g. by simplifying an interface to save user time).
Likewise, the loss of useful features can be seen as aging caused by semantic
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irreproducibility. For example, this could be caused by incompatible changes in required
software packages. Here growth always affects the quality of the best implementation of
a VBIR type, in contrast to reproduction, which could be seen as increasing its
mindshare through favorable communication and/or copying the VBIR data to new
servers (presumably to win new voluntary users). Thus, growth and reproduction in this
sense are likely to help a VBIR to spread and increase its fitness.

Speciation and merging. The same is not usually true for processes
comparable to speciation. The ‘forking’ of a VBIRs or any other software or data
collection into two independent lines of development is often perceived as an
unwelcome increase in complexity by users without a stake in the details (e.g. Python 2
vs Python 3). This implies that the reduction of independent lines of development should
be welcomed, but reality is more nuanced. A reduction from merging without loss of
features is positive.

Extinction. However, sometimes it is impossible to save all features due to
mutual incompatibility or other constraints; this might be comparable to extinction,
where good features are irredeemably lost to global mindshare. If occurring to all
development lines of a VBIR (e.g. due to catastrophic environmental changes such as
‘loss of funding’), then the loss is usually tragic, even if the VBIR is preserved as a fossil
on cutting-edge archives of its time (like floppy disks, CDs, bioinformatics journals,
websites, and various open source repositories). As in real life, software fossils are
rarely revived, an act that would require extra-ordinary semantic reproducibility as
defined elsewhere (LOEWE 2016). Semantic reproducibility is very difficult to achieve, as
seen and further discussed in the source code for the statistical analyses in this study
and the discussion of the ‘DISCOVARCY’ documentation style (see Table D1 in the
Supplemental Material). In both cases, it is much more likely to lose fossils to changing
environments and random damage than to revive them successfully. Furthermore,
chances of successful reactivation drop dramatically in both cases, as bacteria are
easier to revive than dinosaurs, and old algorithms for merely sorting numbers are
reused more easily than the software systems that put a man on the moon (though we
do not wish to imply that either is possible). Extinction can happen to any VBIR, no
matter how well known. Some planning can usually ensure preservation of a fossil form;
ideally a tombstone will inform would-be users where the fossil is archived (see
Supplementary Material).

Horizontal gene transfer. As we watched the evolution of FlyClockbase we
witnessed a number of remarkable exchanges of information. Our experiences have
played out in the conceptual arena defined by Figure 11: we started as initiators,
completed the substantial integration work presented here, and have used
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FlyClockbase for research purposes (see Results). At the same time one of us has been
deeply engaged with developing the compiler architecture for the Evolvix modeling
language, aiming to meet particular requirements of biology. This combination of aims
has enabled a substantial flow of critical design information that has benefitted all sides.
Compiler architects benefit from first-hand exposure to challenging practical problems in
logic and data modeling in the domain of their target audience, while biologists are kept
from computationally short-sighted quick-fixes that otherwise could easily wreck a VBIR
on the longer-term. Such collaborations are powerful opportunities for uncovering and
clarifying misconceptions on all sides and at all levels; in our experience, they greatly
improve the conceptual quality and robustness of resulting solutions, but come at the
expense of the rate at which some more tangible results can be produced. Combining
these costs with those of human error analyses (see above) when developing reliable
VBIRs increases costs substantially, often prohibitively.

Practically, we advocate that VBIRs do not reinvent the wheel of reliability
independently. This unnecessary reimplementation work is expensive and substantially
increases costs of developing and maintaining a VBIR. A thorough analysis of historic
sources of funding for various existing VBIRs has exposed a lack of support for this
critical work that integrates, consolidates, and checks the quality of data in VBIRs
(EMBER et al. 2013). An overview of these essential tasks in the context of FlyClockbase
is given in Figure 11. Here we suggest that much of these costs could disappear if the
initiators, integrators, and researchers working with a VBIR would have efficient means
of passing on their formal needs for data representation and analysis to the architects of
an integrative compiler. From their integrative perspective, these architects could then
provide solutions that are compatible and interoperable for many VBIRs. Support for
such a versatile open source compiler-building project that serves the VBIRs community
well would not nearly be as expensive as independently solving this problem repeatedly.
Experience indicates that well-maintained tools do get used; such a project could hence
substantially contribute towards closing the critical funding gap highlighted by a
thorough analysis elsewhere (EMBER et al. 2013). Here is not the space to provide a
reasonable overview of the many aspects of working towards an integrated compiler
architecture. Informed by experiences with FlyClockbase, the tips of several icebergs
are touched in Figure 11. It lists important needs of various contributors, and specifies
several types of lessons learned by VBIR contributors and services provided by the
compiler and its construction team envisioned here. This work generally occurs in three
broad stages of integration: combining fragmented insights gleaned from work on
FlyClockbase, investigating broader designs, and integrating solutions into a single
coherent architecture. The high-level analogy of aging and growth in VBIRSs plays out on
the background summarized by Figure 11. The values of such IFTs governing the
evolutionary trajectory of VBIR meme evolution are determined by the hundreds of
small implementation decisions necessary for arriving at an overall coherent VBIR
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organization perceived as elegant, expressive, useful, efficient, and overall simple
enough to be worth a user’s while. Such simplicity is pivotal for engaging anonymous
users with a VBIR (or any other meme), especially since many are suffering from
information overload, data smog, and the resulting paradox of choice (SHENK 1997;
SCHWARTZ 2004). Physics is not the only discipline where theory should be “as simple
as possible, but not simpler” (EINSTEIN AND CALAPRICE 2011).

Potential predictions. So, what can we learn from population genetics to
improve the long-term usefulness of FlyClockbase? We do not aim to exhaustively list
all general lessons but rather present several possibilities of likely interest in the bigger
picture that we expect based on population genetics theory. This will allow readers to
connect additional dots between more detailed requirements and solutions presented
above as well as in the Supplemental Material. As we review the following potential
paths into the future we interchangeably use the terms ‘FlyClockbase’, ‘new allele’,
‘bioinformatics tool’, and VBIR to reduce repetition.

Loss is likely for all new information. Population genetics theory shows that
most newly arisen alleles are lost very quickly by the random sampling that occurs
between generations (KIMURA 1962). All alleles have to navigate this hurdle, regardless
of how beneficial they might otherwise be. Observing bioinformatics research quickly
reveals a similar pattern: on the web very many tools start out (and fizzle out),
professional researchers ensure that at least one peer-reviewed publication exists (but
lack the time to keep websites and tools from breaking), enthusiastic programmers will
keep tools working (but are happy with little documentation), good software engineers
understand the value of organization and documentation (but usually do not work in
biology). All new tools and resources face an intimidating phalanx of these and similar
dilemmas, which made us think hard about all possible avenues for simplifying the
overall system while increasing flexibility. First lesson: FlyClockbase is no exception and
faces the same challenges. It may sound strange to discuss death in the context of a
birth that we believe is to be celebrated. However, ignorance is not a good defense
against child mortality.

Loss is fast and ‘child mortality’ matters. Alleles that have just arisen by
mutation and new bioinformatics tools that have just been published also share another
important detail: they will probably be lost very soon. Except for extremely harmful
alleles, initial survival for good and bad alleles depends almost entirely on the individual
that carries them. Therefore, FlyClockbase must travel as light as possible if it is to
survive. Like other VBIRs, it must be able to fit it into the life of a single publicly known
person who can act as a synchronizing point of contact for coordinating further work
(even if not done by that person). Such public maintainers of VBIRs are probably
extremely busy and will have very little time and energy left for high-maintenance
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solutions. This excludes the use of many great database technologies that unfortunately
shower their users regularly with recommended updates with various degrees of
compatibility and urgency. Without a highly-automated process, such updates would
prohibitively increase the rate of aging for FlyClockbase or the energy required to
maintain it. Accordingly, we have been developing approaches to simplify life with
VBIRs like FlyClockbase, but much more remains to be done. Our various strategies for
simplifying are discussed above and in the Supplementary Material. Laurence Loewe
has agreed to be the first public maintainer of FlyClockbase and will post updates to the
GitHub website given at the beginning of our description of FlyClockbase.

Fossilization is usually deadly. An easy way of avoiding the loss of a project
from a broken hard drive is to submit it to a public repository such as Github. This
ensures a form of travelling light, as everything stays in place, if a maintainer does
nothing (maintenance cost is near zero, and mostly a thought and a password). This
establishes a minimalistic baseline, as the mere existence of data (or ancient code, see
above) does not differ much from fossils, which are awkward to access, dry and brittle to
work with, and for all practical purposes impossible to revive. Lesson three: If nobody
continues to work with the code, then chances are that it has already fossilized. Thus,
we next review steps that are likely to facilitate future work with FlyClockbase.

Next practical steps for FlyClockbase

In order to raise the chances of survival and success as described above, we are
working towards implementing the following practical steps that improve the
organization of FlyClockbase and move it towards increased stability.

Reorganize files, define versioning policy and simplify folder structure. It is
very frustrating to work with a project where everything can move (and break) at a
moment’s notice. Nascent resources never really know what awaits them, and
FlyClockbase has not been different. As a result, our time series data has seen more
profound reorganizations of its storage space than any of us had anticipated. Some of
this additional work was due to the fact that we were simultaneously developing crucial
technological underpinnings, such as TabFS (Figure 11) and the POST system (LOEWE
2016). We also did not have a stepwise guide on VBIR construction with an overview
roadmap from an expert, which could have further reduced the work. However, as
indicated in Figure 11, the initial phases of a VBIR will always be special: each VBIR, by
definition, is ill-defined at its inception and negligibly small. As it starts growing, it is
restructured, renamed, and reorganized many times while in its ‘embryonic’ form. While
guidance helps, some messy aspects of initiating a VBIR are probably impossible to
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avoid if the freedom is retained to develop any VBIR supporting any research. Figure 11
makes a clear distinction between this early more informal stage and the subsequent
iterations managed by integrators. While much of the work of integrators is also done at
the initiator stage, VBIR publication marks a milestone. It is an excellent opportunity for
internal restructuring and cleanup that should not be dismissed lightly, as reorganizing
will never be as easy again. This is particularly true if the versioning system changes.
Long-term resources require stabilizing versioning systems right from the start to reduce
inessential complexity and confusion. FlyClockbase will build on the StablizingZone
(LoewEe 2016) of the POST system. These needs motivated us to delay publication of
FlyClockbase while still under review.

Use a public distributed version control system to be efficient. The use of
Git for version control is rising and services like http://github.com allow open source
projects to be published ‘at no cost’. Not having to pay for leaving code in a published
state increases chances of avoiding ‘death by negligence’ for many VBIRs. More
importantly, using Git allows VBIR collaborators to essentially cut the huge costs of
manually performing the search and merge operations regularly required for close
research collaborations. We have experienced enough of these complex operations to
appreciate the huge value provided by Git and have decided to use it for FlyClockbase
(currently in a closed repository using http://gitolite.com/gitolite/ ). However, using Git is
not free of costs. At first these seem reasonable: learn how to use Git and avoid
advanced moves that get ‘the rest of us’ into serious trouble (including loss of data).
However, in our experience, Git idiosyncrasies and the complexities of version trees
pose such formidable barriers for most biological users, that tool adoption requires a
large activation energy, even when using excellent graphical user interface software
(albeit developed for programmers). We have found an approach for getting biologists
to work with reasonably well with Git. It currently requires determination, detailed
instructions, an expert who performs all operations except the very simplest, and who
happily explains everything again until users follow the instructions (cleaning up the
mess, if they do not). Given the outstanding efficiency of Git, not just for FlyClockbase,
motivated us to explore how to hide our simplified Git workflow behind scripts called
when users ‘hit a button’. While our design requires more development and testing, our
internal results so far suggest that it will be more than worth the effort develop this for
FlyClockbase (and reuse for other VBIRs). We highlight all this because many biologists
seem unable to imagine how much more efficient the development of a VBIRs can be if
Git works as it should. Conversely, many Git users seem unable to imagine why some
biologists prefer to explore every non-Git option first, irrespective of cost. We found that
some of these ‘attractive’ alternatives can easily turn into complexity traps or create
serious bottlenecks for development. This is in particular true for the prevalent mode of
distributing supporting material for journal articles, which allows reading data from files
without the ability to write back. Such immutability is good for ensuring well-defined
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versions, but unless there are files that can actually be updated in place, it will be very
difficult to efficiently work with the data. Complications can abound when manually
merging two sets of text files, each with changes that accumulated in separately
evolving lines of revision descent. Since not all combinations have been tested together,
some could trigger prohibitive integration problems comparable to the severity of
Dobzhansky-Muller Incompatibilities known from evolutionary genetics (COYNE AND ORR
2004). In this analogy, using a system like Git for regularly merging all new changes into
a single main line of revision descent is comparable to keeping all individuals in one
large population. This efficiently prevents the accumulation of the source-code
equivalent of Dobzhansky-Muller Incompatibilities and is desirable for improving one
VBIR that serves a single purpose. Thus, typical archival data storage is not ideal for
FlyClockbase and similar VBIRs; we therefore chose Git and aim to mitigate its less
than ideal aspects.

Develop TabFS. For decades, there has been no shortage of databases, file
formats, file systems, and other types of storage - all with unique strengths and
weaknesses. There is no universal agreement on how to best store complex data
transparently. Text-based formats that distribute data across folders in a file system
provide instant and continuous access to content that is easy to read and write for
humans. This flexibility does not depend on any special tools that could break. However,
such transparency benefits are balanced by the need to ensure consistency in the
presence of notoriously inconsistent human users. While binary formats increase speed
and consistency, they complicate VBIR development and create costly dependencies on
special tools for reading or writing any data. As VBIR development requires biological
model curators to easily modify the data model of a VBIR, we decided against using
existing excellent binary technologies such as ProtocolBuffers
(https://developers.google.com/protocol-buffers/ ) and HDF5
(https://www.hdfgroup.org/hdf5/ ). For these and other reasons detailed in the
Supplemental Material we decided that VBIRs and TabFS require human readable text-
based file formats. Appropriately reviewing these is beyond the scope this paper, but
some recurring patterns provide food for thought. For example, the text-based
‘eXtensible Mark-up Language’ (XML) and the representation independent ‘Abstract
Syntax Notation One’ (ASN.1) are both widely used, formally defined
( https://www.w3.org/XML/ - https://www.ncbi.nlm.nih.gov/Structure/asn1.html ) and
demonstrate the following possibilities for data storing file format standards:

1. itis possible to define broadly applicable standards that maintain a very simple and
stable core set of features (encouraging simplicity in TabFS);

2. combining a few built-in data types with arbitrary nesting and repeating of user
defined data types can inspire multitudes of specific extensions (suggesting TabFS
will need to help users navigate diverse complex VBIRs code contributions to
reduce complexity and unnecessary reinvention);
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3. fierce competitors are capable of adopting shared standards resulting in win-win-
win outcomes for both competitors and the general public; see the use of ASN.1 in
telecommunication (and also by NCBI, see link above; the research benefits of a
system that significantly simplifies the sharing of complex biological data are
undisputed; developing FlyClockbase across the Win-Mac divide together with the
Project Organization Stabilizing Tool (POST) system (LOEWE 2016) by using the
process in Figure 11 led to major TabFS design ideas that could simplify current
challenges enough to motivate grass-roots adoption; details beyond scope here);

4. the rise of simple text-based XML could not quench the need for even simpler text-
based file formats that are popular for simplicity where it matters (suggesting TabFS
needs to provide comparable ease of use);

5. simplistic file formats are insufficient for representing many types of biological
complexity and will therefore never be adopted universally (suggesting TabFS must
handle arbitrarily complex data in elegant ways).

Comma Separated Value files (CSVs) and the equivalent tab-delimited table files of

TabFS are still particularly convenient file formats of choice due to their simplicity and

extraordinary broad interoperability. Research collaborations frequently share data

across very different systems. Thus, a file format that can easily be read and written
everywhere remains competitive against faster rivals that do not work everywhere.

Unfortunately, CSVs store only values, but cannot store types and cannot directly

describe arbitrary data structures. Therefore, all additional information requires

extensions that are rarely standardized. Recent text-based standards like JSON (see
http://json.org ) or YAML (see http://yaml.org ) cover many use-cases, but have not
replaced CSVs in many contexts.

Tables in their simplest form. The two-dimensional layout of CSVs is particularly
well suited for time series, arrays, and other frequent forms of biological data. CSVs are
easy to read and write with spreadsheet tools that are widely used among biologists.
Many experimental biologists would not hesitate to use such tools for modifying sets of
CSVs but would avoid equivalent tasks in SQL databases. This fundamental usability
advantage of text-based tables motivated our data storage choices for FlyClockbase.
The downside to this flexibility is the lack of formally defined computational expressivity
that is powerful enough to represent all the needs of VBIRs. Our numerous searches
have brought many interesting file formats to our attention, but none approaches the
simplicity and usability of CSVs while also providing a stable international standard with
the features necessary for efficient VBIRs development. This gap surprised us.

TabFS specification. We plan to fill this important VBIR tool gap by developing a
definition and implementation of TabFS. The TabFS specification aims to define
precisely a completely open and customizable, easily accessible and usable, extremely
simple and stable, maximally versatile and expressive storage system for long-term use
in VBIRs such as FlyClockbase. Here long-term indicates the requirement to be long-
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term backwards compatible as defined by the ‘TrustedTested’ (TT) level in the POST
system defined elsewhere (LOEWE 2016). To achieve these goals, some aspects of
computational speed will receive a lower priority in TabFS, as speed of VBIR
development is more important for TabFS than speed of execution. Practically, TabFS
builds on the stability of standard file systems and uses tables and other fragments in
files and folders to implement well-defined conventions for storing the necessary
nuances required for VBIRs development. A major design aim is to keep the raw
convenience and efficiency of tab-delimited table text files (hence the name TabFS).
Such files are easily edited by spreadsheet tools familiar to many biologists and readily
imported and exported by many other systems. TabFS is developed in the context of
VBIR development as described in Figure 11 and uses the flipped programming
language design approach presented elsewhere (LOEWE 2016). Many VBIRs share
similar problems, some of which are typical for biology. Solving them once in a reusable
way can greatly contribute to the reproducibility and the sustainability of domain specific
resources of digital data (EMBER et al. 2013).

Define a type system for TabFS. Work towards defining each essential data
type for TabFS in general and VBIRs in particular will need to continue in parallel to
developing TabFS itself. Substantial overlap in development is essential for ensuring
that TabFS provides all important capabilities for making high-level VBIRs development
efficient while minimizing overall system complexity. Establishing a stable core of TabFS
first will greatly shrink the complexity of developing a stable and consistent type system
for recurrent tasks in both TabFS and general VBIRs development. The same
mechanisms will later be used by developers of any specific VBIR to define a type
system for their particular area that can then be enforced with the same mechanisms
that protect the integrity of TabFS or general VBIR types. Since type systems are
conceptually equivalent to ontologies at a high level (ArRP et al. 2015), such work can be
structured in work-stages that are familiar to biologists since the start of taxonomy:
observe, describe, define. Practically:

1. Observing which types of folders, files, or fragments are useful for developing and
maintaining a VBIR is only possible in the context of a real VBIR with real research
problems, such as FlyClockbase. Pure thought or toy projects cannot reveal enough
real-world nuisances and nuances for developing a high-quality VBIR type-system.
The next step for the resulting list of observed entities is:

2. Describing at epic length in human readable text every detail about, why and how
exactly each folder, file, or fragment is stored and used by expert biological model
curators provides a solid foundation for the final step of explaining all this to
computers:

3. Defining each type formally, which results in a checklist for determining the integrity
of this VBIR type and for detecting all known errors.
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Initially, such checklists are best developed and refined by expert users willing to accept
a temporary slowdown caused by the need to document and check every step of their
work, including the simplest ones (tedious for humans, essential preparation for
computers). Once sufficiently detailed, these checks can be automated, enabling
experts to focus their energy on complications that computers cannot currently handle
correctly. Such a style of collaboration with VBIR compilers would allow all parties to
focus on what they do best. Machines mindlessly repeat mind-numbing instruction
sequences. In contrast, experts focus on activities where humans excel: apply expertise
and common sense to check the integrity of computational results, think creatively about
new tasks for the VBIR compiler, and expand the VBIR by exploring interesting
hypotheses. Once this VBIR has matured enough to answer the interesting questions in
its field, start a new VBIR.

For the first several VBIRs most contributions to such a compiler will probably
focus on the basics of defining and referencing various types of memory devices, such
as folders, files, file names, tables and fragments of these. A well-defined type system
will greatly simplify the implementation of the consistency checks that are essential for
maintaining the integrity of FlyClockbase.

~

Automate TabFS checks to help expand the biology of FlyClockbase.
Developing FlyClockbase, TabFS and a VBIR compiler for ensuring the long-term
stability of VBIRs can be greatly facilitated by a code library implementing a storage
interface for TabFS instances. Detecting formal errors, enforcing rules and limitations,
ensuring the full execution of all aspects of a TabFS or VBIR task, and performing other
jobs can then be delegated to such a storage library and will no longer consume
precious development or research time. These new liberties can then be invested in
expanding the reach of FlyClockbase by adding the latest biological studies, new and
old mutants, and many other aspects. Additions require defining new columns or new
values for the controlled lists of existing columns. Carefully reviewing anticipated usage
reduces clutter in the name-spaces of FlyClockbase. This is pivotal, since column
names become immutable once pronounced ‘TrustedTested’ as defined (LOEWE 2016).
The ability of FlyClockbase to disentangle the long-term need for stability and the short-
term freedom required for VBIR innovation will critically depend on the early introduction
of a well-thought out stabilizing version number system for FlyClockbase, lest it be killed
by inessential complexity on the long run.
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Conclusion

This study contributes important foundations to our overall goal of improving the
reproducibility, reliability, and relevance of biological data analyses, starting with
observations of the D. melanogaster circadian clock. To this end, we aim to automate as
many repetitive tasks as possible by providing computational tools that can be efficiently
used by experimental biologists. Ideally, this will inspire increased adoption of
computational tools and empower biologists to expand their thinking capabilities to
investigate new questions. This will be required to meet current grand challenges from
personalizing medicine to predicting mechanistic fithess landscapes in evolutionary
systems biology (LOEWE 2016). Such types of problems often require the analysis of
innumerable smaller computational models, which is impossible without highly
automated information processing to cut through the associated cognitive complexity.

FlyClockbase as a VBIR. The resource we compiled might be able to serve as
an example for a versioned biological information resource that is organized in a
radically simple way by being completely accessible as tables of text. It also exemplifies
what a ‘small model’ in a grand challenge context might look if comparable in size to our
clock model (see Figure 1) with similar amounts of time series or other experimental
data. We expect such data to be as scattered as it was for FlyClockbase. Experience
with time series in FlyClockbase suggests that many other datasets are probably also
likely to contain a mix of broad general trends and numerous statements that remain
incomplete, imprecise and contradictory. To successfully handle this avalanche of
challenges in biology, we have been analyzing observations and models of the fly
circadian clock. Simultaneously we have been collecting instances, where automation
by a compiler could greatly increase the efficiency of integrating biological knowledge-
fragments and maintaining the integrity of a VBIR in face of common uncertainties in
biological data.

Designing a compiler for biological data. The design of such a compiler is
greatly improved in our experience, when developed simultaneously and in close
collaboration with biological model curators who regularly expose compiler designers to
the many imperfections of biological data. The seemingly perfect abstractions of
compiler type systems need to meet the messy observations made in biology, and
conversely, biological observations need to become more organized by learning from
the abstraction techniques developed in computer science. Such trans-disciplinary
communication is possible in our experience (see Figure 11 for an overview of the
process). Consequently, our work in this study drills deep in distant areas from different
disciplines, both basic and applied. The volume of relevant material forced us
repeatedly to refer to Supplemental Material, the Evolvix BEST Names study (LOEWE
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2016), or simply limit scope (usually indicated). A brief overview of the relevant research

areas might illustrate these challenges for compiler construction.

Trans-disciplinary aspects. The seemingly disparate areas of enquiry in this
study are deeply connected by our desire to improve the reproducibility and reliability of
models in computational molecular systems biology. We study:

(i) the molecular genetics of gene regulatory networks in Drosophila circadian
clocks (reviewed in Figure 1),

(i) the statistics of robust differences in variance among observed time series traits
(Figure 5),

(iii)  the applied mathematics of simulating time series from Continuous Time Markov
Chain models (Figure 4 lists models, leaving simulation for later),

(iv)  the behavior of modelers, namely how they prefer to parameterize their models
(Figure 4),

(v)  the human-computer interactions that help to reduce data smog and information
overload by improving visualization and organization in plots, in models, in and
data structures (Figure 1,2,6,7,9),

(vi)  the statistics of detecting human errors in spreadsheets, data analysis, logic, and
source code (Figure 3, Table 5, Discussion, Supplementary Material),

(vii)  the data science of reproducibility for improving reliability, semantic, statistic, and
other reproducibility of publishable research results from the early investigative
stages (see Supplemental Material, Table P1 and the ‘DISCOVARCY’
Documentation Style), and

(viii)  the computer science of compilers and programming languages as needed for
supporting the development of other biological information resources like
FlyClockbase. This requires addressing a broad range of topics, including
mathematical logic, type theory, arithmetic, syntax, semantics, memory
organization, naming, and others. Figure 11 provides an overview of the types of
interactions we have observed between biological model curators and a compiler
architect while developing FlyClockbase.

Thus, we touched the tips of many icebergs and often needed to limit our scope. Much

of this tension was caused by our desire to build a compiler that understands the

imprecisions and complexities of biology and supports the efficient construction of high-
quality VBIRs. We have pursued this goal by constructing such a VBIR and performing
manually all tasks that we would like to delegate; this gave us the opportunity to reflect
on the nature of the tasks and the quality of the outcome. This reduces the speed of
both: compiler construction and VBIR construction, but simultaneously greatly increases
quality. As argued by our analogy to aspects of population genetics theory, such
increases in quality can be pivotal for the survival of a VBIR like FlyClockbase, which
can easily be killed by small increases of inessential complexity. In this study, we
provided a broad overview of this tandem work. We have removed from this paper all
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aspects that can also stand on their own. For example, readers of this journal might be
less interested in a formally complete description of the data structures that comprise
Evolvix and the nuances of data models that contribute towards long-term stability. We
endeavored to keep in the main text only those computational aspects that are most
important for navigating the broader concepts used in FlyClockbase or that convey a
general overview of our approach to reducing the cost of maintaining digital resources
with the help of a compiler designed for this purpose. There is no reason why such a
compiler could not be used by individual researchers collecting their own data, some of
which they might want to share later. Therefore, our work presented here could also be
seen from the following points of view.

View on gene expression variability. The most direct purpose of our study is to
use FlyClockbase to generate and analyze hypotheses about circadian clocks in D.
melanogaster. We analyzed patterns of circadian variability across diverse independent
studies of fruit flies, accumulating the largest number of time series for this purpose to
date (to our knowledge). We have used the statistical power of FlyClockbase to detect
consistent differences in the variance of peak times for the important clock proteins PER
and TIM. This led us to hypothesize that these differences have mechanistic causes that
are worth investigating with the methods of computational molecular systems biology
(out of scope here). Our detailed analysis of variances in the peaks of PER and TIM
and the potential causes for outliers (see above) suggests the removal of outliers by
default using the method of Carling (2000) to focus more efficiently on estimating what
typical clocks usually do (without suppressing natural variability in time series). Similarly,
FlyClockbase can be used to compare the accuracy of different observation methods
(Figure 8) and many other Aftributes. An important contribution of FlyClockbase towards
simulations of fly clock models of gene expression variability is its rich set of over 400
wildtype time series that can be used - in principle - to improve estimates for circadian
clock parameters. Such estimates might change the rather sobering observation that
most clock modelers do not use most experimental observations when deciding on the
parameter values for their simulations (see Figure 4). A study using state-of-the-art
inference methods for obtaining the best possible clock model has been moved beyond
the scope of this paper but could start immediately.

View on simplifying VBIRs development. The broader purpose of our study is
to develop, describe, and use FlyClockbase as a real-world testing ground for designing
an extraordinarily reliable yet simple system for long-term backwards-compatible data
integration. We also explored how to annotate, name, reference, identify, store, query,
retrieve, and analyze the imperfect and complex biological data and its translation into
well-defined computational concepts. Developing these capabilities is essential for the
long-term mission of programming languages like Evolvix that aim to provide built-in
support for biological research. This goal requires unusual amounts of direct user
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feedback from experimental biologists to the language designers, as described
elsewhere (LOEWE 2016). Since computers and their computations are ultimately
abstract, software engineers have come to value the input of so called ‘domain experts’
without whom it would be impossible to develop efficient and reliable non-trivial
systems. Such feedback is easier to provide in engineering and other technical
scenarios where domain experts and software engineers tend to speak a similar
language. However, such a shared language does not usually exist in biology where the
‘domain experts’ are experimental biologists who often are not used to expressing their
expertise in a form easily understood by software engineers. It is an important goal of
Evolvix to fill that gap and enable the best experimental biologists to express their
expertise in a form that is readily translatable into computable models. Simplifying the
construction of VBIRs is an essential component of this larger goal and critically
important for evolutionary systems biology (LOEWE 2016).

View on Evolutionary System Biology. The ultimate long-term purpose of
FlyClockbase is to substantially contribute towards implementing the vision of
mechanistic simulations in evolutionary systems biology as detailed elsewhere (LOEWE
2009; Loewe 2012; LoewE 2016). Evolutionary systems biology aims to quantify fitness
landscapes by mapping genotypes (via realistic fithess causality networks) to
phenotypes and ultimately fitness. Since circadian clocks have a large impact on
fitness, their behavior is of direct evolutionary importance (BEAVER et al. 2002; BEAVER
et al. 2003; DoDD et al. 2005; LOEWE AND HILLSTON 2008; AKMAN et al. 2010; BEAVER et
al. 2010). Constructing a high-quality model of a circadian clock in D. melanogaster
could thus provide the opportunity to explore many mutant options in silico (LOEWE AND
HiLLSTON 2008) and thus bring us closer to the goal of quantifying fithess landscapes of
interest (LOEWE 2009; LOEWE 2012; LOEWE 2016). To enable this vision, myriads of
models on the scale of FlyClockbase will need to be constructed, connected and
analyzed both individually and in various combinations. Most of today’s tools do not
manage imprecision with the high degree of precision that is needed for integrating
models at such a scale. To address these problems, we need the VBIRs automation
discussed above and other new approaches to biological model curation.

Biological model curation. The substantial needs for biological model curation
illustrated in this study highlight a challenge faced by biology as a discipline.
Researchers have accumulated very large amounts of biological data that is currently
scattered across the scientific literature in forms that are difficult to access efficiently (or
become completely inaccessible as lab notebooks are being thrown out or primary data
is lost from hard drives). In FlyClockbase we integrated scattered data from across the
literature. The substantial amount of work involved forced us to acknowledge, that it is
not possible to engage in the integration of biological information at this scale without a
substantial investment of time. Even if VBIRs construction is eventually simplified to the
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highest possible degree by the most user-friendly compiler and VBIRs construction
environment imaginable, the need for model curation in biology will not become trivial.
On the contrast, such a compiler could motivate a new generation of biologists to
actually revisit and integrate data that has long been ignored, because using it without
compiler support would have been too tedious. This possibility will likely boost interest in
a currently unusual avenue to biological research that is not well represented in the
biological job market of today.

Status quo. For a long time, most biology undergraduates have been aiming to
work at the bench in a wet-lab. Biologists overly focused on wet-lab work might
undervalue the importance of biological model curation by underestimating the
intellectual efforts it requires. However, what use is experimental data if it remains
inaccessible? While biological model curation does not generate new data per se, it
makes existing experimental observations accessible in integrated forms. The resulting
information repositories, such as GeneBank, are prime sources of data used by
computational biologists. The rising importance of computational modeling and
bioinformatics in biology is now recognized well enough so that students in these areas
can readily self-identify and point to labs, role models and career paths. Such
computational professions require substantial training in formal methods, quantitative
approaches and computational tools — usually not easily understood by experimental
biologists who dedicate their career to investigating a particular system in great detail.
Conversely, many computational, mathematical, and other programming biologists
struggle to develop enough dedication for a career committed to studying a single
biological system. The time they take to develop their computational expertise takes
away from the time they have to develop their biological intuitions to the level required
for high-quality biological model curation.

A growing avenue to biological research. Work on biological model curation
which was integral to obtaining the results we presented alerted us to a rising need for
the integration of biological data. As shown by the new biological insights presented in
this study, biological model curation is as essential to biological research as
bioinformatics algorithm development, original lab observations, and field data
collecting. It does not stand behind lab experiments or computational work in its
potential for contributing new biological insights. The low entry bar to model curation
should not be mistaken for a lacking ability to advance the cutting edge of science. Each
major avenue of biological research has trivial activities that do not speak to its potential
for biological innovation. Pipetting samples into tubes does not reflect the complexities
of experimental biology. Defining the initial values for a few variables in a program does
not reflect the potential for innovations from computational biology. Similarly, the simple
activity of comparing a few numbers from a few studies in a spreadsheet does not
reflect the importance of biological model curation for progress towards addressing
grand scientific challenges. In our experience, in depth biological model curation for
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non-trivial questions requires a substantial amount of attention that will not realistically
leave much room for additional work on the side, whether in wet-lab or in computation.
The FlyClockbase work present here demanded the undivided attention of several
researchers and integrators. Model curation work is easy to scale up or down, but
significant new findings still require dedicated resources — as everywhere in research.

What it takes to do biological model curation. While biological model curators are
still rare, their work has more history that commonly known (see Introduction on
biocurators). Biological model curators must have sufficient interests in the wet-lab work
necessary for generating the observations they curate to know about typical pitfalls, but
they typically do not work at the bench. They must be sufficiently aware of the strengths
and weaknesses of relevant modeling approaches and extract the most relevant
information from the scientific literature, but they do not need to be expert programmers.
Most importantly, they need a passion for ‘their’ system to the point where they want to
know everything about it, irrespective of the method used to observe it. This will enable
them to accumulate enough expertise for learning about the strengths and weaknesses
of different methods of observation and for developing an intuition about the quality of a
given data set. Such expertise is essential for helping to improve the overall
reproducibility of statistical processing pipelines by improving quality of relevant input
data, as recently called for (LEEK AND PENG 2015).

On the shoulders of giants. We aimed to stand on the shoulders of giants in fly
clock research. This would have been impossible without the biological contributions
from the high-quality model curation work that resulted in FlyClockbase. To enable more
biologists to stand on the shoulders of their giants we have been working towards
capturing our experiences with FlyClockbase in the definitions of VBIRs. We expect that
constructing a corresponding VBIRs complier will greatly accelerate the integration of
the biological expertise required to meet the grand challenges of our time. One of these
is to understand the long causality chain that starts with the daily rhythms of core clocks
and ends with detailed mechanisms for the changes in health and fithess caused by the
daily rhythms of the thousands of genes under circadian control.
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