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General Article Summary 16 

 17 

Circadian clocks impact health and fitness by controlling daily rhythms of gene-18 

expression through complex gene-regulatory networks. Deciphering how they work 19 

requires experimentally tracking changes in amounts of clock components. We 20 

designed FlyClockbase to simplify data-access for biologists and modelers, curating 21 

over 400 time series observed in wildtype fruit flies from 25 years of clock research. 22 

Substantial biological model curation was essential for identifying differences in peak 23 

time variance of the clock-proteins ‘PERIOD’ and ‘TIMELESS’, which probably stem 24 

from differences in phosphorylation-network complexity.  25 

      We repeatedly encountered systemic limitations of contemporary data analysis 26 

strategies in our work on circadian clocks. Thus, we used it as an opportunity for 27 

composing a panoramic view of the broader challenges in biological model curation, 28 

which are likely to increase as biologists aim to integrate all existing expertise in order to 29 

address diverse grand challenges. We developed and tested a trans-disciplinary 30 

research workflow, which enables biologists and compiler-architects to define biology-31 

friendly compilers for efficiently constructing and maintaining Versioned Biological 32 

Information Resources (VBIRs). We report insights gleaned from our practical clock 33 

research that are essential for defining a VBIRs infrastructure, which improves the 34 

efficiency of biological model curation to the point where it can be democratized.  35 
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 1 

Abstract  2 
 3 
 4 

Biological model curation provides new insights by integrating biological knowledge-5 

fragments, assessing their uncertainty, and analyzing the reliability of potential 6 

interpretations. Here we integrate published results about circadian clocks in Drosophila 7 

melanogaster while exploring economies of scale in biological model curation. Clocks 8 

govern rhythms of gene-expression that impact fitness, health, cancer, memory, mental 9 

functions, and more. Human clock insights have been repeatedly pioneered in flies. 10 

Flies simplify investigating complex gene regulatory networks, which express proteins 11 

cyclically using environmentally entrained interlocking feedback loops that act as clocks. 12 

Simulations could simplify research further. We found that very few computational 13 

models test their quality directly against experimentally observed time series scattered 14 

in the literature. We designed FlyClockbase for integrating such scattered data to 15 

enable robust efficient access for biologists and modelers. To this end we have been 16 

defining data structures that simplify the construction and maintenance of Versioned 17 

Biological Information Resources (VBIRs) that prioritize simplicity, openness, and 18 

therefore maintainability. We aim to simplify the preservation of more raw data and 19 

relevant annotations from experiments in order to multiply the long-term value of wet-lab 20 

datasets for modelers interested in meta-analyses, parameter estimates, and 21 

hypothesis testing. Currently FlyClockbase contains over 400 wildtype time series of 22 

core circadian components systematically curated from 86 studies published between 23 

1990 and 2015. Using FlyClockbase, we show that PERIOD protein amount peak time 24 

variance unexpectedly exceeds that of TIMELESS. We hypothesize that PERIOD’s 25 

exceedingly more complex phosphorylation rules are responsible. Variances of daily 26 

event times are easily confounded by errors. We improved result reliability by a human 27 

error analysis of our data handling; this revealed significance-degrading outliers, 28 

possibly violating a presumed absence of wildtype heterogeneity or lab evolution. 29 

Separate analyses revealed elevated stochasticity in PCR-based peak time variances; 30 

yet our reported core difference in peak time variances appears robust. Our study 31 

demonstrates how biological model curation enhances the understanding of circadian 32 

clocks. It also highlights diverse broader challenges that are likely to become recurrent 33 

themes if models in molecular systems biology aim to integrate ‘all relevant knowledge’. 34 

We developed a trans-disciplinary workflow, which demonstrates the importance of 35 

developing compilers for VBIRs with a more biology-friendly logic that is likely to greatly 36 

simplify biological model curation. Curation-limited grand challenges, including 37 

personalizing medicine, critically depend on such progress if they are indeed to 38 

integrate ‘all relevant knowledge’. 39 

 40 
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Are VBIRs like FlyClockbase
The New Genome Projects?

Why VBIRs?
Genome projects convincingly show 
that batch processing of similar tasks 
boosts biological research efficiency. 
Costly reads of single genes shrank to 
simple queries in the post-genomics 
era, changing biology profoundly.   

Why is batch-processing efficient? 
It inspires tools and workflows that 
speed-up tasks and reuse setup 
overheads. It improves quality by 
standardization. It inspires useful 
division of labor: a few can improve 
genome quality (via updates), used by 
many for testing hypotheses. Bundling 
updates into versions helps to improve 
quality by archiving and citing well-
defined genome states reproducibly.

We extend these ideas to other bio 

data types by introducing the VBIR 

concept for supporting FAIR data, 

Versioned    çè Findable
Biological çè Accessible
Information  çè Interoperable
Resource çè Reusable,

highlighting rich interactions. Serving 
its well-defined scope, a VBIR stores 
all integrated data and updates in 
reproducibly versioned states of a well-
structured biological info resource. 

VBIRs vary widely in scope, size, 
implementation approach, etc. Yet, as 
indicated by the 'V', they provide past 
versioned variants via long-term, 
stable, reproducible URLs. Stable 
causal VBIRs inspire construction of 
consequential VBIRs, and help capture 
complex biological expertise in 
causality networks. Reproducibility of 
overall conclusions depends on the 
stability of VBIR data formats and the 
reliability of recalculations after auto-
importing changed causal VBIRs. 
Such active networks of VBIRs can 
infer values, test hypotheses, or 
simulate complex biological systems. 
VBIR stability is key for efficient 

computing in evolutionary systems 
biology and personalizing medicine. 
They are also critical for meeting the
grand challenge of reducing the 
~$7bn/yr invested in studies with 
irreproducible data analyses. 

More details? See BioRxiv.org:  
https://doi.org/10.1101/099192
We acknowledge NSF Career Award 1149123 to L.L. 
for support, and many others as listed in our full report.

PER

Continuous Zeitgeber Time of peak 

Co
un

t o
f o

bs
er

ve
d 

tim
e 

se
rie

s

0 6 12 18 24

0
5

10
15

Protein 
AllData
dashed line,
area more 
transparent

Protein
CoreData

solid line,
area less 

transparent

PER

A B TIMTIM

C

gene  mRNA    PROTEIN 

Overview: Most humans are quick to spot differences, but it takes statistics to see if they matter on average.
Many statistical tests detect differences between means. Robust tests for differences in variance are more
difficult to find. Yet their use does not guarantee meaningful results, because data errors can easily bias
observed variances beyond recognition. We demonstrated how to resolve these challenges for documenting
statistically significant differences between the peak time variances of the circadian clock proteins PERIOD and
TIMELESS from observations of wildtype control Drosophila melanogaster over 25 years of clock research. For
our analyses we used FlyClockbase, a new Versioned Biological Information Resource (VBIR) with 400+
time series relevant to fly clocks. We have been designing a VBIR format for maximizing ease of use and
reliable access to data in order to simplify directly integrating observed time series into parameter estimates for
mechanistic fly clock models. The challenges we faced inspired us to improve the efficiency of biological model
curation, an activity that will become increasingly important as we strive to make better use of all available
expertise. We continue to improve the definition of VBIRs and explore ways in which they can be used more
efficiently to address the grand challenge of mechanistically mapping genotypes to phenotypes.

Figure 1: Transdisciplinary workflow improving reproducibility of data analyses. Well-curated VBIRs, like
FlyClockbase, boost reproducibility and hypothesis testing speed, like genome projects. We show this by inte-
grating into FlyClockbase 86 studies observing time series of (A) wildtype fly circadian clock molecular
components, inferring (B) the peak hours of proteins PER and TIM, revealing differences in variances. (C) Our
need for reducing data errors inspired compiler designs for simplifying biological model curation. We found this
requires cross-disciplinary effort: real-world bioresearch must meet compiler design for inspiring the complex
error checks required by (usually) imperfect biodata. We have been developing a VBIR data-format that helps
biologists to capture relevant (bio) domain expertise in ways that are more accessible to experts and compilers.

One page overview 
of significance:
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 1 

INTRODUCTION 2 

 3 

Several grand challenges of our time, such as personalizing medicine or mapping 4 

genotypes to phenotypes, critically depend on the careful curation of biological 5 

knowledge-fragments into integrated resources of intermediate size that are easier to 6 

handle. Such resources can provide comprehensive overviews of integrated models or 7 

experimental results on a given topic. If these resources are organized well enough and 8 

are machine readable, then biological models and datasets can be explored in more 9 

automated ways and thus greatly accelerate biological discovery.  10 

 We aim to make it easier to create such intermediate resources by improving the 11 

efficiency of high-quality biological model curation. The goal of such curation work is to 12 

integrate ‘all current knowledge’ that is relevant for a research topic of reasonable 13 

complexity while keeping all deposited information well-organized and machine 14 

readable. This requires computational solutions that are best developed while 15 

simultaneously engaging deeply with the complexities of real-world biological research 16 

where results can be less than clear-cut and relevant data may be scattered across 17 

diverse sources. Curating such diffuse and scattered data can be prohibitively 18 

complicated without appropriate strategies for handling recurrent problems. 19 

 We chose the study of circadian clocks in fruit flies as our area of in-depth 20 

biological research in order to provide a real-world context for developing strategies that 21 

improve curation efficiency. While climbing onto the shoulders of giants in fly clock 22 

research, we integrated as much fly clock expertise as we could. In our opinion, a full 23 

integration is currently far beyond the scope of any single study if it is to efficiently point 24 

readers to the detailed, evidence-based evaluations of the strengths and weaknesses of 25 

a state-of-the-art fly clock model. Thus, we focused on integrating all Drosophila 26 

melanogaster wildtype time series observations from 25 years of research (often 27 

reported as wildtype control experiments for evaluating effects of mutants). Despite this 28 

substantial reduction of scope, our integration task is far from trivial if we aim to ensure 29 

the reproducibility, stability, and rigor of integration.  30 

 Reproducibility is pivotal for science. It also does not come easy. We aimed to 31 

increase the reproducibility of results from our research in fly clock biology while 32 

exploring strategies for simplifying reproducibility in research. Our main biological 33 

findings are differences in variances of certain time series traits that we observed 34 

between different clock components. We hypothesize that these differences hold 35 

important clues for improving our mechanistic understanding of circadian clocks. 36 

Variances are easily affected by errors that also affect reproducibility and are 37 

independent from underlying biological mechanisms. Therefore, we deem it essential to 38 

include our progress towards reproducibility in the scope of this study. We mitigate the 39 

inevitable increase of length with headings that simplify navigating its various aspects.  40 
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 Our study contributes to the foundations of a system for integrating all expertise 1 

on the fly clock. We provide detailed experimental observations of time series ready for 2 

linking to statements in ‘big-picture’ fly clock models. We simultaneously explore how to 3 

integrate more efficiently the underpinning diffuse and scattered data. We find that such 4 

integration work is best accomplished by biological model curators with a deep 5 

biological interest in the research results that are being integrated. We also find that the 6 

efficiency of integrating and curating results can be greatly increased by access to 7 

strategies and tools designed to handle complex biological observations. We note that 8 

current computational tools repeatedly restrict representation possibilities to options that 9 

almost fit observed data –  but not entirely. Such cases force model curators to 10 

inappropriately ignore data or subtly bias results by defining the closest representation 11 

as ‘good enough’. We ask if well-known data structures and logic formalisms originally 12 

developed outside of biology can appropriately capture real-world observations in 13 

biology. If not, is there merit in breaking the mold? Can economies of scale be 14 

leveraged in model curation? Abstraction is critical. If solutions are too abstract, they 15 

work everywhere – albeit poorly; if not abstract enough, they work perfectly for one 16 

problem – but force reinventing the wheel next time. To guide our development of 17 

computational abstractions, we find it essential to constantly face the challenging 18 

complexities of real-world experimental data as we work to advance biological research 19 

in circadian clocks of flies. This is where useful abstractions emerge naturally.  20 

 Accordingly, this study has three strands: (i) introduce FlyClockbase, the new 21 

resource we produced, and measure its reliability; (ii) present new biological insights on 22 

clocks in flies from analyzing data in FlyClockbase; (iii) evaluate emergent opportunities 23 

for abstraction as seen by a programming language compiler architect aiming to 24 

improve the efficiency of navigating the tension between the clear-cut logic formalisms 25 

in computers and the uncertain, incomplete and noisy biological data. We found that all 26 

three strands significantly strengthened each other. Each presents a distinct view on the 27 

integrated body of trans-disciplinary research presented here. 28 

 29 

 Circadian clocks are biochemical pathways characterized by cyclical protein 30 

expression. They play a critical role in a wide variety of behavioral and physiological 31 

processes, and a better understanding of their genetic and biochemical bases could 32 

advance research in many areas (PREUSSNER AND HEYD 2016; SHARMA et al. 2016), 33 

including consciousness and sleep (CIRELLI 2009), feeding and metabolism (XU et al. 34 

2008; HURLEY et al. 2016), learning and memory (XU et al. 2008; CHOUHAN et al. 2015), 35 

stress and immunity (DUMBELL et al. 2016), inflammation (CARTER et al. 2016), cancer 36 

(SEPHTON AND SPIEGEL 2003; MASRI et al. 2015; SALAVATY 2015; MOLINA-RODRÍGUEZ AND 37 

ÁLVAREZ 2016), and psychological functioning (MCCLUNG 2013; PAREKH et al. 2015; 38 

COOGAN et al. 2016).  39 

 40 
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 Model organisms. Many model organisms have been used to study circadian 1 

rhythms, including Synechococcus elongatus, Neurospora crassa, Arabidopsis thaliana, 2 

Mus musculus, and D. melanogaster (BELL-PEDERSEN et al. 2005). Each model 3 

organism presents benefits and challenges. Here we focus on D. melanogaster, which 4 

is known for its ease of genetic manipulation (STANEWSKY 2003; ÖZKAYA AND ROSATO 5 

2012) and its well-characterized genome (DOS SANTOS et al. 2015). Human circadian 6 

rhythms are certainly more complex than those of D. melanogaster. For example, it is 7 

not uncommon for one fly circadian clock component (e.g., period or cryptochrome) to 8 

correspond to multiple mammalian circadian clock components (e.g., period1 and 9 

period2, or cryptochrome1 and cryptochrome2) as reviewed elsewhere (YOUNG AND KAY 10 

2001). Despite these differences in complexity, the D. melanogaster clock is similar in 11 

many aspects to the mammalian clock (YOUNG AND KAY 2001; ROSATO et al. 2006). 12 

Insights from the fly clock have substantially contributed to understanding aspects of the 13 

mammalian clock in general and in particular related disorders such as familial 14 

advanced sleep phase syndrome (FASPS) (ROSATO et al. 2006), pancreatic cancer 15 

(POGUE-GEILE et al. 2006), and bipolar disorder (KO et al. 2010; MCCLUNG 2013). 16 

Increased knowledge of the D. melanogaster circadian clock could continue to provide 17 

important information for future work in a variety of areas pertaining to the mammalian 18 

clock, including sleep disorders (WAGER-SMITH AND KAY 2000), Alzheimer’s disease 19 

(LONG et al. 2014), and psychiatric disorders (MCCLUNG 2013; ZORDAN AND SANDRELLI 20 

2015). 21 

 22 

 Math models. Computer simulations of mathematical models are powerful tools 23 

for studying the dynamics of complex non-linear systems such as circadian clocks. They 24 

have been used for decades in many disciplines (KURTZ 1972; CROSBY 1973; 25 

TARANTOLA AND VALETTE 1982; ASCHER AND PETZOLD 1998; LAW AND KELTON 2000; 26 

ZEIGLER et al. 2000; TARANTOLA 2005; ANDERSON 2007; GILLESPIE 2007; GILLESPIE 2008; 27 

ANDERSON et al. 2011; KARR et al. 2012; MAVELLI 2012; WILKINSON 2012; ZEIGLER 2012; 28 

DISTEFANO 2013; GILLESPIE et al. 2013; SANGHVI et al. 2013; KARR et al. 2014; CHYLEK 29 

et al. 2015; KARR et al. 2015a). To be useful for the study of circadian clocks, 30 

mathematical models need to mirror relevant aspects of real-world clocks, which may 31 

include key mechanisms, reaction rates, and/or other parameters or traits. Models 32 

integrate the specified details to enable simulations of time series of amounts of 33 

circadian clock components that are based on the assumptions of the in silico model. 34 

The simulated distributions of amounts of different clock components at specified times 35 

is expected to match observable real-world time series if a model’s assumptions are 36 

correct. Such simulations are facilitated by rigorous simulation algorithms that have a 37 

rich history in modeling biochemical reaction networks (KURTZ 1972; GILLESPIE 1977; 38 

ANDERSON 2007; GILLESPIE 2007; GILLESPIE 2008; ANDERSON et al. 2011; KARR et al. 39 
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2012; MAVELLI 2012; WILKINSON 2012; DISTEFANO 2013; GILLESPIE et al. 2013; SANGHVI 1 

et al. 2013; KARR et al. 2014; CHYLEK et al. 2015; KARR et al. 2015a). 2 

 3 

 Estimating unknown rates from observed time series. If the structure of a 4 

model is essentially correct but its parameter values are not, then time series observed 5 

in the real world can, in principle, be used to narrow the margins of uncertainty around 6 

poorly-known rate parameters (TARANTOLA AND VALETTE 1982; TARANTOLA 2005). Thus, 7 

access to a high-quality collection of observed time series could substantially contribute 8 

to improving the quality of biological insights gained from computational models. 9 

Mechanistic models with firm mathematical underpinnings can be used to explore 10 

hypotheses that are impractical to investigate in the laboratory for reasons that may 11 

include the effort required to produce mutants or the difficulty of measuring particular 12 

clock features experimentally (LOEWE AND HILLSTON 2008; LOEWE 2009; LOEWE 2016). 13 

By exploring potential hypotheses of interest in silico, models ideally inform future wet-14 

lab experiments.  15 

 16 

 Biological example. The clock component clockwork orange (cwo) was thought to 17 

indirectly inhibit transcription of a number of key clock genes, including period (per), 18 

PER-aryl-domain protein 1 (pdp1), and vrille (vri) (KADENER et al. 2007; LIM et al. 2007), 19 

so flies with decreased cwo expression were expected to show increased levels of per, 20 

pdp1, and vri. Experimental results, however, indicated that cwo mutants exhibited 21 

decreased expression of these clock components (MATSUMOTO et al. 2007; RICHIER et 22 

al. 2008). In an attempt to explain these results, FATHALLAH-SHAYK et al. (2009) created 23 

a clock model that included cwo. This model was able to predict the experimental 24 

results previously shown and was used to develop a novel hypothesis which described 25 

a more complex interaction between cwo and the rest of the clock. Rather than simply 26 

repressing a transcriptional activator, the authors of this model postulated that the 27 

interaction between weak repression by cwo and strong activation by the transcriptional 28 

activator led to indirect activation of a different part of the clock. This explained the 29 

experimental results from cwo mutants and suggested that cwo plays a role in reducing 30 

minor variations in the clock known as “jitters” ((FATHALLAH-SHAYKH 2010); more details 31 

(SCRIBNER AND FATHALLAH-SHAYKH 2011)). This is just one example of the powerful ways 32 

in which modeling can act as a thinking tool, helping us to understand biology better.  33 

 Models and reality. Computational models simulations models are fundamentally 34 

attempts to represent a simplified version of reality, and their utility hinges on their ability 35 

to faithfully capture the most important aspects of reality (TARANTOLA AND VALETTE 1982; 36 

TARANTOLA 2005). Complex processes with well-defined inputs and outputs are easily 37 

simplified by assuming that the timing of these processes remains essentially 38 

unchanged; then complicated sub-models of such processes can be substituted by 39 

simple transformations that merely reproduce the correct timing. If a model is to help 40 
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understand, describe, or predict a biological system, such simplifications must be 1 

grounded in observations and a biological understanding of the phenomena to be 2 

modeled (WOOLEY AND LIN 2005; BRODLAND 2015). For example, a model for predicting 3 

credible functions for cwo in the clock (FATHALLAH-SHAYKH et al. 2009) needed to be 4 

able to replicate previous experimental results first, before it could make useful 5 

predictions. Such work is facilitated by the simplifying assumption that transcription, 6 

translation, and degradation in clock models can be replaced by simple reactions with 7 

rates appropriately chosen to match experimental data. Thus, access to a broad array 8 

of curated, high-quality experimental observations is critical for efficiently constructing 9 

and refining computational models.  10 

 11 

Reproducibility of research. The advanced mechanistic simulations and complex 12 

statistical inference methods above are necessary for arriving at a rigorous 13 

understanding of circadian clocks. They require a complex software stack and 14 

substantial efforts to implement dedicated code, workflows, and data organization 15 

schemes. It is not easy to develop scientific computing solutions of such complexity 16 

without loss of usability or sacrificing the reproducibility of earlier results. Yet the 17 

importance of reproducibility for science is undisputed and has recently received some 18 

attention (IOANNIDIS 2005b; JASNY et al. 2011; HUANG AND GOTTARDO 2013; MCNUTT 19 

2014; AARTS et al. 2015; FREEDMAN et al. 2015a; ALLISON et al. 2016; BAKER 2016; 20 

BARBA 2016; LEWIS et al. 2016; STODDEN et al. 2016). Reproducibility is an extremely 21 

broad topic that frequently requires input from many experimental, statistical, 22 

computational, theoretical and applied disciplines to arrive at rigorous solutions (HUANG 23 

AND GOTTARDO 2013). Conducting research reproducibly requires more effort than 24 

commonly realized (DONOHO 2009; STODDEN et al. 2014; JAMES et al. 2015; LOEWE 25 

2016; MESNARD AND BARBA 2016). Yet, the steep upfront costs of entry seem to pay off: 26 

research teams with a reproducible research workflow report substantial benefits 27 

(DONOHO 2009; MESNARD AND BARBA 2016). Evaluations of computational tools Such 28 

reports inspired us to work towards improving reproducibility in our efforts. While useful 29 

recommendations and tools exist e.g. see https://www.xsede.org/web/reproducibility 30 

and (INCE et al. 2012; STODDEN et al. 2014; POLDRACK AND POLINE 2015; LEWIS et al. 31 

2016; STODDEN et al. 2016), there is no silver bullet and standards are still evolving. We 32 

aimed to keep computational requirements to a minimum.  33 

 Firm foundations. Here we cannot investigate the reproducibility of complex 34 

mechanistic circadian clock simulations or their underpinning parameter estimates. 35 

However, we can prepare a firm foundation for later studies. Rigorous reproducible 36 

reports of new parameter estimates need to provide many of the details reported here. 37 

This includes details on (i) literature database search strategies, (ii) initial screening 38 

processes and criteria, (iii) filtering of candidate studies and other special selection 39 

methods, (iv) reasons for combining some datasets but not others, (v) justifications for 40 
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approaches that handle noise, outliers, or other complications, (vi) bibliographic 1 

references, (vii) a version of all raw data before preprocessing, and (viii) a well-2 

integrated final version of the modified data used for inference after preprocessing. 3 

Ideally, such a study would include additional analyses like (ix) a human error analysis 4 

providing estimates of some low-level error rates quantifying the quality of internal raw 5 

data handling, (x) an error analysis and justifiable correction strategies for errors 6 

inherent to the raw data as received by this study, (xi) some high-level summary 7 

statistics description of the observed data, (xii) justifications and results from conducting 8 

various reasonable consistency checks, (xiii) reviews of reasonable biological 9 

interpretations of typical observations, outliers, or other patterns of interest, (xiv) critical 10 

assessments summarizing sufficient biological and other context to help readers 11 

evaluate thoroughly, skeptically, and efficiently how much trust is justified by the quality 12 

of the best and most complete dataset in this study, and (xv) any other potential 13 

limitations. Since circadian clocks in flies have been an active area of research for some 14 

time, a substantial number of studies report time series of potential interest. Time series 15 

of clock components are foundational for understanding circadian clocks. Appropriately 16 

integrating them raises various subtle issues that require decisions in order to build a 17 

strong foundation for further studies. We initially underestimated the complexity of 18 

dealing with their combined impact on the reproducibility of a steep data processing 19 

pyramid that aims to eventually integrate parameter estimation and biologically 20 

reasonable fly clock model ensembles. Since later steps such as parameter estimation 21 

cannot correct quality problems at earlier steps, we decided to dedicate this study to 22 

ensuring the availability of a durable high-quality set of time series observations ready 23 

to serve beyond this study. Such efforts rival the complexity of wet-lab experiments, 24 

except that they occur in a dry lab. The substantial investments in manual curation of 25 

high quality datasets are thus justified by the well-known GIGO principle that applies to 26 

simulations and experiments alike (Garbage In, Garbage Out). We next present some 27 

background on questions of basic reproducibility and data quality that arise for 28 

integration efforts at the scale of our study.  29 

 Problems with label reproducibility. Irreproducibility can be caused by seemingly 30 

trivial errors while executing deceptively simple work, such as pipetting errors (BROMAN 31 

et al. 2015) or (mis)labeling a line of descent in the lab (LORSCH et al. 2014; FREEDMAN 32 

et al. 2015b). Assigning sequence annotations in GeneOntology databases is neither 33 

trivial nor always correct (JONES et al. 2007); incorrect assignments can replicate via 34 

uninformed users and can also be generated easily by using spreadsheets with 35 

inappropriate auto-conversion (ZEEBERG et al. 2004; ZIEMANN et al. 2016). Activities like 36 

labeling or pipetting in array shaped micro-titer plates appear simple, but their simplicity 37 

is deceptive because they involve naming – an often-underestimated problem of 38 

extremely varying complexity (LOEWE 2016). The stakes are high and have led to calls 39 

for systematically improving research at the bench and beyond (COLLINS AND TABAK 40 
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2014; LORSCH et al. 2014; ALLISON et al. 2016). The impact of these problems on our 1 

study is immediate. We have little choice but to start with the assumption that all errors 2 

had been corrected by the time of publication, implying correctness of all name-related 3 

operations of all researchers involved in the production of the over 400 time series we 4 

report below. Time of publication matters, as authors and readers might struggle to get 5 

errors corrected if found later (ALLISON et al. 2016). The list of implications is long: no 6 

accidental swaps anywhere, neither in any fly strain used throughout its relevant history 7 

of descent, nor in the vials of final experiments, nor in the raw data, nor in averaging 8 

repeated observations, nor in labeling the final plots for publication. We appreciate that 9 

every single team of authors did their best to ensure that all errors were corrected in the 10 

final publication. Also, label-errors in published time series of clock components are 11 

probably less frequent than extrapolations of single-person initial error rates might 12 

suggest (assuming scrutiny from co-authors and peer review). However, human error 13 

analyses performed over decades in very diverse disciplines and for tasks of varying 14 

complexity have quantified in numerous experiments that “to err is human” (PANKO 15 

2016). Measured error rates observed in one type of experiment do not easily transfer 16 

to other contexts, but the existence of labeling errors in labs is well documented 17 

(LORSCH et al. 2014; BROMAN et al. 2015). Thus, it would be surprising if not a single 18 

error existed in the published time series data we integrated. Equally, it would be 19 

surprising if such a complex set of diffuse and scattered data could be integrated 20 

without adding a single error from data handling. These observations highlight the 21 

importance of assessing error rates and providing a defined protocol for reducing data 22 

handling errors. Thus, high-quality data curation requires (in reverse order) mature 23 

strategies for efficiently 24 

• monitoring and handling all relevant error types, 25 

• defining data structures that enable true data integration (and efficient querying) 26 

• collecting all relevant scattered data in one place (and pre-sort for integration).  27 

All this requires substantial efforts and biological model curators could probably learn 28 

from the substantial methodologies for human error analysis that have been developed 29 

elsewhere (NASA et al. 2006-07; NASA et al. 2011). Some of these approaches are too 30 

complex for the application to individual studies in biology. However, meta-analyses 31 

aiming to draw conclusions from noisy biological data need to find a way of handling the 32 

errors that occur during data handling. They also have to address reproducibility in the 33 

domain of statistics.  34 

 Statistical reproducibility. A substantial fraction of recent problems with 35 

reproducibility is caused by a lack of statistical reproducibility (AARTS et al. 2015; 36 

HALSEY et al. 2015; STODDEN 2015). These problems easily arise while designing 37 

experiments or analyzing data without the necessary statistical background (SALSBURG 38 

1985; VAUX 2012). Here, interpretations of ‘necessary’ are the subject of much 39 

discussion (STERNE 2003; CUMMING 2013; SHARPE 2013; LEEK AND PENG 2015) as 40 
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guidelines on statistical best practices are being updated (ALTMAN et al. 1983; MILLIS 1 

2003; PLOWMAN 2008; MAZUMDAR et al. 2010; CUMMING 2013; DRUMMOND AND VOWLER 2 

2013; JOHNSON 2013; CUMMING 2014; HUANG et al. 2015; SAVALEI AND DUNN 2015; 3 

TRAFIMOW AND MARKS 2015; WOOLSTON 2015; TARONI et al. 2016; WASSERSTEIN AND 4 

LAZAR 2016), but not necessarily followed everywhere (LEW 2012; TRESSOLDI et al. 5 

2013). For example, a short-sighted over-reliance on P-values easily generates 6 

irreproducible or misleading results (LEW 2012; CUMMING 2013; NUZZO 2014; HALSEY et 7 

al. 2015; LEEK AND PENG 2015), a criticism with history (LOFTUS 1993; STERNE 2003). 8 

Briefly, P-values are the probability that an observation can be explained by a given 9 

null-hypothesis, which usually represents the ‘most boring explanation’. Thus, P-values 10 

are often seen as ‘null-hypothesis significance tests’, but they do not make any 11 

statements about alternative hypotheses, of which there could be many. Yet 12 

researchers often use P-values to draw unsafe conclusions of deceptive simplicity about 13 

their respective favorite alternative hypotheses (LEW 2012; TRESSOLDI et al. 2013). They 14 

do so with such regularity that this error’s pervasiveness might one day motivate a 15 

fascinating human error analysis. P-values may offer substantial attractions as they 16 

combine the apparent reassurance of a precise number, the obvious simplicity of a 17 

single dimension, and the clear choice between a boring and a seemingly interesting 18 

option. In comparison, careful time-consuming analyses might be less appealing as they 19 

often reveal complex ensembles of less-than-clear-cut alternatives in a world of multi-20 

dimensional trade-offs, requiring qualitative reasoning to decide which quantitative 21 

methods to use for producing precise numbers. Such analyses offer more nuance, 22 

albeit at greater cost and require more expertise in advanced statistics (WILCOX 2012), 23 

and aspects of type systems (PIERCE 2002), semantics, and naming (LOEWE 2016). 24 

These complex analyses underscore a conclusion that is intuitively well understood: 25 

biology does not present itself in a black and white picture of only interesting or boring 26 

parts. Instead it offers not only shades (allowing for gradients in addition to cutoffs at 27 

significance thresholds), but also colors (additional dimensions that otherwise might be 28 

inappropriately collapsed into a single dimension). The recent interest in statistical 29 

reproducibility has produced guidelines that recommend a closer look at some of these 30 

additional dimensions by estimating confidence intervals and other measures instead of 31 

testing arbitrary significance thresholds (KILLEEN 2005; NAKAGAWA AND CUTHILL 2007; 32 

CURRAN-EVERETT 2009; CUMMING 2013; CUMMING 2014; DEMIDENKO 2016). This does 33 

not mean that P-values have no merit (MURTAUGH 2014; STANTON-GEDDES et al. 2014) 34 

and hence a pragmatic approach might be most appropriate (BOOS AND STEFANSKI 35 

2011), if the high variability of P-values is accounted for (HALSEY et al. 2015). In either 36 

case, close attention to the robustness of statistical methods is warranted (WILCOX 37 

2012), and any statistical conclusions should be supported by some analysis of their 38 

statistical reproducibility (HALSEY et al. 2015). Finally, showing more raw data is 39 

preferable (LOFTUS 1993; DRUMMOND AND VOWLER 2011).  40 
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 Statistical error iceberg. Recent interest in statistical reproducibility has drawn 1 

attention to other aspects of statistical analysis workflows. In this context, P-values have 2 

been described as the tip of the iceberg (LEEK AND PENG 2015). To arrive at fully 3 

rigorous conclusions requires investigating numerous detailed decisions about which 4 

data to include, which outliers to remove, which tests to use, and which simplifying 5 

assumptions to employ. Such analyses are more complex to produce and read, but they 6 

are currently essential for exploring the most efficient approaches for arriving at reliable 7 

statistical results. The fundamental nature of time series data for understanding clocks 8 

in flies motivated us to invest in corresponding statistical reliability. Therefore, we 9 

explore below several alternative ways to construct the statistical analysis pipeline for 10 

this study.  11 

 12 

 Reproducibility in genetics. The recent surge of interest in reproducibility has 13 

resulted in a number of studies of additional relevance to FlyClockbase. For example, 14 

the reproducibility of genotype-phenotype associations has been investigated (NCI-15 

NHGRI WORKING GROUP ON REPLICATION IN ASSOCIATION STUDIES et al. 2007; IOANNIDIS 16 

et al. 2009b; JANSSENS et al. 2009; KRAFT et al. 2009). Analysis of gene expression are 17 

an important tool of genetic analysis and have therefore seen substantial standardizing 18 

efforts (BAMMLER et al. 2005). Analysis of standardized and non-standardized 19 

measurements have found improved reproducibility when standardized experimental 20 

protocols were used (BAMMLER et al. 2005). For independent studies collected from the 21 

literature, repeatability of microarray gene expression analyses has met limited success 22 

(IOANNIDIS et al. 2009a). Reasons for failure included the unavailability of data, 23 

incomplete annotations, and missing documentation on data processing (IOANNIDIS et al. 24 

2009a). Other relevant observations that can hamper reproducibility include pipetting 25 

errors (BROMAN et al. 2015) and pedigree errors (BROMAN 1999).  26 

 27 

 Versioned Biological Information Resources (VBIRs). The importance of 28 

biological information resources is undisputed and has motivated the construction of 29 

hundreds of heterogeneous resources as reviewed elsewhere (BROOKSBANK et al. 2005; 30 

NG et al. 2006; LAIBE AND LE NOVERE 2007; WIERLING et al. 2007; VAN GEND AND SNOEP 31 

2008; SULLIVAN et al. 2010; DRAGER AND PALSSON 2014; NAJAFI et al. 2014). Sizes vary, 32 

as do scope and topics ranging from general (e.g. https://datascience.nih.gov/commons 33 

; https://kbase.us ), to organism specific (e.g. http://flybase.org organized around 34 

Drosophila genomes (GRAMATES et al. 2016; MARYGOLD et al. 2016)), modeling specific  35 

(LE NOVERE et al. 2006; CHELLIAH et al. 2015), approach specific (CUSICK et al. 2009), 36 

and down to pathway or molecule specific resources (e.g. ClotBase (SONAWANI et al. 37 

2010) or SwissLipids (AIMO et al. 2015)). Their heterogeneity remains a challenge and 38 

motivated development of the FAIR Principles (WILKINSON et al. 2016). The FAIR 39 

Principles were designed for evaluating credible solutions for the problem of exchanging 40 

data in biology and emphasize important principles that make data sharing FAIR and 41 
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data Findable, Accessible, Interoperable, and Reusable (WILKINSON et al. 2016). The 1 

FAIR Principles do not aim to provide any standards or implementations, but leave the 2 

actual development of solutions to others, such as the proposed standard for Minimal 3 

Information Requested In the Annotation of biochemical Models (MIRIAM) (LAIBE AND LE 4 

NOVERE 2007), Brief, Explicit, Summarizing, Technical (BEST) Names (LOEWE 2016), 5 

and the many proposals reviewed elsewhere (DRAGER AND PALSSON 2014). Overall 6 

solutions will need to solve the extraordinarily difficult challenge of data integration 7 

(DOAN et al. 2012). Accordingly, efforts to exchange detailed data more efficiently in 8 

these complex contexts have become top priorities in biological research contexts (NIH 9 

et al. 2012; DRAGER AND PALSSON 2014; NIH 2015; NIH 2016; WILKINSON et al. 2016). 10 

 Importance of versioned data integrators. Versioned interoperable information 11 

resources of intermediate size are likely to play a permanent role as hubs of integration 12 

for the biological expertise in an area. The versioning is important to enable users to 13 

access a stable state of information, without the unrealistic demand that these 14 

resources have reached their final stage of development. Any VBIR worth developing 15 

will likely be updated and improved for an extended period of time. While rates of such 16 

change are likely to vary substantially, none of these changes should imperil the 17 

reproducibility of some result that is based on the earlier state of the resourced as 18 

accessed by the authors of that result. How to achieve interoperable long-term stable 19 

versioning that is flexible enough to accommodate the broad range of needs of 20 

resources as heterogeneous as VBIRs is an open question for research in the 21 

semantics of naming. Currently, innumerable, incompatible, and inconsistent versioning 22 

systems are actively used by numerous projects. Integrating them without reflection 23 

would create a system that is almost incomprehensible and inflict on users intolerable 24 

amounts of inessential complexity. Experience has shown that such a complex system 25 

would be very brittle and would jeopardize reproducibility by its complexity. However, 26 

the value of consistent easily reproducible integration is in the quality to which usable 27 

resources offer expert curated relevant data that is continuously updated. Updates 28 

could be triggered by detecting errors or integrating future experiments, possibly 29 

expanding scope or precision through improved data models (but always increasing 30 

some versioning number). Managing such updating processes works best for VBIRs of 31 

some intermediate size. Thus, VBIRs size is defined at the lower end by exceeding the 32 

limited scope of single publications, reviews, or meta-analyses that are all frozen in time 33 

once completed. At their typical size, VBIRs enable the functional, ongoing integration 34 

of information evaluating multiple studies and reviews from the perspective of a well-35 

defined scope. At the upper end, VBIRs generally remain at a much lower complexity 36 

than grand challenges, and thereby avoid many additional complications caused by 37 

their excessive complexity. This intermediate size and their stability enables VBIR to act 38 

as reliable building blocks for accumulating biological expertise and address existing 39 

grand challenges more efficiently.  40 
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 Flexibility of VBIRs. These minimal constraints allow VBIRs to take on a great 1 

diversity of organizational forms and the size of their scope may vary widely. However, 2 

not all biological information resources currently perceived as useful do satisfy these 3 

requirements. For example, not all repositories and databases in biology that aim to 4 

continually integrate information provide reliable access to clearly defined states in the 5 

past that are easy to access and to cite. Traditionally, the biological information 6 

resources that are easiest to cite are journal articles, but these do not usually provide 7 

information in a form that is structured enough for further processing and they do not 8 

usually update information (ALLISON et al. 2016). Some authors complement their 9 

articles with online databases or more static resources that can contain valuable 10 

material. However, the lack of standards and tools that are easy to use means that such 11 

efforts usually require substantial programming and data science expertise when they 12 

are set up and when they are to be maintained. Such barriers of entry make it very 13 

difficult for non-programming biologists with interesting datasets to set up and publish a 14 

VBIR in a form that facilitates further data integration.  15 

Database integration is a special case of data integration. Both are enormous 16 

general challenges, whenever non-trivial datasets are to be used together (DOAN et al. 17 

2012). For example, a substantial research collaboration worked towards integrating 18 

data scattered across 81 geospatial temporal ecology datasets from 7 provider types in 19 

an effort to build LAGOS, the LAke multi-scaled GeOSpatial & temporal database 20 

(SORANNO et al. 2015). The substantial supporting online material of the initial LAGOS 21 

description (SORANNO et al. 2015) provides an impression of the numerous data-22 

handling and type system synchronization challenges the LAGOS team had to face in 23 

order to obtain some state of data integration (see 24 

http://csilimno.cse.msu.edu/lagos_status.php for updates).  25 

Cochrane reviews provide a completely different approach to data integration. To 26 

reduce arbitrary bias that easily arises in more limited non-systematic reviews, 27 

http://www.cochranelibrary.com aims to stimulate the use of systematic methods for 28 

finding and integrating all peer-reviewed information about a given topic. The resulting 29 

retrospective and prospective meta-analyses have substantially advanced the 30 

integration of biomedical observations. Ongoing development of methodologies for 31 

systematic bias reduction has greatly increased awareness and approaches available 32 

for reducing the influence of important biasing factors (THARYAN 1998; ADES et al. 2008; 33 

MCKENZIE et al. 2013; DOI 2014; ONITILO 2014; DEBRAY et al. 2015; EFTHIMIOU et al. 34 

2016). This success does not imply that further improvements are impossible; there are 35 

biases that are notoriously difficult to address, such as certain types of ascertainment 36 

bias (AMOS et al. 2003; CLARK et al. 2005; LACHANCE AND TISHKOFF 2013; MINIKEL et al. 37 

2014) and biases against the publication of negative results (JOHNSON AND DICKERSIN 38 

2007). In fact, it can be argued that biases are almost everywhere (e.g.: IOANNIDIS 39 

2005a; PATIL et al. 2015). Thus, quantifying biases and analyzing their impact 40 
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appropriately may be more important than demanding their absence. Cochrane reviews 1 

are not VBIRs, because traditional publications cannot be updated regularly. If VBIRs 2 

could be published easily, without the currently required database programming 3 

overheads, then Cochrane reviews with a reasonably well-defined data model could in 4 

principle become VBIRs. 5 

 6 

Genome projects as a model for VBIRs development on a broader scale. 7 

VBIRs increase the speed of hypothesis testing and greatly add to the long-term value 8 

of properly annotated wet-lab data. They offer the raw material for diverse meta-9 

analyses, opening up entirely new research perspectives. In this respect, VBIRs mirror 10 

similar efficiencies known from genome projects. The similarities do not end here. 11 

VBIRs development also shows similar strong dependencies on software and data 12 

organization. Genome projects demonstrated efficiencies of scale by separating data 13 

collection and various stages of data interpretation (LANDER et al. 2001; VENTER et al. 14 

2001). The efficiency of post-genomic sequencing workflows critically depends on the 15 

development of appropriate data structures, processing tools and exchange protocols 16 

(WILKINSON et al. 2016). We expect similar boosts to efficiency from developing VBIR-17 

tools. For example, they could support more biology-friendly data structures to increase 18 

the efficiency and precision of integrating inherently imprecise biological observations. 19 

They could also greatly accelerate the adoption of sophisticated statistical analysis by 20 

the biological community, simply by implementing the appropriate statistical methods 21 

into the corresponding automated workflows. This would reduce problems of confusing 22 

SD and SEM (SALSBURG 1985), and opens up a new avenue for communicating 23 

recommended best practice for statistical analyses, that could be provided right next to 24 

a user-friendly implementation (MAZUMDAR et al. 2010; SHARPE 2013). 25 

Genome projects have revolutionized biology. Here we want to explore whether 26 

efficiencies of scale in biological model curation organized in a VBIRs project might hold 27 

a similar potential for accelerating the pace of biological discovery. The success of 28 

genome projects and other targeted efforts has been built on efficiently organizing and 29 

exchanging new data and interpretations (WILKINSON et al. 2016). For VBIRs 30 

exchanging data is more complicated, because their data is more structured and more 31 

diverse than typical genome data. Accordingly, efforts to exchange details data more 32 

efficiently in these complex contexts have become top priorities (NIH et al. 2012; 33 

DRAGER AND PALSSON 2014; NIH 2015; NIH 2016; WILKINSON et al. 2016). Such work is 34 

essential for progress towards meeting increasingly complex grand challenges like 35 

personalizing medicine, constructing genotype-phenotype-maps, or predicting how 36 

cancer cell populations evolve using mechanistic models in evolutionary systems 37 

biology (LOEWE 2016). By definition, these grand challenges all exceed the problem-38 

solving skills of any single research unit, and therefore critically depend on the efficient 39 

communication of the latest progress. This progress could be captured in high-quality 40 
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VBIRs that probably will bring the same efficiency benefits as genome projects, once 1 

corresponding tools become available for dealing with their more diverse data types. 2 

 3 

Importance of biological model curation. None of the benefits above can be 4 

realized without substantial human input in the form of biological model curation. 5 

Despite many advances in machine learning, the gold standard for data curation is still 6 

the eye of a domain expert. While machines are extraordinary in exploiting regular 7 

patterns, it has been difficult to teach machines how to correctly handle the many 8 

exceptions that are readily recognized by human experts as deviations from ‘common 9 

sense’ (BURKHARDT et al. 2006; SALIMI AND VITA 2006). Biological model curation by itself 10 

is not new. In fact, one could argue that very essence of research is the construction 11 

and curation of biological expertise that could also be described as a model. Thus, the 12 

curation of biological information is at least as old as Linnaean taxonomy (LINNÉ 1758). 13 

None of the recent resources that systems biology depends on could have been put 14 

together without substantial model curation efforts (see e.g. DRAGER AND PALSSON 15 

2014). The work of biological model curators, or biocurators, has only recently come 16 

into focus as an increasingly important avenue of biological research (BOURNE AND 17 

MCENTYRE 2006; BURKHARDT et al. 2006; SALIMI AND VITA 2006; HOWE et al. 2008; ST 18 

PIERRE AND MCQUILTON 2009; BATEMAN 2010; BURGE et al. 2012; HIRSCHMAN et al. 2012; 19 

ZHANG et al. 2014b; MITCHELL et al. 2015; ORCHARD AND HERMJAKOB 2015; RODRIGUEZ-20 

ESTEBAN 2015; GIBSON et al. 2016; KIM et al. 2016; REISER et al. 2016; SINGHAL et al. 21 

2016). By now biocurators have an international society ( http://biocuration.org ) and an 22 

official journal ( http://database.oxfordjournals.org ). Funding for digital depositories in 23 

biology has historically been complicated because few have realized the essential 24 

contributions of biological model curators to the overall scientific enterprise. This 25 

problem has been recognized and efforts are underway to address this discrepancy 26 

(EMBER et al. 2013). One potential contribution to these efforts could be to find a way 27 

that substantially reduces the cost of initiating, growing, and maintaining VBIRs. We 28 

explore a potential approach for simplifying model curation by exploiting advances in 29 

computer science that have greatly simplified the design and construction of compliers 30 

for new programming languages.  31 

 32 

How a compiler could help in biological model curation. Programing 33 

language compliers are extraordinary efficient tools for guaranteeing that a given 34 

collection of texts (source code) conform to a well-defined standard (the complier’s 35 

language) and are transformed into output that is guaranteed to conform to strict rules. 36 

The construction of compliers requires an advanced understanding of computer 37 

science, but decades of research have produced a substantial body of data structures, 38 

algorithms, and tools that greatly simplify the construction of compilers today (e.g. 39 

COOPER 2012; GRUNE 2012). Thus, the question today is not if a compiler can be 40 
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constructed for a given language, but rather what should a language look like for which 1 

it is worth constructing a compiler. After the construction of uncounted programing 2 

languages each with their own strengths and weaknesses, rather compelling reasons 3 

are necessary for creating a new one and any such efforts should learn from the diverse 4 

shortcomings of their many predecessors (MANDRIOLI AND PRADELLA 2015). Traditional 5 

approaches to designing new programming languages have not included the very large 6 

amounts of feedback from research biologists that are necessary for creating a 7 

language design that could efficiently support biologists in their work (LOEWE 2016).  8 

 Enforce best practices. For example, such a compiler could greatly reduce the 9 

confusion between SD and SEM that has plagued the reporting of biological results for 10 

some time (SALSBURG 1985). A compiler that implements the latest statistical testing 11 

methods could greatly improve the adoption of statistical best practices in the biological 12 

research community (MAZUMDAR et al. 2010; SHARPE 2013). Such a compiler could also 13 

advance standards for facilitating interoperability in systems biology (DRAGER AND 14 

PALSSON 2014) and thereby contribute towards solving the extraordinarily difficult 15 

challenge of data integration (DOAN et al. 2012), improve the semantic reproducibility of 16 

biological data (LOEWE 2016), facilitate the sharing of meaningful data based on the 17 

FAIR Principles (WILKINSON et al. 2016), and encourage biologists to provide the 18 

Minimal Information Requested In the Annotation of biochemical Models (MIRIAM) 19 

(LAIBE AND LE NOVERE 2007). VBIRs construction does not require the existence of such 20 

a compiler, as every task can also be performed manually. Manual work is slower, but 21 

also more flexible, and can therefore better attend to the needs of high-quality biological 22 

model curation of a given data set. If such curation work is combined with the 23 

perspective of a compiler architect, then it provides extraordinary opportunities for 24 

designing efficient abstractions for data structures and tasks that can later be supported 25 

by a fully automated compiler.  26 

Efficiencies of scale. Many VBIRs are likely to have similar needs that can be 27 

served by the same compiler if they share a standard for storing data. Thus, the costs of 28 

compiler development can then benefit several VBIRs where they reduce the cost of 29 

VBIR development and maintenance, which have been difficult to fund (EMBER et al. 30 

2013). Compiler development is also an excellent opportunity for detecting problems in 31 

logic formalisms; such errors have the potential for causing exorbitant costs (e.g. HOARE 32 

2009; KAMP 2011; LOEWE 2016). Therefore, constructing such a compiler could already 33 

be a cost-effective decision for the longer-term development and maintenance of a 34 

single VBIR alone. We aim to observe during our biological research where commonly 35 

used logic formalisms made it more complicated to accurately represent biological 36 

observations with their usual uncertainty. Representing uncertain biological data in 37 

computational structures is a sufficiently frequent problem to cause substantial 38 

frustration in efforts towards curating biological models at a reasonably high quality.  39 

 40 
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 Opportunity. Our systematic study of circadian clock gene expression patterns 1 

offers intriguing opportunities for engaging with the timely questions of reliable data 2 

handling, control experiment repeatability, human error analysis, reproducible 3 

computing, statistical reproducibility, and the semantic reproducibility of source code in 4 

research computing. These questions might be easy to dismiss at first sight, but as 5 

discussed above, in the broader context of growing data sets in VBIRs, low rates of 6 

diverse and individually rare errors can combine into a pervasive fog of confusion that 7 

can render a valuable collection of scientific results unusable. Usually these problems 8 

cannot be investigated at the level of a single experimental study, but this does not 9 

imply that errors in VBIRs are rare, or without consequence (e.g. see (ZEEBERG et al. 10 

2004; JONES et al. 2007; SCHNOES et al. 2009)). The resulting irreproducibility is not 11 

cheap. For example, non-clinical biomedical studies with an estimated cost of about 12 

$7Bn/yr throughout the US come with difficulties in data analysis and reporting that 13 

hamper their reproducibility (FREEDMAN et al. 2015a). Pervasive biases in biological 14 

datasets (IOANNIDIS 2005a) and statistical difficulties that can lead to substantially wrong 15 

conclusions (IOANNIDIS 2005b) can interfere with scientific discovery. To address these 16 

problems, it is important to invest in efforts towards opening science (BARTLING AND 17 

FRIESIKE 2014), sharing data (PACKER 2016; WILKINSON et al. 2016), and improving 18 

reproducibility in various areas (IOANNIDIS 2005b; DONOHO 2009; HUANG AND GOTTARDO 19 

2013; LOEWE AND KEEL 2014; STODDEN et al. 2014; FREEDMAN et al. 2015a; JAMES et al. 20 

2015; STODDEN 2015; BARBA 2016; LOEWE 2016; LOEWE et al. 2016; LOEWE et al. 2017). 21 

Reproducibility frameworks greatly facilitate individual scientific research studies, but 22 

take much more effort to put into place than could possibly be expected of the 23 

investigators in any individual study. Therefore, it is important to find efficient ways to 24 

achieve these goals at institutional and national scales (NIH et al. 2012; NIH 2015; NIH 25 

2016). Our study is different from many typical studies in that we have attempted to 26 

simultaneously conduct high quality research while working towards a framework for 27 

improving reproducibility. 28 

 29 

 Purpose of this study. Here we interweave several perspectives integral to one 30 

body of trans-disciplinary research. We aim to improve amount and quality of 31 

experimental time series available for parameter estimation in mechanistic simulations 32 

along with our overall understanding of D. melanogaster circadian clock models. To this 33 

end we present FlyClockbase, a new carefully curated biological information resource 34 

designed to maximize accessibility and ease of use for experimental biologists and 35 

modelers. We show how to use it for testing hypotheses and report our own new 36 

findings about the variability of peak times in the clock. Finally, we make trans-37 

disciplinary observations at the interface of experimental biology, data curation, 38 

reproducibility, and the applicability of logic formalisms in biology. We present our 39 

process for working towards constructing a compiler that would substantially reduce the 40 
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effort required for developing and maintaining data resources like FlyClockbase. These 1 

perspectives are next explained in a more detailed overview. 2 

 Formal organization of Versioned Biological Information Resources (VBIRs). 3 

FlyClockbase is a VBIR. VBIRs store biological information using controlled immutable 4 

versioning numbers for marking each publicly released variant of the resource to ensure 5 

that previously released data remains accessible under that number. As we developed 6 

FlyClockbase, we aimed to separate the special from the general VBIR aspects to help 7 

make our design more applicable to the development of future VBIRs. Below we 8 

discuss why more VBIRs are needed. For ease of use, quality control, and future 9 

maintainability, we designed FlyClockbase as a file-based data resource that follows a 10 

well-defined scheme for collecting tables in text files grouped in folders. This 11 

organization as a set of tables is conceptually similar to the structure of a relational 12 

database, albeit without the speed, rule enforcement, and other amenities provided by 13 

modern database systems. As a result, our approach maximizes flexibility and 14 

openness, while minimizing certain types of administrational and long-term maintenance 15 

costs (to increase chances of long-term survival; see Discussion). The resulting system 16 

is even more general than VBIRs and we nicknamed it ‘TabFS’. The name TabFS 17 

highlights the central role of tabs (for delimiting), table-files (for storing) and the file-18 

system (for organizing data). To simplify the implementation of other VBIRs, we have 19 

been separating the specific details of implementing FlyClockbase from general abstract 20 

features. In TabFS we aim to capture the abstractions and rules required for 21 

implementing VBIRs with a long-term view to developing a reliable VBIR standard. Our 22 

goal is to provide the simplest and most efficient organization possible without 23 

sacrificing the flexibility curators need for defining new data types that represent diverse 24 

types of complex and uncertain biological observations. Efficiently integrating new 25 

datasets in FlyClockbase requires this flexibility. It facilitates focusing on clock biology 26 

and minimizes distractions from defining or decoding data types. This approach enables 27 

FlyClockbase to integrate a diverse array of wildtype and wildtype-like time series along 28 

with the attributes necessary for documenting a broad range of experimental details. 29 

Each time series records the relative amount of a clock component as observed at 30 

various points in time.  31 

 Data integrated by curation. In FlyClockbase we provide a curated overview of 25 32 

years of published observations of D. melanogaster clock components, which we use 33 

for retrospective meta-analyses. The types of molecules reported in FlyClockbase are 34 

based on the biological D. melanogaster clock model we abstracted from the relevant 35 

literature (see Table 1 for brief descriptions of core clock components). FlyClockbase 36 

contains more than 400 time series curated from the wildtype control experiments of 86 37 

circadian clock studies. They can be compared in many ways within or between clock 38 

components for testing diverse hypotheses of potential interest for fly clock research.  39 
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 Hypothesis tested: biological variability. We use FlyClockbase for comparing the 1 

variance of times at which the circadian mRNAs and proteins period (per) and timeless 2 

(tim) reach their relative daily peak and valley. We find significant differences in 3 

variance that are not easily explained as a statistical fluke and survived several rounds 4 

of in-depth error checking (which led to interesting conclusions in their own right). Thus, 5 

we hypothesize that the larger variance of peak times for the protein PER in comparison 6 

to TIM might have mechanistic reasons that could help illuminate interesting aspects of 7 

the clock if recovered in mechanistic models.  8 

 Hypothesis tested: observation method. The confluence of many diverse 9 

independently observed time series in FlyClockbase provides a unique resource for 10 

understanding such variability of fly clocks in a broad range of settings, as documented 11 

in the attributes of FlyClockbase time series. This variability can also be used for 12 

comparing the reproducibility of different approaches to measuring time series. We 13 

compared time series measured by PCR based methods (qPCR, RT-PCR) with 14 

methods that do not include self-replication (Northern Blot, RNAse Protection Assay). 15 

The variability of PCR-based time series in FlyClockbase exceeds that of non-PCR 16 

based methods; though originally surprising, this is consistent with both the exponential 17 

nature of amplification in PCR and previous reports on the reproducibility of quantitative 18 

measurements from PCR-based methods.  19 

 Human error analysis. We measured human error rates for a given set of tasks in 20 

FlyClockbase. Our results are broadly comparable to previous observations. The 21 

findings suggest that VBIRs would benefit from developing methods for ensuring that 22 

scientific conclusions are not affected by human errors that inevitably occur when 23 

handling or analyzing data and corrupt content or type. Designing a formal type system 24 

capturing relevant expert insights for FlyClockbase could facilitate and ultimately 25 

automate searches for logical inconsistencies.  26 

 Compiler logic design. We developed FlyClockbase while simultaneously 27 

exploring design options for programming language compilers that could help construct 28 

and maintain VBIRs. We have identified numerous pivotal features for supporting the 29 

long-term stability of FlyClockbase that are most efficiently implemented by a 30 

correspondingly designed compiler. We discuss how these and other practical aspects 31 

of working with VBIRs can improve the usefulness and chances of longer-term survival 32 

for VBIRs. We use an analogy to well-known results from population genetics to 33 

illustrate what the future might hold for a newly-born VBIR, such as FlyClockbase. 34 

These considerations show that cumulative practical impacts from many small 35 

complications or innovations can be unexpectedly large. We illustrate using 36 

FlyClockbase how it can be difficult to represent uncertain biological data in the 37 

certainty-demanding logic formalisms of the data types commonly used in 38 

computational tools. Most of the data types we need in FlyClockbase fall into two 39 

categories. Some are very general data types that are very common and thus ideally 40 
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designed for interoperability (e.g. bibliographic references, tables, etc., see TabFS). 1 

Other data types are specific to FlyClockbase and therefore are not reusable. These 2 

types need to be defined by those expert biologists who curate FlyClockbase, and best 3 

understand the relevant biology. To facilitate these discussions, we developed a trans-4 

disciplinary collaboration model to help with the necessary communication of biological 5 

curators with a compiler architect, who needs to be capable of bridging biology and 6 

aspects of designing compiler logic. If such a communication approach is used by a 7 

compiler architect for informing important decisions about the relevant logic formalisms 8 

to be implemented, then our observations suggest that the efficiency of biological model 9 

curation could greatly increase once a user-friendly VBIR compiler becomes available. 10 

Such a compiler will empower biological model curators to define their own data types 11 

that can be shaped to more appropriately representing the uncertainty of the biological 12 

observations they curate – without violating biological or computer science logic. Such 13 

compilers will also allow biologists to define their own consistency checks, which can 14 

then be automatically maintained by a correspondingly designed compiler. If this 15 

compiler also implements sufficiently reviewed standards for interoperability and data 16 

exchange, biological research will benefit from an unprecedented ability to combine 17 

models and analyses from different VBIRs. 18 

 Importance of efficient biological model curation. Our work highlights why topic-19 

specific VBIRs like FlyClockbase have an essential, irreplaceable role to play in 20 

biological research – once curated to high quality by expert biologists. As we illustrate in 21 

FlyClockbase, VBIRs increase the speed of hypothesis testing and greatly add to the 22 

long-term value of properly annotated wet-lab data. They offer the raw material for 23 

diverse meta-analyses, opening up entirely new research perspectives. In this respect, 24 

VBIRs mirror similar efficiencies previously observed in genome projects. Our trans-25 

disciplinary analysis suggests that the most efficient route for integrating biological 26 

information requires more work on type systems and logic formalisms in order to better 27 

capture the many uncertainties regularly found in biological data. To sample the 28 

problem space well enough, more studies like ours are needed that report how in-depth 29 

biological research challenges the expressivity of logic formalisms that have become 30 

candidates for implementation in the discussed compiler. Combining such observations 31 

with a rigorous in-depth usability and expert review process as defined elsewhere 32 

(LOEWE 2016) will greatly accelerate the definition of more appropriate logic formalisms, 33 

VBIRs compiler design, biological model curation, and thus progress towards meeting 34 

the grand challenges of our time. This new efficiency would indeed allow us to stand on 35 

the shoulders of giants and no longer have to start crawling upwards from the elbow 36 

whenever a new question arises.  37 

 Overview of Sections. In the next Section, we review biological and computation 38 

clock models, as well as the data model of FlyClockbase from a biological perspective. 39 

We then describe how we selected the data in FlyClockbase, how we processed time 40 
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series and which statistical methods we used. Our Results Section first quantifies the 1 

historic use of direct experimental time series observations in modeling studies. It then 2 

reviews the number of time series observed for each core clock component in 3 

Drosophila melanogaster. It provides an overview of the variability in all components 4 

before presenting a human error analysis investigating potential impacts of data 5 

handling errors in FlyClockbase on the variances of peak and valley timings of the 6 

period and timeless gene products, which are compared after defining a basic null-7 

hypothesis for data in FlyClockbase. Our last result compares methods for observing 8 

mRNA. We start our Discussion Section by explaining, how FlyClockbase facilitates 9 

hypothesis-driven research. We then discuss the two hypotheses tested in this study 10 

and suggest mechanistic models for further testing. Next, we broaden our view to 11 

discuss the importance of model curation for molecular systems biology data. We then 12 

highlight observations that illustrate, how a tool with the capabilities of a specially 13 

crafted programming language compiler could advance work in FlyClockbase and 14 

beyond. We will pay attention to aspects like efficiency, error detection, and formal logic. 15 

Given the high likelihood of long-term loss of biological information resources, we finally 16 

discuss population genetics modeling results with some applicability to the fate of 17 

FlyClockbase. We do so in order to prioritize and motivate the next steps. We conclude 18 

with a list of the various disciplinary areas engaged by this study and how biological 19 

model curation will facilitate critical progress towards various grand challenges of our 20 

time. Our online material includes additional text with a more computational perspective 21 

and a supplementary statistical analysis to which we frequently refer in our results 22 

(including R source and data).  23 

  24 
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 1 

MODELS 2 

 3 

Biological model of fly circadian clocks  4 

 5 

The D. melanogaster clock is a gene regulatory network that receives environmental 6 

inputs (such as light and temperature) and produces its hallmark cyclical behavior 7 

through various interlocking positive and negative feedback loops (KUCZENSKI et al. 8 

2007; WANG AND ZHOU 2010). Table 1 lists the most important clock components, and 9 

Figure 1 represents their key interactions in the Systems Biology Graphical Notation 10 

(MOODIE et al. 2011). The timing of various clock sub-processes is essential for any 11 

clock. Circadian clocks critically depend on generic cellular processes of importance in 12 

the information processing associated with proteins, such as transcription, translation, 13 

and degradation. Thus, mutations disrupting critical functions in these generic 14 

processes are also likely to affect the clock. However, they are also likely to have many 15 

other harmful consequences; hence, we do not consider them as core clock 16 

components (which are the exclusive focus of our study here).   17 

 18 

Place    TABLE 1      about here. 19 

 20 

Place    FIGURE 1      about here. 21 

 22 

 Main loop. Briefly, in the core (negative) feedback loop, the proteins CLOCK 23 

(CLK) and CYCLE (CYC) form a heterodimer and promote the transcription of period 24 

and timeless (DARLINGTON et al. 1998; RUTILA et al. 1998). PER protein is increasingly 25 

phosphorylated by DOUBLETIME (DBT) and several other kinases. Fully 26 

phosphorylated PER interacts with the F-box protein SLIMB (SLMB) to be marked for 27 

degradation unless TIM protein is present to form a PER/TIM complex. This complex 28 

represses the effects of the transcriptional activator CLK to form a negative feedback 29 

loop (GEKAKIS et al. 1995; KLOSS et al. 1998; LEE et al. 1998; PRICE et al. 1998; LEE et 30 

al. 1999; KLOSS et al. 2001; CHIU et al. 2008). When light is present, the protein 31 

CRYPTOCHROME (CRY) undergoes a conformational change that renders it active. As 32 

a final step before TIM degradation, activated CRY and the kinase SHAGGY (SGG) 33 

cause TIM in its phosphorylated form to interact with the F-box protein JETLAG (JET) 34 

(MARTINEK et al. 2001; KOH et al. 2006). If TIM is degraded thought its phosphorylated 35 

form, this will limit the formation of the PER/TIM complex. If this complex cannot form, 36 

then PER will be left in an isolated form in which it can be further phosphorylated (and 37 

thus be moved closer to its degradation). If PER pairs with TIM to form this complex, 38 

then PER cannot be phosphorylated, and it will temporarily stop its progress towards 39 

degradation. Thus degrading TIM facilitates the degradation of PER by allowing PER to 40 
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become fully phosphorylated (EMERY et al. 1998; NAIDOO et al. 1999; BUSZA et al. 2004; 1 

OZTURK et al. 2011). Consequently, PER/TIM complexes no longer repress CLK 2 

transcriptional activity, and CLK proceeds to start a new cycle by again promoting again 3 

the transcription of per and tim. 4 

 5 

Other loops. A second feedback loop primarily concerns clk transcription.  CLK 6 

promotes transcription of both PAR-domain protein 1 (pdp1) and vrille (vri) (BLAU 1999; 7 

MCDONALD AND ROSBASH 2001; CYRAN et al. 2003). PDP1 protein then promotes the 8 

transcription of clk, while VRI represses the activity of PDP1 and inhibits the 9 

transcription of clk, creating positive and negative feedbacks, respectively (CYRAN et al. 10 

2003; GLOSSOP et al. 2003). The relatively recently discovered clockwork orange (cwo) 11 

modulates both feedback loops by weakly repressing CLK-mediated transcription of per, 12 

tim, pdp1, vri, and cwo itself (KADENER et al. 2007; LIM et al. 2007; MATSUMOTO et al. 13 

2007; RICHIER et al. 2008). The interplay between strong transcriptional activation 14 

promoted by CLK and weak repression from CWO protein counteracts “jitters,” or small 15 

variations in period (FATHALLAH-SHAYKH et al. 2009; FATHALLAH-SHAYKH 2010; SCRIBNER 16 

AND FATHALLAH-SHAYKH 2011). Other notable circadian products involved with post-17 

translational modification, synchronization of clock neurons, and other processes 18 

include casein kinase 2 alpha (ck2a), protein phosphatase 2a (pp2a), pigment-19 

dispersing factor (pdf), nemo (nmo), and others (GRIMA et al. 2002; KO et al. 2002; LIN 20 

et al. 2002a; SATHYANARAYANAN et al. 2004). A more detailed review of the clock can be 21 

found elsewhere (HARDIN 2011; ÖZKAYA AND ROSATO 2012). 22 

 23 

 24 

 25 

In silico models integrating fly clock observations 26 

 27 

Mathematical models of circadian clocks have been contributing to our understanding of 28 

clock biology for decades. 29 

 30 

 Biological results overview. The origins of many fly clock models can be traced 31 

back over 50 years to work by PITTENDRIGH & VICTOR (PITTENDRIGH AND VICTOR 1957; 32 

GOODWIN 1964; GOODWIN 1965) and GOODWIN (PITTENDRIGH AND VICTOR 1957; GOODWIN 33 

1964; GOODWIN 1965). Then GOLDBETER (1995) developed a model with five ordinary 34 

differential equations that use per mRNA and PER protein (in various phosphorylation 35 

states) to describe a negative feedback loop created when PER represses per mRNA 36 

transcription. LELOUP (1998a) expanded this model to include tim mRNA and TIM 37 

protein. Later models such as those published by UEDA (2001) and SMOLEN (2001) 38 

again expanded the feedback loops by adding CLK, and more recent models added a 39 

feedback loop based on vri, pdp1 (SMOLEN et al. 2004; XIE AND KULASIRI 2007; KULASIRI 40 
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AND XIE 2008) and CWO (FATHALLAH-SHAYKH et al. 2009). Two other common points of 1 

interest for clock models were the importance of a positive feedback loop (TYSON et al. 2 

1999; SMOLEN et al. 2001; KUCZENSKI et al. 2007; WANG AND ZHOU 2010) and the 3 

influence of post-translational modifications such as phosphorylation (LEISE AND MOIN 4 

2007; RISAU-GUSMAN AND GLEISER 2012). Because the clock is able to adjust to 5 

temperature variations, a number of models further investigated the role of temperature 6 

on the clock (KIDD et al. 2015). Some temperature models, such as those by HONG 7 

(HONG AND TYSON 1997) and LELOUP (LELOUP AND GOLDBETER 1997), are based on 8 

GOLDBETER’S 1995 model, while others (RUOFF AND RENSING 1996; RUOFF et al. 1997; 9 

RUOFF et al. 1999) use the more general GOODWIN (1965) oscillator as a foundation. 10 

While models have become sophisticated enough to explain observable biological 11 

phenomena, methods have improved for choosing more realistic values for model 12 

parameters (KURATA et al. 2007; XIE et al. 2010; LEBIEDZ et al. 2012). A number of 13 

review articles compare the various clock models and present more details on their 14 

history (SMOLEN et al. 2000b; SMOLEN et al. 2000a; GOLDBETER 2002; KUROSAWA et al. 15 

2002; OGAWA et al. 2008; GERARD et al. 2009; LELOUP 2009; GONZE 2011; SCRIBNER AND 16 

FATHALLAH-SHAYKH 2011). 17 

 18 

 Role of stochasticity. Researchers have also been using increasingly 19 

sophisticated computational approaches for simulating the clock. Many early models 20 

were constructed using deterministic ordinary differential equations, but some of their 21 

underlying assumptions are not always applicable to the clock. In particular, 22 

deterministic models assume large enough numbers of molecules so that any random 23 

variations caused by stochastic changes in the state of individual clock components are 24 

compensated at the level of the whole clock. Such large numbers of molecules may not 25 

be realistic for clocks at the cellular level (RUOFF et al. 1999). More recently, stochastic 26 

models have been constructed to overcome these limitations; these models are often 27 

derived from previously published deterministic equivalents (BARKAI AND LEIBLER 2000; 28 

ZAK et al. 2001; GONZE et al. 2002a; GONZE et al. 2002b; UEDA et al. 2002; VILAR et al. 29 

2002; GONZE et al. 2003; GONZE et al. 2004; MIURA et al. 2008). This allowed for a better 30 

understanding of how intracellular stochasticity generates noisy clock observations 31 

(BARKAI AND LEIBLER 2000; GONZE et al. 2002b; YI et al. 2006; LI AND LANG 2008; LERNER 32 

et al. 2015) and how this noise can be reduced by synchronizing clocks across groups 33 

of neurons (KATAKURA AND OHMORI 2006; BAGHERI et al. 2007; BAGHERI et al. 2008b; 34 

DIAMBRA AND MALTA 2012; RISAU-GUSMAN AND GLEISER 2014).  35 

 36 

 Shared problems. The models above examine different aspects of the clock, but 37 

they all face two common modeling challenges: estimating parameters and testing the 38 

quality of models. Both issues require the ability to access and use high-quality 39 

experimental data, yet there is a painful lack of experimentally measured rate 40 
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parameters for important circadian clock processes. Researchers have used a wide 1 

range of methods to find potentially realistic parameters (LELOUP AND GOLDBETER 1998a; 2 

LELOUP AND GOLDBETER 2000; SMOLEN et al. 2001; SMOLEN et al. 2002; SMOLEN et al. 3 

2004; RUOFF et al. 2005; XIE AND KULASIRI 2007; BAGHERI et al. 2008a; KULASIRI AND XIE 4 

2008; WANG AND ZHOU 2010). These include trial-and-error approaches, but even the 5 

best systematic methods cannot guarantee finding rates that reflect nature’s values. In 6 

principle, such searches aim to find combinations of input parameter values that cause 7 

models to produce time series mirroring those observed experimentally. This ideally 8 

provides ensembles of realistic parameter combinations that cannot be ruled out by 9 

experimental evidence. It is immaterial, whether such ensembles were generated by 10 

testing deterministically or stochastically proposed parameter combinations. However, 11 

in no case is it possible to “validate” any parameter combination on principal grounds 12 

due to the open nature of the models as discussed elsewhere (ORESKES et al. 1994; 13 

TARANTOLA 2006). The best parameter estimates are thus “realistic” (up to a given 14 

stringency), and conclusions based on simulations using them are reasonable (up to the 15 

usually unknown degree to which these parameter combinations represent reality). This 16 

indirect approach has been successful in a wide range of disciplines for estimating 17 

parameters in complex models (e.g. (STAINFORTH et al. 2005)). The remaining 18 

“unknown” degree can be narrowed for a given model with unknown parameters by 19 

using statistically rigorous approaches (TARANTOLA AND VALETTE 1982; JAYNES AND 20 

BRETTHORST 2003; TARANTOLA 2005; TARANTOLA 2006; MOURA NETO AND SILVA NETO 21 

2013). The problem of unknown model parameters is widespread in many disciplines 22 

that use modeling approaches and has also become known as the “inverse problem”; it 23 

can be can be solved in principle by probability theory (TARANTOLA AND VALETTE 1982; 24 

JAYNES AND BRETTHORST 2003; TARANTOLA 2005; TARANTOLA 2006). Concisely stated, 25 

the inverse problem is the challenge to use all known data about a system for restricting 26 

the ranges of unknown causal input factors for a model that produces simulation output 27 

that is equivalent to data observed in the real system itself (even though the latter 28 

ultimately remains unknown). Solving the inverse problem for increasingly realistic 29 

biological models using growing datasets of varying quality quickly exceeds current 30 

mathematical and computational capabilities and thus remains a research challenge. 31 

Additional limits for such reverse-engineering of systems biology models may come 32 

from the large variability of their kinetic rates (ERGULER AND STUMPF 2011).   33 

 34 

 Parameter estimation in complex models. Numerous algorithms can propose 35 

sequences of input parameter combinations that repeatedly reduce computed distances 36 

between simulated and observed data. However, few frameworks can rigorously 37 

estimate the statistical uncertainty associated with their point estimates. Maximum 38 

likelihood and Bayesian statistics are currently the frameworks that are most advanced 39 

(EDWARDS 1992; HEYDE 1997; JAYNES AND BRETTHORST 2003; BISHOP 2006). They 40 
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usually require a function that directly computes the likelihood that a given system will 1 

produce a given set of observations for a given set of input parameters. However, this 2 

likelihood function is increasingly difficult to specify for non-linear stochastic models of 3 

growing complexity such as the circadian clock models of interest. Help may come from 4 

formalized frameworks for Approximate Bayesian Computation (ABC) that have been 5 

developed in various disciplines and do not require explicit likelihood functions (TONI et 6 

al. 2009a; CSILLERY et al. 2010a; ROBERT et al. 2011; SUNNAKER et al. 2013; WILKINSON 7 

2013; LEE et al. 2014b; STUMPF 2014; BUZBAS AND ROSENBERG 2015). In theory, ABC 8 

can solve inverse problems for all simulation models capable of producing output that is 9 

comparable to real observations. Briefly, ABC approximates likelihoods by (i) proposing 10 

new potentially realistic input parameters, (ii) simulating the model to predict 11 

corresponding results, (iii) calculating the distance of these results to experimentally 12 

observed data, and (iv) deciding which input parameters are actually supported by 13 

experimental evidence, based on comparing these distances to predetermined 14 

acceptance criteria. Thus, ABC generates ensembles of model variants, which describe 15 

sets of biologically realistic parameter combinations that quantify the uncertainty 16 

associated with a given model in the light of available data. Recent progress on 17 

uncertainty quantification via ensemble analysis has been reviewed by BAUER et al. 18 

(BAUER et al. 2015). The accuracy of such ensembles depends on the quality of 19 

distance measures, acceptance criteria, and sampling density in relevant regions of 20 

parameter space. The statistical, numerical and computational challenges associated 21 

with ABC increase with model complexity and data diversity. In practice, sampling 22 

speed is often limiting, and distances to observed data might have to rely on summary 23 

statistics that can create complicated biases. These biases will matter when models 24 

with different structures are compared and these summary statistics do not capture all 25 

information that is relevant for fully evaluating the models (ROBERT et al. 2011). 26 

Fortunately, these problems can be solved for simulations of biochemical systems (TONI 27 

et al. 2009a; ROBERT et al. 2011). Generally, ABC benefits from access to raw 28 

experimental observations such as time series to maximize the information used to 29 

estimate parameters and minimize bias from incompletely processed data. Estimating 30 

parameters using ABC in fly clock models of realistic complexity is very challenging and 31 

has not yet been attempted (to the best of our knowledge; recent work in Neurospora 32 

clocks (DENG et al. 2016) demonstrates some of the challenges). While the full potential 33 

of ABC still waits to be realized, the clock modeling community has estimated 34 

parameters either by fitting model output to abstract time series traits or by using time 35 

series data more directly. These approaches are discussed next. 36 

 37 

 Using abstract time series traits. The use of higher-level abstractions of time 38 

series traits can greatly simplify assessing the realism of a given circadian clock model, 39 

at least when compared to data-intensive work with raw time series. Despite the very 40 
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general nature of abstract traits (e.g. “oscillates” or “has feedback loops”), they can 1 

provide powerful filters for removing biologically uninteresting parameter combinations 2 

when analyzing circadian clocks. More specific examples of such abstract traits are: 3 

1. period close to 24 hours or modified as observed in mutants (GOLDBETER 1995; 4 

LELOUP AND GOLDBETER 1998a; LELOUP AND GOLDBETER 1998b; ROENNEBERG AND 5 

MERROW 1998; LELOUP AND GOLDBETER 2000; UEDA et al. 2001; FATHALLAH-SHAYKH 6 

et al. 2009; WANG AND ZHOU 2010; RISAU-GUSMAN AND GLEISER 2012),  7 

2. phase changes based on light exposure (ROENNEBERG AND MERROW 1998; SMOLEN 8 

et al. 2004),  9 

3. ability to account for responses to light, including light pulses (ROENNEBERG AND 10 

MERROW 1998; TYSON et al. 1999; LELOUP AND GOLDBETER 2000; LELOUP AND 11 

GOLDBETER 2001; PETRI AND STENGL 2001; SMOLEN et al. 2001; SMOLEN et al. 2002; 12 

SMOLEN et al. 2004; RUOFF et al. 2005; BAGHERI et al. 2008a; FATHALLAH-SHAYKH et 13 

al. 2009) 14 

4. ability to be properly entrained (SMOLEN et al. 2001; SMOLEN et al. 2002),  15 

5. robustness to small parameter changes (SMOLEN et al. 2001; SMOLEN 2002; SMOLEN 16 

et al. 2004),  17 

6. ability to replicate the behavior of mutants (ROENNEBERG AND MERROW 1998; TYSON 18 

et al. 1999; SMOLEN et al. 2004; RUOFF et al. 2005; BAGHERI et al. 2008a; FATHALLAH-19 

SHAYKH et al. 2009; RISAU-GUSMAN AND GLEISER 2012),  20 

7. delay between the peaks of a given mRNA and its protein (LELOUP AND GOLDBETER 21 

1998b; SCHEPER et al. 1999a; SCHEPER et al. 1999b; SMOLEN et al. 2001; SMOLEN et 22 

al. 2002; XIE AND KULASIRI 2007; WANG AND ZHOU 2010; RISAU-GUSMAN AND GLEISER 23 

2012),  24 

8. dynamics of the combined amounts of all forms of PER protein (PETRI AND STENGL 25 

2001; SMOLEN et al. 2004), and 26 

9. time at peak expression of a given clock component (PETRI AND STENGL 2001; 27 

FATHALLAH-SHAYKH et al. 2009). 28 

Comparing simulation results and observed values for such abstract clock traits is 29 

generally easier than comparing simulations with complex experimental data. However, 30 

it is unclear how much information about circadian clocks is preserved and how much is 31 

biased or lost when reducing all relevant circadian clock output to the abstract 32 

measures given here.  33 

 34 

 Using complete observed time series. To reduce these uncontrollable biases 35 

from using abstract traits, researchers might seek to incorporate all available time series 36 

data in more direct tests to compare the distance between observed and simulated time 37 

series. The core idea is to increase statistical power by including as much information 38 

as possible when estimating parameters and to use repeated observations to obtain 39 

better estimates of the underlying distributions. It is therefore desirable to integrate all 40 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 26 

observed time series of clocks in flies in a single biological information resource. More 1 

time series also facilitate recognizing genuine clock signals among the experimental 2 

noise inevitably associated with all biological observations and thus help avoid 3 

overfitting. In practice, creating models based on experimental time series is 4 

complicated by diverse challenges: 5 

(i) All challenges of inverse problems with many dimensions discussed above are (or 6 

seem) exacerbated because time series usually provide more degrees of freedom 7 

than lower-dimensional summaries of their features. Parameter estimation is 8 

particularly difficult due to the complex, non-linear relationships between clock 9 

components  (TARANTOLA AND VALETTE 1982; FORGER et al. 2005). While recent 10 

progress in developing statistical frameworks like ABC is encouraging, these are not 11 

straightforward to use for models with more than a dozen unknown parameters (TONI 12 

et al. 2009b; CSILLERY et al. 2010b; SOUBEYRAND et al. 2013; SUNNAKER et al. 2013; 13 

WU et al. 2014). Exploring such techniques is beyond the scope of this paper; here 14 

we aim to present a real-world, research-grade dataset that provides a non-trivial 15 

versatility and complexity test for candidate methods. 16 

(ii) It can be difficult to choose optimal measures for comparing time series, regardless 17 

of whether applied to simulations or experimental data. There are many “standard 18 

measures” for comparing time series in general (e.g. the Euclidian distance, 19 

equivalent to the assumption that amounts follow a Normal distribution), and 20 

circadian clock time series in particular (e.g. period length). Selecting one or more 21 

appropriate measures is not trivial (GLYNN et al. 2006; REFINETTI et al. 2007; DING et 22 

al. 2008; BATISTA et al. 2011; JIN 2011; SUN et al. 2014; YIN et al. 2014; BANKO AND 23 

ABONYI 2015; KOTSIFAKOS et al. 2016; MORI et al. 2016). This is particularly true 24 

when comparing time series with differently calibrated, non-linear scales that may be 25 

associated with substantial measurement errors, as is often the case for 26 

experimental observations. Thus, many diverse quantitative methods can be used to 27 

calculate diverse measures of distance between time series. However, this does not 28 

solve the substantial qualitative need for arguing which quantitative approaches are 29 

appropriate, if any.  30 

(iii) It is challenging to compile all relevant time series observations into one place and 31 

organize them in a uniformly accessible manner, as pertinent time series were 32 

observed using different methods in diverse contexts and span a rich body of 33 

literature across many years. Furthermore, data processing is complicated by many 34 

obstacles associated with scattered big data, which characterizes many types of 35 

biological information. Practical challenges include the degrees to which 36 

a. data is rarely compiled in a uniform, directly usable data format,  37 

b. different datasets require diverse manual corrections for special cases that are 38 

individually rare but aggregately comprise a substantial part of the data and are 39 

hence not ignorable,  40 
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c. time series data is always incomplete and gaps between observed time points 1 

are irregular,  2 

d. data is often insufficiently documented such that it becomes impossible to 3 

determine essential information about the precise types and attributes that we 4 

collect (and which document the precise meaning of the data), 5 

e. data has ascertainment and other biases as well as error rates that are poorly 6 

documented and difficult to control (see reports (CLARK et al. 2005; LACHANCE 7 

AND TISHKOFF 2013) of biases in initial samples of human genomes), 8 

f. there are other practical problems that are often associated with scattered big 9 

data (see, e.g. (GITELMAN 2013; MCCALLUM 2013)), or that require too much data 10 

wrangling before a given information resource becomes useful (GOLDSTON 2008). 11 

The aggregated difficulties of navigating all these challenges make it much easier to 12 

understand why only a minority of circadian clock modelers chose to estimate 13 

parameters directly from such time-series data, and why many others preferred to 14 

match abstract time series traits (see Results below). 15 

 16 

 Using both, complete observed time series and abstract traits. It is obvious 17 

that both types of observations presented above have advantages and disadvantages. 18 

 Complete experimentally observed time series increase the information available 19 

for parameter inference, but bring the costs of handling more complex, yet incomplete 20 

datasets associated with the inevitable problems of real-world measurements. Due to 21 

experimental challenges, almost all such time series report relative amounts that are 22 

comparable within a specific observed time series. It is rarely possible to obtain 23 

reasonably precise calibrations those absolute units that matter most for modeling: the 24 

counts of different types of molecules within their respective cellular compartments. 25 

Furthermore, experiments may only report aggregated amounts, averaging over cells or 26 

other biological units. Such practical details can substantially complicate the 27 

computation of the likelihood that a given model will produce a certain observation. 28 

Solving these problems does not determine the weights of different points of 29 

observation in time series. Ideally, such weights maximize the impact of key information 30 

while minimizing noise to avoid overfitting from algorithms that focus on unimportant 31 

details, especially if no absolute calibration is available (as usual). Thus, many 32 

researchers have historically avoided raw time series and used higher-level abstractions 33 

of time series traits to assess the realism of circadian clock models. The relative 34 

difficulties of implementation may have contributed to this trend reported in the Results. 35 

 Working with abstract time series traits provides the ease of using higher-level 36 

traits, but comes at a price of its own. Abstract traits usually require fewer dimensions to 37 

be managed and could minimize overfitting if they provide a focused view of important 38 

clock features. However, abstract clock traits are difficult to choose and can easily omit 39 

potentially pivotal information. Higher levels of abstraction can make it easier to find 40 
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parameter combinations that mimic observed ones ‘reasonably well’. Since the quality 1 

of such fits to observations can be judged in many ways, abstract traits might make it 2 

too easy to produce a ‘working clock’. Such model can easily omit details that are 3 

essential for understanding a particular biological circadian clock. In the worst case they 4 

degenerate into descriptions of artificial circuits that oscillate, but are unlikely to help us 5 

understand the carbon-based circadian clocks studied in biology. Abstract time series 6 

traits can reject many parameter combinations as biologically irrelevant and thus 7 

pivotally contribute to the construction of useful clock models. Any given abstract trait is 8 

not likely to extract all statistical information from the data. Thus, combining many such 9 

traits is essential for successful modeling, yet there is no guarantee that any 10 

combination will be statistically sufficient such that it can extract all relevant statistical 11 

information.  12 

 Distances. Furthermore, the use of multiple abstract traits raises the question of 13 

how to compute distances among and between simulated models and independent wet 14 

lab observations. Many summary statistics provide distance measures that can be 15 

adequate for some questions, yet cannot extract all information from the data and are 16 

therefore not adequate for other questions. The pervasive non-linearity of circadian 17 

clock systems complicates combining multiple traits into one reliable overall summary 18 

distance statistic. This results in unknown, unpredictable and hence uncontrollable 19 

biases when estimating parameters for clock models. To reduce these uncontrollable 20 

biases caused by abstract traits with imperfect statistical properties, researchers have 21 

started to incorporate more time series data in more direct comparisons of distances 22 

between observed and simulated time series (see below). 23 

 Both sides offer advantages. It might eventually be possible to combine their 24 

insights for improving the accuracy and robustness of parameter estimates in circadian 25 

clocks. It often appears easier to compare abstract clock traits than the data-rich 26 

simulated time series and corresponding experimental observations that necessarily 27 

come with many gaps and complex nuances. However, potentially important aspects of 28 

circadian clock mechanisms might be impossible to uncover, except by using a more 29 

data-rich time series based approach. This extra data often adds many more 30 

dimensions, uncertainties and complexities. It can easily overburden modeling studies 31 

with irrelevant details and noise that may lead to overfitting. To counter such difficulties, 32 

abstract traits may complement full time series data by acting as powerful filters that 33 

remove unrealistic models, which might be difficult to identify in other ways. Combining 34 

both appropaches could provide a powerful set of tests for detecting realistic oscillation 35 

patterns in new circadian clock models. Increasing the statistical power of such tests will 36 

make it increasingly difficult for them to be passed by random parameter combinations. 37 

To find values that pass all filters and move beyond a given local optimum, researchers 38 

can now use a broad array of optimization techniques combined with raw computational 39 

power (BUSSIECK AND MEERAUS 2004; BAGHERI et al. 2008a; LEUGERING 2012; 2016). 40 
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However, finding parameter combinations that have extremely rare desired properties 1 

does not guarantee the correctness of a model (see discussion in (LOEWE 2016)). The 2 

vastness of parameter spaces requires caution when claiming that useful parameter 3 

combinations for circadian clock models describe biological reality (see ORESKES et al. 4 

(1994)), even if it was difficult to find working parameter combination. Other input might 5 

pass the same set of tests and thus have the same claim to be in an ensemble that 6 

might be used to represent biological reality. The purpose of FlyClockbase is to improve 7 

the availability of data for testing clock models that might be part of such ensembles. 8 

 9 

 10 

 11 

 Studies integrating time series data. The challenges above present significant 12 

barriers to the incorporation of experimental data into models of the D. melanogaster 13 

circadian clock. Thus it is not surprising that only three of the many modeling studies we 14 

surveyed (see Results below) used experimentally observed fly time series to estimate 15 

clock parameters in a more direct way. FATHALLAH-SHAYKH (2009) used published 16 

microarray data from KADENER (2007) to fit parameters related to cry mRNA oscillation. 17 

KUCZENSKI (2007) used a Monte Carlo random walk method to find a set of parameters 18 

most similar to time series of circadian mRNA and proteins from twelve different 19 

experimental studies (HARDIN et al. 1992; ZENG et al. 1994; SEHGAL et al. 1995; MARRUS 20 

et al. 1996; SO AND ROSBASH 1997; BAE et al. 1998; LEE et al. 1998; BLAU 1999; BAE et 21 

al. 2000; KIM et al. 2002; CYRAN et al. 2003; GLOSSOP et al. 2003). LEISE (2007) 22 

employed a coordinate search method to estimate parameters based on time series 23 

from three papers (LEE et al. 1998; BAE et al. 2000; SHAFER et al. 2002). Both 24 

KUCZENSKI (2007) and LEISE (2007) point to the fit between the experimental and 25 

simulation data as evidence of the quality of their models. While further discussion of 26 

the many statistical challenges of parameter estimation in real-world datasets is beyond 27 

the scope of this study, we note here that such discussion is rather hypothetical without 28 

an actual real-world compilation of “all known” time series observations that can test 29 

how many of the real-world complications can be handled by any given approach.  30 

One purpose of our study is to provide such an integrated dataset that paves the 31 

way for more thorough analyses of statistical approaches to assessing how good a 32 

given simulation result might fit to “all known experimental observations” of wildtype and 33 

wildtype-like D. melanogaster clocks. We created FlyClockbase to lower the barriers 34 

that currently limit the use of real-world data for improving simulation models. 35 

 36 

 37 

  38 
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FlyClockbase data model overview 1 

 2 

FlyClockbase is a file-based database for collecting and organizing experimentally 3 

observed time series of D. melanogaster, reporting the core circadian clock 4 

components, such as mRNAs and proteins in various states. FlyClockbase is dedicated 5 

to circadian clock research in flies and can after sufficient stabilization accept 6 

observations of circadian clocks in other organisms. It is publicly available at: 7 

 8 

https://github.com/FlyClockbase    9 

will become active some time before final publication. For reviewing purposes, 10 

see the simultaneously submitted (not-yet-public) zip-archive; for pre-publication 11 

access, please request a copy from Laurence Loewe, who will maintain 12 

FlyClockbase for the foreseeable future. 13 

  14 

Despite starting with a shared interest in the same model organism, FlyClockbase is 15 

completely independent from FlyBase (DOS SANTOS et al. 2015), a portal for genomic 16 

and other information about Drosophila as a model organism.  17 

 18 

Place    FIGURE 2      about here. 19 

 20 

Overview. Constructing and maintaining a highly specialized biological information 21 

resource like FlyClockbase is only feasible for skilled biologists with a passion for flies 22 

and clocks. To improve the probability of finding capable biologist curators, we deemed 23 

it important to minimize the computational expertise required for making substantial 24 

contributions to FlyClockbase. We were aiming to minimize IT overheads of initial 25 

construction and longer-term maintenance. As discussed below and in the 26 

Supplemental Material, this goal informed important requirements for improving the 27 

efficiency of biologists curating FlyClockbase and the accuracy with which its formal 28 

type system can capture biologically relevant information. As a result, we have made a 29 

number of unconventional database design decisions. Below we summarize key 30 

differences between the FlyClockbase design presented here and other typical 31 

database designs currently used. We provide more details in the Supplemental Material, 32 

but a full technical description of FlyClockbase is beyond the scope of this study, nor 33 

can we appropriately present the many considerations that informed the current design. 34 

Instead, we focus here on how our choices help biologists, who are (i) interested in the 35 

biological question of reliably observable variability in circadian clocks of flies, or are  36 

(ii) aiming to navigate FlyClockbase for using, building on, or contributing to the quality 37 

of data in this new resource. Figure 2 provides an overview of high-level organization 38 

and Table 2 lists the Brief and Explicit Names of various FlyClockbase data structures 39 

(we use these Italicized Proper Names to distinguish well-specified FlyClockbase data 40 
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structures from the meaning of their generic English counterparts in usual orthography). 1 

FlyClockbase is a Versioned Biological Information Resource (VBIR) with two Sections:    2 

 3 

• SumS, the Summary Section stores statistical summaries of time series, such as 4 

arithmetic averages. We extracted these as they were presented in relevant 5 

publications (see Materials and Methods). 6 

 7 

• DetS, the Details Section stores all individual observations available at a stage 8 

where they have not been aggregated into summary statistics. This enables 9 

independent researchers to compute the best summary statistics for investigating 10 

specific questions. Describing DetS is beyond the scope of this study (raw data is 11 

almost never reported among the publications in FlyClockbase; see below).  12 

 13 

Each Section stores variants of time series in the form of Raw and Modified 14 

Observations (each in an ObsRaw or ObsMod TimeSeries ContentTable, respectively). 15 

The big workflow steps of importing, fully integrating data, and extracting data for 16 

analysis are marked in Figure 2 as steps D1-D10 and S1-S8. To facilitate comparisons 17 

across different datasets, we refine ObsRaw into ObsMod data in our current workflow 18 

Step S5 (for more details, see Materials and Methods Section below). Each TimeSeries 19 

is further characterized by some Attributes and may exhibit certain Traits (see below for 20 

details). Attributes denote inherent features that need to be stored and cannot be 21 

computed, such an observed genotype. Traits capture emergent features that need to 22 

be computed from the Content and Attributes of a time series, such as ‘peaks’. 23 

Separating Attributes and Traits helps to keep FlyClockbase organized and simplifies 24 

selecting relevant time series (see Steps S6-S8, D6-D8 in Figure 2).  25 

 26 

Place    TABLE 2      about here. 27 

 28 

 Logic in biology. Both, Attributes and Traits, may be absent in ways that may 29 

be of biological interest and differ fundamentally between time series. These challenges 30 

inspired us to investigate fundamental aspects of type systems and logic in 31 

programming languages in a search for appropriate ways of quantifying various aspects 32 

of uncertainty, unavailability, and inability to be tested shared among many scattered 33 

and diverse datasets of biological interest. In the Supplemental Material we discuss a 34 

new data type termed ‘BioBinary’ which stores one of the four alternative states termed 35 

OK, OKO, KO, MIS, which are defined by an enumeration termed ‘OKScale’. The 36 

BioBinary type is designed for handling statements in biology, where “completely true” 37 

or “entirely false”, are less appropriate than “any transient intermediate” or “mistake” 38 

(see also Discussion below, Supplemental Material, and p.16 of the online supporting 39 

material in LOEWE et al. (2017); a full analysis is beyond our scope here).  40 

 41 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 32 

 Other design decisions of interest to biologists discussed in the Supplemental 1 

Material include: 2 

• the intertwining and mutual stimulation of the development of FlyClockbase and the 3 

unconventional way in which the Evolvix modeling language (http://evolvix.org), is 4 

being developed  (LOEWE 2016) from a first prototype for recording time series in 5 

pure mass action models (EHLERT AND LOEWE 2014) towards adding general-6 

purpose programming capabilities with the triple goal of maximizing expressivity, 7 

usability, and long-term backwards compatibility; 8 

• the use of a stabilizing versioning number system for facilitating review processes in 9 

ways that improve the possibilities of working towards long-term stability without 10 

frustrating innovators by turning them away, based on the StabilizingZone of the 11 

Project Organization Stabilizing Tool (POST) system (see p.74 of online supporting 12 

material in (LOEWE 2016)); 13 

• reasons beyond ease of implementation and installation for not choosing a 14 

conventional database system, but rather design-dedicated file-folder structures in a 15 

file system that can be copied easily across system boundaries; 16 

While these points are important for questions of reproducibility and programming 17 

language development in biology and beyond, they do not directly apply to the biology 18 

of circadian clocks and are hence discussed in the Supplemental Material. We next 19 

highlight aspects of FlyClockbase that impact the ability of users to represent very 20 

diverse data in a surprisingly direct way: our particular choice of basic storage 21 

technology.  22 

 23 

 Simple file system storage. To increase flexibility, FlyClockbase stores data in 24 

a simple, well-defined, stable layout of files and folders in standard file systems. This 25 

design is intended to:  26 

• maximize accessibility to biologists with very diverse levels of computational literacy 27 

and who use many different computing platforms. On all of these platforms it should 28 

be easy for any researcher to start FlyClockbase: experimental biologists, who 29 

strongly prefer to work with standard spreadsheet software as well as computational 30 

biologists, who strongly prefer direct programmatic access to raw data files to 31 

implement their own analyses, 32 

• minimize long-term maintenance costs by delegating storage to standard file 33 

systems that maximize ease of distribution across diverse platforms, 34 

• reduce the need for mandatory database updates that may require costly developer 35 

time or endanger the accessibility of valuable data. 36 

These advantages come at the cost of requiring the discipline necessary to maintaining 37 

consistency, and expecting users to not irresponsibly alter data that is freely accessible 38 

to them. We expect FlyClockbase mostly to be maintained by researchers with sufficient 39 

experience and for submissions to be appropriately reviewed so it is always easy for 40 
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beginners to get the last authoritative version in case they need a fresh start. Our 1 

choices of technologies and formats have numerous strategic reasons further detailed 2 

in the Supplemental Material. 3 

 4 

Flexibility. In light of the enormous logic and error-reporting challenges faced by 5 

any application (see Supplemental Material), our decision to design FlyClockbase 6 

around the simpler and less restrictive technology of a filesystem has provided us with 7 

an open field of efficient experimentation to improve our way of handling the challenges 8 

of data curation. Our key insight here is the importance to empower experimental 9 

biologists with little or no computing background to efficiently launch important decisions 10 

about the type system and controlled lists used in FlyClockbase. Launching is not 11 

landing; developing a stable type-system requires more experience than launching the 12 

decision to consider adding a new biological special case. The importance of efficiently 13 

communicating and collaborating across very different disciplines cannot be over-14 

emphasized: most people with enough formal experience to understand formal type 15 

systems (PIERCE 2002; PIERCE 2005) cannot imagine the many special biological cases 16 

that a corresponding logic would have to be able to handle. This is different for 17 

experimental biologists: if they cannot recall these from the top of their head, a few days 18 

or weeks in the lab will quickly help them to remember. However, acquiring the 19 

necessary biological expertise, usually comes at the cost of less training in the abstract 20 

art of designing consistent and stable type systems.  21 

 Practically, we developed FlyClockbase’s flexible file system folder-structure to 22 

enable the storage of content in standardized spreadsheet files easily modified by 23 

common spreadsheet programs. We found this easy to use by experimental biologists 24 

who regularly experience (and thus are best positioned to help reduce) the tension 25 

between the abstract type system (aiming to restrict chaos by setting some rules) and 26 

reality (with its own rules). Their contributions are best recorded on the spot in the most 27 

flexible form possible to ensure they are captured at all. This requires maximal flexibility 28 

and permissions and is simplest to implement by providing every local user of a local 29 

FlyClockbase installation the equivalent of full (FlyClockbase-)system administrator 30 

rights (including the ability to add, change, delete, or wreck anything and everything in 31 

their local copy of FlyClockbase). Please consult the Supplemental Material for a 32 

discussion of permissions, backups and the reliability of data storage. 33 

 These and other reasons beyond the scope of this study have motivated us to 34 

forgo the obvious speed advantages of well-known standard databases. We do this to 35 

gain the potential for a reduction in the cost of maintenance and an increase in stability, 36 

combined with the flexibility to experiment with more nuanced type systems. These type 37 

systems can better represent the complexity, diversity, uncertainty and occasional 38 

contradictions that are so pervasively found in biological data. While working on 39 

FlyClockbase, we encountered such problems regularly, as we tried to integrate all 40 
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available information about the circadian clock of D. melanogaster. The Discussion 1 

reviews some of these experiences, but a full analysis is beyond the scope of this 2 

paper. 3 

 4 

 Data types for organizing content. FlyClockbase is organized around a few 5 

data types that help to structure its data (see Figure 2 for overview of components, 6 

highlighted as ItalicizedProperNouns). These are presented below after briefly 7 

discussing the fundamental recurring concepts of Content, Attribute, and Trait, which 8 

simplify navigating FlyClockbase data structures. Without loss of generality, we illustrate 9 

our definitions using observed time series as an example: 10 

• Content (Cnt): a container for directly storing ‘the data’ describing items of primary 11 

interest. For example, the Content of a time series observation in FlyClockbase is 12 

given by a series of pairs, each storing a time and a number - ordered so times keep 13 

increasing. 14 

• Attribute (Att): data about data. Each Attribute stores a type of value describing a 15 

fragment of information ‘inherent’ to a given data item, such as one of its owners, 16 

methods of observation, contexts, or types. The inherent nature of Attributes implies 17 

that they always have to be stored in addition to, and can never be derived from the 18 

Content they describe. Sometimes also called ‘metadata’, Attributes provide informal 19 

descriptions of the type or history of an item that can be essential for the correct 20 

interpretation of Content. For example, using the Content of time series requires 21 

Attributes describing which type of clock component was observed and in what 22 

context – neither of these can be derived from the Content itself. 23 

• Trait (Tra): data derived from data. Traits capture emergent features, which are 24 

externally defined properties, patterns, or conclusions derived from a given set of 25 

Content and its Attributes. For example, a time series that only records how some 26 

amount changes over time may allow the observation of one or more peaks, but 27 

neither the steps for recognizing such Traits, nor the annotations of peak presence 28 

or absence are part of the Content to which they refer. 29 

Irrespective of how data is packaged, Attributes and Traits both characterize Content, 30 

but do so in different ways. In FlyClockbase the trio Content, Attributes and Traits form 31 

a causality chain. For example, the real-world circadian clocks of one or more flies X in 32 

natura causally affect the observed time series Y in vivo, which causally affect results of 33 

interest Z inferred in silico. Note that the flies X are described incompletely by Attributes,  34 

the time series Y is observed incompletely as Content and the results of interest Z are 35 

derived from Content and Attributes by using a set of steps that define this Trait. 36 

Researchers often search for some Z useful for investigating a Y, only to find their 37 

efforts undermined by loss of pivotal information on X (equivalent to missing type 38 

information causing many computer bugs).  39 
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 FlyClockbase has been built to reduce this very problem for circadian clock 1 

research in D. melanogaster by providing scientists with all information about X, Y, and 2 

Z that has been made available, ideally without increasing, reducing, or biasing any 3 

existing uncertainties about X or Y. It is possible to package the same information in a 4 

myriad of different ways by nesting and re-packaging various combinations of these 5 

three. However, their diverse nature would make the use and maintenance of 6 

FlyClockbase unnecessarily complicated, as each type offers a distinct value: Content 7 

stores each time series that meets the required specification (a big but doable task, 8 

aiming for completion). Associated Attributes store as much biological and historic 9 

context information as possible (often impossibly difficult, making available Attributes 10 

very valuable). Traits are defined at will by active researchers investigating a given 11 

biological question or in search of new interesting Traits (it is always possible to define 12 

new ones, but few are interesting on the long run). Based on these, we define: 13 

• ContentTable (CntTbl): a table of frequently used data of type ‘content’ such as a 14 

specialized TimeSeries ContentTable; Attributes and Traits are stored separately 15 

(see below); 16 

• AttributeTable (AttTbl): a table of Attributes for a given ContentTable. Currently, the 17 

most important AttributeTables are those for References, and Summary TimeSeries; 18 

• TraitTable (TraTbl): a table of Traits as determined from the Trait definition and a 19 

given ContentTable. Currently, the most important TraitTables are those storing the 20 

Peak and Valley timing for the first day of each TimeSeries of each clock component 21 

after ObsMod6 refinement (as given in SearchResult); 22 

• Reference (Ref): a specific set of Attributes, which combine to storing the 23 

bibliographic information about a published study that reports Summaries of 24 

experimentally observed TimeSeries or other data of interest (if not prohibited by 25 

copyright, FlyClockbase includes the corresponding files as Content of a Reference);  26 

• Reference AttributeTable (Ref AttTbl): stores each Reference (but not the files of its 27 

study), determining once and for all its unique Reference_IDX, an index used 28 

throughout FlyClockbase (the next largest integer available); 29 

• Submission: here a submitted set of experimental observations reporting enough 30 

Details to enable the independent computation of diverse Summary statistics of 31 

individual observations; 32 

• SearchResult: a set of tables compiled automatically or manually from each 33 

TimeSeries in the Details and Summary Section, (i) by testing whether all Attributes 34 

meet the search criteria and (ii) for those that do, by testing whether the Traits of 35 

appropriately grouped individual or aggregated TimeSeries meets the Trait search 36 

criteria. Our results below derive from a single SearchResult extracted from 37 

ObsMod6, and analyzed in various ways as described. 38 

The basic layout of the folder structure in FlyClockbase follows the layout specified in 39 

the Project Organization Stabilizing Tool (POST) system described elsewhere (LOEWE 40 
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2016). We next discuss additional data types of biological interest before returning to 1 

the current scope and data collection strategy of FlyClockbase.  2 

 3 

 Identification of TimeSeries. This and future studies will need to refer to time 4 

series in FlyClockbase unambiguously. This requires a user-friendly system of precise 5 

and stable identification, in order to facilitate giving, using, and maintaining labels for 6 

time series with minimal effort. Defining such a system is a challenge facing various 7 

naming problems (see tables 1-2 in LOEWE 2016). We aimed to avoid two extremes: (i) 8 

Using the next running number for the next time series creates efficient labels, but 9 

complicates some frequent tasks, such as determining if a pair of time series belong to 10 

the same study. (ii) Descriptive labels including author, year, figure-panel, plot-symbol, 11 

etc. can be informative, but are often too tedious, hard to automate or difficult to 12 

maintain (e.g. avoid synonyms). We therefore developed a system that combines 13 

localized integers that stand for local Items in different frames of reference, each of 14 

which defines a Context that is itself an Item, nested into a bigger Context. The resulting 15 

nestable index integers gives the outermost local item identifier (IDLocal, IDL) as the 16 

first, top, left-most integer. This top ID is separated by a dot (‘.’) from the next ID and 17 

provides the Context necessary for interpreting this second, next-to-top, next-to-left-18 

most integer. This ID in turn is separated by a dot from the third, etc., creating as many 19 

nested Contexts as needed (more details are beyond the scope of this study).  20 

 In practice, naming TimeSeries unambiguously in FlyClockbase requires the 21 

following three types of local identifiers for these three levels of nesting in the Context 22 

provided by FlyClockbase:  23 

1. Reference_IDL, points to a bibliographic reference.  24 

The Context for interpreting the IDLocal of a Ref is FlyClockbase itself; Ref_IDL is 25 

identical to Reference_IDX introduced above. 26 

2. Figure_IDL, points to a Figure in the Context of a study, given by its Ref_IDL. 27 

3. TimeSeries_IDL points to a TimeSeries in the Context of a figure panel,  28 

given by its Figure_IDL. 29 

Any contiguous sequence of the elements above forms an IDFragment (IDF), which 30 

identifies its corresponding Items. To distinguish potentially ambiguous IDFs from full 31 

identifiers in a memory area, we denote the latter as ‘memory identifiers’, or IDMs for 32 

IDMemory. IDMs are unambiguous IDFs guaranteed to refer to a unique Item within a 33 

defined memory area, like unique time series IDs in FlyClockbase. Thus, we can 34 

unambiguously identify each TimeSeries by its TimeSeries_IDM in the FlyClockbase 35 

SummarySection by using the following form: 36 

 37 

 TS_IDM 38 
 SumS.Ref_IDL.Fig_IDL.TS_IDL  39 
 SumS.Reference_IDL.Figure_IDL.TimeSeries_IDL  40 

 41 
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where each IDL is replaced by its respective integer. Like all other IDs, these IDLs are 1 

stored as TimeSeriesAttributes in the corresponding AttributeTable (SumS TS AttTbl), 2 

along with Attributes for both identifying the figure in terms used in its publication, and 3 

the time series in its figure (e.g. capturing line-type, color, plot-symbol, etc.). Thus, a 4 

TimeSeries_IDM such as ‘SumS.1.2.3’ refers to time series 3 in figure 2 of reference 1 5 

in the SummarySection of FlyClockbase. Since the numbering of time series in a figure 6 

panel (etc.), and the numbering of the latter in a study is far from clearly determined, the 7 

additional Attributes help identify the actual figure panel and time series denoted and 8 

would also facilitate the generation of automated reports in the future. For simplicity, we 9 

drop the leading “SumS.” from TimeSeries_IDMs elsewhere in this text (all TS are 10 

Summarized). This is appropriate until a DetailSection (DetS) is introduced for capturing 11 

non-summarized time series measurements in FlyClockbase.  12 

 For example, four figures from one study (Reference_IDM “2”) may have the 13 

Figure_IDLs 1, 2, 5, or 8, resulting in FlyClockbase-wide Figure_IDMs 2.1, 2.2, 2.5, or 14 

2.8; currently, gaps in Figure_IDLs (such as 3, 6, or 7) are allowed if unavoidable and 15 

may indicate that data has been excluded when we later found that it did not fit criteria 16 

for inclusion. If the above FlyClockbase-wide Figure_IDM 2.5 includes the pertinent 17 

local TimeSeries_IDLs  3, 7, and 8, then their FlyClockbase-wide TimeSeries_IDMs will 18 

be 2.5.3, 2.5.7, and 2.5.8. Each such TimeSeries_IDM points to a unique experimental 19 

observation, unless marked in FlyClockbase as one of the rare cases where a review 20 

re-publishes an older time series along with new data. In principle, a new IDL can be 21 

any integer that has not yet been used in its local context. In practice, FlyClockbase will 22 

critically depend on a single naming authority for assigning integers to their 23 

corresponding items and ensuring that these assignments are never changed. Initially 24 

this naming authority will be the maintainer of FlyClockbase, until this functionality can 25 

be automated. Submissions of new studies to FlyClockbase can assign final IDLs for 26 

figures and time series, but only a temporary IDL for a reference. The final 27 

Reference_IDM can only be assigned once the new entry has arrived in memory area of 28 

FlyClockbase. Following proper procedures for these naming issues is essential for the 29 

integrity of FlyClockbase. Naming is complicated and the source of much concern for 30 

managing biological data in VBIRs (NIH et al. 2012; LOEWE 2016). Naming time series 31 

IDs provides a microcosm of the many problems that complicate naming. Still, fully 32 

specifying a concrete dataset for further analysis requires more than particular 33 

TimeSeries_IDMs: it also requires specifying the type of observation, as discussed next. 34 

 35 

 Raw, Mod, and Odd Observations. In FlyClockbase, each Observation (Obs), 36 

is a TimeSeries ContentTable with time values measured in in DZT or CZT (as defined 37 

below), and an associated measure of the amount of mRNA or protein at that time. 38 

Each observation also includes measures quantifying imprecision and variability as 39 

shown in the published figure (if any). ObsRaw (‘raw observations’) specify time as DZT 40 
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and contain the amount values as collected (including negative numbers or imprecision 1 

resulting from undetected human error during data collection). Each ObsMod (‘modified 2 

observation’) is a TimeSeries ContentTable measuring time in CZT and transforming 3 

observations to contain amounts of mRNA or protein that are easier to compare across 4 

time series (see steps S5,D5 in Figure 2). Recognizable problems with ObsRaw data 5 

are appropriately corrected in ObsMod. ObsRaw time series over less than 6 hours or 6 

with more than half of their Content marked as ‘unreadable’ were not simplified into 7 

ObsMod. To identify and correct errors in FlyClockbase, we found it useful to pay close 8 

attention to extreme values that might appear unusual or odd. We denote as ObsOdd. 9 

This does not exclude them from analyses, but motivated us to revisit the whole 10 

deduction chain that led to a given ObsOdd. Since any data collection will contain 11 

human errors, we thought that users of FlyClockbase might find it useful to have 12 

estimates of expected human error rates. We constructed repeated rounds of ObsMod 13 

(see below), which were then used for our final analyses. 14 

 15 

 Data types of time measurements. We follow disciplinary conventions for 16 

defining ZT (ZeitgeberTime) as hours since the last light period started (dawn). We 17 

initially also defined this point in time as exactly ZT = 0. However, this resulted in 18 

occasional unintended confusion of two very different meanings, simply because both 19 

are conveniently denoted by zero: (i) a valid time measurement indicating an event 20 

exactly at dawn as denoted by ‘0’ and (ii) the inappropriate use of ‘0’ for indicating that a 21 

time was NotGiven. While the absence of a particular expected measurement is to be 22 

indicated by the label ‘NotGiven’ in FlyClockbase, it proved difficult to guarantee that no 23 

unintended ‘0’ could slip in. Elsewhere, such as for elementary addition, the use of ‘0’ 24 

for indicating absence as in ‘0 apples’ is justified; it is also common enough and deeply 25 

engrained, so that every new curator would have to spend significant learning effort to 26 

avoid this ambiguity. Moreover, such errors are difficult to find, because a careful 27 

analysis is required to determine, whether a particular ‘0’ indicates ‘0h’ or ‘not given’. To 28 

improve the long-term quality of FlyClockbase and reduce curation costs, we decided to 29 

use a more robust Code2Brain interface (LOEWE 2016) instead. Hence, DZT=0h has 30 

been declared a risky ambiguity to be removed from FlyClockbase as soon as possible, 31 

whenever found (process is ongoing). The old DZT=0h is replaced by the new 32 

DZT=24h, such that 0h < DZT ≤ 24h, while absence continues to be denoted as 33 

NotGiven. We think that this new approach has a robust Code2Brain interface (LOEWE 34 

2016) and provides a high-quality representation of Null for DZT values (see Table 2 35 

and Discussion of Errors in Compilers below and elsewhere (WHITE et al. 2013)). An 36 

important difference exists between measuring fractions of hours in FlyClockbase and 37 

outside. Usually, 1 hour comprises 60 minutes, but hours in FlyClockbase are 38 

decimalized; thus, fractions of hours are measured in decimal fractions and not minutes 39 

and the next hour is imminent at 0.99 h, not 59 min. 40 
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CZT. To simplify analyzing several days of data in sequence, we define Continuous 1 

ZT (CZT) to be an extension of ZT such that time increases without interruption at the 2 

same rate over multiple days – instead of switching back to ZT = 0 at the start of each 3 

new light period (dawn). Some studies use Circadian Time (CT), which can carry the 4 

connotation of time series recorded in unusual light schemes such as 24-hour darkness 5 

(DD) or 24-hour light (LL). CZT helps us to avoid any ambiguity. We use the term Daily 6 

ZT (or DZT) when we mean ZT in this study and in FlyClockbase to reduce the potential 7 

for confusion with CZT (also reduces ambiguity about types of time in code). Storing the 8 

respective day together with DZT or ZT creates a 1:1 relation to CZT. For example, the 9 

times of “lights on” (dawn) and “lights off” (dusk) over three days in the LD 12:12 10 

scheme (12 hours of light (L) followed by 12 hours of darkness (D) each day) used in 11 

the experiments of the initial FlyClockbase release can be given as DZT (24, 12, 24, 12, 12 

24, 12), where days are implicitly assumed to form a sequence. These times are 13 

equivalent to CZT (0, 12, 24, 36, 48, 60), using a different way of encoding days 14 

implicitly. CZT time series simplify selecting observations only from the first day in any 15 

given time series, as done in this study. We use italics for DZT, CZT, h, and hours to 16 

indicate that these types are used as defined in FlyClockbase (see Table 2). We do not 17 

italicize ZT, because we do not recommend its use in FlyClockbase. 18 

 19 

 Data types of amounts. None of the time series data collected reflected 20 

absolute amounts or concentrations in a cell; rather, they show the amount of mRNA or 21 

protein relative to a reference. References are different for many time series, which 22 

presents a significant challenge when attempting to compare time series. The relative 23 

amount of mRNA or protein at a given time cannot be compared across studies, so we 24 

instead turned to a trait-based comparison method. We used modified observation 25 

tables to extract two Traits from each day of a given time series: time of maximum 26 

expression (“peak”) and time of minimum expression (“valley”). We then combined 27 

these two Trait values with time series Attributes to produce PeakValleyTables, which 28 

represent SearchResults for further analysis. For more details, please refer to the 29 

Materials and Methods.  30 

 31 

 Current definition of scope. Aligned with our interest to construct the best 32 

possible circadian clock model for wildtype D. melanogaster, FlyClockbase currently 33 

only includes time series from wild-type or wild-type-like flies (e.g., Canton-s, yw, 34 

“control”) observed in a LD 12:12 environment from studies published between 1990 35 

and 2015 (see search criteria below). Thus, we currently exclude on purpose any 36 

mutants that are meant to carry changes in clock genes, diversity in light-dark regimes 37 

and other species for reducing the complexity of data curation. We include as “wildtype-38 

like” any mutants that were constructed without the intention of altering the dynamics of 39 

clock components, including reporter genes (e.g. luciferase) and modifications to body 40 
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and eye color (e.g. yw). We thereby take the reported results at face value, implying that 1 

such genetic engineering actually does not affect clock dynamics. Testing this 2 

assumption is beyond the scope of this study and might become possible with the help 3 

of large numbers of replicates collected in FlyClockbase. Measurement errors 4 

associated with many observed time series are substantial and so is their variability 5 

between time series. Thus we assume in this study that “wildtype” and “wildtype-like” 6 

flies observed in the control experiments of many clock studies can be pooled. As a 7 

result, we are including time series from the 86 studies cited below in the first public 8 

release of FlyClockbase (QQv1 in the StablizingZone notation of the POST system 9 

(LOEWE 2016), see http://evolvix.org/post). Beyond historic accident, there is no 10 

particular reason to limit FlyClockbase to this scope, as long as expansions of scope 11 

are coordinated carefully with corresponding data structures that enable the selection of 12 

desired datasets. 13 

 14 

 Collection of data. Unfortunately, only one study provided individual raw time 15 

series observations in addition to summaries (SHI et al. 2014). For the 85 other studies, 16 

we extracted observed amounts and times from the time series figures published in 17 

these papers (by plot digitizing, see details below). Future releases of the database will 18 

allow the inclusion of individual time series observations in the Details Section. This will 19 

enable meta-analyses to customize the statistics they report in order to choose 20 

measures of variation that may be more appropriate than the arithmetic mean and 21 

standard deviation. In our experience not all studies specify the variation measures they 22 

report with the appropriate care (e.g. failing to specify whether a figure reports standard 23 

devitations or standard errors of the mean; see SALSBURG (1985) for similar 24 

experiences). 25 

  26 
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 1 

 2 

MATERIALS AND METHODS 3 

 4 

 5 

Literature search  6 

 7 

We searched the literature databases PubMed and Web of Science to collect 8 

references with time series data of the core components of the D. melanogaster 9 

circadian clock. Time series were broadly defined as any timed measurements of 10 

amounts of a relevant type of mRNA or protein that showed a daily peak or valley time 11 

for clock components, irrespective of the absence of scaling, calibration, and linearity. 12 

Search terms focused on variations of the terms “drosophila melanogaster” and 13 

“circadian clock” (plural, singular, or MeSH terms, or requiring any of the words in 14 

“circadian clock”). Marking phrases as specifically being MeSH terms did not influence 15 

the number of results. Using plural search terms (i.e., “circadian clocks,” “clocks”) 16 

reduced the number of results, sometimes by hundreds of articles. Requiring both 17 

words in “circadian clock” (as opposed to allowing either “circadian” or “clock”) also 18 

decreased results by up to half. To reduce the likelihood that relevant data would be 19 

excluded in the initial literature search, we chose terms that produced as many results 20 

as possible. The final literature search occurred on March 26, 2015. After we removed 21 

duplicate studies, this initial search produced 1249 results.  22 

 23 

Initial eligibility assessment. We assessed the title and abstract of each study 24 

identified in the literature search based on the following three factors: 25 

1. Apparent content. We excluded articles focusing on organisms other than D. 26 

melanogaster or centered on processes other than the core clock. We define the 27 

“core clock” to be comprised of genes integral to the functioning of the circadian 28 

clock in pacemaker cells, with a particular focus on the small ventral-lateral neurons. 29 

These genes include those shown in Figure 1 as well as ck2a, sgg, and pdf (see 30 

Table 1). Genes related to upstream or downstream clock processes were not 31 

included as part of the core clock; neither were genes that affect transcription, 32 

translation, or degradation rates in general. We also excluded papers if they were 33 

deemed unlikely to contain relevant time series based on the title. The articles we 34 

excluded based on this criterion focused on functional areas such as sleep, rest, 35 

arousal, locomotor rhythms, the visual system, metabolism and feeding.  36 

2. Type of data. We only included papers with experimental data. As simulation data is 37 

beyond the scope of FlyClockbase, we excluded articles focusing solely on 38 

mathematical models since simulation data is beyond the scope of FlyClockbase. 39 

3. Format and availability. We excluded the following reference formats because they 40 
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were unlikely to contain specific experimental data: book chapters and prefaces, 1 

comments, dispatches, features, meeting reports, monitors, news, outlook articles, 2 

prediction reports, perspective articles, and reports from workshops. We also 3 

excluded one paper that was not available in English. 4 

 5 
 6 

We then examined the full texts of the remaining 603 studies to determine which papers 7 

contained time series data. We were able to find only one article with raw time series 8 

data (SHI et al. 2014), so we used time series figures as a summarized proxy for raw 9 

measurement data. We found 149 studies with at least one time series figure.  10 

 11 

Biological eligibility assessment. We further filtered these 149 studies with 12 

time series based on the following biological factors:  13 

1. External conditions. We excluded time series with light schemes other than 12 hours 14 

each of light and darkness (12:12 LD) or with temperatures that varied over the time 15 

of collection.  16 

2. Observed cell specimens. We required time series data to be based on 17 

measurements taken from biological material including at least some of the neurons 18 

closely related to the central clock in Drosophila (e.g., the small and large ventral-19 

lateral, dorsal, dorsal-lateral, and posterior neurons, and S2 cells). For example, we 20 

included time series data taken from whole fly heads, whole flies, or the specified 21 

cell groups but excluded data from fly eyes or wings.  22 

3. Genotypes. We only collected time series of wild-type or wild-type-like fly strains. We 23 

considered strains described as “wild-type”, “control”, “+/+”, or “Canton-s” to be wild-24 

type strains. We also included other fly strains if they were natural variants such as 25 

CRY-H and CRY-s (time series IDs 9.1.1 and 9.1.2). We excluded genotypes with 26 

mutations intentionally inserted to affect levels of protein expression, 27 

phosphorylation, binding, or light response of core clock proteins. We characterized 28 

wildtype-like flies as any animals with mutations not believed to interfere with the 29 

operation of the clock. Examples include “yw” flies (have yellow bodies and white 30 

eyes) and insertions of reporter genes such as luciferase, which are co-expressed 31 

with clock genes. 32 

4. Amount and type of data. We excluded time series if they were generated by 33 

mathematical extrapolation, contained fewer than three data points, or covered less 34 

than 12 hours. 35 

The 86 remaining studies were defined as biologically eligible for inclusion in the initial 36 

release of FlyClockbase and each study, relevant figure and relevant time series were 37 

given a corresponding Reference_IDM, Figure_IDL, and TimeSeries_IDL as described 38 

above (see Figure 2, Steps S1-S4, and Section Identification of TimeSeries). 39 

 40 

 41 
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 1 

TimeSeries data extraction 2 

 3 

Since only a single study provided raw time series data in its online material (SHI et al. 4 

2014), we extracted numbers for amounts and times from plotted time series in figures 5 

as follows. We first extracted a screenshot of each figure from an appropriately 6 

magnified downloaded PDF-formatted copy of the relevant study (using the Mac OSX 7 

program “Grab,” a simple application for taking screenshots). We then extracted the 8 

data from each individual time series from its corresponding image using the open 9 

source program “Plot Digitizer” (version 2.6.3 available at 10 

http://plotdigitizer.sourceforge.net/) and recorded the result in a SummarySection 11 

ObsRaw TimeSeries ContentTable (Step S2 in Figure 2). Plot Digitizer requires users to 12 

specify the plotted values and the physical locations of minima and maxima for each of 13 

the x- and y-axes in the figure. We did not detect significant curvature in the planes of 14 

plots (as might be added by careless digitizing of printed copies) and therefore assume 15 

that Plot Digitizer’s linear interpolation provides reasonably accurate numerical x and y 16 

coordinates of each point manually selected by the user. All y-axis values were directly 17 

recorded using Plot Digitizer, unless a study specifically stated the value of mRNA or 18 

protein at a given time. For x-axis, the value from Plot Digitizer was disregarded if the 19 

value was noted in the text or clearly marked on the graph.  20 

 21 

Accuracy estimates of digitized TimeSeries data. To assess the human 22 

operator component of digitizing accuracy, we measured the variability of plot-digitizing 23 

by three authors. Each operator plot-digitized the sample time series (63.1, WTLD, 24 

green line with green squares) independently three times to produce a set of values 25 

ready for inclusion as if it was true raw data. For each operator, time point digitized, and 26 

axis, we calculated the following values: the mean of the absolute value of the relative 27 

difference between each pair of the three independently produced values. Averaging 28 

over all time points allowed us to calculate the average operator difference percentage 29 

for the time axis, taod, representing an estimate of the relative error that one might 30 

expect for a new value added to a time series in FlyClockbase by plot-digitizing. We 31 

observed these intra-operator averages for time (with a maximal value of tmax = 48): 32 

 33 

taod = 0.72%, 1.79%, 1.80%, including the first point, and 34 

taod = 0.76%, 1.07%, 0.75%, excluding the first point of the time series for operator 1, 35 

2, and 3, respectively.  36 

 37 

We also observed the following equivalent measures for the amount values vaod on the  38 

y-axis (with the maximal value of vmax = 2), resulting in averages of 39 

 40 
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 1 

vaod = 0.95%, 1.15%, 1.11%, including the first point, and 2 

vaod = 1.00%, 1.23%, 1.16%, excluding the first point. 3 

 4 

Operator 3 plot-digitized all values in FlyClockbase. We averaged all values digitized by 5 

all operators and we found: 6 

 7 

taod = 1.40% and vaod = 1.06%, including the first point, and 8 

taod = 0.84% and vaod = 1.12%, excluding the first point. 9 

 10 

Averaging coefficients of variation calculated separately for each time point by 11 

combining data from all operators gives 12 

 13 

tacv = 1.72% and vacv = 2.61%, including the first point, and 14 

tacv = 0.90% and vacv = 2.79%, excluding the first point. 15 

 16 

The drop in taod and tacv when excluding the first point of the time series stems from the 17 

uniformity of absolute errors (‘hit a point on screen’), which results in a proportionally 18 

larger impact on small values; this can help estimating precise values near zero. 19 

 Overall, these measurements indicate that relative errors introduced by plot-20 

digitizing are small (1% or less) compared to the errors associated with the wet-lab 21 

measurements. Thus, we conclude that errors from plot-digitizing can usually be 22 

ignored. However, these are not the only potential errors in FlyClockbase. We refined 23 

each ObsRaw TimeSeries ContentTable (direct from plot-digitizing) into a 24 

corresponding ObsMod TimeSeries ContentTable (see Step S5 in Figure 2) by 25 

correcting human errors associated with data extraction and annotation, as discussed 26 

below. 27 

 28 

Extracting TimeSeries Attributes. After extracting ObsRaw TimeSeries 29 

Content from published figures, we extracted associated TimeSeries Attributes and 30 

Reference Attributes from the corresponding published experimental studies (see Steps 31 

S3-S4, Figure 2). Attributes relevant to a study as a whole is recorded in the Reference 32 

AttributesTable, while Attributes specific to a given time series is in the TimeSeries 33 

AttributesTable. We collected Attributes for each TimeSeries to serve two purposes:  34 

 35 

(i) to help us to ensure TimeSeries fit the biological eligibility criteria previously 36 

described;  37 

(ii) Attributes enable later comparisons of biological, methodological, and other factors 38 

that could result in variability between time series.  39 

 40 
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We collected Attributes related to these three categories of questions:  1 

 2 

1. Information about the time series  3 

a.  Which MethodRealm does the time series belong to (in vitro, in vivo, ex vivo, post 4 

mortem)?  5 

b.  What is the molecular type of the time series? Which protein or mRNA does it 6 

represent? Which isoform or splicing variant, or phosphorylation state of a given 7 

mRNA or protein was measured (if relevant)?  8 

c.  Does the time series reflect data based on Zeitgeber Time (DZT or CZT)?  9 

d. Do the amounts reported in the time series come provide any information for 10 

limiting associated measurement errors? If yes, which types of errors are 11 

reported: the standard error of the mean (SEM), the standard deviation (SD) or an 12 

UnknownErrorMeasure (UKEM)?  13 

2. Information about the method used to collect the time series  14 

a.  Which method was used to observe the time series? 15 

b.  Which machines, reagents, and software were used? 16 

c.  Which probes or antibodies and dilutions were used (if relevant)? 17 

d. Which calibrations were applied, both mathematically (e.g., raw values were 18 

scaled by the maximum value) and biologically (e.g., values measured are relative 19 

to a specific standard mRNA or protein)? 20 

e.  How many repeats were observed, and how are those repeats defined? 21 

f.  When was the first and last data point recorded (CZT or DZT with days)?  22 

g.  How long did the overall experiment last (in hours)? 23 

h.  How long were the intervals between observed data points (if regular)? 24 

i.  At which specific times were observations recorded (if specified in the text of the 25 

study or clearly marked on the time series figure)?  26 

3. Biological and environmental information about flies used to collect time series data  27 

a.  Were flies exposed to light:dark schemes other than 12:12 L:D? 28 

b.  To which temperature were the flies exposed? 29 

c.  How long were the flies entrained? 30 

d.  How old were the flies? 31 

e.  What were the genotypes of the flies? 32 

f.  Which sex(es) of flies were used? 33 

 34 

In some cases, longer Comments directly copied from the text of a study were the most 35 

appropriate way of describing a given Attribute without introducing the potential for 36 

errors from paraphrasing. To avoid visual clutter and unnecessary bloating of the 37 

TimeSeries AttributeTable we introduced the notion of column locality, which is defined 38 

by a locality index column that is allowed to have identical values in consecutive rows 39 

and thereby define one LocalColumn for each such run of identical values. The purpose 40 
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of this construct is to provide a formal check for the use of the equivalent of ‘ibid.’ in 1 

FlyClockbase. For example, adding “See Method Comments, 2.5.1” in the column 2 

“Method Comments” at time series row 2.5.2 indicates that the longer comment stored 3 

in the row above (2.5.1) also applies to the next time series. To avoid loss of context, 4 

the FlyClockbase look-up keyword “See” must be followed by an indication of the 5 

column and row that are being referenced. To maintain readability for humans and 6 

simplify the implementation of code that understands LocalColumns, such pointers to 7 

previous cells of a column must not be interrupted by cells with unrelated content.   8 

 9 

 10 

TimeSeries Traits analysis of Peaks and Valleys refined by ObsOdd checks 11 

 12 

We manually compiled a set of SearchResultTables that integrated a simplified set of 13 

Attributes describing the nature of a given time series. In addition, these included Traits 14 

that computed the respective times where amounts show a peak or a valley on the first 15 

observed day of an ObsMod time series in FlyClockbase. These SearchResultTables 16 

were termed ‘PeakValleyTables’ and constructed for each given mRNA and protein. 17 

Each row in a peak-valley table corresponds to one time series and records several 18 

Attributes (from the SummarySection TimeSeries AttributeTable, see Steps S6 in Figure 19 

2) and two Traits (peak and valley, from the ObsMod TimeSeries ContentTables, see 20 

Steps S7-S8 in Figure 2 and Figure 3). Each row also stores a day index, indicating the 21 

day during which the reported peak and valley were observed, counting from the start of 22 

the experiment (CZT = 0h). For example, a day index of two would indicate that peak 23 

and valley of the time series described by the Attributes in the row were observed 24 

between 24 and 48h CZT after initiating the observation of this time series.  25 

 26 

 27 

Place    FIGURE 3      about here. 28 

 29 

 30 

Measuring a limit for maximal peak time variance. In an effort to limit 31 

mistakes rising from human error, we refined the initially constructed PeakValleyTables 32 

(‘Raw’) into a series of successively modified PeakValleyTables shown in Figure 3 33 

(‘Mod1’ – ‘Mod6’). To create the first set of modified PeakValleyTables (Mod1), we 34 

identified PeakValleyTables where the standard deviation of the peak value, valley 35 

values, or both was greater than six hours. We based this threshold on two control 36 

distributions. First, we created a uniform distribution with 25 artefactual regularly placed 37 

observations covering every hour of the day effectively starting at 0h up to the very end 38 

at 24h in 1h steps. This distribution had an average and median of DZT=12h ± 7.36h 39 

SD; omitting the first or last hour reduced the standard deviation to 7.07h. We also 40 
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randomly sampled 1000 values from a uniform distribution with a range from 0h to 24h. 1 

Repeating this exercise three times produced DZT medians of 11.66, 12.41, or 12.08 h, 2 

averages of 11.85, 12.47, 12.01 h and standard deviations of 6.81, 6.92, 7.02 h, 3 

respectively. We therefore concluded that observations of SD ≥ 6h effectively indicate 4 

signals that are indistinguishable from randomly distributed impulses that are not 5 

oscillating in any discernably coordinated manner. Assuming that clock researchers 6 

were probably correct when they reported oscillations, we explored the hypothesis that 7 

such high variation SDs might have been caused by errors in acquiring or interpreting 8 

some aspect of the data.  9 

 10 

Factors contributing to increased trait variance. An important early insight 11 

was the necessity to exclude peaks or valleys that coincide with the first or last point of 12 

a time series. Although these points might appear to report the maximum and minimum 13 

expression of a clock component, the amounts following or preceding this value (not 14 

shown in the figure) could easily continue the local trend. For example, a time series 15 

figure could appear to show maximum expression at the final data point (e.g. 23 CZT) 16 

but reflect a system where the next theoretical data point (e.g. 25 CZT) corresponds to 17 

the “true” maximum expression. We excluded these time series and made additional 18 

corrections of observed human errors to construct the refined dataset ObsMod1 from 19 

ObsRaw. This early success in using odd observations for detecting potential lower-20 

level problems in datasets encouraged us to continue to investigate unusually extreme 21 

values, which we then defined as ObsOdd peak or valley times outside of the range 22 

defined by a given clock component’s observed Avg ± 1 SD. Time series with ObsOdd 23 

in Mod1 were recorded in the peak-valley table ‘Odd1’. After correcting mistakes in 24 

Odd1, we combined the corrected values from Odd1 with the remainder of the data from 25 

Mod1 to create Mod2. We repeated this cycle of checking for mistakes, recording 26 

unusual values in Odd PeakValleyTables, and fixing errors until we created the final set 27 

of modified and odd PeakValleyTables, Mod6 and Odd6. In addition to correcting more 28 

unique human errors, we also made adjustments for these potential method-based 29 

sources of errors: 30 

 31 

1. Local minima in peaks: Some time series (e.g. 85.7.2, 65.1.3, 81.4.1) report a local 32 

minimum, where it is easy to intuitively suspect a peak. We only adjusted our peak 33 

estimate if (i) a peak was also expected based on other time series of the same 34 

clock component, and (ii) the data points on either side of the local minimum are the 35 

highest two values for the respective day in the time series. These local dips can 36 

result from measurements outside of linear reporting ranges for time series 37 

observation methods such as RNase protection assays (RPAs) and Northern Blots. 38 

Increases beyond their linear range no longer produce linear increases in the 39 

intensity of signals and might even decrease the signal if product inhibition 40 
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phenomena occur. We therefore suggest these local minima reflect measurement 1 

inaccuracies rather than actual decreases in amounts. To correct for this error, we 2 

recorded peak time as the average time of the two surrounding near-peak amounts.  3 

 4 

2. Luciferase initial spike: Time series observed using luciferase (e.g. 62.2.1) may 5 

appear to report a peak shortly after starting to record data. The timing of this first 6 

peak can be inconsistent with peaks on other days in the same time series and other 7 

time series. Often the second peak has a DZT timing similar to peaks on subsequent 8 

days and in other time series. Such odd initial maxima are likely to be artifacts of the 9 

bioluminescence technique used to measure such a time series. They can be 10 

caused by an initial adjustment period that is required for accurate measurements of 11 

luciferase levels. Reported extra peaks occurs shortly after the arbitrary end of such 12 

initial periods (PLAUTZ et al. 1997; STANEWSKY et al. 1997). In such cases, we ignore 13 

the initial peak and record the values associated with the second peak on that day 14 

(as opposed to the technical maximum).  15 

 16 

3. Minimal Duration: Some time series (e.g. see Figure_IDs 43.1 - 43.6, 61.1 - 61.4, 17 

75.3) had a duration of twelve or fewer hours. Although minima and maxima can be 18 

read from such figures, their use is questionable, in particular, when the actual peak 19 

or valley times are not expected in the recorded time. Thus, we mark these peak or 20 

valley times as not given. 21 

 22 

Linearizing TimeSeries data. The cyclic nature of circadian rhythms must be 23 

kept in mind when statistically describing the times of peaks or valleys in circadian time 24 

series. To illustrate this point, we will use data from the first day of clk mRNA time 25 

series. With no alterations, mean peak time estimates suggest DZT = 8.79h ± 8.59h 26 

(SD), which is indistinguishable from randomly distributed peaks (see above). Closer 27 

inspection of the data, however, shows that these values may be misleading. 28 

Calculating the mean and standard deviation depends on finding differences between 29 

values representing time, an operation that is substantially complicated by the circular 30 

nature of hours in a day, where the value of 24h + 3 min results in 0.05h. This is in 31 

sharp contrast to any linear expectation. For example, the central peak times for the clk 32 

time series 35.2.1 and 35.2.2 (see Fig. S3B in KADENER et al. 2009) are observed at 33 

about CZT 23 and about CZT 27, respectively. Translating them into circular circadian 34 

time results in DZT 23 and DZT 3, respectively. If we then disregard the circular nature 35 

of these values, we might infer a time difference of 20h between DZT 23 and DZT 3. 36 

However, visual inspection quickly clarifies that the peak occurring at CZT 23 on the first 37 

day is close to the early peak of the following day, which occurs at CZT 27h given by 38 

the sum of (Day 1 DZT 24h) + (Day 2 DZT 3h). The difference between these peaks in 39 

time series 35.2.1 and 35.2.2 is thus more accurately calculated as CZT 27 - CZT 23 = 40 

4h. The corresponding change is equivalent to a local linearization of time when some 41 
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part of the original day crosses over into the next or last day. Peak or valley times that 1 

have been linearized in this way are hereafter called “linearized.”  2 

 We manually linearized all values in the Mod PeakValleyTables by moving the 3 

minority of values to an earlier or later day (i.e. adding or subtracting 24 hours). Raw 4 

PeakValleyTables are not linearized. Our current way of linearizing is geared towards 5 

analyses of a single 24h period. Close direct visual inspection of all relevant time series 6 

and claimed peaks makes it reasonably easy to linearize other periods; here it is 7 

beyond our scope to conduct more general analyses.  We found that linearization 8 

greatly increases the overall reliability of representations of groups of time series. This 9 

is of particular importance when estimating the variability of peak and valley times, 10 

which is easily inflated artificially by omitting the linearization step. 11 

 Table S1 demonstrates the differences that can result from calculating summary 12 

statistics for Raw (circular time, no value linearized) or Mod (linearized time) peak and 13 

valley times of selected types of mRNA and protein. Results show that median, mean, 14 

and SD of linearized times may (but are not required to) differ dramatically from those 15 

calculated for circular raw times. For example, the linearized mean peak time for clk 16 

mRNA occurs 6 hours before its circular raw equivalent. Similarly, the SD of linearized 17 

peaks is about one-third of the SD of peaks measured in raw circular time.  18 

 Comparisons to summary statistics of uniform random distributions (see above) 19 

are instructive; as a rule of thumb, peak and valley times (or any daily event times) with 20 

a standard deviation greater than six hours should be treated with suspicion; they might 21 

be difficult to distinguish from randomly distributed times or could be the result of a lack 22 

of linearization. The latter affects Raw SD values for clk mRNA peak time, PER protein 23 

peak time, and per mRNA valley time (Table S1), which are close to SD values for 24 

uniform randomly drawn samples. In contrast, after linearization, SD for these Traits are 25 

much more similar to the SD of Traits of other linearized time series. Overall, this and 26 

other experiences suggest that linearization is an important step in obtaining trustworthy 27 

summary statistics from circular values such as DZT, even though linearization makes 28 

no difference in cases where times are already linear (e.g. TIM protein peak with peak 29 

CZT 18.41 ± 2.54 in Table S1).  30 

 31 

 32 

Statistical analyses 33 

 34 

Our initial screening for variability of the Traits we call Peak time and Valley time 35 

(observed on day 1) surprised us by suggesting that variability might differ significantly 36 

among clock components. Given the various sources of spurious variability described 37 

above, we aimed to remove all artifacts that might randomly inflate variability estimates, 38 

including potential biases that might be introduced from analyzing more than the first 39 

day of a time series (after entrainment). Our interest in reproducible results and 40 
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disappointing experiences with large untested data collections has inspired various 1 

rounds of error checking and increasingly rigorous statistical analysis.  2 

 3 

Automated analysis with R script. The core results of our study (differences in 4 

variance between peak times of PER and TIM proteins) have been tested independently 5 

by three of us (KS, BH, LL). The most rigorous analysis is presented below and can 6 

easily be reproduced by running the script 7 

    FlyClockbase_PER_TIM_Methods_PeakValley_Comparisons_2016.txt 8 

which is provided in the Supplemental Material along with input files and the 9 

Supplemental Statistical Analysis, which is an annotated PDF, collating all pdf output 10 

from our plotting and analysis script. We executed the script on R version 3.2.4 (as of 11 

2016-03-10, https://www.r-project.org ). It requires the package “data.table” and the 12 

library of robust statistical testing functions implemented by this script  13 

    http://dornsife.usc.edu/assets/sites/239/docs/Rallfun-v30.txt 14 

All statistical analyses used data from PeakValleyTables, where our final results are 15 

taken from ObsMod6 (see Figure 3 and text above). All corresponding input files are 16 

provided next to the R script and are denoted as ObsMod7 and ObsMod8 as described 17 

in the code. Times are given in CZT and have been linearized as described above.  18 

 While the script contains numerous comments, it does not attempt to be elegant 19 

code. Much of its over 12,000 lines appear at first glance to be repetitive with small 20 

variations. It is currently not clear how to simplify the documentation of this script or 21 

whether the time required for substantial code improvements would be well invested. 22 

The trade-off between readability and coding time is further discussed in the R-code 23 

and Supplemental Material under the approach to documenting code denoted as 24 

‘DISCOVARCY’-style. 25 

 26 

Outlier analysis. We addressed above those irregular values in ObsOdd that 27 

were demonstrably due to human errors from data processing, removing them from 28 

considerations below. Due to the substantial variability of the reported time series and 29 

the diversity of measurement methods used to collect them, we were concerned that a 30 

few substantially different outliers might obscure a robust trend exhibited by the majority 31 

of observations. Thus, we used the following three different approaches for testing the 32 

impact of outliers when analyzing Trait X by removing as outliers all values Xi, where  33 

(i)  Xi is outside of the range of non-outliers given by  34 

( q1 -1.5 * IQR )  < Xi  <   ( q3 +1.5 * IQR ), where IQR = (q3 - q1) is the  35 

Inter-Quartile Range, and qi are the corresponding quartiles, 36 

(ii)  Xi is identified an ‘extreme value’ by close visual inspection and its extreme 37 

difference to equivalent observations. This manual approach removed Protein time 38 

series 14.1.1 for TIM, and 43.2.1, 43.3.1, 43.5.1 for PER, but none for the 39 

corresponding mRNAs (see the BestNoXtrem input for the R-script above), 40 
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(iii) Xi is identified as an outlier by Carling’s modification to the standard boxplot 1 

approach (CARLING 2000; WILCOX 2012). This technique uses sample size to adjust 2 

the range of outliers to account for the tendency to identify a greater number of 3 

outliers at smaller sample sizes. We used the implementation described by Wilcox 4 

(2012, see section 3.13.3 and 3.13.5 on p.97-98 as implemented in his R script 5 

“Rallfun-v30.txt” as function “outbox” when called with parameters 6 

“mbox=T, gval=NA”, so that his eq. 3.45 on p.97 is applied). This method is 7 

applied to the data analyzed by our R script described above. 8 

 9 

Testing differences in variance. To test whether differences in variance are 10 

statistically significant at the level of alpha = 0.05, we ran 100,000 bootstraps of the 11 

percentile bootstrap method implemented by the function “comvar2” in the R script 12 

“Rallfun-v30.txt”, as described by WILCOX (2012) on p.175, section 5.5.2 and 13 

elsewhere (WILCOX 2002). This function provides a 0.95 confidence interval for an 14 

estimate of the difference between the variances of two groups, but was implemented in 15 

a way that only detects significance at the 5% level (without giving P values). We used 16 

this newer, more robust method to avoid problems associated with older methods such 17 

as Levene’s test (NORDSTOKKE AND ZUMBO 2007).  18 

 19 

 Testing differences in mean. To test for 95% confidence in significantly 20 

different locations when comparing distributions, we used (i) the Mann−Whitney−U test 21 

as implemented in R (wilcox.test, 2 sided, unpaired), (ii) calculated 100,000 22 

bootraps of the “bootdpci” difference as described on p.202 in section 5.9.12 of 23 

WILCOX (2012), and (iii) 100,000 bootstraps of the “medpb2” difference of medians as 24 

described on p.174 in section 5.4.3. of WILCOX (2012). Additional details of the function 25 

calls are easily found in the source code of our R script that performs these calculations; 26 

the results are given in the PDF output of this script, which is also available online as 27 

collated and annotated Supplemental Statistical Analysis.  28 

 29 

 Supplemental Statistical Analysis. The same R script produced the results 30 

plots shown in the main text below and the 81 pages of auto-generated plots shared 31 

with 6 additional pages for navigation as Supplemental Statistical Analysis in the 32 

Supplemental Material. It was generated by combining various snippets of code to test 33 

for all combinations of input data, outlier removal, observed Traits, molecule types and 34 

genes. This resulted in 32 distributions, combining the following features: input data 35 

(with and without the manually identified BestNoXtrem outliers), outlier removal (with 36 

and without applying Carling’s outlier removal), and all combinations of Traits (peak, 37 

valley), molecule type (mRNA, Protein) and gene (per, tim). Method comparisons 38 

employed the same set of statistical tests for comparing locations and variances of two 39 

distributions (PCR vs non-PCR).   40 
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 1 

 2 

RESULTS 3 

 4 

 5 

Experimental observations used in modeling 6 

 7 

In addition to experimental results, our extensive literature review identified 66 studies 8 

published since 1995 which focused on modeling the D. melanogaster core circadian 9 

clock. Figure 4 shows that about 75% (50/66) of all modeling studies reuse parameters 10 

reported in other modeling studies. Of the remaining studies, 13 relied exclusively on 11 

abstract time series traits for estimating parameters, two used exclusively direct 12 

experimental observations of time series data (KUCZENSKI et al. 2007; FATHALLAH-13 

SHAYKH et al. 2009), and one did both (LEISE AND MOIN 2007). In addition, one study re-14 

used parameters from one of the three studies mentioned above. Thus, only 6% (4/66) 15 

of all simulation studies were based on direct experimental observations of time series. 16 

This does not include the 13 studies that estimated parameters from abstract traits. The 17 

substantially different numbers in each category might reflect difficulties inherent in 18 

curating and incorporating experimental data into clock simulations (see above Section 19 

on Models). We experienced first-hand many such difficulties. Although models will 20 

never perfectly simulate reality and ‘validation’ is impossible on principal grounds 21 

(ORESKES et al. 1994; BEERSMA 2005), we maintain that direct experimental evidence is 22 

critical for increasing the relevance of models aiming to understand reality. Facilitating 23 

the construction of more reliable models by including more direct observations 24 

motivated us to build FlyClockbase. We found that FlyClockbase also enables 25 

interesting retrospective meta-analyses, some of which we report below. 26 

 27 

 28 

 29 

Place    FIGURE 4      about here. 30 

FIGURE 4. Where do models get their realism from? 31 

 32 

 33 

 34 

Place    FIGURE 5      about here. 35 

FIGURE 5. Overview of experimental studies available in  36 

FlyClockbase and their use for parameter estimation over time. 37 

 38 
 39 
 40 

 41 
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 1 

 2 

FlyClockbase is a new resource enabling studies of circadian clock time series 3 

 4 

FlyClockbase includes 403 time series covering 20 different mRNAs and proteins (13 5 

and 7, respectively). An overview of its data model is given in Figure 2, relevant 6 

abbreviations are summarized in Table 2. Table 3 shows its number of time series and 7 

published studies corresponding to each type of mRNA or protein in FlyClockbase. 8 

Figure 5 summarizes publication years from 1990 to 2015 for its 86 experimental 9 

studies observing time series of clock components. Figure 5 highlights publication years 10 

of the 16% (14/86) experimental wildtype observations used to directly inform 5% (3/66) 11 

of all computational model studies of D. melanogaster circadian clocks (see Figure 4).  12 

 13 

Place    TABLE 3      about here. 14 

 15 

 Hypothesis testing. FlyClockbase enables the study of many diverse biological 16 

questions, making it impossible to present all corresponding biological results here (see 17 

Discussion of using FlyClockbase for hypothesis testing). The analysis of most 18 

biological questions, however, requires the computation of relevant Traits from the time 19 

series stored in FlyClockbase. These Traits then need to be combined with the relevant 20 

Attributes of the corresponding time series to form a row in the table of search results 21 

(see Figure 2). We named these PeakValleyTables, since we constructed one for each 22 

clock component in order to focus exclusively on analyses of the circadian timing of the 23 

first peak and the first valley of each time series (defined by the respective maximal and 24 

minimal amounts during the first day). After initially establishing FlyClockbase and 25 

estimating the variability of all clock components, we limited the scope of this study to 26 

the following two biological questions: 27 

(i) Comparing the variability of daily peaks and valleys of per and tim mRNA and 28 

protein, are there statistically significant differences in variance across 29 

independent time series?   30 

(ii) Which differences (if any) occur in the timing of per mRNA peak times based on 31 

different methods of observation? 32 

We picked these specific questions because the initial release of FlyClockbase 33 

contained the largest numbers of time series for these four components (ordered by 34 

count we used 89 time series for per, 77 PER, 51 tim, 42 TIM). Thus, FlyClockbase 35 

enables comparisons of variability of independently collected time series of circadian 36 

clocks. 37 

 38 

 39 

 40 
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 Error analysis. We conducted our initial retrospective meta-analysis of the 1 

questions above after compiling FlyClockbase and refining it to correct all errors in data 2 

handling that were known at that time (which produced ObsMod5, see Figure 3). Since 3 

these initial results surprised us, we wanted to test their reliability. We had no estimates 4 

for the frequency of errors that might be expected in FlyClockbase. It was not clear 5 

whether there was a faster way of obtaining error estimates for such a complex, 6 

manually compiled resource designed to organize scattered data that is heterogeneous, 7 

diffuse, and characterized by many complexities, uncertainties, and gaps. We thus 8 

opted for the most reliable approach available and rechecked every processing step 9 

that could have affected the accuracy of our data sources or every peak and valley 10 

timing used in our final analysis (producing ObsMod6, see Figure 3). These tests 11 

improved our accuracy and generated realistic error rates for users of comparable 12 

resources (see below). 13 

 14 

Place    TABLE 4     about here. 15 

 16 

 Overview of TimeSeries Traits. The PeakValleyTables described above 17 

allowed us to focus on efficient analyses of the timing of extreme amounts. These 18 

prominent traits of time series have been used previously to estimate parameters and to 19 

compare simulations and experiments (PETRI AND STENGL 2001; FATHALLAH-SHAYKH et 20 

al. 2009). Table 4 provides summary statistics based on ObsMod6 PeakValleyTables 21 

(see Figure 3) after applying outlier-removal method (i) described above. We will later 22 

provide an independently computed overview of the mean and SD for the peak and 23 

valley time of PER protein, TIM protein, per mRNA, and tim mRNA using outlier-removal 24 

method (iii), see Figure 6 below. The amounts of clk and cry mRNA peak during the day 25 

and reach a valley during the night. The components per mRNA, tim mRNA, pdp1 26 

mRNA, PER protein, TIM, protein, and CRY protein display the opposite pattern: peaks 27 

occur during the night and valleys during the day.  28 

 Variability of peak and valley times as measured by standard deviation varied 29 

substantially from about one to four hours. This difference motivated us to determine 30 

whether these differences in variability were statistically significant and might point to 31 

mechanistic causes with implications for the inner workings of the clock. The most 32 

frequently observed clock components were per and tim mRNA and protein, which 33 

made them prime candidates for comparing their variability. However, one important 34 

task remained before investigating our hypotheses: testing for errors.  35 

  36 

 Why estimate errors? We had to be reasonably certain that we could rely on 37 

the values stored in our PeakValleyTables. This was particularly important for detecting 38 

significant differences in variability, since random errors in the capture or processing of 39 

data are known to easily generate spurious values that substantially impact observable 40 
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variability. As explored in the Discussion, attempts to detect and correct errors in 1 

author-labs and distinguishing them from other potential sources of variability was 2 

beyond the scope of our study. Thus, our goal was to be able to confidently exclude 3 

errors during the capture and processing of data on our side. We defined as error in this 4 

context any result that did not hold up to scrutiny, when rechecked using the rules we 5 

had agreed on for processing time series data. These rules were set up after we gained 6 

substantial experience with various counter-intuitive aspects of the data, as documented 7 

in this study. Thus, our definitions of error were not arbitrary and therefore allow us to 8 

contribute below a specific estimate of human error rates to the broader area of human 9 

error analysis (see Discussion below).  10 

 Databases curated by human experts usually have substantially lower error rates 11 

than those that were automatically compiled (SCHNOES et al. 2009; KOSKINEN et al. 12 

2015). Still, the dangers of error accumulation in heterogeneous collections of data 13 

contributed by humans are well known (CARTHEY et al. 2003; ZEEBERG et al. 2004; 14 

PANKO AND AURIGEMMA 2010; PANKO 2016). It thus appears desirable to increase the 15 

number of human error estimates available for biological information resources. The 16 

analysis discussed next provided a unique point estimate of the error rates users might 17 

want to expect when working with manually compiled resources of similar complexity. A 18 

more thorough analysis of errors is beyond the scope of this study (and is likely to be 19 

substantially affected by the compiler techniques discussed below). Nevertheless, our 20 

results below support our claim that our main findings are probably not the result of a 21 

unlucky confluence of statistical flukes generated by errors we could have detected 22 

when reanalyzing the same data carefully.  23 

 24 

 Quality control in FlyClockbase and TraitTables. In order to detect and 25 

reduce the number of errors in the PeakValleyTables used for computing variability, we 26 

conducted four rounds of identifying values outside of the range defined by the mean ± 27 

1 SD of a Trait (Mod2, Mod3, Mod4, Mod5 in Figure 3); this was done for all clock 28 

components in FlyClockbase and serves as the basic way of introducing all new data. 29 

We used this as the starting point for obtaining the error estimates reported here. Since 30 

time series TraitTables and search results tables are not strictly part of FlyClockbase 31 

(see Figure 2), we separated our error estimates of FlyClockbase from those obtained 32 

for TraitTables (see Results below) to improve the quality of our estimates. In a unique 33 

effort, we then re-examined in-depth all relevant content, attributes and traits of each 34 

time series that informed the four most important PeakValleyTables (per mRNA, tim 35 

mRNA, PER protein, and TIM protein). We scrutinized each value representing a peak 36 

or valley time. This required a substantial effort, which aimed at a twofold goal:  37 

 38 

(i) removal of errors for improving our estimates of variability differences, and  39 
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(ii) providing an approximate estimate for the numbers of similar errors that users of 1 

FlyClockbase (or similarly complex data resources) might expect in other areas, 2 

where such error rates have not yet been determined.  3 

 4 

Before presenting our findings, we submit to the reader that the researchers compiling 5 

FlyClockbase had been very conscientious, brought a high degree of expertise and 6 

enthusiasm to the project, and did their very best to avoid mistakes. Thus we thought 7 

conditions were favorable and we were not sure if we would find errors. Unfortunately, 8 

aiming to avoid and correct mistakes does not protect against the inevitable occurrence 9 

of mistakes at low but predictable rates (see Table 5 and Discussion).   10 

 11 

Place    TABLE 5      about here. 12 

 13 

 Basic Null-Hypothesis Hbasic. FlyClockbase includes a particularly large number 14 

of repeatedly observed time series of per and tim mRNAs and proteins in wildtype (and 15 

wildtype-like) circadian clocks of D. melanogaster. These time series were recorded as 16 

wildtype control experiments while observing the effects of mutants in order to explore 17 

circadian clock functions. We expect corresponding wildtype controls to produce similar 18 

time courses that differ only by inevitable stochastic effects – in the absence of 19 

experimental complications. Such complications would make flies non-comparable 20 

across studies (see Discussion of potential causes, such as variable natural genetic 21 

diversity across fly strains, developmental diversity, unknown environmental impact on 22 

measurements, and others). We start by ignoring all such potential complications. Our 23 

aim is to initially work with the simplest model that still appears somewhat useful. We 24 

define a corresponding basic null-hypothesis Hbasic to inform our background time series 25 

expectations and enable a defined starting point for hypothesis testing with the help of 26 

appropriately selected data in FlyClockbase. In light of the types of observations and 27 

available calibrations, we define Hbasic as: 28 

 29 

The basic time series type in FlyClockbase is determined by the molecule type 30 

observed and its context, which for Hbasic is defined as the central core clock of 31 

wildtype organisms of a defined taxonomic unit (like D. melanogaster) under 32 

standard experimental conditions. Hbasic excludes time series that are (i) from  33 

non-LD 12:12 observations, (ii) affected by the presence of mutations known to or 34 

intended to alter the clock, (iii) measuring non-central circadian clocks that are 35 

independent or merely derived from an organisms’ central clock, and (iv) any 36 

complications from genotypes, phenotypes, environments, methods, or more.   37 

 For these basic time series types defined above, FlyClockbase reports as 38 

Hbasic the ensembles below containing either dynamically changing amounts of 39 

a specified molecule type, or values of corresponding time series traits.  40 
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  These ensembles of the most reliable observations in FlyClockbase are based 1 

on time series that satisfy the following conditions: (i) Timed amounts are reported 2 

as uncalibrated, relative measurements, which allow comparisons only within each 3 

time series, not between time series. (ii) Comparisons of observed amounts indicate 4 

all potential outcomes by drawing on as much evidence as possible and extracting 5 

as much quality as reasonable from the available data. This requires that 6 

comparisons define a method of incorporating such data appropriately. This data 7 

includes quantifications of uncertainty in methods of measurement, observational 8 

errors, replicates, accuracies of timed amounts, and methods of inference. (iii) When 9 

using Hbasic, all relevant details need to be documented, including the data available 10 

at the time, its state of refinement (ObsMod+), and the methods used. 11 

Documentation requires specifying their stabilizing versioning numbers as defined by 12 

the StabilizingZone of the POST system (see Table P1 in Supplemental Material). 13 

(iv) Any observations included in either ensemble type exclude outliers using 14 

Carling’s method (2000) to enable a focus on typical clocks.  15 

 Satisfying all these conditions, Hbasic assumes that the remaining variability 16 

of observed amounts or traits is only caused by the natural stochasticity of 17 

discrete molecular events inside of individual cells. 18 

 19 

Hbasic is a powerful starting point for exploring clock biology. Next, we will use Hbasic to 20 

compare typical Hbasic behavior of time series traits observed in different clock 21 

components. We then relax assumptions of Hbasic to illustrate how FlyClockbase can 22 

generate a variety of hypotheses about diverse subtleties that might be important for 23 

generating high-quality observations of circadian clocks.  24 

 25 

 26 

Hypothesis on Peak time variances: PER exceeds TIM 27 

 28 

We initially screened for variability in the peak and valley times of all clock components 29 

available (see Table 4). This analysis revealed substantial differences between the 30 

standard deviations of peak times observed for PER and TIM respectively highlighted in 31 

Figure 6. We hypothesized that these differences could have mechanistic causes and 32 

might thus point to new insights into clock mechanisms (see Discussion). Before 33 

exploring such mechanistic models, we wanted to know, whether our observations were 34 

(i) statistically significant and (ii) not caused by low-level errors in data handling during 35 

the construction of FlyClockbase in light of corresponding challenges with data quality 36 

(MCCALLUM 2013) as faced by many biological information resources (see Discussion 37 

and Supplemental Material for more details). 38 

 39 

Place    FIGURE 6     about here. 40 
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 1 

Place    FIGURE 7      about here. 2 

 3 

 4 

 Data quality. Since variances are easily inflated by outliers caused by errors in 5 

data handling, we aimed to obtain assessments of peak and valley times that were as 6 

accurate as possible given the observations reported by the studies in FlyClockbase. 7 

The desire for improving the overall rigor of our variability assessment motivated the 8 

various procedures described above for identifying outliers and investigating potential 9 

errors that might have artificially inflated estimates of variability. Thus, we manually re-10 

inspected all steps of inference for each peak and valley data point that contributed to 11 

our final calculations of timing statistics. We started with the already highly refined 12 

dataset ObsMod5 and created ObsMod6 by correcting all irregularities from data 13 

handling or processing on our side that we could detect in FlyClockbase or our 14 

TraitTables (see Figure 3). Starting from the figures of publications, we checked the 15 

results of all our manual operations that could have modified traits, up to the final values 16 

used as input for our R script that produced Figure 7. The statistics of the resulting 17 

human error analysis is shown in Table 5.  18 

 Main analysis with outlier robustness. We decided to carefully investigate the role 19 

of outliers when analyzing variance in order to arrive at robust conclusions. We were 20 

motivated by the following considerations:  21 
 22 
1. Use of robust statistics. We aimed to use state-of-the-art statistical methods 23 

designed for delivering robust conclusions that minimize the chances that a few odd 24 

values have an unduly large impact on the overall conclusions (see Wilcox (2012) 25 

for an introduction to robust estimation and hypothesis testing).  26 
 27 

2. Dealing with rare ObsOdd. As described above, we checked and re-checked all 28 

observed peak and valley times that entered our final comparisons between per and 29 

tim components, aiming for the best interpretation of each reported time series. 30 

Despite this scrutiny, there were four observed time series that we could not 31 

interpret convincingly. All four extreme values pertain to protein peak time, with one 32 

extreme for TIM (time series ID 14.1.1, peak at 6.966h linearized CZT) and three 33 

extremes for PER (time series IDs 43.2.1, 43.3.1, and 43.5.1, all with a peak at 28h 34 

linearized CZT and all from one study). All four also showed a clear signal in their 35 

original figure that appeared to have been analyzed correctly (based on our reading 36 

of the respective studies), yet all four reported times appeared to be clearly distinct 37 

from the distribution of times reported by all other similar studies. For example, TIM 38 

extreme outlier time series above observed a peak almost exactly 12h away from 39 

the mean of the equivalent TIM distribution of peak timings without outliers. While we 40 

could not find any indication that morning and evening had been flipped in the 41 

corresponding study, it is very difficult to exclude such human errors in light of the 42 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Scheuer et al.                  FlyClockbase: curating time series variances 

QQv1r4  Updates at bioRxiv https://doi.org/10.1101/099192 59 

many challenges that easily frustrate data analyses in spreadsheet software (see 1 

Discussion below). We stopped further attempts of re-interpretation, since the 2 

original raw data was not publicly available. As revisited in the Discussion, these 3 

values could represent any of the following: genuine observations of typical behavior 4 

of rare fly clocks, rare behavior of typical fly clocks (at least sustained for the length 5 

of the time series), some rare combination of measurement protocol details that 6 

conspired to systematically bias observations (which were correctly interpreted), or 7 

human errors leading to misinterpretations in the complex chain of time series 8 

observation and analysis. We could not find similarly extreme outliers in 9 

corresponding observations of mRNA. We consider the overall evidence to be too 10 

incomplete, contradictory and therefore inconclusive to determine which process 11 

may contribute most.  12 

     Observing these extreme outliers might raise the distant possibility that apparent 13 

wildtype circadian clock systems can exhibit extreme deviations from their normal 14 

timing behavior in a few percent of occasions. However, exploring the possibilities of 15 

such exotic behaviors is beyond the scope of this study and not possible without a 16 

more elaborate error-management for observation and analysis of time series in 17 

circadian clock studies. It would also require a substantial number of individual time 18 

series observations in the DetailSection of FlyClockbase to enable the independent 19 

computation of summary statistics.  20 

     To test whether these handpicked extreme outliers made a difference to our 21 

conclusions, we grouped and denoted them in our Statistical Methods Section as 22 

‘outlier removal approach (ii)’. We then created a parallel analysis track in our R 23 

script that took every computation on the full dataset (‘Mod7’) and repeated it on a 24 

manually created copy of the input files (‘Mod8’), where this manual outlier removal 25 

approach (ii) had been applied. To increase clarity, ‘Mod7’ or ‘Mod8’ are also 26 

labeled, respectively, “BestEachObs” or “BestNoXtrem” in our R code, and “with 27 

Extremes” or “no Extremes” in the titles of the automatically generated plots. (‘Mod7’ 28 

is essentially identical with ‘Mod6’ except for trivial changes to facilitate automated 29 

reading from R; the Mod7 and Mod8 files are only stored next to our R script that 30 

reads them as input, they are not stored in the main time series trait folder). 31 

    As can be seen in the Supplemental Statistical Analysis online, the removal of 32 

these four specific time series does not substantially change our conclusions. 33 
 34 

3. We were unsatisfied with the subjective nature of the decisions summarized above 35 

as ‘outlier removal method (ii)’. While extreme outliers are reasonably easy to detect, 36 

there is a gradual transition to less extreme values, where subjective decisions 37 

about the inclusion of particular time series could easily lead to a new set of 38 

problems by creating ascertainment biases that are impossible to correct for 39 

statistically. Thus, we decided to employ a principled method. After some 40 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 60 

experimentation, we arrived at outlier removal approach (iii) which has been 1 

described elsewhere (CARLING 2000; WILCOX 2012); see Statistical Methods.  2 
 3 

Our results in Table 6 report our current best analysis of the most reliable data on the 4 

variability of per and tim protein and mRNA peak and valley timing accessible to us in 5 

FlyClockbase. For the reasons given above, we decided to exclude outliers as identified 6 

by our approach (iii) see Materials and Methods (CARLING 2000; WILCOX 2012). 7 

 8 

 Alternative handling of outliers. In the Supplemental Statistical Analysis we 9 

compared results after removing outliers using approach (iii) as shown in Table 6 with 10 

those obtained from the full dataset to investigate whether removing outliers affects 11 

conclusions. Given the extraordinary range of timing variability for the peaks of PER and 12 

TIM, it is unsurprising that the difference in variance reported in Table 6 loses statistical 13 

significance when outliers are included. In Table 7 we summarize our results of 14 

comparing different outlier approaches. Corresponding values for all other results in 15 

Table 6 can be extracted from the Supplemental Statistical Analysis.  16 

 We conclude from Table 6 that the majority of circadian clocks in D. 17 

melanogaster are significantly more variable in their timing of PER peaks in comparison 18 

to TIM peaks (P<5%). In a minority of cases outliers can introduce such large amounts 19 

of variability that indicators of significance are swamped and a loss of significance is 20 

perceived (see Table 7 and Discussion). All other comparisons shown in the 21 

Supplemental Statistical Analysis confirm this overview. Our observation of significant 22 

differences in variability contrasts with the near absence of differences in the average 23 

timing of these peaks. 24 

 25 

Place    TABLE 6      about here. 26 

 27 

Place    TABLE 7      about here. 28 

 29 

 30 

 Other peak comparisons. We find differences in the variability of mRNA peak 31 

times, albeit interestingly with inverted sign, compared across per-tim equivalent parts. 32 

This means that significantly lower variability in per mRNA peaks precedes significantly 33 

larger variability in PER protein. Conversely, significantly larger variability in tim mRNA 34 

precedes significantly lower variability in TIM protein. This flip indicates that the 35 

differences in variability of the peaks for PER and TIM are not caused by corresponding 36 

differences in the variance of their mRNA peaks. We therefore conclude that these 37 

differences are caused by mechanisms affecting variances of peaks in the causal 38 

reaction networks after the transcription of per and tim. These differences in variance 39 

contrast with non-significant differences in the average peak timing of the same peak 40 

time distributions. 41 
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 1 

 Valley comparisons. The valleys of PER and TIM occur at significantly different 2 

average times, irrespective of how many outliers are included. However, the non-3 

significant differences in variances reported in Table 6 become barely significant at the 4 

5% level when adding the two outliers observed in TIM. When comparing the valleys of 5 

per and tim mRNAs, we found significant differences in average time; per valleys 6 

precede tim valleys, even though averages do not differ among peaks.  Valleys of per 7 

and tim also showed significant differences in variance, with per being more variable 8 

than tim. We also report an inversion of variances when compared to their 9 

corresponding mRNA peaks. Our results for the valleys of per and tim mRNAs are not 10 

impacted by outliers, since none of our approaches to outlier analysis could identify any 11 

outliers among the 24 and 20 observations in FlyClockbase, respectively. 12 

 13 

 14 

Comparing methods for measuring TimeSeries of per mRNA  15 

 16 

In addition to comparing different clock components, FlyClockbase can contrast 17 

experimental details that differ between independently observed time series of the same 18 

clock component. These experimental details are stored as TimeSeries Attributes in 19 

FlyClockbase and used for extracting corresponding sets of TimeSeries or TimeSeries 20 

Traits for additional statistical analyses. Here we compared per mRNA time series 21 

recorded by different measurement methods. We chose per mRNA because it is the 22 

most common time series in FlyClockbase and thus provides the largest statistical 23 

power for detecting potential systematic biases. Given the differences in variances 24 

between clock components reported above, we wanted to know if such differences 25 

could have been produced by using different methods of obtaining time series.  26 

 27 

 Measurement methods: The following five measurement methods were used to 28 

collect at least three per mRNA time series in FlyClockbase: microarray, nascent-seq 29 

and RNA-seq, PCR, RNase protection assays (RPAs), and Northern Blots. Two of the 30 

four time series measured with microarrays were outliers, and all four of the time series 31 

measured with RNA-seq or nascent-seq were from a single study. These time series 32 

were consequently eliminated from our analyses. Many time series did not include a 33 

valley time for per mRNA, so we focused solely on per peak time.  34 

 Comparing means: As expected, we could not find any significant differences in 35 

the averages of peak times observed by different measurement methods when 36 

comparing PCR vs Northern Blot, PCR vs RNAse Protection Assay (RPA), and 37 

Northern Blot vs RPA (using the Mann-Whitney-U test at the 5% level, see 38 

Supplemental Statistical Analysis).  39 
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 Comparing variances: We found significant differences in variance (using 1 

comvar2) to compare measurement methods as above. Comparing the combined peaks 2 

from time series measured with any PCR method to the pool of those measured with 3 

RPA or Northern Blot resulted in significantly different variances for both. The 95% CI of 4 

differences of variance reported by comvar2 after 105 bootstraps for RPA and Northern 5 

Blots are 0.4413 to 6.817 and 0.4764 to 10.586, respectively (for explanation on extra 6 

digits, see Table 6). The histograms of the corresponding distributions are given in 7 

Figures 8A and 8B. 8 

 9 

Place    FIGURE 8  ABCD       about here. 10 

 11 

 12 

 The differences in variances are strongest for peak times measured with PCR or 13 

Northern Blots. Comparing the nine qPCR observations with the nine Northern Blots 14 

showed significantly higher variance in qPCR observations (comvar2, 105 bootstraps, 15 

95% CI for differences in variance: 0.353 to 7.598). Likewise, the 16 RT-PCR 16 

observations in FlyClockbase are more variable than the nine Northern Blots (comvar2, 17 

105 bootstraps, 95% CI for differences in variance: 0.46889 to 11.486). As reported 18 

above, comparing peaks from PCR to those from RPAs showed significant differences 19 

in variance. We expected this pattern to hold also for non-pooled PCR, but found results 20 

to be no longer statistically significant. Each type of PCR had a very skewed distribution 21 

of differences in variance with a substantial bias similar to that of Northern Blots (see 22 

comvar2 results in the Supplemental Statistical Analysis). However, reduced sample 23 

size diminished statistical power, so differences are no longer significant.  24 

 25 

 Method references. We were surprised by the larger variance in PCR results 26 

compared to results from non-PCR methods. We speculated that this might not 27 

necessarily be inherent to PCR but could be caused by a larger diversity of method 28 

protocols. If this were general, we would expect studies with shared method protocol 29 

references to report results with less variability than studies which did not share such 30 

references. Therefore, in studies that did not cite any method references, we might 31 

suspect a larger diversity of method protocol variants, and thus more diverse results.  32 

 33 

Place    FIGURE 9      about here. 34 

 35 

 Figure 9 provides detailed information about the method protocol references 36 

cited in the studies we used. As before, we focused on the peak times of individual time 37 

series as observed by PCR, RPAs, or Northern Blots. Some authors largely followed the 38 

methods outlined in other referenced studies, while others only incorporated protocol 39 

references for specific aspects such as probe development, the use of controls, or RNA 40 
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extraction (see classification key in the caption of Figure 9 for a list of some 1 

methodological aspects that might be of interest).  2 

 Table 8 provides summary counts of the time series represented in the various 3 

broader categories of Figure 9 and the number of studies that observed them. Table 8 4 

also provides summary counts of the time series from studies that either share or don’t 5 

share references with each other (along with the corresponding numbers of studies; this 6 

classification excluded studies with no references). The underlying network of protocol 7 

identities is represented in Figure 9, and histograms of the corresponding distributions 8 

are given in Figure 8CD.  9 

 10 

Place    TABLE 8     about here. 11 

 12 

 Presence or absence of method references: We grouped all analyzed time series 13 

into two categories, which might be nicknamed “Any Method Ref” if their studies 14 

provided at least one reference for details of the experimental protocols used to observe 15 

time series using a given broad type of method, or “No Method Ref” if not a single 16 

relevant experimental protocol reference was given. Comparing average peak times 17 

among these groups showed no significant differences and no detectable indication of 18 

bias (Mann-Whitney-U test, 95% CI: -1.00 to 1.00, p = 0.736). While differences in 19 

variance were not significant, a clear bias in variance was noticeable in the distribution 20 

of differences, possibly indicative of significance if higher sample sizes were available 21 

(comvar2, 105 bootstraps, 95% CI for differences in variance: -1.385 to 5.6876).  22 

 Presence or absence of shared method references: We subdivided all available 23 

time series with at least one method reference into those with and without shared 24 

method references (see Figure 9 and Table 8). Average peak times did not change 25 

significantly if method references were or were not shared, but some bias could be seen 26 

(Mann-Whitney test, 95% CI for difference in location: -2.00 to 5.4208x10-5, P = 0.1829). 27 

Similarly, variances of peak times showed bias but were not significantly different 28 

(comvar2, 105 bootstraps, 95% CI for differences in variance: -1.1045 to 6.325, see 29 

Supplemental Statistical Analysis). 30 

 31 

 Reduction of statistical power by application of inappropriate logic? The 32 

last groups above had both clear biases in their differences in variance as revealed by 33 

comvar2, but neither test was significant at the 5% level. Combining both results in a 34 

slightly different way might increase relevant sample sizes and significance. As shown 35 

in Figure 10, we currently exclude studies with not a single method reference from our 36 

analysis of studies with shared references. We initially justified this by assuming that 37 

method references must be present for deciding whether studies could have used the 38 

same methods at the lab-bench or not. It turns out that this line of reasoning might say 39 

more about the need for greater clarify in logic formalisms than about the effects of 40 
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sharing references or not. We will next make explicit, what we unknowingly implied 1 

above; we do so in order to demonstrate the difficulties of creating clear statements in 2 

words chosen adhoc and aimed at clarifying statements in a limiting logic formalism.  3 

 Above we assume implicitly that a study without any method protocol references 4 

may or may not have used the exact same methodological procedures as another study 5 

without method references. Applying Boolean logic here attempts to force a  6 

 7 

 Yes  (OK)  8 

 No  (KO)  9 

 10 

answer to the question about the use of a common protocol. This logic fails here, 11 

because it does not allow us to specify that we cannot provide any certain answer 12 

based on the absence of a reference (we cannot exclude the possibility that two studies 13 

may have shared the same protocol). Instead, we might consider the BioBinary logic 14 

that FlyClockbase is adopting from Evolvix (see Supplemental Material). This is a step 15 

forward, because it can distinguish the cases of  16 

 17 

 MIS  (‘inapplicable’ because ‘no-method-given’)  18 

 OKO  (‘somewhere between OK and KO’) 19 

 20 

from the other cases (OK/KO), where we can reach relatively more clear decisions 21 

because method protocol references are given. Our statistical analysis above can now 22 

be rephrased as stating that the absence of a reference is a BioBinary ‘MIS’ (since we 23 

formally cannot answer the question due to a missing value). As a result, we would 24 

exclude such values, since it is always easy to name multitudes of irrelevant values that 25 

clearly should not have any influence on our analysis. This interpretation might appear 26 

unsatisfactory at first, but it is still a step forward, because it is explicitly stated and 27 

therefore more tangible, which might attract further scrutiny.  28 

 If explained clearly, most experimental biologists will probably not hesitate to 29 

point out that the chances of using identical experimental protocols in the lab are 30 

miniscule unless there is a shared reference to a common protocol (which would 31 

probably be referenced). There are simply too many variations that are done most 32 

easily. Thus, instead of assuming the absence of evidence (which might allow for 33 

shared protocols, even if no references are given), we can assume evidence of absence 34 

(since it is rather unlikely that two labs use the same procedures, without sharing 35 

references to a common protocols). Given the many variations of PCR that are easily 36 

created in the absence of further detailed instruction, it is difficult to see, how labs might 37 

accidentally share procedures. Thus, technically, this case must be classified as a 38 

BioBinary OKO; however, overwhelming evidence suggests that a KO (not sharing) is 39 

much more likely. 40 
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 Result: These considerations suggest that it would be more appropriate to add 1 

the time-series with no references to the group of those that have only one (non-shared) 2 

reference. This might increase statistical power enough to make tests significant that 3 

compare “shared vs not shared references”. Pivotally, these considerations 4 

demonstrate the importance of using the right type of logic and type system. It is easy to 5 

miss important points in Boolean logic without appropriate visualization. Since logic 6 

formalisms are best automatically supported at the compiler level, a step change in 7 

speed and quality of many biological analyses could be facilitated by a compiler that 8 

correctly map BioBinary and more expressive logic formalisms to data – out of the box. 9 

This conclusion is general for the construction of VBIRs, and independent from the 10 

particular outcomes of any specific tests that might be performed, because the 11 

existence of such unresolved difficulties in representing formal logic can easily create 12 

bugs that bind large amounts of research time, which could otherwise be dedicated to 13 

VBIR development.  14 

 15 

Place    FIGURE 10      about here. 16 

 17 

 18 

 Comparing methods by study to reduce multiple comparisons. Figure 9 19 

shows that a single study often reports multiple time series, which could bias the results 20 

above (based on analyzing each time series individually without grouping into studies). 21 

Thus, big studies contributing many time series might exert an unduly large influence on 22 

the results. For example, nine of the 25 time series measured with PCR (36%) are from 23 

a single study (MAJERCAK et al. 2004), but this study is only 1 of 13 (7.7%) that used 24 

PCR to measure per mRNA. Given the many complexities of this system, the most 25 

appropriate way to address this problem is unclear. Treating each time series 26 

independently might give large studies too much influence. However, using only a single 27 

value from each study (e.g. the mean), irrespective of how many time series it 28 

represents, could give small studies too much weight and thus risk adding irrelevant and 29 

noisy artificial variance. The latter approach is therefore an extreme approach of 30 

countering potential problems with the former. We used this alterative study-based 31 

approach to explore the robustness of our conclusions about measurement methods, 32 

albeit with the added caution that the loss off statistical power might be too large for 33 

reaching clear conclusions.  34 

 Indeed, using only a single average value from each study reduces the remaining 35 

statistical power so much that no result remains significant (see Supplemental Statistical 36 

Analysis). It is worth noting though that some comparisons of variance still showed such 37 

a strong bias that the collection of additional observations might result in significance. 38 

The comparisons that approached significance were these: Variance between PCR and 39 

Northern Blots (comvar2, 95% CI: -0.281 to 13.340, with a point estimate for a 40 
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difference in variance of 4.926 h2); Variance between PCR and RPA studies (comvar2, 1 

95% CI: -0.161 to 8.426, with a point estimate for a difference in variance of 4.065 h2). 2 

Such comparisons of non-PCR methods vs PCR-methods were closer to significance 3 

than the non-PCR method comparison of Northern Blots vs RPA studies (comvar2,  4 

95% CI: -3.492 to 0.538, estimated difference -0.861 h2). Differences in variance based 5 

on shared references produced even weaker signals (but see Figure 10 and Discussion 6 

of Logic for a potential boost of statistical power). All corresponding details are recorded 7 

in the Supplemental Statistical Analysis.  8 
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 1 

 2 

DISCUSSION 3 

 4 

 5 

We discuss the more technical aspects of our work in the context of three broader aims 6 

of this study: (i) introducing FlyClockbase and connecting it to our current understanding 7 

of circadian clocks; (ii) using FlyClockbase to ask new questions about variability in 8 

circadian clock time series, possibly illuminating important aspects of clock mechanisms 9 

and methods of observation; (iii) improve and simplify how FlyClockbase, and by 10 

extension similar biological information resources (VBIRs), are constructed, expanded, 11 

and maintained. 12 

 13 

 Why learn lessons on data? It would be easy to finalize this study without the 14 

third aim. However, it is impossible to address the timely and relevant topic of 15 

organizing biological data without the concrete context of a specific resource like 16 

FlyClockbase. This discussion is relevant because the increasingly data-centric nature 17 

of biological discovery has resulted in calls for improved access to existing data (NIH et 18 

al. 2012; READ et al. 2015; WILKINSON et al. 2016), which is easier said than done 19 

(GOLDSTON 2008; DOAN et al. 2012; GITELMAN 2013; HUANG AND GOTTARDO 2013; 20 

MCCALLUM 2013). As physical access to data is increasing, the next frontier is defined 21 

by the ability to efficiently identify datasets of relevance for a given topic. The diversity 22 

of biological questions would make any one single resource for all biologists too 23 

cumbersome to use. Instead, this aim could be achieved more efficiently by 24 

empowering research communities to construct resources for their own contexts, albeit 25 

using a shared interoperable infrastructure. This infrastructure will be perceived as 26 

useful to the degree it can provide standards that convincingly address common 27 

challenges faced by all biologists aiming to construct VBIRs for organizing notoriously 28 

uncertain biological data. Developing such standards is an enormous task that requires 29 

the integration of lessons from many more studies than any single effort such as this 30 

one could produce. Thus, our more modest aim here is to highlight lessons we learned 31 

while constructing FlyClockbase, hoping they will be useful as the biological community 32 

works towards finding more general solutions (NIH et al. 2012; READ et al. 2015; 33 

WILKINSON et al. 2016).  34 

 35 

 Why do we need many VBIRs? Efficiently constructing many VBIRs like 36 

FlyClockbase is necessary for integrating biological information at the scale needed for 37 

current research. The need is driven by immense challenges, such as mechanistically 38 

understanding and curing cancer (NIH et al. 2016; SAMUELS et al. 2016), mapping 39 

genotypes to phenotypes in personalized medicine and elsewhere (RODEN 2011; 40 
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MACKAY et al. 2012; KIRK et al. 2015; ASHLEY 2016), or the evolutionary systems biology 1 

goal of mechanistically predicting realistic fitness landscapes (LOEWE 2016). Irrespective 2 

of whether it is possible to realize these broader visions, any serious attempt will require 3 

the diligent construction of many interoperable VBIRs that connect well to state of the 4 

art expertise, and advance biological research in the relevant areas. Thus, we will next 5 

examine FlyClockbase in this respect. 6 

 7 

 8 

FlyClockbase is consistent with current hypotheses 9 

 10 

Overall, time series in FlyClockbase are consistent with general published clock 11 

knowledge and with mechanisms currently thought to control the clock. Informative 12 

reviews of the clock that draw on previously published experimental studies are given 13 

elsewhere (HARDIN 2011; ÖZKAYA AND ROSATO 2012). Conclusions from these reviews 14 

are supported by FlyClockbase summary statistics given in Table 4. 15 

 16 

 CLK and other proteins. Increasing amounts of VRI protein between about ZT4 17 

and ZT16 repress clk transcription, with an especially pronounced effect after ZT14 18 

(CYRAN et al. 2003; GLOSSOP et al. 2003). Although CLK protein typically functions as a 19 

transcriptional activator for vri, the formation of the PER/DBT/CLK/CYC complex 20 

represses the activity of CLK between approximately ZT16 and ZT4 (HARDIN 2011). vri 21 

transcription is therefore decreased, causing lower levels of VRI and reducing the 22 

repression of clk transcription by VRI. This allows clk mRNA to increase and reach a 23 

maximum around dawn (ALLADA et al. 1998; ÖZKAYA AND ROSATO 2012). clk mRNA 24 

levels also increase due to the action of the transcriptional activator PDP1 protein, 25 

which becomes especially strong around ZT18 (CYRAN et al. 2003). Time series in 26 

FlyClockbase reflect this pattern of clk mRNA reaching a maximum in the morning 27 

(peak time = 2.79 DZT mean ± 3.16 h SD), decreasing throughout the day into the early 28 

night (valley time = 14.33 DZT mean ± 1.67 h SD) and then beginning to increase again 29 

in the late night. Although clk mRNA does show rhythmic expression, the amount of 30 

CLK protein is not cyclic (YU et al. 2006). Data from FlyClockbase support this constant 31 

expression, as the n=5 peaks and n=9 valleys observed for CLK overlap almost 32 

completely. However, there might not be enough observations to fully settle the issue, 33 

since the variation for both CLK traits (±3.18h, ±4.30h SD) is currently lower than 34 

expected for peaks and valleys that are all drawn from one stable uniform distribution 35 

(±>6.8h; see: Materials and Methods Section, Peak-Valley Section, Randomizing Time 36 

Section). 37 

 38 

 39 
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 PER and TIM dynamics. PER protein, per mRNA, TIM protein, and tim mRNA 1 

have expression patterns which are generally opposite to that of clk mRNA. 2 

Transcription of per and tim begins mid-morning and is promoted by the transcriptional 3 

activator CLK (ALLADA et al. 1998; DARLINGTON et al. 1998). FlyClockbase shows the 4 

peak time of per mRNA at mean DZT = 14.61 ± 1.58 h SD and of tim mRNA at mean 5 

DZT  = 14.59 ± 2.12 h SD (using outlier removal method (iii) as in Figure 6; for outlier 6 

removal method (i) see Table 4). This supports data suggesting mRNA levels increase 7 

through the day and into early evening (ALLADA et al. 1998; HARDIN 2011). Protein 8 

accumulation reportedly lags behind that of mRNA by about six to eight hours (ZWIEBEL 9 

et al. 1991b; HARDIN 2011), though data from FlyClockbase support a shorter delay of 10 

around four to five hours (delay from mean per mRNA peak to mean PER peak = 4.03 11 

or 4.84 h, delay from mean tim mRNA peak to mean TIM peak = 4.33 or 3.82 h, from 12 

Figure 6 or Table 4, respectively). Between approximately ZT18 and ZT4, the 13 

PER/DBT/CLK/CYC complex represses the activity of CLK (LEE et al. 1998; LEE et al. 14 

1999; BAE et al. 2000; HARDIN 2011). This leads to decreased transcriptional activation 15 

of per and tim, causing a decrease in per and tim mRNA levels, which is reflected in 16 

FlyClockbase as a mean per mRNA valley at DZT = 3.61 ± 2.32 h SD and a mean tim 17 

mRNA valley at DZT = 5.09 ± 1.15 h SD (Figure 6; difference in variance significant at 18 

5% level). During the day, TIM protein is degraded in response to light (NAIDOO et al. 19 

1999; BUSZA et al. 2004; OZTURK et al. 2011), as indicated in FlyClockbase by an early 20 

mean valley at DZT = 5.84 ± 2.53 h SD. PER, which is typically stabilized by TIM, is 21 

then destabilized and more prone to phosphorylation and subsequent degradation 22 

(GEKAKIS et al. 1995; KLOSS et al. 2001; MERBITZ-ZAHRADNIK AND WOLF 2015). This 23 

finding is consistent with FlyClockbase reports of a late PER mean valley = 9.41 ± 1.94 24 

h SD (Figure 6). The PER valley is significantly different from the TIM valley (P = 25 

1.489x10-7) as determined by the Mann-Whitney-U test. Unless specified otherwise, 26 

similar subsequent tests are two-sided and unpaired. To minimize search time for 27 

readers, we added a few non-significant digits to many results in the main text to help 28 

streamline searches for the context of such results in the Supplementary Statistical 29 

Analyses. As the amount of PER decreases, inhibition of CLK-mediated transcription by 30 

the PER/CLK/CYC/DBT complex also decreases, and CLK resumes promoting 31 

transcription of per and tim. 32 

 33 

 34 

FlyClockbase facilitates hypothesis-driven research 35 

 36 

Circadian clocks in D. melanogaster are molecular systems of substantial complexity 37 

which have been inspiring generations of researchers to construct numerous 38 

hypotheses about how they work. FlyClockbase can substantially contribute to various 39 

life-stages of a hypothesis.  40 
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 Starting with a blank slate. FlyClockbase can set the stage by integrating 1 

existing observations. It is beyond the scope of this paper to discuss the many ways of 2 

extending FlyClockbase beyond its current goals, for example, by providing the 3 

possibility to add time series from mutants. As FlyClockbase accumulates more 4 

observations, its power will increase to help researchers to put new observations into 5 

context by comparing them with already integrated data. Such comparisons can inspire 6 

new hypotheses and help evaluate them quickly. For example, we discuss below the 7 

hypothesis that significant differences in the timing variability of PER and TIM are the 8 

result of mechanistic interactions integral to the operation of this clock. This hypothesis 9 

grew out of our observation that the difference in variability of the peak time in these 10 

proteins was larger than we expected.  11 

 12 

 Using Attributes to compare timing variability. Another way of generating 13 

new hypotheses using FlyClockbase is to draw on the many attributes stored for time 14 

series. This structured information classifies time series in FlyClockbase in rich ways: 15 

many groups of column entries are easily combined into hypotheses for identifying 16 

significant differences between different genotypes, strains, observation methods, 17 

environmental conditions and more. Some hypotheses may not be tested easily, as 18 

statistical significance may often require more data. However, FlyClockbase already has 19 

enough data for testing some hypotheses, and insufficient data might inspire new 20 

experiments for testing important ideas. In this way, FlyClockbase can even become a 21 

tool for planning experiments. 22 

 23 

 Existing hypotheses on timing. Testing ideas against the data in FlyClockbase 24 

will become increasingly efficient as increasing numbers of experimental results are 25 

integrated into FlyClockbase. This results in a win-win for research productivity. The first 26 

win is clear if sufficient data exists in FlyClockbase to test a hypothesis (saving time). If 27 

the necessary data is not available in FlyClockbase, the second win is highlighting the 28 

potential need for new experiments in areas with limited data. Researchers can then 29 

decide whether to fill this gap with new experiments or prioritize other research. Again, 30 

FlyClockbase can help propose experiments within its scope, which could broaden over 31 

time.  32 

 33 

 The strength of FlyClockbase. Whether FlyClockbase will contain enough data 34 

critically depends on (i) the ease of adding new studies in a consistent way, and (ii) the 35 

effort required for checking the integrity of any data fragment. These two core 36 

requirements drive our interests in usability and human error analysis as discussed 37 

elsewhere throughout this study. Hence, work with FlyClockbase highlights how various 38 

subtle yet time-consuming issues of data organization, automation, usability, and error 39 

management that are usually classified as “non-biological” can easily become limiting 40 
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factors for advancing circadian clock research. Our work on FlyClockbase suggest that 1 

it is more efficient to use the rather systematic approach of automating as much as 2 

reasonable and produce corresponding VBIRs in batches. This enables efficiencies of 3 

scale similar to those necessary for completing the human genome project (LANDER et 4 

al. 2001; VENTER et al. 2001). In similar ways, VBIRs could help compare data, evaluate 5 

methodologies, extend current knowledge, stimulate new ideas, test hypotheses, and 6 

create new routes of inquiry. We will next illustrate how FlyClockbase improves 7 

scientific productivity for testing hypotheses in its scope, before returning to practical 8 

questions of usability, appropriate data models, and efficient implementation for VBIRs.  9 

 10 

 11 

Peak timing hypotheses and more: PER variance exceeds TIM variance 12 

 13 

We chose to compare PER protein, TIM protein, per mRNA, and tim mRNA because 14 

these components are integral to the circadian clock. They interact with many other 15 

clock parts (Figure 1), and null mutants for each gene (per01 and tim01) lead to 16 

arrhythmicity (KONOPKA AND BENZER 1971; SEHGAL et al. 1994). Also, Table 4 shows that 17 

peak and valley observations of these four components were among the most abundant 18 

in FlyClockbase and thus best suited for testing differences for statistical significance. 19 

 20 

 Comparing averages. We first compared the mean peak and valley times for 21 

PER and TIM protein and for per and tim mRNA amounts. Neither the proteins nor the 22 

mRNA had significantly different mean peak times. The mean valley time for tim mRNA 23 

is significantly later than for per mRNA (Mann-Whitney-U test, P = 0.012835, see 24 

Supplementary Statistical Analyses for context; two related tests were shy of 25 

significance). It might be reasonable to expect this delay to propagate, such that first the 26 

peaks of mRNAs, then the peaks of proteins, and ultimately also the valleys of proteins 27 

might show a similar pattern of tim preceding per. However, this pattern is quickly 28 

broken, as the respective pairs of mRNA and protein share essentially mean peak times 29 

for TIM and PER that are statistically indistinguishable. Following the cycle to mean 30 

valley times for proteins even reverses into the opposite pattern: PER mean valley time 31 

is significantly later than TIM mean valley time (see Figure 6; P = 1.489x10-7 as reported 32 

above). Two related tests also indicated significance for all outlier removal approaches 33 

tested (see context in Supplementary Statistical Analyses). These timing patterns defy 34 

the simplistic expectation of merely propagating delays and suggest mechanistic 35 

causes. Demonstrating statistical significance with the help of FlyClockbase suggests 36 

that these patterns might be worth simulating in stochastic models that capture causal 37 

mechanisms and respect the discrete nature of molecules (and resulting variability). 38 

  39 
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 Explaining averages. We propose that the earlier mean valley time for TIM can 1 

be explained by the rapid degradation of TIM in response to light (BUSZA et al. 2004). 2 

Still, TIM’s peak time at mean DZT 18.92 ± 0.94 h SD might deserve a closer look. TIM 3 

peaks in the middle of the dark period and not at its very end as might be expected if 4 

light was solely responsible for degrading TIM.  5 

 The TIM degradation pathway is well characterized and begins with the activation 6 

of CRY via a light-dependent conformational change (BERNDT et al. 2007; OZTURK et al. 7 

2011; VAIDYA et al. 2013). This change allows CRY to bind TIM in the nucleus (CERIANI 8 

et al. 1999; BUSZA et al. 2004). The F-box protein JET then ubiquitinates TIM to promote 9 

degradation by the COP9 signalosome (KOH et al. 2006; KNOWLES et al. 2009). 10 

Following TIM degradation, CRY is also degraded in response to JET-mediated 11 

ubiquitination (PESCHEL et al. 2009). In-depth reviews of the TIM degradation pathway 12 

are given elsewhere (HARDIN 2011; PESCHEL AND HELFRICH-FÖRSTER 2011).  13 

 While light-dependent TIM degradation could explain why TIM reaches its valley 14 

before PER, it cannot account for the observation that tim mRNA reaches its valley a bit 15 

after per mRNA. The discrepancy in valley time cannot be caused by differences in 16 

mRNA production, as mean peak times for per and tim mRNA are not significantly 17 

different. We found this irrespective of the test or outlier removal method. Differences in 18 

variance barely exceeded 5% significance, albeit only if we remove outliers by approach 19 

(iii). See Figure 6 for overview and Supplementary Statistical Analyses for details. 20 

Therefore, we suggest considering differences in per and tim mRNA degradation. These 21 

degradation patterns could be influenced by CURLED (see below). 22 

 23 

 Comparing variances. We also compared the variability of peak and valley 24 

times for the proteins PER and TIM and for the mRNAs per and tim. Table 6 reports that 25 

peak time is more variable for PER than TIM as indicated by differences in variance that 26 

exceed P = 0.05, albeit only if we remove outliers using our approach (iii) as described 27 

(CARLING 2000). Table 7 and the Statistical Methods present the necessary nuances. In 28 

short, we are confident that the differences in variance that we observe in most time 29 

series are significant, and not easily attributed to: 30 

• Statistical flukes for the overwhelming majority of PER/TIM time series reported (see 31 

Table 6 and Supplementary Statistical Analyses for details on the robust bootstrap-32 

based tests performed on the 84% relevant protein peak time series that were not 33 

removed as outliers by Carling’s approach, i.e. 59 of 70 combined protein peak 34 

times of PER or TIM); or  35 

• Trivial data errors or inappropriate data handling at our end (see Figure 3 for the 36 

substantial effort in checking FlyClockbase for errors that resulted in Mod5, which 37 

was used as starting point for manually re-checking every single time series that 38 

contributed to our observation of PER-TIM differences in variance and resulted in 39 

the correction of all errors in Mod6 as reported in Table 5); 40 
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Thus, we reject the explanations above based on our work. In contrast, the potential 1 

explanations below for the origins of outliers are more difficult to reject and cannot be 2 

tested on a routine basis. It also appears unlikely to us that these explanations 3 

contribute more than occasional outliers to typical experimental observations. Therefore 4 

Hbasic, the default basic null-hypothesis for data from FlyClockbase, recommends above 5 

that outliers are removed as described by CARLING (CARLING 2000). This method is 6 

‘approach (iii)’ in our Statistical Methods and was chosen after comparing the features 7 

of related approaches for outlier removal as reviewed elsewhere (p. 97 in WILCOX, 8 

2012).    9 

 10 

 11 

 Outliers. About 16% of all protein peak times (3/33 PER, 8/37 TIM) or 4.3% 12 

(14/325) of all peak valley traits in Table 6 have been identified as outliers by Carlings 13 

method. Including all outliers exhausts the statistical power that FlyClockbase can 14 

currently provide for investigating our differences of variance. As a result, statistical 15 

significance collapses (see Table 7; P > 5% in our tests). However, this observation is 16 

unlikely to affect our conclusion that some systematic biological mechanisms are 17 

probably responsible for producing the PER>TIM variance patterns we report. Indeed, 18 

the outliers raise intriguing questions about the sources of their variability. We cannot 19 

currently distinguish the following potential sources of variability that will be discussed 20 

separately. 21 

 Genetic background differences. A substantial minority of flies that are currently 22 

classified as wildtype could have circadian clocks with significant genetic differences. 23 

This hypothesis might not be as unlikely as it may appear when only considering core 24 

clock genes as shown in Figure 1. Carefully listing all genes with potential impact on 25 

clock timing quickly reveals much larger mutational targets. Clock models also depend 26 

on specific rates of transcription, translation and degradation. These processes are 27 

governed by huge molecular machines. Unless otherwise more harmful, mutations that 28 

significantly delay or accelerate these machines will affect circadian rhythms. 29 

Frequencies are unknown, but such mutations in the genetic background of a clock 30 

might occur more often than mutations in core clock genes with similar effects on timing. 31 

If true, these clock background mutations could contribute much to the natural genetic 32 

variation in fly sleep patterns, which can be substantial (HARBISON et al. 2009a; 33 

HARBISON et al. 2009b; HARBISON et al. 2013). In addition, selective pressure on 34 

circadian clocks is substantial (BEAVER et al. 2002; SHARMA 2003; YERUSHALMI AND 35 

GREEN 2009). It generates observable latitudinal clines of allele frequencies (COSTA et 36 

al. 1992; ROSATO et al. 1996; SAWYER et al. 1997; SHARMA 2003; SANDRELLI et al. 2007; 37 

HUT et al. 2013). Evolutionary importance of individual clock components has been 38 

demonstrated for various clock genes (BEAVER et al. 2002), including tim (SANDRELLI et 39 

al. 2007), and per, which contains a repetitive region that increases mutation rates for 40 
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length polymorphisms. The resulting mutational effects are apparently large enough to 1 

maintain a latitudinal cline (COSTA et al. 1992; ROSATO et al. 1996; SAWYER et al. 1997; 2 

KYRIACOU et al. 2007; WEEKS et al. 2007; KYRIACOU et al. 2008). Thus, mechanistic 3 

differences between the circadian clocks of flies from the wild are likely to exist and may 4 

resurface unexpectedly in clock studies.  5 

  If relevant and substantial, such differences could greatly complicate construction 6 

and parameter estimation in the “wildtype D. melanogaster circadian clock model”. 7 

While numerous models have contributed towards this aim (see Figure 4), there has not 8 

yet been a single model that integrates all known data on the clock of a single well-9 

defined natural genotype. This ambitious aim becomes much more complicated if 10 

natural variability in clock genes makes time series more variable. Such variability from 11 

natural clock variants could undermine the statistical power of parameter estimation 12 

methods for constructing a single clock model for a well-defined genotype.   13 

 Controlled observations of all data in a single line of fly descent is – in theory – 14 

an easy way out. However, it might be difficult in practice to observe one fly well enough 15 

to match the statistical power of results from many years of research by many labs. 16 

Such focus on a single genotype could also generate a rather unusual clock model if 17 

one of many rare mutants with large effects is present (EYRE-WALKER AND KEIGHTLEY 18 

2007; HARBISON et al. 2013). Developing models of such precision could advance 19 

methods for personalized medicine (HODSON 2016). However, most Drosophila clock 20 

researchers will probably prefer less precise clock models that usually match more 21 

observations in typical flies. Such general models could be inferred by parameter 22 

estimation methods from sets of time series collected in many genotypes by various 23 

methods but excluding outlier time series using the systematic approaches we 24 

employed (CARLING 2000).  25 

 Environmental or developmental differences for measured flies. Unrecognized 26 

environmental factors that vary among measurements might modulate genetically 27 

identical circadian clocks. If true, experimental protocols for observing circadian rhythms 28 

in Drosophila could be improved to increase accuracy of biological replicates. Given that 29 

different authors do not necessarily report the same set of environmental attributes, a 30 

first step towards improving experimental protocols might be to develop a standardized 31 

set of TimeSeriesAttributes for FlyClockbase that improve the precision of reports from 32 

ongoing studies. It has been demonstrated that age impacts the clock in flies (UMEZAKI 33 

et al. 2012). Environmental factors that affect development in ways that strongly impacts 34 

circadian rhythms could be a potential source of outliers.  35 

 Evolution in different lab environments. Consistent differences in selection can 36 

cause flies to follow different evolutionary trajectories and sometimes the results can be 37 

observed in the lab over a number of years (LEROI et al. 1994; SHABALINA et al. 1997; 38 

HOFFMANN et al. 2001; HAAG-LIAUTARD et al. 2007; KEIGHTLEY et al. 2009). The flies 39 

generating the data in FlyClockbase might have lived in environments with differences 40 
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significant enough to trigger some adaptive evolution over a number of years. 1 

FlyClockbase does not yet have enough statistical power to detect significant 2 

differences between strains – if they exist. For example, our initial internal screening 3 

showed no differences between wildtype, color modified strains (yw or w1118) or other 4 

strains. Currently, FlyClockbase does not have dedicated TimeSeriesAttributes for 5 

characterizing the environmental history of flies from the decade leading up to the 6 

measurements. FlyClockbase is ideally positioned for integrating such data, once it 7 

becomes available, and the necessary TimeSeriesAttributes have been developed. 8 

However, not all fly clock studies report the LD environment in which their strains 9 

evolved for the previous 250 generations (KANNAN et al. 2012). We have no specific 10 

evidence to support the claim that evolution in the lab produced the outliers we 11 

observed. However, some statistically significant evolution of the D. melanogaster 12 

circadian clock was observed after applying a relevant selective pressure for 80 13 

generations in the lab (KANNAN et al. 2012). Also, note that per contains repetitive 14 

nucleotides in its DNA, which result in high mutation rates for repeat polymorphisms 15 

with adaptive significance (ROSATO et al. 1996; SAWYER et al. 1997).  16 

 Human errors. Setting up, performing, or analyzing clock experiments are 17 

complex tasks, as are reporting experimental procedures, relevant labels, or analyzed 18 

data. Such operations are error-prone (see discussion below) and can make 19 

reproducibility a challenge (BAMMLER et al. 2005; FREEDMAN et al. 2015a). If all 16% 20 

were the result of combining all human errors before publication, then the overall rate 21 

would be surprisingly close to the 14% human error rate that we measured in Table 5, 22 

and corrected before our final test of the hypothesis that PER variance exceeds TIM 23 

variance. Our ability to detect human errors before publication is very limited. Hence, we 24 

took published plots and their attributes at face value. We excluded time series that had 25 

ambiguities we could not resolve (e.g. from poor plot quality), however, this does not 26 

exclude human errors before publication (see Section on human errors in Supplemental 27 

Material).  28 

 Conclusion on outliers. Thus, we have no reason to assume that errors before 29 

publication could not have produced some of the 16%. It also seems unlikely that none 30 

of the other causes above could have contributed. Distinguishing between the 31 

hypotheses above is currently beyond the statistical power of FlyClockbase. However, 32 

this might be irrelevant for many of the aims for which FlyClockbase was developed for: 33 

a broader understanding of circadian clocks, often intentionally ignoring the details of 34 

many special cases. Thus, even if we had perfect knowledge of all potential sources of 35 

variability above, we might still want to exclude outliers using a systematic approach 36 

such as the one we employed here (CARLING 2000). 37 

 38 

 39 
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 Hypotheses on causes for differences in variance. An obvious explanation for 1 

such differences in protein peak times between PER and TIM could be given by similar 2 

differences in the mRNAs required for producing these proteins. This short-sighted 3 

hypothesis is easily tested using FlyClockbase. It turns out to be demonstrably wrong. 4 

As shown in Table 6 and Figure 6, the increased variance of PER relative to TIM cannot 5 

be attributed to an overall greater variance of per mRNA, because the peak time of per 6 

mRNA has a significantly lower variance than tim mRNA. Therefore, we can rule out 7 

carry-over from similar patterns of variance in mRNA peaks. 8 

 Phosphorylation network size. Here we propose that the increased relative 9 

variance of PER can be explained by the larger number of post- translational 10 

modifications for PER (relative to those observed for TIM). Post-translational 11 

modifications such as phosphorylation play a critical role in in the clock (WEBER et al. 12 

2011; RISAU-GUSMAN AND GLEISER 2012). While the exact nature and mechanisms of 13 

these modifications have yet to be fully resolved, there is strong evidence that PER 14 

undergoes more post-translational modifications than TIM.  15 

 TIM protein is phosphorylated by SGG (KO et al. 2010), which promotes nuclear 16 

accumulation of PER/TIM complexes (MARTINEK et al. 2001), perhaps by allowing 17 

interaction with the nuclear import protein IMPalpha1 (JANG et al. 2015). SGG-18 

dependent TIM phosphorylation has also been implicated in light-induced TIM 19 

degradation, likely in conjunction with CRY and JET (ROTHENFLUH et al. 2000a; BAE AND 20 

EDERY 2006; KOH et al. 2006; PESCHEL et al. 2009). TIM protein therefore undergoes 21 

approximately two to three post-translational modifications.  22 

 PER protein, however, could be subject to ten or more post-translational 23 

modifications. PER is initially phosphorylated by NEMO, which then promotes additional 24 

phosphorylation by DBT (CHIU et al. 2011; YU et al. 2011). DBT phosphorylates PER 25 

multiple times and influences PER stability, nuclear translocation, and SLIMB-induced 26 

degradation (BAYLIES et al. 1992; EDERY et al. 1994; ROTHENFLUH et al. 2000a; 27 

MARTINEK et al. 2001; KO et al. 2002; KIM et al. 2007; CHIU et al. 2008; KIVIMÄE et al. 28 

2008; KO et al. 2010; CHIU et al. 2011; MEZAN et al. 2013). PER is also phosphorylated 29 

by CK2A, which promotes nuclear import (LIN et al. 2002a; LIN et al. 2005; MEISSNER et 30 

al. 2008). PP1 and PP2A both work against these kinases to dephosphorylate and 31 

stabilize PER (HARMS et al. 2004; SATHYANARAYANAN et al. 2004; FANG et al. 2007; CHIU 32 

et al. 2008; GARBE et al. 2012).  33 

 Mechanistic phosphorylation network stochasticity hypotheses. Post-translational 34 

modifications could be opportunities for increasing the variability of timing. This is 35 

especially true if a required molecular type only exists in low copy numbers per cell at 36 

some relevant stages of a circadian cycle. As described above, PER protein is at the 37 

center of a large network of potential phosphorylation patterns and proteins, which also 38 

include dephosphorylations. This network of post-translational modifications dwarfs 39 

those observed in TIM protein. A large number of different types of potential 40 
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modifications will break a large population of PER molecules into much smaller sub-1 

populations, thereby greatly increasing stochasticity. The heterogeneity of this network 2 

and the relevance of antagonistic forces (dephosphorylation delays degradation) 3 

increase the potential for stochasticity and complicate predictions without detailed 4 

stochastic simulations. In comparison, few rather large subpopulations for TIM probably 5 

result in copy numbers that are high enough to substantially reduce stochasticity.  6 

 Previous simulations have highlighted the possibility of additional variability in the 7 

time required for growing to a defined level, when amplification starts from smaller 8 

amounts. For example, biochemical systems like signal-transduction cascades that 9 

amplify very low molecular counts can easily generate differences in variance for times 10 

to reach a peak (LOEWE et al. 2009a; LOEWE et al. 2009b; AKMAN et al. 2010; EHLERT 11 

AND LOEWE 2014). The inherent stochasticity of circadian clocks might explain the 12 

observed variability via various mechanisms. Potential explanations could include 13 

systematic differences in the distributions of the low molecular counts at the start of the 14 

respective amplifications. If this does not cause all observed differences in variability of 15 

PER or TIM peak timing, differences could be further amplified by the nature of the 16 

different reaction networks that generate the peaks of PER or TIM.  17 

 Future simulations. While beyond the scope of this present study, we think that 18 

such mechanistic phosphorylation network stochasticity hypotheses are worth exploring 19 

in reasonably realistic stochastic simulation models. 20 

 21 

 Expanding hypotheses on CURLED. The inversion of variance differences 22 

seen when comparing mRNAs and proteins of PER and RIM suggests that the 23 

variability discussed above is probably governed by the post-translational processes 24 

described above. However, it is less clear how these processes might explain the 25 

significant differences in the variance of valley timing for per and tim mRNA.  26 

 Circadian mRNA degradation might be influenced by CURLED (CU), which is 27 

known to affect circadian rhythms. Although curled mutants have been known for 28 

decades, CU was only recently identified as dNOCTURNIN (NOC), the D. melanogaster 29 

homolog of the mammalian NOCTURNIN (GRÖNKE et al. 2009). NOC has been shown 30 

to associate with the CCR4-NOT complex, which promotes deadenylation (and 31 

subsequent degradation) of mRNA (TEMME et al. 2010). While NOC is thought to 32 

influence circadian gene control, specific NOC targets have yet to be identified (GODWIN 33 

et al. 2013). The gene noc produces three transcripts (nocturnin-RD, nocturnin-RC, and 34 

nocturnin-RE), and NOCTURNIN-RD is rhythmically expressed in DN3s (NAGOSHI et al. 35 

2010), a subset of dorsal neurons which are part of the circadian circuit and contribute 36 

to evening activity (STOLERU et al. 2004). NOCTURNIN-RD knockdown mutants have 37 

abnormal responses to constant light exposure, suggesting that NOCTURNIN may play 38 

a role in circadian light responses (NAGOSHI et al. 2010). GREEN et al. (GREEN et al. 39 

2007) also noted changes in gene expression in response to a high-fat diet for mutant 40 
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Noc-/- mice, which could implicate NOC in circadian metabolic control. It would be 1 

premature to postulate an interaction between NOC and per or tim mRNA. Instead, we 2 

suggest here that NOC and other circadian proteins that influence mRNA degradation 3 

might be a fruitful area of investigation, particularly given the connection between NOC, 4 

light response, and metabolism.  5 

 6 

 7 

Hypothesis: peaks from PCR methods are more variable  8 

 9 

The Attributes collected for time series in FlyClockbase can be used to compare 10 

different groups of time series for a given clock component based on biological, 11 

methodological, or other factors. These comparisons can suggest sources of variability 12 

that affect future experiments and the interpretation of simulations. To illustrate this 13 

possibility, we compared different measurement methods for observing peaks and 14 

restricted our analysis to per mRNA time series, which produced 88 peaks, the largest 15 

number we could extract from FlyClockbase. 16 

 17 

 Methods background. Five methods were used to collect at least three 18 

independent time series: (i) Microarrays, (ii) RNA-seq and nascent-seq, (iii) PCR, (iv) 19 

RNase protection assays (RPAs), and (v) Northern Blots. Each method provides 20 

advantages and disadvantages. Historically, Northern Blots were the first of the five 21 

methods to be developed. Although they can provide information about transcript size 22 

(SHARKEY et al. 2004), they have low sensitivity (VANDENBROUCKE et al. 2001) and can 23 

only be used to analyze one gene at a time (FRYER et al. 2002). RPAs were developed 24 

after Northern Blots. They can analyze multiple transcripts (SHARKEY et al. 2004) and 25 

can be used to determine absolute RNA levels (VANDENBROUCKE et al. 2001). However, 26 

they might have low reproducibility (QU AND BOUTJDIR 2007), and RPA is time-intensive, 27 

typically requiring about four days (STREIT et al. 2009). All three of the newer techniques 28 

(PCR, microarrays, and RNA-seq) are high-throughput methods (BUSTIN 2002; SHARKEY 29 

et al. 2004; MORTAZAVI et al. 2008). PCR, RNA-seq and nascent-seq methods do not 30 

require previous knowledge of specific genes or sequences to be identified (FRYER et al. 31 

2002; MORTAZAVI et al. 2008). While automation can be difficult for PCR (FRYER et al. 32 

2002), microarrays are typically automated. Although RNA-seq and nascent-seq are the 33 

most newly developed methods, technical variability may be a concern, particularly 34 

when using a low number of read counts (BULLARD et al. 2010; MCINTYRE et al. 2011).  35 

 36 

 Sensitivity vs reproducibility. When comparing measurement methods, it is 37 

important to consider both the sensitivity and reproducibility of each method; methods 38 

that have high sensitivity may or may not have high reproducibility. Northern Blots 39 

generally have low sensitivity (GILLILAND et al. 1990; WANG AND BROWN 1999; MALINEN et 40 
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al. 2003). RPA is more sensitive than Northern Blots, but sensitivity remains a 1 

challenge, especially when using low amounts of mRNA (WANG AND BROWN 1999; 2 

VANDENBROUCKE et al. 2001). PCR is considerably more sensitive than either RPA or 3 

Northern Blots (WANG AND BROWN 1999; MALINEN et al. 2003). RNA-seq also shows 4 

good sensitivity (MORTAZAVI et al. 2008), but RNA-seq sensitivity depends on 5 

normalization techniques (BULLARD et al. 2010). There is mixed evidence for microarray 6 

sensitivity. For example, some researchers found that Northern Blots were slightly more 7 

sensitive than microarrays for 14 of 29 assayed genes (TANIGUCHI et al. 2001). Six of 8 

the remaining genes, however, were detected by microarrays and not by Northern Blots, 9 

suggesting microarrays were more sensitive to these genes (TANIGUCHI et al. 2001). 10 

Older microarrays might only have been able to detect changes reliably if they were at 11 

least two-fold (FRYER et al. 2002), but some newer Microarrays have become at least as 12 

sensitive as RNA-seq (WILLENBROCK et al. 2009).  13 

 14 

 Poor reproducibility may be masked by biological variability. In addition to 15 

differences in sensitivity, measurement methods vary in reproducibility, and the 16 

procedures used in each measurement method point to different potential sources of 17 

variability. For example, RNA-seq requires a small portion of the sample RNA to be 18 

used to construct a library, and PCR used to create this library can introduce variability 19 

through amplification bias (AIRD et al. 2011). However, biological variability typically 20 

outweighs methodological variability for RNA-seq (BULLARD et al. 2010). A detailed 21 

review of the reproducibility of RNA-seq is given elsewhere (SEQC/MAQC-III 22 

CONSORTIUM 2014). Reports of reproducibility for microarray studies have been mixed. 23 

The 2005 Toxicogenomics Research Consortium raised concerns of variability between 24 

laboratories and between platforms (BAMMLER et al. 2005), and cross-platform 25 

reproducibility issues were echoed elsewhere too (CANALES et al. 2006). However, 26 

simultaneously a large study by the MAQC Consortium found microarray experiments to 27 

be reproducible both across platforms and across laboratories (SHI et al. 2006). We 28 

expected time series measured with RNA-seq and microarrays to show the least 29 

variability, but there was not sufficient data to test this hypothesis. 30 

 31 

 Experimental causes for PCR variability. A number of different factors have 32 

been shown to influence the variability of PCR experiments (BUSTIN 2002). For 33 

example, different samples can have different amplification efficiencies (VANGUILDER et 34 

al. 2008), and, as noted above, the percentage of GC bases can introduce amplification 35 

bias (AIRD et al. 2011; ORPANA et al. 2012). Others noted that, although PCR is often 36 

thought to be a “gold standard”, extensive tests showed that calibration and selecting 37 

appropriate primers and probes can be challenging (VANGUILDER et al. 2008; 38 

SEQC/MAQC-III CONSORTIUM 2014). A low quantity of starting material can also 39 

influence PCR variability (VANDENBROUCKE et al. 2001; BUSTIN AND NOLAN 2004).  40 
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 1 

 PCR and Northern Blot accuracy. Despite these challenges, PCR was 2 

developed more recently than RPA and Northern Blots, and the latter have largely have 3 

largely fallen out of favor, at least partially due to the greater degree of sensitivity 4 

afforded by PCR. Northern Blots are also less accurate than PCR (VANGUILDER et al. 5 

2008) and are considered to have low reproducibility (QU AND BOUTJDIR 2007). We 6 

therefore expected to see greater variability in time series measured with RPA and 7 

Northern Blot and less variability in those measured with PCR. However, our analysis 8 

revealed that peak values for time series collected with PCR were significantly more 9 

variable than those from time series measured with RPA or Northern Blot. 10 

 11 

 Differences between qPCR and RT-PCT? We subdivided time series measured 12 

with PCR into those measured with real-time PCR (“RT-PCR”) and those not measured 13 

with RT-PCR (“qPCR”). Neither type of PCR was more variable than the other. 14 

Variability did not significantly differ between qPCR and Northern Blot or between qPCR 15 

and RPAs, but careful inspection of the bootstrap distributions produced by comvar2 16 

suggests that this could be merely an issue of statistical power (qPCR has fewer 17 

samples than RT-PCR). Accordingly, RT-PCR was significantly more variable than 18 

Northern Blot and RPA. Finding significantly higher variability for RT-PCR was also 19 

surprising, given that real-time PCR was developed more recently than qPCR, and RT-20 

PCR is considered to be the standard for PCR, as it decreases experimental error by 21 

requiring less data processing than qPCR (VANGUILDER et al. 2008).  22 

 23 

 Analysis of measurement protocol references using FlyClockbase. We 24 

attempted to explain our observed increase of variability for time series traits observed 25 

with PCR by examining the experimental protocol references cited by each type of 26 

mRNA observation method. It is common for the methods section of studies in 27 

FlyClockbase to reference the experimental protocol of previously published studies. 28 

We hypothesized that differences in these protocol references could explain the 29 

increased variability of time series measured with PCR. The time series identifier 30 

structure, easy access to references, content of respective studies, and the overall 31 

structure of FlyClockbase were instrumental for collecting and organizing information on 32 

experimental protocol references, even though this data was not originally recorded. 33 

The information on method references for per mRNA time series is shown in Figure 9. 34 

Table 8 provides overview counts that translate into statistical power when analyzing 35 

each method, either based on counts of time series (bold numbers in Table 8), or based 36 

on counts of studies (non-bold numbers in Table 8). 37 

 38 

 39 
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 Shared references are less frequent for PCR studies. Of the three methods 1 

we analyzed, some methods generally cited more references than others. While all 45 2 

time series using RPA cited at least one method reference, such references were cited 3 

by only about 56% (5/9) of the studies using Northern Blots and about 72% (18/25) of 4 

PCR based time series. Some of the method references were cited once, while others 5 

were cited more frequently. We defined “shared method references” as references cited 6 

by two or more studies which use the same measurement method. Studies using RPA 7 

had 93% (42/45) shared method references. 40% (2/5) of studies that used Northern 8 

Blots had at least one shared method reference, while only 17% (3/18) of PCR studies 9 

had a shared method reference. We hypothesized that decreased variability for time 10 

series measured with RPAs and Northern Blots could be attributed to increased number 11 

of method references and shared method references. However, our statistical tests 12 

found no significant differences between time series with or without method references 13 

or shared method references. We therefore suggest that increased variability in time 14 

series measured with PCR is not caused by a lack of properly documenting or a lack of 15 

using shared protocols but rather stems from actual differences in variability based on 16 

measurement method.  17 

 18 

 19 

Explanation: large fluctuations from PCR stochasticity 20 

 21 

Here we provide a mechanistic explanation for the increased variance of per mRNA 22 

peak times as measured by PCR (here brief for RT-PCR and qPCR) in comparison to 23 

non-PCR methods (here brief for Northern Blot and RPAs). Briefly, repeated replication 24 

required by PCR starts with substantial stochasticity at very low copy numbers before 25 

reaching its deterministic exponential growth phase. Non-PCR methods for observing 26 

per mRNA do not require replication and thus have less potential for variability. Thus, 27 

non-PCR methods cannot distort peak timings as much as PCR can.  28 

 29 

 Exponential growth causes for PCR variability. As indicated above, many 30 

different factors can influence PCR variability, including amplification bias, calibration, 31 

primers, probe selection, operator experience, and importantly the overall quantity of 32 

starting material. It is easy to compare at length potential reasons for variability in PCR 33 

and in other methods. We suggest the following simplified analysis that relies on the 34 

fundamentally different behavior of timing errors in exponential growth vs linear growth. 35 

Such errors generate the larger variance of PCR-measured peak timings. Our 36 

explanation requires three basic assumptions:  37 

(i) Real-world individuals cannot be divided without destroying them.  38 

(ii) Replication without resource limits inevitably leads to exponential growth. 39 
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(iii) Timing of later events in an exponentially growing system are easily affected by 1 

an earlier or later start of growth.  2 

These assumptions define implicitly a theoretical model of exponential growth that can 3 

explain the increased variability mechanistically. We then present evidence suggesting 4 

the larger variability of PCR peak times should not come as a surprise.  5 

 6 

 Great sensitivity and poor reproducibility are linked. The goal of PCR is to 7 

amplify rare nucleic acids by repeatedly replicating in well-defined rounds. During later 8 

stages of growth many molecules are replicated simultaneously. Therefore, any 9 

individual replication event will not significantly impact the overall population, as the 10 

stochasticity of many individuals cancels out increasingly. Ordinary differential 11 

equations work well for such large populations, because their constant violations of 12 

basic assumption (i) are negligible here. The contrast of this precisely predictable 13 

scenario could not be bigger when compared to the very early stages of a PCR reaction 14 

designed to start with low copy numbers for maximal sensitivity. Here basic assumption 15 

(i) severely constrains potentially parallel actions, because single molecules cannot be 16 

broken up without affecting their functionality and are limited in what they can do 17 

simultaneously. This limitation inevitably creates stochastic waiting times that lead to 18 

larger or smaller growth delays that generate the initial timing differences at the root of 19 

cascades of delay that propagate throughout the exponential growth phase due to 20 

assumption (iii).  21 

 Amplifying single molecules is a hallmark of PCR’s exceptional sensitivity. It also 22 

causes PCR’s reproducibility problems for the reasons just explained, making it 23 

extremely sensitive to early rare template numbers. Here timing differences in 24 

polymerase access and replication speed can quickly snowball into faster or slower 25 

growth, and thereby, lower or higher amounts inferred for the original molecules 26 

investigated. These problems are highly relevant for all forms of quantitative PCR, 27 

which are designed to operate completely under exponential growth for better 28 

quantitation.  29 

 Circadian clock cycles with small variations of initial amounts inside of cells, 30 

stochastic timing differences, variations in extracted volume, and other factors can 31 

easily conspire to modify final amounts inferred by PCR (if stopped before resources 32 

become scarce). PCR time series measurements rely on these final amounts to define 33 

the PCR end results used for inferring how much may have been present at the 34 

beginning. For this to work as a quantitative method, PCR has to be stopped in the 35 

middle of exponential growth, implying it will inevitably experience substantial noise 36 

from slight variations in the starting conditions under a broad range of circumstances.  37 

 38 

 39 
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 Observations of the theory. The strong impact of stochastic timing differences 1 

in exponentially growing systems is easily demonstrated in stochastic simulations of a 2 

very simple exponentially growing population (EHLERT AND LOEWE 2014). There the 3 

initial amount is kept constant for all simulations, making timing differences the only 4 

source of stochasticity. The same principles are responsible for translating the 5 

stochasticity of low molecule counts at the input of sensitive signaling cascades into a 6 

reliably transmitted signal, albeit with variation in the waiting time until the signal is 7 

switched on completely (LOEWE et al. 2009a; LOEWE et al. 2009b). Thus it is not 8 

surprising if experimental measurements show that different researchers with varying 9 

PCR expertise can easily generate 100-fold differences in their inferred initial number of 10 

molecules at the start of a PCR (BUSTIN 2002). Such variability might stem from small 11 

changes introduced to factors that impact the exponential growth essential to PCR in 12 

subtle, but powerful ways; see (BUSTIN 2002; BUSTIN AND NOLAN 2004).   13 

 14 

 How this applies to amount peak timing observed by PCR. As shown by growth 15 

mechanism discussed above individual PCR reactions bring individual challenges, 16 

which complicates observations of time series. The main reason is that each time point 17 

measured by PCR will require an independent PCR reaction probably starting with a low 18 

molecular count as obtained from sacrificing an independently running circadian clock. 19 

Thus, observing mRNA clock oscillations by some quantitative PCR method will 20 

inextricably intertwine two processes of variation that inevitably interfere with each 21 

other’s observation in these two ways: 22 

(i)  Oscillations of the clock itself may exhibit substantial stochasticity depending 23 

on molecular amounts involved (AKMAN et al. 2010). This implies that the 24 

peak itself as measured by PCR may vary, even if PCR were perfectly 25 

precise.  26 

(ii)   Low initial molecule counts of the templates that start any quantitative PCR 27 

reaction cause substantial inherent stochasticity that can substantially affect 28 

the final amount of PCR products measured. If this happens, researcher are 29 

likely to infer corresponding deterministic changes in the initial molecular 30 

counts  (BUSTIN 2002).  31 

  32 

Since every single time series observed by any quantifying PCR is inevitably impacted 33 

by both, a substantial amount of random noise is added to each independently 34 

observed time point. As a result, several time points might falsely appear to be peaks 35 

(or the converse).  36 

 37 

 Summary. A low quantity of starting material can influence PCR variability to a 38 

very large degree (VANDENBROUCKE et al. 2001; BUSTIN AND NOLAN 2004). Given the 39 

systematically larger potential for measurement noise in PCR methods caused by the 40 

low initial molecule count induced stochasticity, it might even be surprising that PCR is 41 
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not noisier compared to methods like RPA or Northern Blots that do not require 1 

exponential growth. 2 

 3 

 4 

 5 

Model curation for integrating molecular systems biology data  6 

 7 

The process of model curation inherently works towards integrating all data that is 8 

relevant and available for a given model of interest. Models may be broadly defined as 9 

systems, parts, processes or questions that are being represented from certain 10 

perspectives to efficiently find particular types of answers deemed to be interesting. We 11 

will next briefly discuss, how this view of model curation can facilitate the integration of 12 

knowledge-fragments from molecular systems biology in order to enable the emergence 13 

of expertise as represented by well-curated systems biology models (e.g. of circadian 14 

clocks) or corresponding relevant sets of real-world observations (e.g. of time series in 15 

FlyClockbase). We will first look at more specific followed by more general levels of 16 

abstraction before discussing other fundamental aspects of model curation.  17 

 18 

 Related concrete solutions. At a more specific level, there is no shortage of 19 

standards, formalisms, approaches, tools and other systems for supporting the 20 

application of more abstract categories (like ontologies or models) to concrete problem 21 

areas of interest. Examples include the Systems Biology Markup Language for 22 

constructing simulation models (HUCKA et al. 2003; KRAUSE et al. 2010), Systems 23 

Biology Graphical Notation for visually representing molecular reaction models (LE 24 

NOVERE et al. 2009; MOODIE et al. 2011), UMLS and SNOMED for defining and using 25 

medical reference terms with different approaches to synonyms (MAJOR et al. 1978; 26 

MERRILL 2009), and specific ontologies for listing existing entities such as ‘all genes’ in 27 

an area of interest (JONQUET et al. 2011; MUSEN et al. 2012).  28 

 At the most specific level are concrete collections of actual models implemented 29 

in one of the formalisms described above. For example, BioBase, which collects and 30 

curates published SBML models (LE NOVERE et al. 2006; CHELLIAH et al. 2015). This is 31 

closer to the level of FlyClockbase, which collects and curates published time series 32 

within its scope. The substantial number of different formalisms for describing models 33 

can be very confusing. To get a clearer understanding of essential, non-redundant 34 

aspects of model construction it can be useful to consider a more abstract perspective.  35 

 36 

 Related abstract frameworks. Several abstract perspectives exist. An ontology 37 

is a list of potentially existing things. A taxonomy is a list of potentially existing species. A 38 

type system is a classification of potentially existing types and how they could be used 39 

to compose new types. Similarly, a model is a specification of potentially existing 40 
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elements in the world of the model. At the most general level, ontologies and 1 

taxonomies are fundamentally related (ARP et al. 2015). The same holds for type 2 

systems, the semantic web, and models in general.  All these could be described as 3 

‘worlds’, as each of these is like a small description of its world. Unless otherwise 4 

specified, they buy into the Closed World Assumption, which implies that nothing else 5 

exists or matters except for the details explicitly specified. At this abstract level, worlds 6 

are all equivalent to systems that encapsulate detailed statements about the conditional 7 

existence of sub-systems, items or events that may be nested or composed from 8 

defined structures, capabilities, and/or other properties. Such abstractions enable the 9 

detection of isomorphisms that can facilitate the transfer of equivalent solutions across 10 

problem domains and hence cut development costs by building on results obtained 11 

elsewhere. For example, different elements or types can be grouped into a set in the 12 

contexts of taxonomy, ontology, type system, or model construction. They each may use 13 

different key words to describe this concept, but its core meaning, i.e. semantics, stays 14 

the same. Each of these worlds comes with its own semantic formalism. 15 

 It can be challenging to navigate these abstract semantic formalisms for 16 

representing the meaning of statements (VAN RENSSEN 2005). This resulted in the 17 

paradoxical (non-expert) use of ‘semantics’ as synonym for ‘meaningless’ in common 18 

language. A semantic model that is genuinely useful to its writer but incomprehensible to 19 

its reader is not useful to that reader and thus appears ‘meaningless, resulting in 20 

semantic irreproducibility (LOEWE 2016). The resulting communication failure is a 21 

substantial problem for modeling, programming, giving names and using names (LOEWE 22 

2016). FlyClockbase has not been spared; we encountered a broad range of semantic 23 

problems caused by naming, from trivial spelling errors (with non-trivial consequences 24 

in database searches) to profound research questions about the nature of certain 25 

molecules (see discussion of CURLED above). Related questions of naming and 26 

nomenclature are of critical importance for biomedical research; correspondingly tools 27 

that efficiently map local nomenclature to standard nomenclature have been identified 28 

as critically important (NIH et al. 2012), and would have made development of 29 

FlyClockbase substantially faster (e.g. by helping to manage changes in local names).  30 

 31 

 Baseline: conceptual unity of reality despite diversity of experimental 32 

methods. Science builds on the physical unity of reality that is observed by different 33 

persons using different methods. This principle is usually so compelling that it is 34 

unconsciously assumed. It allows scientists to confidently assume the same conceptual 35 

unity for aspects of reality that are challenging to study because they may present a 36 

different view when investigated by different approaches. This principle of conceptual 37 

unity is the foundation of model curation. For example, let Q be the amount of a given 38 

protein type in a single cell specified by place and time. Then Q itself does not depend 39 

on the various methods subsequently used to measure Q. If results from different 40 
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methods of observation contradict each other, we can confidently search for errors. The 1 

confidence is rooted in the conceptual unity of our world, or any cell, or Q.  2 

 3 

 Contradictory biological information. While developing FlyCockbase we 4 

repeatedly encountered situations where there were contradictions between different 5 

observations that appeared to be of equally high credibility. On some occasions, even 6 

substantial efforts on our part to check each credible source of confusion we could think 7 

of, did not identify any credible information on what could have gone wrong. Such 8 

situations are profoundly confusing and cost substantial amounts of time. Handling such 9 

difficult situations defines much of the quality of a VBIR and its underlying logic 10 

formalism (see also Discussion below and in Supplementary Text).  11 

 Debugging time limits. We found it important to limit the time we used for 12 

attempts to resolve such problems. In this we aimed to be generous yet responsible 13 

with our resources. We also started to search for more formal ways of signaling among 14 

curators when a particular set of problematic time series already had been investigated 15 

sufficiently. The implications of this question for the reproducibility debate are unclear. 16 

Should a seemingly solid experimental study be declared ‘irreproducible’ because an 17 

apparently rushed, ill-conceived experiment failed to reproduce results? Probably not. 18 

Should a seemingly rushed, ill-conceived original study be defended as a valid original 19 

observation, despite the apparent inability of thorough, time-consuming attempts to 20 

reproduce results? Probably neither. However, where is the line between these two 21 

rather extreme scenarios? It is not the task of biological model curators to assess the 22 

credibility of experiments by repeating them. Hence, they need other means of 23 

assessing the quality and relevance of reported observations for the model they curate. 24 

A more differentiated formalized way of communicating various perceived problems 25 

could greatly increase the efficiency of curation work by relieving curators of the implied 26 

unrealistic obligations to always get to the bottom of all inconsistencies or to invent a 27 

reliable taxonomy of resulting errors.  28 

 Communicating errors. Developing a formalism for communicating clearly how to 29 

handle errors efficiently is a complicated problem more closely related to compiler 30 

construction than to biological questions. It requires expertise in both areas. We started 31 

to search for efficient ways of how to best represent outcomes of error analyses for 32 

particular time series. We aimed to formalize such communications with the intent to 33 

enable a compiler to exclude certain types of errors from the results of time series 34 

searches. It became increasingly clear that binary choices like “error: yes/no” were 35 

inappropriately simplistic for many real-world uses of data in biology.  36 

 Types of problems with data. The discussion above demonstrates that a 37 

differentiated approach is necessary for appropriately representing biological data. Not 38 

all trustworthy biological expertise is documented by directly observed data and not all 39 

data that is available has the quality most researchers would ideally aspire to. Statistical 40 
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inference and logical deduction from experimental observations are also valuable tools 1 

of biological discovery. However, they can only yield conclusions that are as strong as 2 

the observations that support them. It is therefore of utmost importance for reliable and 3 

reproducible research in biology to represent specific experimental observations and 4 

general biological data as they are, including all known limitations and unforeseeable 5 

circumstances, confounding variables, or event. From this perspective, almost all data is 6 

imperfect to some degree. Imperfection in an imperfect world is not a problem, as long 7 

as we are aware of the nature of the imperfections. The current reproducibility crisis 8 

reflects in part the complicated nature of reporting the essence of research results 9 

concisely, yet without ignoring their limitations or omitting potentially undermining details 10 

(BAKER 2016). In our study, we have attempted to be as complete and open as possible, 11 

e.g. by conducting a human error analysis for the raw data of our most important 12 

conclusions and reporting multiple potential variations of our statistics (see 13 

Supplemental Statistical Analysis); this has both substantially increased the length of 14 

this report and the time to complete it. As can be seen in the overall structure of our R-15 

script that computed our final analysis, such work often requires exploring various 16 

alternative analyses. These all initially appear to be equally valid ways of working 17 

around a given imperfection of the data. Substantial parts of calculating all useful tests 18 

can reasonably be delegated to a compiler for many frequently encountered scenarios – 19 

assuming there is a formal way of communicating the type of data imperfection to the 20 

compiler. 21 

 Using imperfect data. For the reasons above, imperfect biological data is 22 

extremely valuable. Hence, no need to throw out baby hypotheses with imperfect data 23 

bathwater. High-quality model curation considers what can reasonably be learned from 24 

an imperfect dataset by describing as many quantitative aspects as reasonable, 25 

reflecting ideas from the “New Statistics” (CUMMING 2013; CUMMING 2014). Often the 26 

cutting edge of research is defined by situations where not enough high-quality data is 27 

available for a final interpretation. In fact, the value of resources like FlyClockbase is 28 

precisely in their ability to synthesize the limits of what is known and highlight 29 

hypotheses that merit further experimentation. Ignoring imperfect data in this context 30 

would be inappropriate.  31 

 Imperfection spelled out. Hence, FlyClockbase will require better ways of 32 

representing confusing and uncertain real-world data at the current biological cutting 33 

edge of research. Data there can be aggregated, biased, contradictory, diffuse, 34 

exception-prone, false, generated, gap-ridden, hidden, imprecise, jumbled, limited, 35 

missing, modified, noisy, objectionable, problematic, questionable, redundant, scattered, 36 

swapped, tangential, transformed, uncertain, veiled, washed, wobbly, xeroxed, or 37 

otherwise imperfect. A hallmark of good biologists is their ability to intuitively navigate 38 

these difficulties appropriately in their study systems. The rise of big data has led to 39 

substantial experience in how to deal with imperfect data (MCCALLUM 2013). 40 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 88 

 1 

 Problem type repository. Developing VBIRs like FlyClockbase efficiently depends 2 

critically on the ability of biological model curators to describe these intuitions in ways 3 

that are formal enough, so that an automated solution can be developed eventually.  4 

Biological experiences with rates of identifying new species in an ecosystem where 5 

many of them exist (GROVE AND STORK 2000) indicate that eventually known species will 6 

be resampled. The same can be expected for the varied number of data problems that 7 

can be observed during the long-term development of VBIRs. VBIRs would greatly 8 

benefit from a central repository for the logic problems associated with imperfect data. 9 

Such a repository can substantially cut costs of identifying logic problems and would 10 

help in compiler construction, simply by documenting the extent of the problem. It is 11 

difficult, even for experienced biologists, to imagine many of the complications of real-12 

world data in the absence of actual research interactions with real-world data. It is near 13 

impossible for complier constructers to do so without also being biologists who work 14 

with real-world data.  15 

 16 

 The role of logic. Communicating errors in clear ways fuels our interests in 17 

exploring logic formalisms beyond classic Boolean systems (see also below). Providing 18 

a full formal definition for a chosen logic formalism, alongside all appropriate proofs and 19 

consistency checks is clearly work best done by theoretical computer scientists with the 20 

corresponding formal training. For the reasons discussed above, we do not think that 21 

developing an appropriate logic can be reasonably delegated. As indicated above by the 22 

idea of problem type repository, we found that one of the biggest challenges was the 23 

need to realize the existence of a given problem. Typically, and trivially, biologists find it 24 

easier to specify uncertainties and inconsistencies in real-world observations based on 25 

their experience, while logicians find it easier to identify particular contradictions that 26 

result from an inappropriately defined logic formalism. Our experience suggests that 27 

their combined imagination and expertise will need to be complemented by a slow 28 

careful collaborative review of the detailed problems in a sufficiently complex real-world 29 

research scenario. To facilitate such collaboration, we have described elsewhere the 30 

Flipped Programming Language Design approach (LOEWE 2016), which also inspired 31 

our discussion below of Figure 11.  32 

 These complex efforts to develop a sufficiently expressive logic for problems with 33 

biological observations contribute towards answering the next question that is in 34 

principle very simple.  35 

 36 

 Simple question: how many molecules of a given type exist at a given time 37 

in a given cell?  Modern biology has invested much effort into developing many diverse 38 

approaches for investigating intracellular quantities of interest. Such quantities often 39 

relate to the simple question of amounts in one of the myriads of forms in which it is 40 
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posed in biology today. Generating well-defined, credible answers that properly quantify 1 

all relevant uncertainties would go a long way towards providing the data required for 2 

algorithms aiming to solve the inverse problem (see Models Section). The answers to 3 

this problem quantify the uncertainty of parameters, which are needed for simulating 4 

models of molecular systems in cells. Such simulations can be seen as devices for 5 

extending biologists’ thinking capabilities and enable investigating new areas of biology 6 

(see comments on evolutionary systems biology (LOEWE 2016)). Unfortunately, it is 7 

extremely challenging to answer the conceptually simple question above for real 8 

molecules in real cells with reasonable quantifications of uncertainty.  9 

 Observations in FlyClockbase. Many of the practical challenges of determining 10 

such amounts of molecules have been constant companions of our work with 11 

FlyClockbase. For example, consider the differences in techniques used to measure 12 

amounts of mRNAs or proteins produced by genes such as per or tim, (see Figure 10 or 13 

TimeSeries AttributeTable in FlyClockbase for details on methods). While each 14 

technique is limited in unique ways, a given quantity of interest can usually be 15 

measured in several ways that vary in trade-offs between precision, cost, and other 16 

method parameters.  As a result, interesting quantities that can be measured in cells 17 

have often been measured by dozens of methods, each of which may be implemented 18 

by different independent experimental protocols and belong to one of several applicable 19 

broader methodological approaches. Each of these may provide different answers to 20 

the following practical questions that are highly relevant for model curation. Are amounts 21 

of molecules in a single relevant core clock cell of D. melanogaster …  22 

• … absolute counts (our preferred ideal) or relative (usually reported)? 23 

• … from a single cell (may be used to infer molecular noise) or from averaging over a 24 

population of cells (or some other aggregation difficult to disentangle)? 25 

• … complete and direct raw observations (enabling independent statistical analyses) 26 

or summaries of “typical plots” of “the most relevant data” (that can introduce 27 

uncontrollable ascertainment biases as observed in other areas, e.g.	(AMOS et al. 28 

2003; CLARK et al. 2005; FOLL et al. 2008; LACHANCE AND TISHKOFF 2013; MINIKEL et 29 

al. 2014))? 30 

• … appropriately annotated with all key details for maximizing long-term use in 31 

diverse meta-analyses (rare; authors have little guidance on what to report) or 32 

missing annotations for key details known to exist even if unreported (e.g. fly age, 33 

sex), or not reasonably knowable (e.g. fly clocks were disturbed by unexpected and 34 

unreported drastic changes in temperature)? 35 

• … reasonable approximations of reliable results (as would be expected from diligent 36 

analyses of larger and higher-quality data sets if reproduced in the same system or 37 

irreproducible (recent observations may give reason to pause (IOANNIDIS et al. 38 

2009a; SALANTI AND IOANNIDIS 2009; MOBLEY et al. 2013; FREEDMAN et al. 2015a; 39 

FREEDMAN et al. 2015b; HALSEY et al. 2015))?  40 
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The unity of reality implies that similar representational approaches can contribute 1 

towards rigorously assessing reproducibility and towards curating heterogeneous and 2 

imperfect datasets into an internally consistent VBIR: both efforts would benefit from 3 

explicitly stating all uncertainties and other problems associated with a given set of 4 

observations.  5 

 6 

 Curation efforts for circadian clock research. FlyClockbase is unique in its 7 

scope, datasets covered and many other aspects – as far as we can tell. In particular, 8 

we are not aware of other circadian clock time series resources or meta-analyses that 9 

bring similar numbers of replicate time-series or studies together in order to answer 10 

questions about the differences in variances of peak times between different 11 

components of the core circadian clock of D. melanogaster. However, FlyClockbase is 12 

not the first biological information resource sharing observations about circadian 13 

oscillations in gene expression. We will next discuss some examples of related efforts; a 14 

review of additional bioinformatics resources relevant for clock research can be found 15 

elsewhere (LOPES et al. 2013; LI et al. 2017).  16 

• CircaDB ( http://circadb.hogeneschlab.org ) is a publicly accessible web database 17 

storing time series observations that record how gene expression changes in various 18 

mammalian tissues throughout the day (PIZARRO et al. 2013). It has been used for 19 

documenting the large extent to which gene expression in mice follows circadian 20 

patterns – with interesting implications for drugs that target the products of 21 

rhythmically expressed genes and that might benefit from timed dosage (ZHANG et 22 

al. 2014a). While many genes in the mouse clock are homologous to fly clock genes, 23 

there were no observations of non-mammalian gene oscillations in CircaDB at the 24 

end of 2016. A strength of CircaDB is the availability of detailed tissue specific data 25 

from mice. 26 

• CGDB, the Circadian Gene DataBase (  http://cgdb.biocuckoo.org ) version 1.0 (as 27 

of 2017-01-14) contains information (i) on 1,382 instances where gene expression 28 

followed circadian rhythms as observed by techniques like RT-PCR, Northern Blots 29 

or in situ hybridization; (ii) on 26,582 observations of gene expression found in 30 

transcriptome profiling studies to follow circadian rhythms; and (iii) on 44,836 31 

potentially oscillating genes as identified in a search for orthologs of oscillating 32 

genes (LI et al. 2017). A strength of CGDB is its broad coverage of 148 different 33 

animals, plants, or fungi. Of the 27,964 genes with experimental evidence of 34 

oscillatory gene expression, 3166 have been observed in D. melanogaster. Of these, 35 

14 observations cover all isoforms of per and tim, but only 5 of these were recorded 36 

in LD. The peak and valley times reported in CGDB do not contradict those reported 37 

by us here; however, the reported sample size does not have the statistical power to 38 

suggest new hypotheses on potential clock mechanisms. 39 
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• Deep (machine) learning approaches were investigated for their capacity to predict 1 

time and to distinguish rhythmic from arrhythmic time series (AGOSTINELLI et al. 2 

2016). To this end BioCycleReal was curated from 36 gene expression datasets, 3 

including 32 from CircadiOmics (  http://circadiomics.igb.uci.edu/ ) (PATEL et al. 4 

2012). Except for one from the plant Arabidopsis thaliana, all datasets came from 5 

mice (AGOSTINELLI et al. 2016).  6 

• SCNseq (    http://wgpembroke.com/shiny/SCNseq/   ) provides access to temporal 7 

transcriptomics of circadian clock controlling cells in the suprachiasmatic nucleus of 8 

the mouse brain at unprecedented precision (PEMBROKE et al. 2015).  9 

• Bioclock  ( http://www3.nd.edu/~bioclock/  ) is a repository of circadian transcriptional 10 

profiling data from Anopheles gambiae and Aedes aegypti, mosquitoes acting as 11 

vectors for malaria and yellow fever, respectively (RUND et al. 2011; RUND et al. 12 

2013; LEMING et al. 2014).  13 

• BioDare (  http://biodare.ed.ac.uk/ ; http://millar.bio.ed.ac.uk/data.htm )  is an online 14 

service for data-sharing and analysis of circadian time series observations. It’s 10 15 

datasets from A. thaliana were used for comparing period estimation methods and 16 

other clock research (ZIELINSKI et al. 2014). 17 

• dbCRY (  http://www.dbcryptochrome.org/ ) facilitates comparative genomics of 18 

crypotchromes, the light-sensing proteins in clocks (KIM et al. 2014); see Figure 1.  19 

• Diurnal 2.0 (  http://diurnal.mocklerlab.org/  ) provides access to observations of 20 

circadian genome-wide gene expression patterns observed in several common 21 

model plants (MOCKLER et al. 2007).  22 

• EUCLIS (  http://www.bioinfo.mpg.de/euclis/ ) is the ‘EU Clock Information System’. 23 

It adapted an advanced database architecture from another systems biology project 24 

for circadian clock researchers in order to combine modules for experimental data, 25 

clock models, and a related digital library (BATISTA et al. 2007; LOPES et al. 2013). 26 

 27 

 Individual meta-analyses occasionally integrate different datasets in an effort to 28 

increase the statistical power and reliability of conclusions. For example, combining and 29 

curating data from five independent microarray studies in D. melanogaster confirmed 30 

the rhythmical expression of 81 transcripts while also identifying 133 new cycling 31 

transcripts (KEEGAN et al. 2007). To arrive at their conclusions, KEEGAN et al. had to 32 

obtain data directly from the authors of the microarray studies they analyzed as not all 33 

necessary data was available online (CLARIDGE-CHANG et al. 2001; MCDONALD AND 34 

ROSBASH 2001; CERIANI et al. 2002; LIN et al. 2002b; UEDA et al. 2002). In turn, the 35 

same happened with their results: “All data used to produce this report are available 36 

upon request. Files that contain the individually formatted results from each of the 37 
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original reports were too numerous and large to be included with this manuscript …” 1 

(KEEGAN et al. 2007). Some (non-meta-analysis) studies that generate substantial 2 

amounts of new data put in the substantial additional work necessary for making 3 

material available online (e.g. see http://biorhythm.rockefeller.edu/  (CLARIDGE-CHANG et 4 

al. 2001)). Merely storing complex data in one or more file archives online is usually 5 

easy, but organizing and documenting complex datasets for use by independent 6 

researchers is not. This requires semantic reproducibility, which can quickly become 7 

prohibitively complex (LOEWE 2016) if no existing conventions are shared with users. 8 

Projects above have used database technology and/or web interfaces as shared 9 

conventions facilitating communication; as argued elsewhere in our study, this is neither 10 

ideal for all biologists nor for all work in biology. These problems are less acute for 11 

studies that can fall back on using public repositories with an appropriate data format. 12 

For example, a functional analysis study of fly genes expressed in response to the light-13 

induced resetting of the circadian clock (ADEWOYE et al. 2015) stored most data at the 14 

NCBI-maintained Gene Expression Omnibus database ( 15 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39578 ); NCBI GEO offers 16 

semantics particularly well suited for describing typical microarray datasets (BARRETT et 17 

al. 2005; BARRETT et al. 2011; BARRETT et al. 2013; CLOUGH AND BARRETT 2016). 18 

 Generic model organism repositories. Resources like the individual-study 19 

repositories above, meta-analyses, and circadian research specific repositories are 20 

complemented by generic model organism resources such as FlyAtlas  21 

( http://flyatlas.org ) for gene expression information (CHINTAPALLI et al. 2007; 22 

CHINTAPALLI et al. 2013a; CHINTAPALLI et al. 2013b; ROBINSON et al. 2013) and FlyBase (  23 

http://flybase.org/  ) for genomic and other information (ASHBURNER AND DRYSDALE 1994; 24 

ST PIERRE AND MCQUILTON 2009; GRAMATES et al. 2017).  25 

 Why curate circadian data?  Without detracting from the important achievements 26 

that continue to be enabled by the resources specified above, some points are worth 27 

noting for further discussion. Scarcity is first. We attempted to be as inclusive as 28 

possible and added resources far beyond the focus of our study on core clock genes in 29 

flies; recent reviews (LOPES et al. 2013; LI et al. 2017) do not list much more. Yet 30 

rhythmic gene expression is pivotal for fitness, health and more. This is underlined by 31 

estimates of 10% or 43% of the expressed genome under rhythmic control (BOYLE et al. 32 

2017) or of all protein coding genes showing circadian expression patterns somewhere 33 

in the body (ZHANG et al. 2014a), respectively. Given this importance of circadian 34 

biology, it seems surprising that not more circadian clock related repositories exist. One 35 

potential reason is that the tools for managing data are inadequate and discourage 36 

many biologists from getting involved. Secondly, the existing resources are scattered, 37 

very heterogeneous with respect to their data structures resulting in poor 38 

interoperability, and they are haphazardly reorganized (e.g. web addresses move, 39 

internal structures are modified). 40 
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 Challenges. Circadian clock researchers have repeatedly stated over the years 1 

that the arrival of new data due to experimental advances creates new challenges for 2 

data management and data processing (ZIELINSKI et al. 2014). These could be 3 

addressed by the development of a new infrastructure that standardizes data and 4 

software to reduce re-implementation efforts, improve documentation, and increase 5 

collaboration by sharing data (BATISTA et al. 2007; ZIELINSKI et al. 2014). This need for 6 

improved and simplified infrastructure exists for systems biology in general (CASSMAN 7 

2005) and similar ideas have been echoed in the debate about reproducibility (BUCK 8 

2015). The underlying issues have not yet been solved on a broader scale (NIH et al. 9 

2012; NIH 2015; NIH 2016; WILKINSON et al. 2016). A recent review of additional 10 

bioinformatics resources pointed out that tools cannot replace researchers, because it is 11 

“often necessary to conduct an evaluation of the results of a data mining effort to 12 

determine the degree of reliability” (LOPES et al. 2013). Indeed, experiences at UniProt 13 

show that “expert curation is by far the most reliable method to report gold-standard 14 

information and provide an up-to-date knowledgebase containing experimental 15 

information” (THE UNIPROT CONSORTIUM 2017). We argue that much of the low-level 16 

work of ensuring reproducibility and adherence to formal standards could be handled 17 

reliably by a compiler that transparently executes well-defined recurring tasks (see 18 

Discussion below and in Supplemental Material).  19 

 20 

 Perspectives on biological model curation. Circadian clocks control rhythmic 21 

gene expression for a substantial and important fraction of the genome, approximating 22 

half of all genes in mice (ZHANG et al. 2014a). It is thus difficult to isolate clocks from the 23 

rest of the organism they govern. An overall assessment of the impact of circadian 24 

clocks might thus require simulating whole cells or even whole organisms. This 25 

perspective raises several questions. 26 

 Will this scale to real cells? The challenges of reproducibility for systems that are 27 

comparatively small are multiplied on much more complex systems, such as the 28 

molecular systems biology simulations of whole cells that have started recently at a 29 

larger scale (KARR et al. 2012; KARR et al. 2013; LEE et al. 2013; PURCELL et al. 2013; 30 

SANGHVI et al. 2013; KARR et al. 2014; KARR et al. 2015a; KARR et al. 2015b). The 31 

ultimate aim of such studies is to understand in detail, how a real cell work and evolves 32 

over time (LYNCH et al. 2014). However, the question is, whether our tools will be able to 33 

scale in such a way that errors can be kept down and our toolchain remains reliable. 34 

Hence, outstanding reproducibility of smaller models and datasets are a prerequisite for 35 

any further integration. We have chosen to focus on the simplest possible 36 

implementations when developing VBIRs to enable durability. 37 

 38 

 39 
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 Will tool development overwhelm biological goals? The essential requirement of 1 

tools that handle biological data more accurately and with more ease could continue to 2 

bind disproportional amount of resources through a lack of coordination (see eg. 3 

(CASSMAN 2005)). Usually only one excellent tool for a given task is needed, not several 4 

that are usually good enough but break down in some special cases, which then require 5 

completely new implementations. It is encouraging that the accuracy of computational 6 

tools in some areas converges towards that of high-quality experiments (e.g. 7 

(LEJAEGHERE et al. 2016)); likewise, the development of more precise higher-level 8 

abstractions simplifies much of the lower-level programming (e.g. (ARP et al. 2015)). 9 

However, the need for new and more precise tools is vast, and only few biologists can 10 

program well enough to contribute. Thus, support from computer scientists and 11 

professional programmers will certainly be needed. However, without the extraordinarily 12 

close collaboration described here it will be extraordinarily difficult to develop tools that 13 

are efficient enough in real biological research in order to drive adoption. Only then will 14 

tool development start to contribute to the overall biological goals. In our analysis, the 15 

development of a VBIR compiler is a particularly efficient way of tool development (see 16 

Discussion below). The efficiencies from compiler development might help with raising 17 

the funding for VBIRs on a more permanent footing (EMBER et al. 2013). 18 

Simultaneously, experimental methods, their limits, and associated errors and biases 19 

will require more rigorous analyses in order to contribute towards a more accurate 20 

description of the precision associated with the actual observations (e.g. for sequencing 21 

errors see (ROBERTS et al. 2013; ROBERT AND WATSON 2015), for n-fold gene expression 22 

see (CANALES et al. 2006; CANALES 2016), for PCR see (BUSTIN 2002; BUSTIN AND NOLAN 23 

2004; VANGUILDER et al. 2008), for tests of a parameter estimation method, e.g. see 24 

(DAIGLE et al. 2012); many more analyses for other methods are needed). 25 

 26 

 Will biology try to advance too fast for its own good? The 1970’s saw the rise of 27 

systems theory in ecology, albeit arguably too early (WOLKENHAUER 2001). Now systems 28 

biology has in principle a computational method at its disposal for every single step 29 

along the causality chain from genotype and environment to phenotype and fitness 30 

(LOEWE 2009; LOEWE 2012; LOEWE 2016). However, what does not exist at the moment 31 

is a rigorous and integrated problem management for the full causality chain. Clearly, 32 

more uncertain output at more causal calculations will combine with additional 33 

uncertainties at more consequential calculations. If this accumulation of uncertainties 34 

occurs on the long causal chain from genotype to phenotype, then it is presently not 35 

clear, which signal-to-noise ratio is to be expected. This question can only be resolved 36 

by an integral management of uncertainties similar to what we propose. Advancing 37 

simulations of whole cells or even organism too fast without allowing for appropriate 38 

precision to grow in method development and curation might cause rigorous scientists 39 
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to lose patience, throw out the baby with the bathwater, and thereby cause unnecessary 1 

setbacks.  2 

 Balance. It is neither possible nor necessary to manage either of the extremes 3 

above beyond being aware of them, to avoid falling into either trap. The dynamic nature 4 

of biological research will then run its course. However, any foreseeable scenario will 5 

have a very large need for biological model curation, which will require many well-6 

equipped biologists, as high-quality model curation will always remain a human task. 7 

Similarly, in any credible scenario, biological model curators will greatly benefit from 8 

support by a well-equipped VBIRs compiler.  9 

 10 

 11 

  12 
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  1 

Towards a compiler for advancing FlyClockbase and biology 2 

 3 

Working with FlyClockbase has given us ample opportunities to observe first-hand many 4 

diverse problems that frequently complicate an otherwise efficient use of computers or 5 

formal simulation methods for advancing biology. Below we highlight a few key 6 

observations suggesting a greatly increased efficiency for integrating computers in the 7 

workflow of FlyClockbase and similar VBIRs could be enabled by the construction of a 8 

corresponding VBIR compiler. This requires paying the moderately increased cost of 9 

constructing such a compiler only once. In return, the whole biological community could 10 

substantially cut the excessive costs of manually constructing or maintaining VBIRs. 11 

The substantial costs of VBIRs construction conflict with the growing need of compiling 12 

thousands of VBIRs that integrate in computable form the biological expertise 13 

necessary for engaging the grand challenges of our time. Leveraging abstractions 14 

developed in computer science for cutting through the complexities of data 15 

management with the help of an appropriately designed compiler could greatly reduce 16 

the costs of integrating biological expertise in order to address grand challenges more 17 

efficiently.  18 

 19 

 History. Similar thoughts about better computing for biological discovery have 20 

been recurring since the dawn of computing (TURING 1936), fueling many discussions of 21 

chances and challenges in diverse areas and applications, including the following 22 

examples: harness the precision of logic for biological discovery (WOODGER et al. 1937), 23 

simulate genetic systems (CROSBY 1973), open science (BARTLING AND FRIESIKE 2014), 24 

improve reproducibility (IOANNIDIS 2005b; DONOHO 2009; HUANG AND GOTTARDO 2013; 25 

LOEWE AND KEEL 2014; STODDEN et al. 2014; FREEDMAN et al. 2015a; JAMES et al. 2015; 26 

STODDEN 2015; BARBA 2016; LOEWE 2016; LOEWE et al. 2016), share data (WILKINSON et 27 

al. 2016), and do so efficiently at larger scales (NIH et al. 2012; NIH 2015; NIH 2016). 28 

To contribute to this debate that also affects FlyClockbase, the next sections distill the 29 

essence of selected key challenges we observed. We connect our observations to 30 

relevant research in other disciplines to reduce rediscovery where possible.  31 

 32 

 Unusual approaches to constructing an unusual compiler. We will conclude 33 

that many or most of the problems below could be solved efficiently by carefully 34 

constructing a corresponding compiler. Its specialty is to facilitate the implementation of 35 

best-practice solutions for constructing VBIRs and addressing the many challenges 36 

which biologists regularly face when they aim to use computers for advancing their 37 

research. Our approach goes far beyond superficial reassignments of responsibility; 38 

rather it proposes that broad classes of problems in biology could benefit from 39 

computational solutions if the latter are designed with enough time and care for those 40 
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abstractions that matter for real-world biology. Figure 11 illustrates key aspects of the 1 

development process we used. It represents a very unique informal blend of two 2 

opposite extremes in software development. The extreme known as ‘agile methods’ 3 

advocates for quick iterations that implement tangible improvements. Its successes 4 

have made it popular, but it is not without a dark side that can stifle the development of 5 

innovations and strategies needed for solving more complex problems (JANES AND SUCCI 6 

2012; ANNOSI et al. 2016). The other extreme approach to software development is 7 

known as the ‘water-fall method’. It emphasizes thorough planning of various stages, 8 

and clearly separates developing a design from implementing it. As captured in Figure 9 

11, data integration in FlyClockbase followed faster (internal) release cycles. Questions 10 

of fundamental importance with implications for formal or theoretical aspects of compiler 11 

design followed a much slower timeline. This allows us to focus our implementation 12 

resources on the most promising and efficient formalisms, and avoid the need for 13 

implementing potential solutions that appear attractive for some time, but are replaced 14 

by the need for further improvements. In such situations, overall speed of compiler 15 

development probably benefits from manual VBIR curation, since this allows the 16 

compiler design the time it needs to mature. Working in a research setting, as we did 17 

with FlyClockbase, creates additional challenges, simply from the unpredictability of 18 

research. Classifying potential bugs in compiler construction can be seen as a problem 19 

similar to the development of the taxonomy of beetles: both exist in exceedingly larger 20 

numbers, and continued random sampling eventually leads to re-encountering similar 21 

bugs. Constructing a compiler that can deal with biology’s uncertainty and complexity in 22 

a stable and reliable way requires a very extensive sampling of these potential bugs (i.e. 23 

logical program inconsistencies). We have developed the Flipped Programming 24 

Language Design Approach in order to address this problem using repeated rounds of 25 

rigorous review of proposed compiler designs from multiple usability and domain 26 

experts (LOEWE 2016). Our work on FlyClockbase benefitted from this approach and 27 

also contributed to its development. It illustrated for us, how developing good 28 

abstractions can take a very long time, and how much finding them worth the effort.  29 

 30 

 31 

Place    FIGURE 11      about here. 32 

 33 

 Cost of not constructing a VBIR compiler. Research on circadian clocks in 34 

flies can be used to illustrate some of the cost to biology if no VBIR compiler is 35 

available. As explained above, time series observations are extremely valuable for 36 

inferring mechanistic models of clocks in flies. Yet, in the last 25 years, the vast majority 37 

of models of the core D. melanogaster circadian clock have been based on abstract 38 

clock features, such as the response to light, the period and presence of oscillations. 39 

We conducted an extensive search for such models, and only three of the 66 models 40 
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identified used specific experimental time series to inform parameters (Figure 4). Even if 1 

combined, these models only used a small fraction of all studies with time series data 2 

they could have used (Figure 5). Specifically, parameters study A (FATHALLAH-SHAYKH et 3 

al. 2009), B (LEISE AND MOIN 2007), and C (KUCZENSKI et al. 2007) were based on time 4 

series from, respectively, one study (KADENER et al. 2007), three studies (LEE et al. 5 

1998; BAE et al. 2000; SHAFER et al. 2002), and 11 studies (HARDIN et al. 1992; ZENG et 6 

al. 1994; SEHGAL et al. 1995; SO AND ROSBASH 1997; BAE et al. 1998; LEE et al. 1998; 7 

BLAU 1999; BAE et al. 2000; KIM et al. 2002; CYRAN et al. 2003; GLOSSOP et al. 2003).  8 

 The sparse use of directly observed experimental evidence such as time series is 9 

understandable in light of the many challenges that complicate the integration of messy 10 

biological real-world observations into the abstract mathematical models that are often 11 

extremely simplified to facilitate their mathematical analysis. In addition to such 12 

conceptual problems, deceptively simple problems such as the storage and 13 

organization of very heterogeneous, imprecise, noisy and contradictory experimental 14 

datasets can easily create insurmountable practical challenges for directly using 15 

experimental time series data to inform parameters in models. 16 

 FlyClockbase substantially lowers this barrier by providing a nucleus for 17 

collecting, organizing, and curating relevant time series and their many potentially 18 

informative Attributes. If increasing numbers of experimental time series are deposited 19 

in FlyClockbase and its organizational structures keep pace with this growth, then future 20 

modeling studies could be structured in a way that enables the automated improvement 21 

of some types of models in response to the submission of new data. Such data handling 22 

capabilities are likely to enable the investigation of new biological aspects of circadian 23 

clocks that are beyond practical limits of the complexity manageable by current tools. If 24 

a reasonably well-working VBIRs compiler had been available for a long time, then the 25 

substantially lower barrier to the development of a resource like FlyClockbase would 26 

most likely have resulted in a more comprehensive use of hard won experimental data 27 

in theoretical models. Even where datasets have been compiled and published under 28 

open access, an unstructured way of storing them can very quickly make it prohibitively 29 

complicated to keep them up-to-date on the longer-term (e.g. (WHITE et al. 2013; SUPP 30 

et al. 2015a)). Such problems also pose challenges for citizen science projects (e.g. 31 

(LOEWE 2007; SUPP et al. 2015b)). Even if computational results are fully structured from 32 

one perspective, the lack of appropriate data structures for analysis from another 33 

perspective, can create prohibitive barriers for some research (LOEWE 2002). 34 

 35 

 Counter intuitive challenges and other work. However, before such a vision of 36 

biological research can move closer to reality, a number of counterintuitive challenges 37 

will need to be addressed. Since an appropriate discussion is beyond the scope of this 38 

paper and more details are given in the Supplemental Material, we will merely touch on 39 

the tips of several icebergs below by discussing a few illustrative examples. Despite 40 
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great and sustained progress in logic research, much remains to be done to improve the 1 

expressive power of known systems of logic (SMITH 2008). 2 

 More biological precision requires handling more imprecision more precisely. The 3 

ultimate aim of FlyClockbase is to improve the precision of circadian clock models by 4 

making all relevant data easily available for parameter estimation tool. Accomplishing 5 

this goal goes far beyond compiling the data. It requires entirely new approaches for 6 

dealing with uncertainty, imprecision, contradictions, gaps, and numerous exceptions 7 

created by the astonishing diversity of methods used to observe biological systems. 8 

These challenges belong to the many predictably unpredictable surprises that will be 9 

encountered by any efforts for constructing VBIRs of substantial complexity, such as 10 

FlyClockbase. Accurately describing biological observations made in this often-11 

confusing context is a substantial challenge we encountered while developing 12 

FlyClockbase. We found that it is not enough to ‘describe the issues in words’; this 13 

would merely create additional free-text repositories with unstructured information, 14 

maybe with a bit more focus than a corresponding collection of PDF-files with the full 15 

text of the study. Such free texts could not have enabled us to search efficiently for time 16 

series. We found it extraordinarily useful to have key information in a more structured 17 

form, e.g., to compare mRNA measurement methods (see above). However, such 18 

structure must not come at the expense of the ability to efficiently represent newly 19 

encountered imprecision or data. We found that a working biologist with sufficient 20 

domain expertise is the best expert for choosing how to handle newly encountered 21 

information: ignore, describe in unstructured comments, or create corresponding 22 

Columns in an AttributeTable. Without a substantially sophisticated and extendable 23 

system for dealing with imprecisions, very little information will become available for 24 

automated processing in more coordinated ways. Ignoring such problems may be 25 

reasonable in some cases, but eventually, the inability to handle such imprecisions 26 

correctly will artificially narrow distributions and create illusory precision that wrongly 27 

rejects simulations as unrealistic and can unnecessarily complicate parameter 28 

searches. Conversely, allowing for too broad a margin of error can easily result in a 29 

misleading model caused by biologically unrealistic parameters. Thus, appropriately 30 

managing errors and uncertainties in observed time series is one important key to 31 

improving mechanistic models of circadian clocks informed by the real-world time series 32 

in FlyClockbase.  33 

 Logic in gene regulatory networks. The classical Boolean logic of compilers and 34 

gene regulatory networks share an unexpected connection if the input, output, and 35 

every step in between are well approximated by just two states (KARLEBACH AND SHAMIR 36 

2008). Thus, compilers could provide unexpected help for modeling gene regulatory 37 

networks. If provided with the right details, compilers could also automatically detect 38 

situations where gene regulation becomes stochastic due to low molecule counts in a 39 

cell (MACNEIL AND WALHOUT 2011). The help of compilers that automatically analyze 40 
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complex logic constructs correctly could prove essential for understanding how 1 

complicated binary gene regulatory networks behave if under the control of the daily 2 

rhythms of a circadian clock (LOWREY AND TAKAHASHI 2004; DOHERTY AND KAY 2010; 3 

ZHANG et al. 2014a). Logic modelling of various genetics problems has a long history  4 

(COTTERMAN 1983; OPITZ 1983; CROW 2001) and a bright future helping us to 5 

understand many diverse aspects of gene networks and their modular structures (MITRA 6 

et al. 2013; LE NOVERE 2015; SAEZ-RODRIGUEZ et al. 2016).  7 

 8 

 Formal systems of logic are usually not logical enough for biology. This 9 

paradox is easily resolved by contrasting the complexity of biology with the simplicity 10 

typical for formal logic systems. Errors of omission in formal logic limit its ability to 11 

express corresponding biological statements efficiently. Omissions have been found to 12 

be among those types of errors that are most difficult to detect (PANKO 2016).  13 

 Our own work on FlyClockbase confirms the substantial frequency and cost 14 

associated with errors of omission. Table 5 reports a substantial discrepancy between 15 

two types of error rates observed during our exhaustive in-depth re-check of each time 16 

series that could in principle affect our main conclusions regarding the variances of 17 

peak timing that differ between PER and TIM. Some types of errors could be 18 

characterized as ‘simpler errors’ like obvious swaps or typos in FlyClockbase itself. As 19 

expected (PANKO 2016), these simpler errors occurred at much lower rates (affecting 20 

cells of spreadsheets at rates just below 1%). In contrast, we detected a bit over 10% of 21 

all time series when re-checking our meta-analysis for systematic errors such as 22 

inadvertently omitting agreed-upon steps from routine analyses by trained curators. 23 

Much work in our study went into ensuring that important rules were indeed 24 

implemented in all applicable cases.  25 

 The unlimited potential of omissions to confound biological results repeatedly 26 

creates ‘important biological investigations’ aiming to determine whether a given 27 

biological conclusion might have been compromised by faulty logic (see our own 28 

examples above, where we excluded too much data). While these investigations can be 29 

essential for progress in biology, execution often involves excessive, tedious, ‘non-30 

biological’ work towards finding elusive ‘needles in haystacks.’ This metaphor easily 31 

takes on ever more complicating levels of nesting when the logical ‘needles’ in question 32 

actually consist of errors of omission; finding them can be as challenging as identifying 33 

entirely new logical blind spots for the first time. These challenges were felt throughout 34 

the development of FlyClockbase from start to finish on numerous occasions, which 35 

were too many to track beyond a few illustrative examples. 36 

 Data quality, plot quality, and task completion. One specific time series figure 37 

seemed such a perfect interpretation nightmare that preventing publication of figures 38 

like it might be counted as a donation towards supporting FlyClockbase. This figure 39 

provided the initial illusion that it shouldn’t be too difficult to unambiguously decide 40 

which data point belonged to each of its different time series. However, when actually 41 
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attempting to extract the values, it slowly became clear that achieving unambiguity was 1 

impossible because the figure had been irreversibly degraded to the point where its 2 

semantic reproducibility was no longer complete (LOEWE 2016). The reason was an 3 

unlucky combination requiring all the following factors controlled by different entities: (i) 4 

the authors’ decision to combine all these time series into a single plot, (ii) miniscule, 5 

similar plot symbols, chosen by the authors or the plotting software, (iii) a very low scan 6 

quality for the figure, chosen by the publisher, and (iv) substantial overlaps of some of 7 

the time series, chosen by nature. 8 

 Cost. Aiming to collect all relevant data, we did not want to allow for arbitrary 9 

decisions that excluded plots due to a curator’s fleeting perceptions of potential 10 

difficulties. It took several independent rounds of revisiting by the three most 11 

experienced curators and repeated discussions among them before all agreed on the 12 

irresolvable nature of this figure’s ambiguities. In total, we spent more than four hours 13 

trying to resolve ambiguities (excluding time for finding and initial digitizing). In contrast, 14 

it might only have required 10 min of the person producing the figure to choose plot 15 

settings that would have completely eliminated more than four hours of work for us. 16 

From this we concluded: (i) FlyClockbase needs a reliable mechanism to help future 17 

curators avoid such known time killers (e.g.: ‘KK’ in POST LOEWE 2016) in the absence 18 

of substantial new information. (ii) Efforts such as FlyClockbase need to find principled 19 

ways for protecting their limited time resources against irresolvable ambiguous plots or 20 

dataset, without delegating decisions on the inclusion of data to a moment’s fleeting 21 

perceptions of a single curator. (iii) It might pay huge dividends across all sciences if a 22 

targeted effort could improve the clarity of plots produced by typical default settings.   23 

 Implications for Logic. This example highlights the recurring observation that 24 

managing challenging tasks like the one discussed above might benefit from two 25 

different dedicated BioBinary values, one for ‘progress of the work’, one for ‘results of 26 

the work’. Using the OKScale in FlyClockbase, a ‘Progress BioBinary’ could store: 27 

Progress: KO (not started), OKO (working), OK (done), MIS (incomplete because 28 

problems occurred). Similarly, a ‘Result BioBinary’ could store: Result: KO (has errors), 29 

OKO (intermediate), OK (completed), MIS (missing). 30 

 31 

 How to detect logic errors in FlyClockbase. The detection of logic errors can 32 

be greatly accelerated by open discussions that invite outsiders to share their 33 

observations freely. This could greatly improve the quality of FlyClockbase if this could 34 

be made efficient. One of the most notorious bugs is error by omission. This is equally 35 

true for omissions in typical program source code as it is in the analysis of biological 36 

observations. Omissions are hard to find anywhere (PANKO 2016) and can affect the 37 

reproducibility of results (HUANG AND GOTTARDO 2013) at great cost to science 38 

(FREEDMAN et al. 2015a). Clearly, a well-defined formal system of logic that is capable of 39 

handling biology’s complexities would be a great asset for FlyClockbase and VBIRs in 40 

general. It’s formal axioms and rules would exclude many options as impossible, 41 
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thereby helping researchers to save time by avoiding many fruitless investigations and 1 

focusing attention on options of likely interest. Pivotally, such a logic would achieve 2 

these aims by providing a conceptual base-line for establishing the few potentially real 3 

omissions that need to be considered, while keeping infinities of useless speculations 4 

and contradictions from interfering with productive research. If correct, such a logic 5 

would be extremely useful for FlyClockbase. However, to the degree that it is 6 

misleading, its adoption would waste critical research capacity and lower the chances of 7 

uncovering such problems, because people in general rarely question an adopted logic, 8 

even if misleading. Thus, using any formal logic for understanding complex real-world 9 

biology is a double-edged sword, which cannot be avoided when studying mechanisms, 10 

including those of clocks in flies.  11 

 The idea that a formal logic for biology could facilitate biological research was 12 

first expressed only a year after Turing defined the essence of computing (TURING 1936; 13 

WOODGER et al. 1937). Yet, general mutual inspiration aside, it has been difficult to 14 

develop a more general formal logic that “makes better logical sense in biology” Most 15 

researchers strongly prefer to collaborate on much more specific questions they 16 

understand comparatively well, and experts in logic do not often engage with the 17 

uncertainty of biological observations. Hence, it has been much easier for most 18 

researchers to produce successful special-purpose computing tools for biology, than to 19 

arrive at more general solutions. For example, a sorely needed general-purpose 20 

programming language designed by biologists for biologists is not available despite all 21 

research in bioinformatics, computational biology, and systems biology so far. 22 

A credible effort to produce such a language, requires experienced experimental 23 

biologists as prime partners on the very same table, where expert logicians design the 24 

formal aspects of a logic for biology in numerous iterations. The expressivity of such a 25 

logic needs to be tested by its ability to represent actual real-world wet-lab or field-26 

expedition observations. Working on FlyClockbase as described in Figure 11 provided 27 

us with such a rare opportunity.  28 

 Identifying omissions in the logic of a complex system does not necessarily 29 

provide the right resolution and exceedingly many partial workaround solutions are 30 

usually found much faster. Such quick-fixes offer immediate relief, albeit at the cost of 31 

increasing accidental and historic complexity inessential to a system’s function 32 

(RAYMOND 2003). Without mechanisms for removal, the accumulation of such special 33 

case stop-gaps will eventually increase the complexity of a system until it collapses 34 

under its own rules. At this point, new potential users will no longer be able or willing to 35 

invest the time needed for learning how to navigate the system’s idiosyncrasies. 36 

FlyClockbase will not be able to escape this eventual fate, if its data model is not 37 

carefully guarded against these problems. Inessential complexity creates numerous 38 

difficulties in many contexts, which include defining programming languages, logics, or 39 

type systems in computer science (PIERCE 2002), rules of operator precedence (RAZALI 40 
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et al. 2015-10-26), designing data models, databases, or data integration frameworks 1 

(DE TRE et al. 2004; DOAN et al. 2012), maintaining a user-friendly organization for large 2 

libraries, information resources or hard drives, and constructing ontologies, taxonomies, 3 

modeling frameworks, or query languages (VAN RENSSEN 2005; ZEIGLER AND HAMMONDS 4 

2007; RUBINSON 2014; ARP et al. 2015; HAZBER et al. 2015). With a bit of abstraction, the 5 

shared root of these problems might be summarized by asking: “What is the best 6 

description of a complex world with all its possibilities for nesting, linking, traveling, and 7 

communicating?” The relevance of such logic research for FlyClockbase, is that it 8 

greatly simplifies managing the complexities of consistently handling inconsistent 9 

biological data in FlyClockbase.  10 

 11 

 Error handling in the face of uncertainty. No VBIR of sufficient complexity will 12 

be free of errors. This certainly also applies to FlyClockbase. The question is, how to 13 

handle errors. Problems with tracing the identity, availability, accuracy, precision, and 14 

reliability of data have been the topic of numerous investigations in various contexts, 15 

some of which involve big data (e.g. see (REASON AND MYCIELSKA 1982; REASON 1990; 16 

REASON AND HOBBS 2003; GOLDSTON 2008; DOAN et al. 2012; GITELMAN 2013; GRIMES et 17 

al. 2013; MCCALLUM 2013; REASON 2013; BLANKENBERG et al. 2014; REASON 2015)).  18 

 Opportunities. FlyClockbase presented us with excellent opportunities for 19 

exploring numerous important issues for complex VBIRs aiming to integrate data that is 20 

imperfect in some form, such as being incomplete, uncertain, contradictory, erroneous 21 

or scattered across a wide range of sources. Any of these conditions occur frequently in 22 

biology. It is beyond the scope of this study to explore all such challenges faced by 23 

every biologist, whether she’s aware or not; in the Supplemental Material we describe a 24 

few of the insights gleaned from our work on FlyClockbase. These could be 25 

summarized as follows.  26 

 Challenges. Any information resource of substantial biological interest will quickly 27 

grow to a complexity at which it will inevitably accumulate a substantial amount of 28 

human errors that are difficult to detect by human users. Many independent repeats of 29 

biological information are typically associated with large amounts of genuine biological 30 

variability. In many current biological databases, it can be difficult to distinguish such 31 

genuine variability from artificial variability that is easily caused by human errors of 32 

various well-known types. Such errors span a broad range of different complexities and 33 

corresponding frequencies. For example, simple typos or label swaps usually occur at 34 

low rates such as 1%, see (PANKO 2016). Simple logic errors occur at substantially 35 

higher rates, especially in spreadsheets (PANKO 1998; PANKO AND AURIGEMMA 2010; 36 

PANKO 2013; PANKO 2016). However, errors of omission are usually the hardest to find 37 

(PANKO 2016). This is especially true, when an omission has become part of a logic 38 

formalism. This is one reason, why it is so important to use good approaches to 39 

represent Null (WHITE et al. 2013), and why it can be dangerous to confuse different 40 
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types of Null (WARAPORN AND PORKAEW 2008; HOARE 2009; THALHEIM AND SCHEWE 1 

2011). FlyClockbase has experienced Null-confusion already. Entries in a DZT column 2 

define an hour of the day. We initially allowed DZT=0h as a valid time, excluded 24h, 3 

and defined ‘absence’ as ‘NotGiven’, a particular type of ‘Nothing’. However, 4 

understanding ‘Nothing’ correctly is difficult. Hence, it is unsurprising when biological 5 

model curators occasionally allow well-known intuitive algebraic properties of addition to 6 

affect their views of ‘Null’. As a result, ‘0 apples’ is correctly interpreted as ‘no apples’; 7 

yet it may fuel the erroneous idea of equating ‘time not observed’ and ‘adding zero to a 8 

list of hours. In this case, some DZT=0 values are correct and some are not, but 9 

checking correctness is complicated and expensive. This test becomes trivial, if 24h is 10 

included as a valid time, and 0h is defined as always invalid. For more details on such 11 

challenges, see also discussion of the BioBinary data type in the Supplemental Material.  12 

 Trans-disciplinary solutions. Several non-biological areas of research and 13 

technology, such as computer science, space flight, and nuclear reactor safety have 14 

developed sophisticated approaches for detecting and correcting potential human errors 15 

(NASA et al. 2001-09-30; NASA et al. 2006-07; NASA et al. 2011; PANKO 2016). While 16 

designers of biological information resources can learn much from the decades of 17 

research that informed the development of human error analysis tools in those areas, it 18 

is less straight forward how these insights could be applied to improve the quality of 19 

biological information available to most biologists. A source of concern is the substantial 20 

complexity of many human error analysis frameworks (REASON AND MYCIELSKA 1982; 21 

REASON 1990; NASA et al. 2001-09-30; REASON AND HOBBS 2003; NASA et al. 2006-07; 22 

GOLDSTON 2008; NASA et al. 2011; GITELMAN 2013; GRIMES et al. 2013; MCCALLUM 23 

2013; REASON 2013; BLANKENBERG et al. 2014; REASON 2015; PANKO 2016). Most of 24 

these frameworks will handle the complexity of biological data, but require near 25 

prohibitive research and implementation efforts that make integration into grass roots 26 

VBIR projects such as FlyClockbase not efficient if started by biologists. However, that 27 

does not imply that sophisticated approaches cannot contribute to solutions, even if 28 

VBIRs curators do not bring the expertise necessary for implementing a framework. To 29 

see how this might work requires a look at an advanced area in computer science that 30 

is not readily accessible to many: compiler construction.  31 

 32 

 Error analyses could be amortized across VBIRs by compilers. As argued 33 

above, appropriate error analyses for a single VBIR are not feasible. However, our 34 

experience with developing FlyClockbase suggests that a substantial number of 35 

essential tasks are recurrent when compiling any VBIR of comparable complexity.  36 

 Efficiency. Thus, the most efficient solution to improving the quality of VBIRs 37 

without exploding costs is to develop an automated compiler that can test for all known 38 

VBIR problems and that supports a programming language that integrates biology 39 

expertise (LOEWE 2016). Programmers frequently say that it is important to use the right 40 
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tool for a given programming task. Despite numerous biology-oriented libraries for non-1 

biological programing languages (e.g. (STAJICH et al. 2002)) no general-purpose 2 

programming language exists yet for supporting typical complier-style consistency 3 

analyses for general complex biological datasets like VBIRs. We will not repeat here the 4 

substantial number reasons why such a language would be helpful and why current 5 

(non-biological) programming languages are insufficient (see Supplemental Material 6 

and additional reasons discussed in LOEWE et al.(2017)).  7 

 Examples. Such a compiler could address tasks such as the following. There is a 8 

need for handling missing data, inapplicable data and similar cases by choosing 9 

appropriate representations that distinguish these cases instead of lumping them 10 

together as ‘NA’ or the value zero (e.g. (CANDAN et al. 1997; WHITE et al. 2013)). All 11 

biological measurements will always come as imprecise ranges, not as precise values. 12 

Measurement methods for a given observation are usually heterogeneous and need 13 

some description. Observations can be made in may be compared between various 14 

MethodRealms, like in vitro, in vivo, or in silico. Comparisons between wildtypes and 15 

mutants are frequent. Synonyms are almost ubiquitous. It is easy to continue this list 16 

with many other aspects of biological interest. In addition, there are data processing 17 

basics, such as the ability to read in all tables of FlyClockbase and produce a report of 18 

all inconsistencies and errors that require human attention. The arrival of big data has 19 

brought substantial experience with questions of data hygiene (GOLDSTON 2008; HOWE 20 

et al. 2008; KRISHNAMURTHY et al. 2011; GITELMAN 2013; MCCALLUM 2013; SCHUTT AND 21 

O'NEIL 2013; MAHMOOD 2016; ZWEIG 2016). Most of this expertise is also essential for 22 

correctly and efficiently handling data in VBIRs. For all features like those above and all 23 

error types detected, a solution only needs to be implemented once for simultaneously 24 

improving the reliability of all VBIRs. 25 

 26 

 27 

 28 

PopGen predictions on FlyClockbase survival and success  29 

 30 

Most new versioned biological information resources (VBIRs) such as FlyClockbase 31 

face a dizzying array of potential paths into the future, not unlike newly mutated alleles 32 

in a population. As population geneticists have learned, all this complexity can be boiled 33 

down to two essential outcomes (KIMURA 1962): all alleles are either kept or lost 34 

eventually. To explore other useful aspects of this analogy, we will abstract a few brief 35 

lessons from population genetics that also apply to collections of information. 36 

 37 

 The stage. If seen in such a general way, a newly arisen DNA-allele could be 38 

compared to a newly published VBIR similar to FlyClockbase or a newly developed tool 39 

in bioinformatics (thereby accessing a broader pool of historic precedents). Both alleles 40 
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and VBIRs contain new information, stored in DNA or on computer hard drives 1 

respectively. Both are part of their ecosystems, which belong to different realms. An 2 

allele exists in carbon-based organisms that compete for natural resources in a 3 

population where the allele may be kept indefinitely. Omitting replication details allows 4 

for simplification. One could think of alleles as replicators based on DNA; similarly, 5 

memes were originally defined as replicators in mindspace (DAWKINS 1976). Thus like 6 

FlyClockbase, each VBIR, can be seen as a meme that competes for the ‘mindshare’ of 7 

humans potentially interested in a given topic. Technically, memes are units of 8 

information that usually spread through communication and compete for the limited 9 

attention of individuals and communities, irrespective of their success of replication 10 

(DAWKINS 1976; LYNCH et al. 1989; GLEESON et al. 2014; DAWKINS 2016; HE et al. 2016). 11 

These generic features result in mechanisms similar to those of population genetics, 12 

which we use here to derive informal expectations for the future of FlyClockbase and 13 

similar VBIRs (a formal theory is beyond our scope). We do so hoping to avoid the most 14 

likely outcome, the complete loss of FlyClockbase, by aiming to increase the chances 15 

that FlyClockbase will be kept in the population of useful VBIRs. We next reinterpret 16 

concepts like aging, death, growth and reproduction from the perspective of VBIRs; 17 

Incomplete Fitness Traits (IFT) like these combine with a given environmental context to 18 

define fitness in biological evolution (LOEWE 2016). Even without a quantitative meme 19 

model, we expect qualitatively similar outcomes when translating IFTs to the realm of 20 

VBIRs memes. In many cases this will suffice to make decisions that increase the 21 

chances of survival for FlyClockbase.  22 

 23 

 Aging and death. VBIRs are aging if they degrade without the time and energy 24 

investments necessary for maintaining their semantic reproducibility (LOEWE 2016); they 25 

are on their deathbed when nobody wants to use them anymore, and are buried once 26 

nobody can remember them. Potential causes of death vary with age and include (i) 27 

being locked into remaining an exploratory toy ‘too simple’ for any real use, (ii) being 28 

‘too simple in comparison’ from a lack of features that could have helped fight 29 

competing VBIRs and win over their human users, (iii) having become ‘too complicated’ 30 

for real-world users after years of accumulating inessential complexity (RAYMOND 2003), 31 

and (iv) many other causes from internal specifics to external generics (such as political 32 

decisions). 33 

 34 

 Growth and reproduction. VBIRs can grow in various respects, some helpful, 35 

some harmful, and some hard to assess. We use ‘growth’ here only in a narrow sense 36 

for helpful traits like features required by users. In contrast, we denote as ‘aging’ the 37 

growth of harmful traits like inessential complexity, whereas the reduction of such 38 

complexity can be seen as growth (e.g. by simplifying an interface to save user time). 39 

Likewise, the loss of useful features can be seen as aging caused by semantic 40 
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irreproducibility. For example, this could be caused by incompatible changes in required 1 

software packages. Here growth always affects the quality of the best implementation of 2 

a VBIR type, in contrast to reproduction, which could be seen as increasing its 3 

mindshare through favorable communication and/or copying the VBIR data to new 4 

servers (presumably to win new voluntary users). Thus, growth and reproduction in this 5 

sense are likely to help a VBIR to spread and increase its fitness.  6 

 7 

 Speciation and merging. The same is not usually true for processes 8 

comparable to speciation. The ‘forking’ of a VBIRs or any other software or data 9 

collection into two independent lines of development is often perceived as an 10 

unwelcome increase in complexity by users without a stake in the details (e.g. Python 2 11 

vs Python 3). This implies that the reduction of independent lines of development should 12 

be welcomed, but reality is more nuanced. A reduction from merging without loss of 13 

features is positive.  14 

 15 

 Extinction. However, sometimes it is impossible to save all features due to 16 

mutual incompatibility or other constraints; this might be comparable to extinction, 17 

where good features are irredeemably lost to global mindshare. If occurring to all 18 

development lines of a VBIR (e.g. due to catastrophic environmental changes such as 19 

‘loss of funding’), then the loss is usually tragic, even if the VBIR is preserved as a fossil 20 

on cutting-edge archives of its time (like floppy disks, CDs, bioinformatics journals, 21 

websites, and various open source repositories). As in real life, software fossils are 22 

rarely revived, an act that would require extra-ordinary semantic reproducibility as 23 

defined elsewhere (LOEWE 2016).  Semantic reproducibility is very difficult to achieve, as 24 

seen and further discussed in the source code for the statistical analyses in this study 25 

and the discussion of the ‘DISCOVARCY’ documentation style (see Table D1 in the 26 

Supplemental Material). In both cases, it is much more likely to lose fossils to changing 27 

environments and random damage than to revive them successfully. Furthermore, 28 

chances of successful reactivation drop dramatically in both cases, as bacteria are 29 

easier to revive than dinosaurs, and old algorithms for merely sorting numbers are 30 

reused more easily than the software systems that put a man on the moon (though we 31 

do not wish to imply that either is possible). Extinction can happen to any VBIR, no 32 

matter how well known. Some planning can usually ensure preservation of a fossil form; 33 

ideally a tombstone will inform would-be users where the fossil is archived (see 34 

Supplementary Material). 35 

 36 

 Horizontal gene transfer. As we watched the evolution of FlyClockbase we 37 

witnessed a number of remarkable exchanges of information. Our experiences have 38 

played out in the conceptual arena defined by Figure 11: we started as initiators, 39 

completed the substantial integration work presented here, and have used 40 
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FlyClockbase for research purposes (see Results). At the same time one of us has been 1 

deeply engaged with developing the compiler architecture for the Evolvix modeling 2 

language, aiming to meet particular requirements of biology. This combination of aims 3 

has enabled a substantial flow of critical design information that has benefitted all sides. 4 

Compiler architects benefit from first-hand exposure to challenging practical problems in 5 

logic and data modeling in the domain of their target audience, while biologists are kept 6 

from computationally short-sighted quick-fixes that otherwise could easily wreck a VBIR 7 

on the longer-term. Such collaborations are powerful opportunities for uncovering and 8 

clarifying misconceptions on all sides and at all levels; in our experience, they greatly 9 

improve the conceptual quality and robustness of resulting solutions, but come at the 10 

expense of the rate at which some more tangible results can be produced. Combining 11 

these costs with those of human error analyses (see above) when developing reliable 12 

VBIRs increases costs substantially, often prohibitively.   13 

 Practically, we advocate that VBIRs do not reinvent the wheel of reliability 14 

independently. This unnecessary reimplementation work is expensive and substantially 15 

increases costs of developing and maintaining a VBIR. A thorough analysis of historic 16 

sources of funding for various existing VBIRs has exposed a lack of support for this 17 

critical work that integrates, consolidates, and checks the quality of data in VBIRs 18 

(EMBER et al. 2013). An overview of these essential tasks in the context of FlyClockbase 19 

is given in Figure 11. Here we suggest that much of these costs could disappear if the 20 

initiators, integrators, and researchers working with a VBIR would have efficient means 21 

of passing on their formal needs for data representation and analysis to the architects of 22 

an integrative compiler. From their integrative perspective, these architects could then 23 

provide solutions that are compatible and interoperable for many VBIRs. Support for 24 

such a versatile open source compiler-building project that serves the VBIRs community 25 

well would not nearly be as expensive as independently solving this problem repeatedly. 26 

Experience indicates that well-maintained tools do get used; such a project could hence 27 

substantially contribute towards closing the critical funding gap highlighted by a 28 

thorough analysis elsewhere (EMBER et al. 2013). Here is not the space to provide a 29 

reasonable overview of the many aspects of working towards an integrated compiler 30 

architecture. Informed by experiences with FlyClockbase, the tips of several icebergs 31 

are touched in Figure 11. It lists important needs of various contributors, and specifies 32 

several types of lessons learned by VBIR contributors and services provided by the 33 

compiler and its construction team envisioned here. This work generally occurs in three 34 

broad stages of integration: combining fragmented insights gleaned from work on 35 

FlyClockbase, investigating broader designs, and integrating solutions into a single 36 

coherent architecture. The high-level analogy of aging and growth in VBIRs plays out on 37 

the background summarized by Figure 11. The values of such IFTs governing the 38 

evolutionary trajectory of VBIR meme evolution are determined by the hundreds of 39 

small implementation decisions necessary for arriving at an overall coherent VBIR 40 
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organization perceived as elegant, expressive, useful, efficient, and overall simple 1 

enough to be worth a user’s while. Such simplicity is pivotal for engaging anonymous 2 

users with a VBIR (or any other meme), especially since many are suffering from 3 

information overload, data smog, and the resulting paradox of choice (SHENK 1997; 4 

SCHWARTZ 2004). Physics is not the only discipline where theory should be “as simple 5 

as possible, but not simpler” (EINSTEIN AND CALAPRICE 2011). 6 

 7 

 Potential predictions. So, what can we learn from population genetics to 8 

improve the long-term usefulness of FlyClockbase? We do not aim to exhaustively list 9 

all general lessons but rather present several possibilities of likely interest in the bigger 10 

picture that we expect based on population genetics theory. This will allow readers to 11 

connect additional dots between more detailed requirements and solutions presented 12 

above as well as in the Supplemental Material. As we review the following potential 13 

paths into the future we interchangeably use the terms ‘FlyClockbase’, ‘new allele’, 14 

‘bioinformatics tool’, and VBIR to reduce repetition.  15 

 16 

 Loss is likely for all new information. Population genetics theory shows that 17 

most newly arisen alleles are lost very quickly by the random sampling that occurs 18 

between generations (KIMURA 1962). All alleles have to navigate this hurdle, regardless 19 

of how beneficial they might otherwise be. Observing bioinformatics research quickly 20 

reveals a similar pattern: on the web very many tools start out (and fizzle out), 21 

professional researchers ensure that at least one peer-reviewed publication exists (but 22 

lack the time to keep websites and tools from breaking), enthusiastic programmers will 23 

keep tools working (but are happy with little documentation), good software engineers 24 

understand the value of organization and documentation (but usually do not work in 25 

biology). All new tools and resources face an intimidating phalanx of these and similar 26 

dilemmas, which made us think hard about all possible avenues for simplifying the 27 

overall system while increasing flexibility. First lesson: FlyClockbase is no exception and 28 

faces the same challenges. It may sound strange to discuss death in the context of a 29 

birth that we believe is to be celebrated. However, ignorance is not a good defense 30 

against child mortality. 31 

 32 

  Loss is fast and ‘child mortality’ matters. Alleles that have just arisen by 33 

mutation and new bioinformatics tools that have just been published also share another 34 

important detail: they will probably be lost very soon. Except for extremely harmful 35 

alleles, initial survival for good and bad alleles depends almost entirely on the individual 36 

that carries them. Therefore, FlyClockbase must travel as light as possible if it is to 37 

survive. Like other VBIRs, it must be able to fit it into the life of a single publicly known 38 

person who can act as a synchronizing point of contact for coordinating further work 39 

(even if not done by that person). Such public maintainers of VBIRs are probably 40 

extremely busy and will have very little time and energy left for high-maintenance 41 
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solutions. This excludes the use of many great database technologies that unfortunately 1 

shower their users regularly with recommended updates with various degrees of 2 

compatibility and urgency. Without a highly-automated process, such updates would 3 

prohibitively increase the rate of aging for FlyClockbase or the energy required to 4 

maintain it. Accordingly, we have been developing approaches to simplify life with 5 

VBIRs like FlyClockbase, but much more remains to be done. Our various strategies for 6 

simplifying are discussed above and in the Supplementary Material. Laurence Loewe 7 

has agreed to be the first public maintainer of FlyClockbase and will post updates to the 8 

GitHub website given at the beginning of our description of FlyClockbase.  9 

 10 

 Fossilization is usually deadly. An easy way of avoiding the loss of a project 11 

from a broken hard drive is to submit it to a public repository such as Github. This 12 

ensures a form of travelling light, as everything stays in place, if a maintainer does 13 

nothing (maintenance cost is near zero, and mostly a thought and a password). This 14 

establishes a minimalistic baseline, as the mere existence of data (or ancient code, see 15 

above) does not differ much from fossils, which are awkward to access, dry and brittle to 16 

work with, and for all practical purposes impossible to revive. Lesson three: If nobody 17 

continues to work with the code, then chances are that it has already fossilized. Thus, 18 

we next review steps that are likely to facilitate future work with FlyClockbase. 19 

 20 

 21 

 22 

Next practical steps for FlyClockbase 23 

 24 

In order to raise the chances of survival and success as described above, we are 25 

working towards implementing the following practical steps that improve the 26 

organization of FlyClockbase and move it towards increased stability. 27 

 28 

 Reorganize files, define versioning policy and simplify folder structure. It is 29 

very frustrating to work with a project where everything can move (and break) at a 30 

moment’s notice. Nascent resources never really know what awaits them, and 31 

FlyClockbase has not been different. As a result, our time series data has seen more 32 

profound reorganizations of its storage space than any of us had anticipated. Some of 33 

this additional work was due to the fact that we were simultaneously developing crucial 34 

technological underpinnings, such as TabFS (Figure 11) and the POST system (LOEWE 35 

2016). We also did not have a stepwise guide on VBIR construction with an overview 36 

roadmap from an expert, which could have further reduced the work. However, as 37 

indicated in Figure 11, the initial phases of a VBIR will always be special: each VBIR, by 38 

definition, is ill-defined at its inception and negligibly small. As it starts growing, it is 39 

restructured, renamed, and reorganized many times while in its ‘embryonic’ form. While 40 

guidance helps, some messy aspects of initiating a VBIR are probably impossible to 41 
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avoid if the freedom is retained to develop any VBIR supporting any research. Figure 11 1 

makes a clear distinction between this early more informal stage and the subsequent 2 

iterations managed by integrators. While much of the work of integrators is also done at 3 

the initiator stage, VBIR publication marks a milestone. It is an excellent opportunity for 4 

internal restructuring and cleanup that should not be dismissed lightly, as reorganizing 5 

will never be as easy again. This is particularly true if the versioning system changes. 6 

Long-term resources require stabilizing versioning systems right from the start to reduce 7 

inessential complexity and confusion. FlyClockbase will build on the StablizingZone 8 

(LOEWE 2016) of the POST system. These needs motivated us to delay publication of 9 

FlyClockbase while still under review. 10 

 11 

 Use a public distributed version control system to be efficient. The use of 12 

Git for version control is rising and services like http://github.com allow open source 13 

projects to be published ‘at no cost’. Not having to pay for leaving code in a published 14 

state increases chances of avoiding ‘death by negligence’ for many VBIRs. More 15 

importantly, using Git allows VBIR collaborators to essentially cut the huge costs of 16 

manually performing the search and merge operations regularly required for close 17 

research collaborations. We have experienced enough of these complex operations to 18 

appreciate the huge value provided by Git and have decided to use it for FlyClockbase 19 

(currently in a closed repository using http://gitolite.com/gitolite/ ). However, using Git is 20 

not free of costs. At first these seem reasonable: learn how to use Git and avoid 21 

advanced moves that get ‘the rest of us’ into serious trouble (including loss of data). 22 

However, in our experience, Git idiosyncrasies and the complexities of version trees 23 

pose such formidable barriers for most biological users, that tool adoption requires a 24 

large activation energy, even when using excellent graphical user interface software 25 

(albeit developed for programmers). We have found an approach for getting biologists 26 

to work with reasonably well with Git. It currently requires determination, detailed 27 

instructions, an expert who performs all operations except the very simplest, and who 28 

happily explains everything again until users follow the instructions (cleaning up the 29 

mess, if they do not). Given the outstanding efficiency of Git, not just for FlyClockbase, 30 

motivated us to explore how to hide our simplified Git workflow behind scripts called 31 

when users ‘hit a button’. While our design requires more development and testing, our 32 

internal results so far suggest that it will be more than worth the effort develop this for 33 

FlyClockbase (and reuse for other VBIRs). We highlight all this because many biologists 34 

seem unable to imagine how much more efficient the development of a VBIRs can be if 35 

Git works as it should. Conversely, many Git users seem unable to imagine why some 36 

biologists prefer to explore every non-Git option first, irrespective of cost. We found that 37 

some of these ‘attractive’ alternatives can easily turn into complexity traps or create 38 

serious bottlenecks for development. This is in particular true for the prevalent mode of 39 

distributing supporting material for journal articles, which allows reading data from files 40 

without the ability to write back. Such immutability is good for ensuring well-defined 41 
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versions, but unless there are files that can actually be updated in place, it will be very 1 

difficult to efficiently work with the data. Complications can abound when manually 2 

merging two sets of text files, each with changes that accumulated in separately 3 

evolving lines of revision descent. Since not all combinations have been tested together, 4 

some could trigger prohibitive integration problems comparable to the severity of 5 

Dobzhansky-Muller Incompatibilities known from evolutionary genetics (COYNE AND ORR 6 

2004). In this analogy, using a system like Git for regularly merging all new changes into 7 

a single main line of revision descent is comparable to keeping all individuals in one 8 

large population. This efficiently prevents the accumulation of the source-code 9 

equivalent of Dobzhansky-Muller Incompatibilities and is desirable for improving one 10 

VBIR that serves a single purpose. Thus, typical archival data storage is not ideal for 11 

FlyClockbase and similar VBIRs; we therefore chose Git and aim to mitigate its less 12 

than ideal aspects. 13 

 14 

 Develop TabFS. For decades, there has been no shortage of databases, file 15 

formats, file systems, and other types of storage - all with unique strengths and 16 

weaknesses. There is no universal agreement on how to best store complex data 17 

transparently. Text-based formats that distribute data across folders in a file system 18 

provide instant and continuous access to content that is easy to read and write for 19 

humans. This flexibility does not depend on any special tools that could break. However, 20 

such transparency benefits are balanced by the need to ensure consistency in the 21 

presence of notoriously inconsistent human users. While binary formats increase speed 22 

and consistency, they complicate VBIR development and create costly dependencies on 23 

special tools for reading or writing any data. As VBIR development requires biological 24 

model curators to easily modify the data model of a VBIR, we decided against using 25 

existing excellent binary technologies such as ProtocolBuffers 26 

(https://developers.google.com/protocol-buffers/ ) and HDF5 27 

(https://www.hdfgroup.org/hdf5/ ). For these and other reasons detailed in the 28 

Supplemental Material we decided that VBIRs and TabFS require human readable text-29 

based file formats. Appropriately reviewing these is beyond the scope this paper, but 30 

some recurring patterns provide food for thought. For example, the text-based 31 

‘eXtensible Mark-up Language’ (XML) and the representation independent ‘Abstract 32 

Syntax Notation One’ (ASN.1) are both widely used, formally defined  33 

( https://www.w3.org/XML/ -  https://www.ncbi.nlm.nih.gov/Structure/asn1.html ) and 34 

demonstrate the following possibilities for data storing file format standards: 35 

1. it is possible to define broadly applicable standards that maintain a very simple and 36 

stable core set of features (encouraging simplicity in TabFS); 37 

2. combining a few built-in data types with arbitrary nesting and repeating of user 38 

defined data types can inspire multitudes of specific extensions (suggesting TabFS 39 

will need to help users navigate diverse complex VBIRs code contributions to 40 

reduce complexity and unnecessary reinvention); 41 
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3. fierce competitors are capable of adopting shared standards resulting in win-win-1 

win outcomes for both competitors and the general public; see the use of ASN.1 in 2 

telecommunication (and also by NCBI, see link above; the research benefits of a 3 

system that significantly simplifies the sharing of complex biological data are 4 

undisputed; developing FlyClockbase across the Win-Mac divide together with the 5 

Project Organization Stabilizing Tool (POST) system (LOEWE 2016) by using the 6 

process in Figure 11 led to major TabFS design ideas that could simplify current 7 

challenges enough to motivate grass-roots adoption; details beyond scope here);  8 

4. the rise of simple text-based XML could not quench the need for even simpler text-9 

based file formats that are popular for simplicity where it matters (suggesting TabFS 10 

needs to provide comparable ease of use); 11 

5. simplistic file formats are insufficient for representing many types of biological 12 

complexity and will therefore never be adopted universally (suggesting TabFS must 13 

handle arbitrarily complex data in elegant ways). 14 

Comma Separated Value files (CSVs) and the equivalent tab-delimited table files of 15 

TabFS are still particularly convenient file formats of choice due to their simplicity and 16 

extraordinary broad interoperability. Research collaborations frequently share data 17 

across very different systems. Thus, a file format that can easily be read and written 18 

everywhere remains competitive against faster rivals that do not work everywhere. 19 

Unfortunately, CSVs store only values, but cannot store types and cannot directly 20 

describe arbitrary data structures. Therefore, all additional information requires 21 

extensions that are rarely standardized. Recent text-based standards like JSON (see 22 

http://json.org ) or YAML (see http://yaml.org ) cover many use-cases, but have not 23 

replaced CSVs in many contexts.  24 

   Tables in their simplest form. The two-dimensional layout of CSVs is particularly 25 

well suited for time series, arrays, and other frequent forms of biological data. CSVs are 26 

easy to read and write with spreadsheet tools that are widely used among biologists. 27 

Many experimental biologists would not hesitate to use such tools for modifying sets of 28 

CSVs but would avoid equivalent tasks in SQL databases. This fundamental usability 29 

advantage of text-based tables motivated our data storage choices for FlyClockbase. 30 

The downside to this flexibility is the lack of formally defined computational expressivity 31 

that is powerful enough to represent all the needs of VBIRs. Our numerous searches 32 

have brought many interesting file formats to our attention, but none approaches the 33 

simplicity and usability of CSVs while also providing a stable international standard with 34 

the features necessary for efficient VBIRs development.  This gap surprised us.  35 

  TabFS specification. We plan to fill this important VBIR tool gap by developing a 36 

definition and implementation of TabFS. The TabFS specification aims to define 37 

precisely a completely open and customizable, easily accessible and usable, extremely 38 

simple and stable, maximally versatile and expressive storage system for long-term use 39 

in VBIRs such as FlyClockbase. Here long-term indicates the requirement to be long-40 
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term backwards compatible as defined by the ‘TrustedTested’ (TT) level in the POST 1 

system defined elsewhere (LOEWE 2016). To achieve these goals, some aspects of 2 

computational speed will receive a lower priority in TabFS, as speed of VBIR 3 

development is more important for TabFS than speed of execution. Practically, TabFS 4 

builds on the stability of standard file systems and uses tables and other fragments in 5 

files and folders to implement well-defined conventions for storing the necessary 6 

nuances required for VBIRs development. A major design aim is to keep the raw 7 

convenience and efficiency of tab-delimited table text files (hence the name TabFS). 8 

Such files are easily edited by spreadsheet tools familiar to many biologists and readily 9 

imported and exported by many other systems. TabFS is developed in the context of 10 

VBIR development as described in Figure 11 and uses the flipped programming 11 

language design approach presented elsewhere (LOEWE 2016). Many VBIRs share 12 

similar problems, some of which are typical for biology.  Solving them once in a reusable 13 

way can greatly contribute to the reproducibility and the sustainability of domain specific 14 

resources of digital data (EMBER et al. 2013).  15 

 16 

6.   Define a type system for TabFS. Work towards defining each essential data 17 

type for TabFS in general and VBIRs in particular will need to continue in parallel to 18 

developing TabFS itself. Substantial overlap in development is essential for ensuring 19 

that TabFS provides all important capabilities for making high-level VBIRs development 20 

efficient while minimizing overall system complexity. Establishing a stable core of TabFS 21 

first will greatly shrink the complexity of developing a stable and consistent type system 22 

for recurrent tasks in both TabFS and general VBIRs development. The same 23 

mechanisms will later be used by developers of any specific VBIR to define a type 24 

system for their particular area that can then be enforced with the same mechanisms 25 

that protect the integrity of TabFS or general VBIR types. Since type systems are 26 

conceptually equivalent to ontologies at a high level (ARP et al. 2015), such work can be 27 

structured in work-stages that are familiar to biologists since the start of taxonomy: 28 

observe, describe, define. Practically: 29 

1. Observing which types of folders, files, or fragments are useful for developing and 30 

maintaining a VBIR is only possible in the context of a real VBIR with real research 31 

problems, such as FlyClockbase. Pure thought or toy projects cannot reveal enough 32 

real-world nuisances and nuances for developing a high-quality VBIR type-system. 33 

The next step for the resulting list of observed entities is: 34 

2. Describing at epic length in human readable text every detail about, why and how 35 

exactly each folder, file, or fragment is stored and used by expert biological model 36 

curators provides a solid foundation for the final step of explaining all this to 37 

computers: 38 

3. Defining each type formally, which results in a checklist for determining the integrity 39 

of this VBIR type and for detecting all known errors.  40 
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Initially, such checklists are best developed and refined by expert users willing to accept 1 

a temporary slowdown caused by the need to document and check every step of their 2 

work, including the simplest ones (tedious for humans, essential preparation for 3 

computers). Once sufficiently detailed, these checks can be automated, enabling 4 

experts to focus their energy on complications that computers cannot currently handle 5 

correctly. Such a style of collaboration with VBIR compilers would allow all parties to 6 

focus on what they do best. Machines mindlessly repeat mind-numbing instruction 7 

sequences. In contrast, experts focus on activities where humans excel: apply expertise 8 

and common sense to check the integrity of computational results, think creatively about 9 

new tasks for the VBIR compiler, and expand the VBIR by exploring interesting 10 

hypotheses. Once this VBIR has matured enough to answer the interesting questions in 11 

its field, start a new VBIR.  12 

 For the first several VBIRs most contributions to such a compiler will probably 13 

focus on the basics of defining and referencing various types of memory devices, such 14 

as folders, files, file names, tables and fragments of these. A well-defined type system 15 

will greatly simplify the implementation of the consistency checks that are essential for 16 

maintaining the integrity of FlyClockbase. 17 

 18 

7.   Automate TabFS checks to help expand the biology of FlyClockbase. 19 

Developing FlyClockbase, TabFS and a VBIR compiler for ensuring the long-term 20 

stability of VBIRs can be greatly facilitated by a code library implementing a storage 21 

interface for TabFS instances. Detecting formal errors, enforcing rules and limitations, 22 

ensuring the full execution of all aspects of a TabFS or VBIR task, and performing other 23 

jobs can then be delegated to such a storage library and will no longer consume 24 

precious development or research time. These new liberties can then be invested in 25 

expanding the reach of FlyClockbase by adding the latest biological studies, new and 26 

old mutants, and many other aspects. Additions require defining new columns or new 27 

values for the controlled lists of existing columns. Carefully reviewing anticipated usage 28 

reduces clutter in the name-spaces of FlyClockbase. This is pivotal, since column 29 

names become immutable once pronounced ‘TrustedTested’ as defined (LOEWE 2016). 30 

The ability of FlyClockbase to disentangle the long-term need for stability and the short-31 

term freedom required for VBIR innovation will critically depend on the early introduction 32 

of a well-thought out stabilizing version number system for FlyClockbase, lest it be killed 33 

by inessential complexity on the long run.   34 

 35 
 36 
 37 
 38 
  39 
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 1 

Conclusion 2 

 3 

This study contributes important foundations to our overall goal of improving the 4 

reproducibility, reliability, and relevance of biological data analyses, starting with 5 

observations of the D. melanogaster circadian clock. To this end, we aim to automate as 6 

many repetitive tasks as possible by providing computational tools that can be efficiently 7 

used by experimental biologists. Ideally, this will inspire increased adoption of 8 

computational tools and empower biologists to expand their thinking capabilities to 9 

investigate new questions. This will be required to meet current grand challenges from 10 

personalizing medicine to predicting mechanistic fitness landscapes in evolutionary 11 

systems biology (LOEWE 2016). Such types of problems often require the analysis of 12 

innumerable smaller computational models, which is impossible without highly 13 

automated information processing to cut through the associated cognitive complexity.  14 

 15 

  FlyClockbase as a VBIR. The resource we compiled might be able to serve as 16 

an example for a versioned biological information resource that is organized in a 17 

radically simple way by being completely accessible as tables of text. It also exemplifies 18 

what a ‘small model’ in a grand challenge context might look if comparable in size to our 19 

clock model (see Figure 1) with similar amounts of time series or other experimental 20 

data. We expect such data to be as scattered as it was for FlyClockbase. Experience 21 

with time series in FlyClockbase suggests that many other datasets are probably also 22 

likely to contain a mix of broad general trends and numerous statements that remain 23 

incomplete, imprecise and contradictory. To successfully handle this avalanche of 24 

challenges in biology, we have been analyzing observations and models of the fly 25 

circadian clock. Simultaneously we have been collecting instances, where automation 26 

by a compiler could greatly increase the efficiency of integrating biological knowledge-27 

fragments and maintaining the integrity of a VBIR in face of common uncertainties in 28 

biological data.  29 

 Designing a compiler for biological data. The design of such a compiler is 30 

greatly improved in our experience, when developed simultaneously and in close 31 

collaboration with biological model curators who regularly expose compiler designers to 32 

the many imperfections of biological data. The seemingly perfect abstractions of 33 

compiler type systems need to meet the messy observations made in biology, and 34 

conversely, biological observations need to become more organized by learning from 35 

the abstraction techniques developed in computer science. Such trans-disciplinary 36 

communication is possible in our experience (see Figure 11 for an overview of the 37 

process). Consequently, our work in this study drills deep in distant areas from different 38 

disciplines, both basic and applied. The volume of relevant material forced us 39 

repeatedly to refer to Supplemental Material, the Evolvix BEST Names study (LOEWE 40 
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2016), or simply limit scope (usually indicated). A brief overview of the relevant research 1 

areas might illustrate these challenges for compiler construction.  2 

 Trans-disciplinary aspects. The seemingly disparate areas of enquiry in this 3 

study are deeply connected by our desire to improve the reproducibility and reliability of 4 

models in computational molecular systems biology. We study:  5 

(i) the molecular genetics of gene regulatory networks in Drosophila circadian 6 

clocks (reviewed in Figure 1),  7 

(ii) the statistics of robust differences in variance among observed time series traits 8 

(Figure 5), 9 

(iii) the applied mathematics of simulating time series from Continuous Time Markov 10 

Chain models (Figure 4 lists models, leaving simulation for later), 11 

(iv) the behavior of modelers, namely how they prefer to parameterize their models 12 

(Figure 4), 13 

(v) the human-computer interactions that help to reduce data smog and information 14 

overload by improving visualization and organization in plots, in models, in and 15 

data structures (Figure 1,2,6,7,9), 16 

(vi) the statistics of detecting human errors in spreadsheets, data analysis, logic, and 17 

source code (Figure 3, Table 5, Discussion, Supplementary Material),  18 

(vii) the data science of reproducibility for improving reliability, semantic, statistic, and 19 

other reproducibility of publishable research results from the early investigative 20 

stages (see Supplemental Material, Table P1 and the ‘DISCOVARCY’ 21 

Documentation Style), and 22 

(viii) the computer science of compilers and programming languages as needed for 23 

supporting the development of other biological information resources like 24 

FlyClockbase. This requires addressing a broad range of topics, including 25 

mathematical logic, type theory, arithmetic, syntax, semantics, memory 26 

organization, naming, and others. Figure 11 provides an overview of the types of 27 

interactions we have observed between biological model curators and a compiler 28 

architect while developing FlyClockbase. 29 

Thus, we touched the tips of many icebergs and often needed to limit our scope. Much 30 

of this tension was caused by our desire to build a compiler that understands the 31 

imprecisions and complexities of biology and supports the efficient construction of high-32 

quality VBIRs. We have pursued this goal by constructing such a VBIR and performing 33 

manually all tasks that we would like to delegate; this gave us the opportunity to reflect 34 

on the nature of the tasks and the quality of the outcome. This reduces the speed of 35 

both: compiler construction and VBIR construction, but simultaneously greatly increases 36 

quality. As argued by our analogy to aspects of population genetics theory, such 37 

increases in quality can be pivotal for the survival of a VBIR like FlyClockbase, which 38 

can easily be killed by small increases of inessential complexity. In this study, we 39 

provided a broad overview of this tandem work. We have removed from this paper all 40 
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aspects that can also stand on their own. For example, readers of this journal might be 1 

less interested in a formally complete description of the data structures that comprise 2 

Evolvix and the nuances of data models that contribute towards long-term stability. We 3 

endeavored to keep in the main text only those computational aspects that are most 4 

important for navigating the broader concepts used in FlyClockbase or that convey a 5 

general overview of our approach to reducing the cost of maintaining digital resources 6 

with the help of a compiler designed for this purpose. There is no reason why such a 7 

compiler could not be used by individual researchers collecting their own data, some of 8 

which they might want to share later. Therefore, our work presented here could also be 9 

seen from the following points of view. 10 

 11 

 View on gene expression variability. The most direct purpose of our study is to 12 

use FlyClockbase to generate and analyze hypotheses about circadian clocks in D. 13 

melanogaster. We analyzed patterns of circadian variability across diverse independent 14 

studies of fruit flies, accumulating the largest number of time series for this purpose to 15 

date (to our knowledge).  We have used the statistical power of FlyClockbase to detect 16 

consistent differences in the variance of peak times for the important clock proteins PER 17 

and TIM. This led us to hypothesize that these differences have mechanistic causes that 18 

are worth investigating with the methods of computational molecular systems biology 19 

(out of scope here). Our detailed analysis of variances in the peaks of PER and TIM  20 

and the potential causes for outliers (see above) suggests the removal of outliers by 21 

default using the method of Carling (2000) to focus more efficiently on estimating what 22 

typical clocks usually do (without suppressing natural variability in time series). Similarly, 23 

FlyClockbase can be used to compare the accuracy of different observation methods 24 

(Figure 8) and many other Attributes. An important contribution of FlyClockbase towards 25 

simulations of fly clock models of gene expression variability is its rich set of over 400 26 

wildtype time series that can be used - in principle - to improve estimates for circadian 27 

clock parameters. Such estimates might change the rather sobering observation that 28 

most clock modelers do not use most experimental observations when deciding on the 29 

parameter values for their simulations (see Figure 4). A study using state-of-the-art 30 

inference methods for obtaining the best possible clock model has been moved beyond 31 

the scope of this paper but could start immediately.  32 
 33 
 View on simplifying VBIRs development. The broader purpose of our study is 34 

to develop, describe, and use FlyClockbase as a real-world testing ground for designing 35 

an extraordinarily reliable yet simple system for long-term backwards-compatible data 36 

integration. We also explored how to annotate, name, reference, identify, store, query, 37 

retrieve, and analyze the imperfect and complex biological data and its translation into 38 

well-defined computational concepts. Developing these capabilities is essential for the 39 

long-term mission of programming languages like Evolvix that aim to provide built-in 40 

support for biological research. This goal requires unusual amounts of direct user 41 
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feedback from experimental biologists to the language designers, as described 1 

elsewhere (LOEWE 2016). Since computers and their computations are ultimately 2 

abstract, software engineers have come to value the input of so called ‘domain experts’ 3 

without whom it would be impossible to develop efficient and reliable non-trivial 4 

systems. Such feedback is easier to provide in engineering and other technical 5 

scenarios where domain experts and software engineers tend to speak a similar 6 

language. However, such a shared language does not usually exist in biology where the 7 

‘domain experts’ are experimental biologists who often are not used to expressing their 8 

expertise in a form easily understood by software engineers. It is an important goal of 9 

Evolvix to fill that gap and enable the best experimental biologists to express their 10 

expertise in a form that is readily translatable into computable models. Simplifying the 11 

construction of VBIRs is an essential component of this larger goal and critically 12 

important for evolutionary systems biology (LOEWE 2016).  13 
 14 
 View on Evolutionary System Biology. The ultimate long-term purpose of 15 

FlyClockbase is to substantially contribute towards implementing the vision of 16 

mechanistic simulations in evolutionary systems biology as detailed elsewhere (LOEWE 17 

2009; LOEWE 2012; LOEWE 2016). Evolutionary systems biology aims to quantify fitness 18 

landscapes by mapping genotypes (via realistic fitness causality networks) to 19 

phenotypes and ultimately fitness. Since circadian clocks have a large impact on 20 

fitness, their behavior is of direct evolutionary importance (BEAVER et al. 2002; BEAVER 21 

et al. 2003; DODD et al. 2005; LOEWE AND HILLSTON 2008; AKMAN et al. 2010; BEAVER et 22 

al. 2010). Constructing a high-quality model of a circadian clock in D. melanogaster 23 

could thus provide the opportunity to explore many mutant options in silico (LOEWE AND 24 

HILLSTON 2008) and thus bring us closer to the goal of quantifying fitness landscapes of 25 

interest (LOEWE 2009; LOEWE 2012; LOEWE 2016). To enable this vision, myriads of 26 

models on the scale of FlyClockbase will need to be constructed, connected and 27 

analyzed both individually and in various combinations. Most of today’s tools do not 28 

manage imprecision with the high degree of precision that is needed for integrating 29 

models at such a scale. To address these problems, we need the VBIRs automation 30 

discussed above and other new approaches to biological model curation.  31 

 32 

 Biological model curation. The substantial needs for biological model curation 33 

illustrated in this study highlight a challenge faced by biology as a discipline. 34 

Researchers have accumulated very large amounts of biological data that is currently 35 

scattered across the scientific literature in forms that are difficult to access efficiently (or 36 

become completely inaccessible as lab notebooks are being thrown out or primary data 37 

is lost from hard drives). In FlyClockbase we integrated scattered data from across the 38 

literature. The substantial amount of work involved forced us to acknowledge, that it is 39 

not possible to engage in the integration of biological information at this scale without a 40 

substantial investment of time. Even if VBIRs construction is eventually simplified to the 41 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 120 

highest possible degree by the most user-friendly compiler and VBIRs construction 1 

environment imaginable, the need for model curation in biology will not become trivial. 2 

On the contrast, such a compiler could motivate a new generation of biologists to 3 

actually revisit and integrate data that has long been ignored, because using it without 4 

compiler support would have been too tedious. This possibility will likely boost interest in 5 

a currently unusual avenue to biological research that is not well represented in the 6 

biological job market of today. 7 

 Status quo. For a long time, most biology undergraduates have been aiming to 8 

work at the bench in a wet-lab. Biologists overly focused on wet-lab work might 9 

undervalue the importance of biological model curation by underestimating the 10 

intellectual efforts it requires. However, what use is experimental data if it remains 11 

inaccessible? While biological model curation does not generate new data per se, it 12 

makes existing experimental observations accessible in integrated forms. The resulting 13 

information repositories, such as GeneBank, are prime sources of data used by 14 

computational biologists. The rising importance of computational modeling and 15 

bioinformatics in biology is now recognized well enough so that students in these areas 16 

can readily self-identify and point to labs, role models and career paths. Such 17 

computational professions require substantial training in formal methods, quantitative 18 

approaches and computational tools – usually not easily understood by experimental 19 

biologists who dedicate their career to investigating a particular system in great detail. 20 

Conversely, many computational, mathematical, and other programming biologists 21 

struggle to develop enough dedication for a career committed to studying a single 22 

biological system. The time they take to develop their computational expertise takes 23 

away from the time they have to develop their biological intuitions to the level required 24 

for high-quality biological model curation.  25 

 A growing avenue to biological research. Work on biological model curation 26 

which was integral to obtaining the results we presented alerted us to a rising need for 27 

the integration of biological data. As shown by the new biological insights presented in 28 

this study, biological model curation is as essential to biological research as 29 

bioinformatics algorithm development, original lab observations, and field data 30 

collecting. It does not stand behind lab experiments or computational work in its 31 

potential for contributing new biological insights. The low entry bar to model curation 32 

should not be mistaken for a lacking ability to advance the cutting edge of science. Each 33 

major avenue of biological research has trivial activities that do not speak to its potential 34 

for biological innovation.  Pipetting samples into tubes does not reflect the complexities 35 

of experimental biology. Defining the initial values for a few variables in a program does 36 

not reflect the potential for innovations from computational biology. Similarly, the simple 37 

activity of comparing a few numbers from a few studies in a spreadsheet does not 38 

reflect the importance of biological model curation for progress towards addressing 39 

grand scientific challenges. In our experience, in depth biological model curation for 40 
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non-trivial questions requires a substantial amount of attention that will not realistically 1 

leave much room for additional work on the side, whether in wet-lab or in computation. 2 

The FlyClockbase work present here demanded the undivided attention of several 3 

researchers and integrators. Model curation work is easy to scale up or down, but 4 

significant new findings still require dedicated resources – as everywhere in research. 5 

 What it takes to do biological model curation. While biological model curators are 6 

still rare, their work has more history that commonly known (see Introduction on 7 

biocurators). Biological model curators must have sufficient interests in the wet-lab work 8 

necessary for generating the observations they curate to know about typical pitfalls, but 9 

they typically do not work at the bench. They must be sufficiently aware of the strengths 10 

and weaknesses of relevant modeling approaches and extract the most relevant 11 

information from the scientific literature, but they do not need to be expert programmers. 12 

Most importantly, they need a passion for ‘their’ system to the point where they want to 13 

know everything about it, irrespective of the method used to observe it. This will enable 14 

them to accumulate enough expertise for learning about the strengths and weaknesses 15 

of different methods of observation and for developing an intuition about the quality of a 16 

given data set. Such expertise is essential for helping to improve the overall 17 

reproducibility of statistical processing pipelines by improving quality of relevant input 18 

data, as recently called for (LEEK AND PENG 2015).  19 

 On the shoulders of giants. We aimed to stand on the shoulders of giants in fly 20 

clock research. This would have been impossible without the biological contributions 21 

from the high-quality model curation work that resulted in FlyClockbase. To enable more 22 

biologists to stand on the shoulders of their giants we have been working towards 23 

capturing our experiences with FlyClockbase in the definitions of VBIRs. We expect that 24 

constructing a corresponding VBIRs complier will greatly accelerate the integration of 25 

the biological expertise required to meet the grand challenges of our time. One of these 26 

is to understand the long causality chain that starts with the daily rhythms of core clocks 27 

and ends with detailed mechanisms for the changes in health and fitness caused by the 28 

daily rhythms of the thousands of genes under circadian control. 29 

 30 

  31 
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1. FlyClockbase design processes in detail 1 

 2 

An overview of biological and data integrity aspects of FlyClockbase, as well as a 3 

description of relevant data types and their units is given in the Models section of the 4 

main text. Here we present practical ‘behind the scenes’ aspects of information 5 

management work. Although information management work is not “biological”, it is of 6 

substantial importance for the usability, reproducibility, and maintainability of 7 

FlyClockbase. Our paper stands by itself without these details. However, given the 8 

importance of reproducibility in computational biology; the enormous struggle to design 9 

systems that facilitate a desirable level of reproducibility over longer periods of time; as 10 

well as our interest in this topic, we decided to take the opportunity to reflect on some of 11 

the choices we made, and our subsequent experiences. 12 

 13 

FlyClockbase development is intertwined with Evolvix. Many aspects of 14 

FlyClockbase are linked with our work on developing reliable general-purpose 15 

programming capabilities for Evolvix. Evolvix is a modeling language that aims to 16 

facilitate accurate modeling for investigating biological systems and to provide long-term 17 

backwards compatibility for computational biologists to build on each other’s work in a 18 

more direct way (reducing time on re-implementing models). A prototype of Evolvix is 19 

available for download at ( http://evolvix.org ). The prototype download efficiently 20 

simulates pure mass-action models described in a declarative programming paradigm, 21 

and efficiently collects the most important time series data points during a specified 22 

simulation run (thwarting the origin of potentially large simulation results datasets before 23 

they become difficult to handle). This Evolvix prototype has been used for simulating 24 

models in research (EHLERT AND LOEWE 2014). Our practical experiences with this 25 

prototype in the context of a more complex modeling study (EHLERT AND LOEWE 2014) 26 

demonstrated the need for adding general-purpose programming capabilities to further 27 

simplify the construction of many modeling scenarios (debugging across several 28 

different languages as done currently is not an efficient use of research time). To 29 

overcome these challenges, we are developing an extension for Evolvix that 30 

implements a general-purpose programming language, designed to simplify general 31 

programming as much as possible, in order to stay true to the original vision of Evolvix, 32 

i.e. to make accurate modeling easier. This effort turned out to be highly unusual and 33 

required us to develop a new approach to programming language design, which we 34 

described elsewhere as Flipped Programing Language Design Approach (LOEWE et al. 35 

2017). Briefly, this approach ensures that unexperienced users of Evolvix can provide 36 

useful input in how the language is designed in order to ensure overall simplicity is 37 

maximized too, while experts work to maximize expressivity.  38 

 39 
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FlyClockbase and its challenges to programming languages. Many real-1 

world modeling problems in biology share characteristics that simultaneously 2 

characterize corresponding general-purpose programming challenges. The biggest 3 

computational obstacles to efficient computation in biology might be in its unique mix of 4 

diversity, complexity, uncertainty and vastness. In combination, these efficiently 5 

frustrate many computational abstractions that work well for less intense combinations 6 

of these complicating traits. A particular challenge is often the unpredictability and 7 

subtleness of such problems and exceptions; thus, there is no substitute for covering 8 

ground “on the ground” by walking detail by detail through specific biological examples 9 

while paying particular attention to cognitive dissonances that indicate a poor fit 10 

between the biological realm and the realm of current programming approaches. When 11 

certain types of programming bugs are eventually observed repeatedly, a programming 12 

ecologist might take solace in the observation that continued sampling in complex 13 

ecosystems will eventually yield a finite count for the number of types in a species 14 

richness problem (DOPFER et al. 2008; ZHANG AND STERN 2009; MAGNUSSEN et al. 2010), 15 

even if that number is very large as in the case of bugs (GROVE AND STORK 2000; 16 

HAMILTON et al. 2010). FlyClockbase has provided us with the outstanding opportunity to 17 

observe at close range many instances that frustrate the efficient use of biological 18 

observations for computational purposes. Taken alone these issues are rarely large or 19 

complicated, but combined can be challenging (“glass of water” vs “tsunami”). This is a 20 

characteristic of scattered big data that often become relevant only in much larger 21 

datasets (to accumulate enough exceptions for triggering complexity problems). The 22 

data collected for FlyClockbase presented numerous challenges regarding the diversity 23 

and uncertainty of time series data. These challenges of FlyClockbase have inspired 24 

various important requirements for Evolvix development, aiming to simplify such work in 25 

the future (see Discussion of main text for some examples, but reporting most results 26 

would be beyond the scope of this study).   27 

 28 

Evolvix development follows a unique approach. The unique programming 29 

challenges of biology have inspired the rather unconventional Flipped Programming 30 

Language Design Approach for developing Evolvix (LOEWE et al. 2017). This design 31 

process for Evolvix is heavily front-loaded and emphasizes the coherent, user-friendly 32 

integration of functionally mature sets of features that are chosen with a view to long-33 

term stability. The aim of these priorities is to reduce idiosyncrasies and confusion for 34 

users, as well as inessential complexity and costly busy-work for developers, especially 35 

on the long term. The slightly higher short-term development efforts required for 36 

facilitating the necessary review processes are negligible in comparison to the benefit of 37 

developing Evolvix in a way that generates a long-term backwards-compatible 38 

language.  39 

 40 
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Long-term goals of Evolvix. Evolvix aims to provide general-purpose 1 

programming capabilities designed by biologists for biologists to help with facing the 2 

complexities of biology. Given that inessential complexity is at the heart of many 3 

inefficiencies and problems in computational biology, it is mandatory for Evolvix to find 4 

the most efficient way of cutting as much programming complexity as possible. 5 

Efficiency will increase the ease of handling additional biological complexity. Architects 6 

of languages or compiler designs can only consciously address problems that they have 7 

noticed or that have been brought to their attention. Once such problems are openly 8 

visible, it is much easier to propose solutions. Once a solution has been proposed, it is 9 

much easier to critique it. The Flipped Programming Language Design approach used 10 

by Evolvix facilitates a communication line between a language architect that can still 11 

change the design of a language, and potential future users, who would otherwise just 12 

keep to themselves the many reasons that motivate them to classify a programing 13 

language as too complicated for them. Evolvix aims to break that cycle, where 14 

(otherwise clever) users prefer to not acquire computational skills that are well within 15 

their reach, simply because they are confused by some language-specific idiosyncrasy. 16 

To get passed this barrier to semantic reproducibility requires work towards debugging 17 

what has been termed the Code2Brain Interface (LOEWE et al. 2017).  18 

 19 

How FlyClockbase helped Evolvix. In programming language design, as 20 

elsewhere, problems that remain hidden rarely go away and accidentally solving them is 21 

unlikely. We have used this perspective to turn these problems into a treasure trove of 22 

inspiration for designing innovative Evolvix programming language features. Working 23 

through the fly clock time series data that we integrated into FlyClockbase has 24 

presented us with a rich set of subtleties, semi-regularities, exceptions, uncertainties, 25 

contradictions, and other imperfections of real-world biological data. The decision to 26 

face these difficulties has enabled the development of designs for general-purpose 27 

programming language features that fit biological research problems much more 28 

naturally than solutions developed in ‘non-biological’ general-purpose programming 29 

languages (e.g. BEST Names for handling synonyms as described elsewhere (LOEWE et 30 

al. 2017)). Many of the general results from our substantial engagement in this trans-31 

disciplinary process remain beyond the scope of this study. However, the study that 32 

introduces FlyClockbase is the most natural place for presenting some important 33 

aspects of the process that helped us develop key concepts for representing the 34 

confusing complexity of biological data that we encountered in our work with 35 

FlyClockbase. An overview is described in Figure 11 of the main text and its respective 36 

comments. We have included illustrative examples of insight gained from this process 37 

below and in the Discussion. 38 
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How Evolvix helped FlyClockbase. Conversely, the intertwined development 1 

process has motivated the adoption by FlyClockbase of numerous approaches originally 2 

developed to meet Evolvix requirements. An unduly short list of examples include the 3 

BEST Names concept, (LOEWE AND KEEL 2014; LOEWE et al. 2016), the Project 4 

Organization Stabilizing Tool (POST) system (LOEWE et al. 2017), the insights we used 5 

to assign a special role to standard filesystems for storing data (which eventually 6 

stimulated the development of TabFS as described in the main text Discussion as the 7 

storage structure underpinning FlyClockbase), BioBinaries, and the stabilizing 8 

versioning system briefly described next.  9 

 10 

Stabilizing Versioning. To facilitate development, versioned variants of 11 

FlyClockbase are numbered according to the stabilizing versioning system developed 12 

for Evolvix and described as part of the “StabilizingZone” of the POST system (see 13 

online material of LOEWE et al. (2017)). The term “version variants” is meant to highlights 14 

the diversity of types of variants that might change an instance of FlyClockbase in the 15 

stabilizing versioning system that it uses. For example, let us consider the version 16 

variants of this document when initially submitted to reviewers, and at the moment of 17 

initial publication as peer-reviewed study.  18 

QQv1. The version variant associated with this submission is QQv1. This is the 19 

Brief Evolvix way of pointing to the meaning of the StabilityCode for “QualityQuest” and 20 

indicate that a substantial milestone has been reached that is known in QQ as Version 1 21 

and is now waiting for evaluation by various types of reviewers (including usability-22 

reviewers and subject-matter expert reviewers for all relevant disciplines). There might 23 

be many or few, small or big, new versions, releases, and/or patches on the QQ level. 24 

How many depends on the number necessary for incorporating the feedback that is 25 

necessary for taking the next (more public) step in a responsible manner.  26 

RRv1. The version variant RRv1 is associated with the first reviewed release that 27 

is intended for some productive use (albeit without particular stability guarantees yet). 28 

This is the Brief Evolvix way of saying “ReviewedRelease” and indicate that someone 29 

with the authority to release this variant has reviewed all pertinent issues and deemed 30 

the overall maturity to be sufficient for public release. For this study, this point will be 31 

reached, when FlyClockbase accompanies the final publication of this study in the form 32 

of a corresponding public release of FlyClockbase on Github. 33 

Why stabilizing versioning? This versioned variant numbering system was 34 

selected to encourage responsible steps towards enabling long-term backwards 35 

compatibility for FlyClockbase and to enable it to be a VBIRs, i.e. a truly Versioned 36 

Biological Information Resource (vs being only a BIRs, where “Current” is the only well-37 

defined state or versioning is incomplete). Stabilizing versioning alleviates the tension 38 

between repeated rounds of rigorous review as required for long-term stability and the 39 

flexibility to quickly experiment with risky ideas as required for innovation. Some of 40 
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these ideas have to be tried out before it is possible to reasonably decide what to do 1 

with them (many of them should never appear in a system aiming for stability). The 2 

concept of a StablizingZone has been developed to alleviate a similar tension in Evolvix. 3 

It builds on the StabilityCodes that are part of the POST system and are shown in Table 4 

P1. 5 

 6 

 7 

TABLE P1. The StablizingZone of the Project Organization Stabilizing Tool (POST) 8 

system is defined by the StabilityCodes MM to TT, presented by their BEST Names. 9 

 10 

Brief Explicit Summarizing Name 

MM MockupModel MockupModel_UsedFor_RapidPrototyping_InformalLearning__ 
   __ExpertimentsToBeThrownAway_StabilizingDesignNotCode 

NN NewNonfunctional NewNonfunctional_UsedFor_NotYetFunctioning_DeepFoundations__ 
   __ForLargerStableDesigns_ThatDoNotYetWorkForUsers 

OO OperatesOften OperatesOften_UsedFor_Systems_PartiallyWorkingForEndUsers__ 
   __while_StillMissing_ImportantFeatures_ToBeImplemented 

PP PreProbing PreProbing_UsedFor_Preparing_PeerReviewAndPublicProbing__ 
   __by_PolishingExistingFeatures_UntilSubmissionFor_Questioning 

QQ QualityQuest QualityQuest_UsedFor_Questioning_AxiomsDataScienceAccuracy__ 
   __RigorClarityUsability_InMany_ExpertBeginnerReviewRounds 

RR ReviewedRelease ReviewedRelease_UsedFor_NewReleasesRecommended_by__ 
   __QualityQuestEditors_after_AnsweringAllReviewerQuestions 

SS StableSource  StableSource_UsedFor_StunningSoftware_RunningInProduction__  
   __with_LongTermSuccess_and_VeryRareRevisionRequests 

TT TrustedTested  TrustedTested_UsedFor_Marking_VeryLongTermStableDesigns_in__ 
   __WellUnderstoodDomains_AllowingBackwardsCompatibleGrowth 

Both have been developed for the general-purpose programming features of Evolvix with the 11 

goal of facilitating the development of long-term backwards compatibility. More details have 12 

been discussed as the Evolvix BEST Names concept was introduced (LOEWE et al. 2017). 13 

 14 

 15 

The role of TabFS in the stability of FlyClockbase. FlyClockbase depends on the 16 

stability of its underpinning storage infrastructure. As argued below, we decided against 17 

traditional databases, because the constant stream of upgrades easily imposes 18 

prohibitive burdens of IT administration work on those biologists who are likely to initiate 19 

and maintain VBIRs. To resolve this, FlyClockbase development has also been 20 

intertwined with the development of what we call ‘TabFS’, an extremely thin and 21 

transparent file system that sits on top of a standard file system. This study is not the 22 

place to appropriately describe and define TabFS; suffice to say it is being designed to 23 
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have the abilities of a fully functional file system with additional features that simplify 1 

some work in computational biology. These features are combined with a priority on 2 

radical openness allowing the local user in the host operating system to change 3 

anything and everything (e.g. this allows a biological model curator to easily change the 4 

type system of a VBIR). These desirables of TabFS come at the price of having to deal 5 

with inconsistent states that are more likely to be caused by users in TabFS than in 6 

other file systems. Resolving this will require additional checks and redundancies to 7 

enable recovery of consistency when users generate errors. Thus, the biggest trade-off 8 

in this setup is a slower performance. However, a fundamentally important and 9 

conscious design decision for TabFS is to trade short-term performance for increased 10 

long-term durability. Practically, TabFS stores everything in tab-delimited tables of text 11 

stored in the folders of a standard file system. It can be thought of as an organized 12 

equivalent of Comma-Separated-Value (CSV) files, albeit with strict formal rules that 13 

enable compiler checks. 14 

How does stabilizing versioning benefit FlyClockbase? The decision to buy into 15 

the stability of major standard file systems does not mean that problems of storage 16 

incompatibility cannot affect FlyClockbase. To efficiently organize FlyClockbase we 17 

need to abstract recurring themes, and these abstractions need to be developed, which 18 

takes time.  FlyClockbase bundles these storage abstractions into TabFS; hence any 19 

changes in TabFS that are not backward compatible will threaten the data stored in 20 

FlyClockbase if not handled appropriately. This is where stabilizing versioning is 21 

expected to be extremely helpful: it indicates to users how reliable a potential upgrade is 22 

likely to be. It also indicates to developers and reviewers shared expectations about the 23 

quality of the code they write or read. Thus, proper versioning is essential for stability of 24 

FlyClockbase as a VBIR. Reporting more on our progress towards this goal is beyond 25 

the scope of this study.  26 

Types in FlyClockbase. In addition to using TabFS, FlyClockbase has also been 27 

developing its own type system and content that requires coordinated changes and can 28 

hence benefit from versioning.  29 

Test case for Evolvix. Without detracting from its biological focus, FlyClockbase 30 

provides an important real-world testing ground for developing approaches to enable 31 

long-term backwards compatibility in Evolvix(LOEWE et al. 2017) serving longer-term 32 

research goals in Evolutionary Systems Biology (LOEWE 2016). 33 

 34 

 Why not a conventional database? FlyClockbase is designed at a time when 35 

data science is of growing importance for biomedical research (see (NIH et al. 2012)). 36 

We have considered the many virtues of diverse well-developed database management 37 

systems (from SQL to NoSQL to NewSQL). These guarantee consistency of data, 38 

simplify complex searches via special query languages, and increase speed of access 39 
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for growing amounts of data that is appropriately organized (e.g. (JURNEY 2013; 1 

MAHMOOD 2016)).  2 

 Unfortunately, these advantages usually come at a price that includes the hidden 3 

or deferred costs of:  4 

(i) becoming increasingly dependent on a specific stack of software that is often 5 

growing in complexity,  6 

(ii) complicating installation or transport across platforms,  7 

(iii) becoming too difficult for non-specialists to tentatively add new data and 8 

datatypes,  9 

(iv) complicating the migration from an old (often rigid) database schema to one with 10 

new features (and complexity, but usually equally fragile).  11 

Combined with poor documentation and sloppy naming, such problems can easily 12 

degrade the semantic reproducibility (LOEWE et al. 2017) and, hence, the long-term 13 

usability of any data collection that builds on top of such tools. The Introduction of the 14 

main text discusses more aspects.  As a result, pre-clinical biomedical research in the 15 

US has been estimated to invest about $7Bn/yr in studies that were deemed to contain 16 

irreproducible data analysis or reporting (FREEDMAN et al. 2015). Such an environment 17 

is hardly conducive to efficient biology, computational or otherwise; as a consequence, 18 

the critical importance for reproducibility of research results has been recognized across 19 

many disciplines (DONOHO 2009; GOECKS et al. 2010; KARR et al. 2012; NIH et al. 2012; 20 

STODDEN et al. 2014; JAMES et al. 2015; KARR et al. 2015a; KARR et al. 2015b; KENALL et 21 

al. 2015; POLDRACK AND POLINE 2015; STODDEN 2015; LOEWE 2016; LOEWE et al. 2017). 22 

As argued in the Discussion of the main text, simple text files have many desirable 23 

features. We decided to carefully build on those. 24 

 25 

 Logic challenges posed by missing data. Another notorious difficulty in many 26 

“standard” databases is how to indicate the absence of particular data, which can be 27 

interpreted as different types of zero. The difference between “not available”, “not 28 

applicable” and various other types of “null” is widely recognized (ZANIOLO 1984; 29 

CANDAN et al. 1997; DE TRE et al. 2004; WARAPORN AND PORKAEW 2008; BOSC AND 30 

PIVERT 2010; HERNICH et al. 2011; THALHEIM AND SCHEWE 2011; HARTMANN AND LINK 31 

2012; LIFSCHITZ et al. 2012; MARTINEZ et al. 2013; MIRZA 2015), yet standard databases 32 

struggle to provide automated support beyond an unspecified, potentially ambiguous 33 

‘NA’ (may stand for NotAvailable, NotApplicable, NotAllowable, …). Further, they build 34 

on the Closed World Assumption (that all relevant data is always fully specified) and aim 35 

to represent everything in the stark true-false dichotomy of Boolean logic. Current 36 

research in logic has provided many examples for the crippling effects of such black-37 

white limitations when confronted with a more nuanced world of color (SMITH 2008). 38 

These problems surface very quickly, when attempting to reconcile the crisp true-false 39 

dichotomies of a world of Boolean variables with biological observations with a certainty 40 
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that is less than clear-cut. To quickly allow for the identification of such biologically 1 

important cases without losing the advantages of the crisp semantics of Boolean logic, 2 

the following “OKScale” of four alternative states for a value of the type ‘BioBinary’ has 3 

been designed for Evolvix (see p.16, online material of (LOEWE et al. 2017)). 4 

FlyClockbase is adopting the BioBinary type to facilitate clearly marking the states 5 

described in Table P2. 6 

 7 

TABLE P2.  The BioBinary data type for cases in biology that are less than clear-cut. 8 

 9 

OK  Indicates the full agreement with a specified test that has been completely executed 10 

(equivalent to Boolean “true”); 11 

KO  Indicates the full disagreement in all points with the specified test that has been 12 

completely executed (equivalent to Boolean “false”); 13 

OKO Indicates any intermediate between OK and KO for cases that are well known not to 14 

be clear cut, albeit without storing any other information, such as a probability that 15 

could specify the distance from OK or KO (it is up to users to determine what they 16 

do want to store); No Boolean equivalent exist for OKO; 17 

MIS  Indicates any mistake or problem that made it impossible to reach any of the other 18 

three conclusions, irrespective of the nature of this problem (it is up to users to 19 

decide how much about the potentially infinite complexities of such problems they 20 

wish to store; no Boolean equivalent exists for MIS). 21 

 22 

This new data type has been designed for efficiently reasoning about biological observations 23 

with a certainty that is neither perfectly true nor false. More details elsewhere (LOEWE et al. 24 

2017). It is equivalent to parliamentary voting systems that have long distinguished the  25 

‘Yes’ (OK) and ‘No’ (KO) votes from ‘Abstain’ (OKO) and ‘NotPresent’ (MIS). 26 

 27 

 28 

 The basic features of the BioBinary do not eliminate the need to find a way of 29 

representing the infinitely many more detailed types of OKO, KO, and MIS, which might 30 

be used to represent details about the infinitely many stages of incompleteness, zero, 31 

null-hypotheses, or potential mistakes and contradictions that could be encountered 32 

when analyzing biological data. It is extremely difficult to anticipate which of the more 33 

nuanced types of information beyond these four will be encountered while actually 34 

analyzing biological observations. Maximizing the flexibility for describing such 35 

exceptions, while providing useful guidelines to educate FlyClockbase users about 36 

important subtleties, improves the quality of the reported data and reduces the 37 

frequency of misleadingly strong statements that overstate their claim. Such statement 38 

can easily be generated by if the logic formalism of a system does not allow recording a 39 

weaker statement. Our most important goal is to have a logical formalism that is neither 40 

overly restrictive (which would prohibit the representation of certain observations), nor 41 

as unstructured and flexible as a blank page (which would make it very difficult to 42 
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conduct any useful logic analyses). We found it helpful to work with lists of controlled 1 

vocabularies and only to add freeform comments for special cases, which could 2 

eventually add to controlled vocabulary if repetitive. The decisions about which columns 3 

are controlled, which are free, which entries make it into a controlled vocabulary list, and 4 

when a free-form comment will be extracted in order to populate a new column, and 5 

many more such decisions strongly depend on the subject matter and the content of a 6 

VBIRs. We therefore decided that biological model curators would need the full ability to 7 

change any of the types in a VBIRs as they see fit to represent the observations they 8 

curate. Since VBIRs are Versioned, all these decisions can and should be properly 9 

reviewed to improve consistency.  10 

 11 

 Permissions, backups and the reliability of data storage. Beginners  12 

and experts, all have full administrative (“root”) access to almost every aspect in 13 

FlyClockbase. The very open approach of FlyClockbase raises the question of  14 

how to guarantee the integrity of its use. While in theory a user can compromise 15 

FlyClockbase quickly, the chances of such an event with lasting consequences are 16 

much smaller than these unrestricted settings might suggest. When viewed in context:  17 

 18 

(i) few users of FlyClockbase aim to compromise their installation; moderate hiding of 19 

critical infrastructure or clear indications warning about the potential of breaking 20 

sensitive parts is usually sufficient to prevent mistakes; the latest working release of 21 

FlyClockbase is never in danger if a release manager keeps backups;  22 

 23 

(ii) distributed development of FlyClockbase poses the same challenges as all 24 

distributed information processing, namely, the merge/cache-invalidation/naming 25 

problem. It can be solved in principle by distributed version control systems (like Git), 26 

or by using cloud synchronized folders in combination with strictly following a version 27 

variant naming scheme to prevent loss of data (see Fig. 1BC in LOEWE et al. 2017). 28 

We tested both approaches (Git and cloud-style automatic synchronization). We 29 

found both to be less inviting than they could be if a set of reliable scripts were to 30 

automate repetitive tasks in a way that reliably excludes loss of data (and without 31 

adding to the cognitive load of the user).  32 

 33 

While it may seem that widely known database technologies are free from these 34 

problems, they in-turn come with independent problems of their own. For example, 35 

FlyClockbase may give ordinary users too much administrative power. Many other 36 

databases resolve this problem by locking down access. Yet, in turn these databases 37 

require special expertise or permissions for exploring new avenues of recording a richer 38 

spectrum of biologically relevant difficulties with contradictory scattered big data. Even 39 

experienced database architects may use natural language for the very early initial 40 
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stages of database development. We aim to give model curators the ability to do exactly 1 

this ‘in situ’. 2 

 On some challenges in logic work. Capturing details important for describing 3 

biological observations in a consistent way can be challenging research in logic 4 

formalisms, because of the vagueness of some biological data (SMITH 2008). Most 5 

biological model curators are not likely to have the training in formal methods to define 6 

the new formalisms that remain at the end of this research. As argued above and in 7 

Figure 11 (main text), curators can still contribute a lot by providing examples and 8 

detailed expertise on how to interpret their various challenging aspects, which is 9 

impossible for non-biologists to do. To facilitate the practical work necessary for 10 

enabling this type of discussion, a number of smaller problems need to be resolved: 11 

 12 

• Form of recording. Any persistent record of observations in logic needs to encode 13 

the observations of principles or bugs in some formal way that can also be read by 14 

other persons. In a world of infinite resources, it does not matter how these 15 

observations are encoded, as long as their semantics is completely reproducible 16 

(LOEWE et al. 2017). However, for most biologists engaged with model curation, 17 

patience with logic formalisms is a limited resource. Approaches used in practice for 18 

communicating logic problems ought to be as simple to use as possible. A blank 19 

page or an arbitrary text description work well, written or spoken; it is the task of a 20 

person with more understanding in formalisms to translate such fragmented insights 21 

into a more coherent formal picture. Additional burdens, such as transforming 22 

descriptions of logic problems into a particular logic formalism, are probably 23 

counterproductive. Many curators might be tempted to indicate that they have 24 

nothing to report, simply to avoid the difficult task to re-encode their observations, 25 

e.g. in a relational database formalism. While certainly possible, it does not mean 26 

that this is advisable; in principle, these problems could also be expressed in the 27 

form of Gödel numbers (GÖDEL 1931), but this would only add huge amounts of 28 

inessential complexity. Thus, the simplest possible storage medium is probably best. 29 

 30 

• Durability of recording. For the sake of argument, let us assume that there was a 31 

very straightforward way of recording all such statements in a database. Then such 32 

work can become unnecessarily complicated, if the database system requires 33 

frequent complex updates that are triggered by external database developers aiming 34 

to deliver ongoing improvements like new features, security, performance or more. If 35 

such upgrading becomes excessive, paper and pencil might become increasingly 36 

attractive. 37 

 38 

• Size and complexity. Documenting progress in debugging or developing logic does 39 

not usually generate large amounts of data, but the few cases that are there are 40 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 136 

important and complicated. Hence, an uncomplicated, distraction free storage 1 

medium is desirable.  2 

 3 

• Speed of copying. For efficient communication, it is desirable to find a storage 4 

medium that is easily copied through communication channels. This is where non-5 

electronic approaches have their greatest drawbacks.  6 

 7 

Trade-offs. To solve these challenges in a practical way, let us consider the following 8 

advantages and disadvantages of paper, file systems and databases.  9 

 10 

• Paper, for example, does not suddenly refuse to operate as expected because it 11 

needs an upgrade – a plus for stability. Its durability is legendary and generally 12 

measured on the scale of centuries. However, the speed of writing, reading, and 13 

copying is slow and error prone.  14 

 15 

• Dedicated databases, relational or otherwise, when designed for fast retrieval of 16 

certain types of answers are hard to beat in speed for that particular application. Yet 17 

that speed will drop to zero, if the latest essential upgrade is not applied and all data 18 

in the system becomes inaccessible (see tombstone example below). 19 

 20 

• Filesystems in contrast, offer the best of both worlds: almost the reliability of paper 21 

(assuming that there will always be electricity and hardware that enables access to 22 

the file system and perpetuation of backups); almost the flexibility of paper 23 

(assuming corresponding types of files); almost the speed of databases (assuming 24 

the data is organized so that the speed of reading or writing approaches the limit 25 

supported by the hardware). The big question for file systems is whether a way of 26 

organization can be found that keeps all important data appropriately organized.  27 

 28 

 Long-term stability in VBIRs data structures will enable new biology.  29 

We suggest that a compiler could help curators to efficiently maintain long-term stable 30 

VBIRs in consistent formal states so that these VBIRs can be used as foundations, 31 

which are solid enough to build on them for the long term. This will eventually make it 32 

feasible to construct more advanced VBIRs on top of more basic ones.    33 

 If foundational VBIRs describe causal genotypic or environmental information 34 

and more advanced VBIRs describe more consequential molecular, cellular, 35 

physiological, or other phenotypic information, then VBIRs enable the implementation of 36 

a full fitness-causality network that maps the genotypes and environments of an 37 

organism to its phenotypes in a transparent mechanistic way that connects well to the 38 

latest updates of all data that is available – if all relevant data and data structures are 39 

well curated and appropriately versioned for stability.  40 
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 1 

 Tombstone example. Here we illustrate with an example the very real long-term 2 

danger to biological research posed by database technology that is not long-term 3 

backwards compatible. The TIGR Gene Indices were first published at 4 

http://www.tigr.org/tdb/tgi  (QUACKENBUSH et al. 2000). After their introduction, the TIGR 5 

Gene Index databases quickly became a well-known tool for biological discovery (LEE 6 

AND QUACKENBUSH 2003; PERTEA et al. 2003; LEE et al. 2005). They are now no longer 7 

available online as documented on their tombstone:   8 
 9 

http://compbio.dfci.harvard.edu/tgi/   10 
 11 
In case the tombstone itself disappears eventually, here we paraphrase its 2017 report 12 

of some vital statistics about TGI: 13 

 14 

Supported by NIH, DOE and NSF 1998-2010, the relevant 15 

TGI papers were cited >2000 times. When the tombstone 16 

was written the TGI website still received >7 million hits per 17 

year (assuming the actual number on the tombstone was a 18 

typo). When funding ended in 2010, the team continued to 19 

maintain the website, but the hardware and software 20 

required behind the scenes began to fail. Effective July 15, 21 

2014 operations had to be suspended, because there were 22 

not sufficient funds to maintain it properly. The software 23 

powering TGI (DFCI Gene Indices Software Tools) and the 24 

data sets it used was ‘fossilized’ to     25 

     ftp://occams.dfci.harvard.edu/pub/bio/tgi/software/  26 

     ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/. 27 

 28 

 It is not up to us to comment on TGI’s science or its funding history. Neither is 29 

relevant to our main point: extinction is a real risk for VBIRs and fossilization to some 30 

archive is not a real life-saver. The haphazard nature of funding for biological 31 

information repositories is well known and a significant source of concern (EMBER et al. 32 

2013). Less obvious is the impact of a stable VBIRs compiler for TGI. Imagine the 33 

software behind TGI would use appropriate abstractions and thus not fail. Imagine it 34 

could continue to operate reliably on different hardware, including that of users. Imagine 35 

the software would be long-term backwards compatible. Imagine it could help many 36 

biologists to contribute to curation of TGI. Imagine a whole community would annotate, 37 

improve, deprecate, or otherwise edit various aspects of TGI in order to preserve its 38 

benefits or point to improved successor tools. Imagine other biological research codes 39 

had built on long-term stable parts of TGI and could all continue to operate simply by 40 

copying TGI to a local hard drive. Would that make a difference?   41 
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 1 

2. Human error analyses: approaches, challenges, efficiencies 2 

 3 

Problems with tracing the identity, availability, accuracy, precision, and reliability of data 4 

have been the topic of numerous investigations and recently received renewed attention 5 

in the context of assessing potential uses of scattered biological data sources and big 6 

data (e.g. see (REASON AND MYCIELSKA 1982; REASON 1990; REASON AND HOBBS 2003; 7 

GOLDSTON 2008; GITELMAN 2013; GRIMES et al. 2013; MCCALLUM 2013; REASON 2013; 8 

BLANKENBERG et al. 2014; REASON 2015)). 9 

 FlyClockbase presented us with an excellent opportunity to explore numerous 10 

issues related to the quality, accuracy, and reliability of complex collections of 11 

information that aim to integrate data that can be incomplete, uncertain, contradictory, 12 

erroneous and scattered across a wide range of sources. Much expertise in biology 13 

currently exists in such less-than-well-defined states that can be difficult or impossible to 14 

process computationally. Thus, we expect that some of the lessons we learned while 15 

compiling FlyClockbase become increasingly important as biologists expand their use of 16 

computational resources throughout their work. While it is beyond the scope of this 17 

study to appropriately review all corresponding challenges and potential solutions we 18 

encountered, a few observations of common challenges of general interest are 19 

reviewed next. 20 

 21 

 Finding capable curators. Compiling nontrivial resources of biological 22 

information requires a substantial and sustained effort from researchers who bring a 23 

certain set of skills. They need to (i) possess the background expertise necessary to 24 

understand the importance of the information they compile, and (ii) be motivated to 25 

collect information from various scattered representations into a single, less 26 

idiosyncratic representation that constitutes the new resource. New resource creation, 27 

as listed above, usually requires more effort than experimental or computational 28 

biologists are willing to dedicate. This might require researchers with a special interest 29 

in high-quality information collection regarding the respective system. Like airplane 30 

pilots, curators will need training in appropriate error handling. 31 

 32 

 Errors are inevitable. A broad body of research has shown that human errors in 33 

any non-trivial data processing are inevitable and that error rates increase with the 34 

complexity of a task (REASON 1990; REASON AND HOBBS 2003; REASON 2013; REASON 35 

2015; PANKO 2016). This is true in particular for the use of spreadsheet software (PANKO 36 

1998; PANKO AND SPRAGUE 1998; PANKO AND AURIGEMMA 2010), for which rates for 37 

various types of error have been measured. Our own results confirm that some errors 38 

(e.g. simpler data entry) occur with lower rates than other more complex errors, that 39 

stem from occasionally forgetting non-obvious steps in a complicated procedure (see 40 
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Table 4). We can confirm previous findings, showing that even the most motivated 1 

researchers with substantial training and background expertise will inevitably err when 2 

transferring information in complicated scenarios where many complex details could go 3 

awry (see also (LESGOLD et al. 1988; GALLETTA et al. 1993; GALLETTA et al. 1997; PANKO 4 

AND SPRAGUE 1998)).  5 

 6 

 Errors are hard to detect for humans. Proofreading software is well known for 7 

not catching all spelling errors. It is also well known, that not all humans catch all 8 

spelling errors. Yet spelling errors are the simplest errors. All others are more difficult to 9 

detect in comparison. Errors in logic are particularly difficult; however, the worst 10 

category of errors are errors of omission (PANKO 2016).  11 

 Given the various complex operations required for integrating and analyzing data 12 

with FlyClockbase, FlyClockbase has competitive error rates, as found when re-visiting 13 

parts of the database (see Table 5). However, manually extracting even simple time 14 

series traits (e.g. peak-valley times) has proven more error prone than we expected. 15 

The complexity of traits can rise substantially as increasing numbers of important 16 

conditions and special cases need to be observed for extracting a valid trait. Eventually 17 

complex decisions, when integrating less-than-perfectly fitting new observations into 18 

biological information resources, might easily generate very complex error scenarios. 19 

This is mainly because such work requires many decisions about which types in the 20 

data and in a VBIR are functionally equivalent and when effective differences are large 21 

enough to justify the introduction of new categories. The complexity of such offline 22 

decisions could rival the complexity (after preparation and training) of online decisions in 23 

mission-critical scenarios that have been analyzed elsewhere, from cardiac surgery 24 

(CARTHEY et al. 2001; REASON 2005) to space flight (NASA et al. 2011; HOOEY et al. 25 

2014). In many of these scenarios, human failure is catastrophic; correspondingly 26 

sophisticated human reliability analysis methods have been developed to ensure that 27 

human error is exceedingly unlikely - if not preventable, in principle (REASON 1990; 28 

NASA et al. 2001-09-30; REASON AND HOBBS 2003; NASA et al. 2006-07; NASA et al. 29 

2011; REASON 2013; REASON 2015).  30 

 31 

 Human error analysis and prevention methods are difficult to develop. 32 

Many of the methods that are appropriate for investigating and preventing human error 33 

in contexts such as space flight, nuclear power plants, or aviation (NASA et al. 2006-07; 34 

NASA et al. 2011) are much too complex and costly for applying them towards 35 

improving the reliability of biological information resources like FlyClockbase. This is 36 

true even if the complexity of problems generated by resources such as FlyClockbase 37 

rivals or exceeds the complexity of navigating a space ship.  38 

 39 
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 The huge immediate and catastrophic danger and costs of errors in navigating 1 

space ships and running nuclear power stations make it obvious and easy to justify the 2 

large effort required for in-depth analyses of human errors. In contrast, adding data to 3 

VBIRs seems harmless; it certainly is if only the immediate impact is considered, and it 4 

probably also is on the long term. However, in biomedical research there is a small 5 

chance that errors in VBIRs are not as harmless as they seem if they remain 6 

uncorrected. The following scenario is difficult to exclude categorically in bio-medical 7 

research. Imagine that some researcher integrates data into some medically relevant 8 

VBIR and makes an unnoticed error that remains in that VBIR for a long time and even 9 

replicates across repositories. If that error prevents the discovery an important new 10 

medical cure by leading a researcher to the wrong conclusions, then cost and risk 11 

calculations are no longer trivial.  12 

 13 

 It is not clear how to resolve this problem. If each VBIR produced its own error 14 

analyses, costs would quickly spiral out of control and few resources would remain for 15 

actual biological research. 16 

 17 

 Error analyses require a substantial level of biological expertise, yet are 18 

perceived as ‘tedious’ and ‘non-biological’ (by experimentalists) or ‘non-automatable’ (by 19 

computationally oriented biologists). Thus, recruiting experts for such error analyses can 20 

be exceedingly difficult or prohibitive, despite their importance for modern biology. The 21 

following potential ‘solutions’ are also likely to be counter-productive on the long term: 22 

 23 

(i) Omitting error analyses. While cost-effective during the initial stages of compiling a 24 

new resource, ignoring the potential for errors by not engaging in error analyses will 25 

result in a growing number of databases with questionable quality. Whenever 26 

databases have been analyzed, some rate of errors has been found (e.g. (JONES et 27 

al. 2007; HUTCHINS et al. 2010; WEIL et al. 2015)). It should not usually require open 28 

letters or other drastic measures (e.g. (DRAKE et al. 2008; ALLISON et al. 2016)) to 29 

possibly get errors corrected.  The current state of software tools makes post-30 

publication changes very difficult and most databases do not offer an easy way to 31 

submit proposed changes for review and efficient inclusion by administrators. While 32 

this explains the reluctance to update the latest available information, it is not 33 

conducive to advancing the integrity of scientific data. If no resolution to this error 34 

crisis can be found on the long-term, the resulting loss of quality will lead to a loss of 35 

reliability, reproducibility, and ultimately to a loss of trust in ‘data-based’ results. 36 

These costs are not immediately obvious to the authors of a new resource, but they 37 

will eventually manifest somewhere in the scientific community, either as 38 

irreproducible results, misguided research directions, or unnecessary ‘confusion-tax’ 39 

for the users of a resource. 40 
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 1 

(ii) Automating database operations. Some types of errors are greatly reduced by the 2 

use of automated database technology (e.g. leveraging SQL to keep indices up to 3 

date and reduce redundancy,). This is particularly effective for types of errors that 4 

occur in large numbers, thus making it easy to automate detection.  5 

    Heterogeneity. However, the highly heterogeneous nature of many advanced 6 

biological information resources can easily generate as many potentially relevant 7 

exceptions as entries. Relevant exceptions not addressed by the built-in logic of a 8 

database management system are at high-risk of causing errors, since errors by 9 

omission (of a special condition) are particularly difficult to detect (e.g. see 10 

discussions of BioBinary).  11 

     Such errors can be even more difficult to detect in automated systems, if they are 12 

not already detected automatically.  Automation might tempt researchers to become 13 

over-reliant on computational results they no longer understand (especially if 14 

implemented by non-biological experts). The substantial computer science literature 15 

on compiler construction demonstrates that the use of automation via software does 16 

not protect against the innumerable types of errors that can be added to source code 17 

and can corrupt results (if not caught by a compiler; see (PARSONS 1992; AHO 2007; 18 

COOPER 2012; GRUNE 2012)). This suggests the following interesting conclusion: 19 

     Automation trades some human errors for others. For example, inconsistency 20 

errors that often occur in data that is entered manually are avoided by automation 21 

through programming; get programming can easily generate inconsistencies of its 22 

own that humans would not produce. Since about 2% - 5% of all lines of source 23 

code have been estimated to contain some errors (PANKO 2016), it is far from 24 

obvious how automatically handling the many special cases in resources like 25 

FlyClockbase can make additional analyses of various human errors superfluous. 26 

 27 

(iii) No retrospective meta-analyses. Not engaging with data analyses that trigger the 28 

need for error analyses robs biology of important perspectives. This would be 29 

equivalent to a call for stopping such otherwise non-controversial biological 30 

research. The impact on integrative work and relevant modeling efforts could be 31 

devastating. Hence, this options is not attractive. 32 

 33 

While currently no ideal solutions exist, raised awareness of the problem is likely to 34 

eventually contribute to the development of appropriate solutions. As argued above in 35 

the context of compiler design: seeing the problem in the first place is often the most 36 

difficult step. Maybe compilers could also help by automating many tedious aspects of 37 

these error analyses.  38 

 39 
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 Error analyses could be amortized across resources by compilers. As 1 

argued above, developing appropriate error analyses for a single VBIR is not feasible. 2 

However, our experience with developing FlyClockbase suggests that a substantial 3 

number of essential tasks are recurrent and of comparable complexity across the 4 

development of a groups of VBIRs. Examples include the need for handling missing 5 

data, inapplicable data, imprecise ranges (rather than precise values), heterogeneous 6 

method descriptions, comparisons of wild types to mutants, and many other aspects of 7 

biological interest. Thus:  8 

 9 

The most efficient solution to improving the quality of VBIRs without 10 

exploding costs is to develop an automated compiler that can 11 

automatically test for all known and formally described cases of 12 

errors and supports a programming language that integrates biology 13 

expertise to simplify the description of test cases by biologists. 14 

 15 

Programmers frequently say that it is important to use the right tool for a given 16 

programming task, yet no such tool exists for the compilation of complex biological 17 

datasets. We will not repeat here the substantial number of reasons why such a 18 

language would be helpful and why current (non-biological) programming languages are 19 

insufficient (see Online Material and additional reasons discussed in (LOEWE et al. 20 

2017)).  21 

 22 

 Efficiencies of scale. In the long term, it would be more cost efficient to 23 

construct a compiler that can read in all tables of FlyClockbase (or other VBIRs) and 24 

produce a report of all inconsistencies and errors that require human attention (as well 25 

as produce tables with all requested search results). Thus, certain types of errors would 26 

be detected automatically. Error detection modules and other solutions would be 27 

implemented only once and would simultaneously improve the reliability of all VBIRs 28 

construction efforts.  29 

 For those who wonder why we did not directly implement such a compiler, we 30 

would like to point out that - as so often is the case in computational biology - the overall 31 

time for obtaining a given biological result by manual ‘compilation’ is usually much 32 

shorter than the time it would take to implement a corresponding compiler. This certainly 33 

was the case here. For example, compiling the time series data of wildtype flies and 34 

checking the integrity of PER and TIM data to reasonable reliability was completed 35 

much faster manually, then if we had attempted to automate it by constructing a 36 

compiler for this. This cost calculation changes very quickly if large amounts of 37 

integration work are anticipated over long amounts of time in FlyClockbase or other 38 

VBIRs. There seems to be little debate over the need for curating biological data, 39 
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especially as it keeps growing (BOURNE AND MCENTYRE 2006; BURKHARDT et al. 2006; 1 

SALIMI AND VITA 2006; HOWE et al. 2008; BURGE et al. 2012).  2 

 3 

 Tool development and funding strategy development are connected tasks. 4 

Some development of tools beyond the scope of a single project already started, 5 

addressing the large amount of text mining done by biocurators (WEI et al. 2013; RAK et 6 

al. 2014; SINGHAL et al. 2016). However, developing clear and successful funding 7 

strategies has remained a challenge (EMBER et al. 2013; ORCHARD AND HERMJAKOB 8 

2015; RODRIGUEZ-ESTEBAN 2015; REISER et al. 2016). The inefficiencies of present-day 9 

curation work in biology are substantial and might be sufficient to convince most funders 10 

to invest elsewhere. Our experiences have shown that many of these inefficiencies 11 

could be alleviated in principle by appropriately constructed tools. By today’s standards 12 

it was unimaginably laborious to sequence a few genes in 1977, or a single human 13 

genome in 2001 (SANGER et al. 1977a; SANGER et al. 1977b; LANDER et al. 2001; 14 

VENTER et al. 2001; HAYDEN 2014; SHERIDAN 2014; TELENTI et al. 2016). Given the lack 15 

of appropriate tools, the lack of funding for corresponding work might be less surprising. 16 

Funding for sequencing human genomes in 1977 was negligible, if not $0. 17 

 18 

  19 
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3.  DISCOVARCY Documentation Style Questions for Coders  1 
 2 
The attitude of some programmers towards documentation can be summarized as: 3 

 4 
 The source code is the documentation. 5 

 6 
Indeed, the agile approach to software development tries to avoid documentation, which 7 

can be costly to write, and is constantly out of date for fast developing code bases 8 

unless it is maintained with a large amount of effort (e.g. see comments in (HENRY 9 

2013)).  As a corollary, one might conclude that documenting scientific research code is 10 

a waste of time, since by definition such code is moving fast1. Unfortunately, such 11 

practice results in semantic irreproducibility (LOEWE et al. 2017), which hampers 12 

research (FREEDMAN et al. 2015). On the other extreme, again, it is neither reasonable 13 

nor efficient to demand that all research codes are refactored and documented 14 

excessively. For the most part, research codes are indeed only used very few times.  15 

 16 

Source code as electronic lab note book for in silico research. For example, 17 

consider the highly specialized R-script, which was written especially for this study and 18 

that might be seen as a 'unique research application’. It is likely to serve only the 19 

purpose of re-running the analyses of our study, facilitating computational reproducibility 20 

of our study’s results. While writing that code, there was no mandate to use best 21 

practices for software engineering – unless it would help get the job done faster or more 22 

reliably. Hence, no refactoring for longer-term use was done for increasing the quality of 23 

the source code.  24 

 25 

Trade-offs in code writing. Good writing usually requires multiple rounds of 26 

revision and similarly, good code requires substantial refactoring. Depending on the 27 

occasion, this may be effort well spent, or time wasted. Our supplementary code for this 28 

study lives in this tension, and so do many other research computing codes written for 29 

specific unique analyses. How can such code be made more readable in order to help 30 

other researchers benefit from the work of the authors, and not waste their time on 31 

inessential complexities? This question is at the heart of semantic reproducibility 32 

(LOEWE et al. 2017). Table D1 introduces the DISCOVARCY questions on 33 

documentation style. The acronym DISCOVARCY highlights typical problem areas that 34 

can sometimes easily be improved once awareness increases. The acronym is on 35 

purpose designed to illustrate the many transitions small and large that are between 36 

worst and best practice. Some of the distinguishing characteristics are easy to change 37 

while programming, but prohibitively costly later (e.g. choosing summarizing variable 38 

names). On other occasions, it is prohibitively costly to refactor a whole code base 39 

                                                        
1 It is important to distinguish such fast-moving research code from other, more mature scientific 
code that implements important algorithms which have become important research tools and 
are thus expected to behave reliably. 
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merely to make it easier to understand. Such cost-quality related tensions highlighted by 1 

DISCOVARCY are linked to a fundamental trade-off faced by every innovator aiming to 2 

produce features reproducible by others. The trade-off forces numerous choices 3 

between the following ideals: 4 
 5 

• Reproducibility (much time for tests and documenting, little time for new features); 6 

• New features (little time for tests and documenting, much time for new features). 7 
 8 

Every scientist needs to navigate the contrast between these ideals that is particularly 9 

sharp in research, where the goal is to make innovative new discoveries, while enabling 10 

others also to reproduce these innovations. The same tensions exist for software 11 

developers and programmers, only that reproducibility comes with a human and a 12 

machine aspect. For machines, reproducibility is the repeated execution on machines; 13 

this links the diversity of machines included in this claim directly to the cost of 14 

reproducibility. The human aspect of reproducibility implies that a human being other 15 

than the developer can read and understand the code correctly, an ability defined by the 16 

quality of the Code2Brain interfaces involved (LOEWE et al. 2017). As with machines, 17 

producing something that is more widely understood is usually more expensive. Much of 18 

the work needed for improving clarity and documentation of research codes could be 19 

delegated to a compiler that can easily translate between Brief Names preferred by 20 

developers and more verbose alternatives more easily understood by newcomers. The 21 

Evolvix BEST Names concept has been developed in order to facilitate such translation 22 

(LOEWE AND KEEL 2014; LOEWE 2016; LOEWE et al. 2016; LOEWE et al. 2017). 23 

Documenting code has a long history (KNUTH AND LEVY 1994) and requires more 24 

attention than this study can offer here.  25 

 26 

DISCOVARCY in brief. The documentation style in Table D1 is based on the 27 

notion that awareness can allow researchers to exploit unique coding time opportunities 28 

for writing inexpensive imperfect comments that nevertheless greatly increase the real-29 

world readability of their code. The DISCOVARCY acronym highlights strategies that 30 

allow code writers to easily reduce common challenges to code readers. Briefly,  31 

Describing Design beats deduction,  32 

Info Included beats inference,  33 

Source Simplicity beats secrecy,  34 

Code Clarity beats complexity,  35 

Offline-Online Overview Offers beat online odysseys,  36 

Vetted Variables beat vagueness,  37 

Argued Axioms beat arbitrary assumptions,  38 

Relevant Restraints beat random restrictions,  39 

Collected Comments beat cancelled comments, and  40 

Your Yield from using this code should not cost years of learning about it.  41 

  42 
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TABLE D1: The DISCOVARCY Documentation Style raises awareness for causes that 1 

make source code hard to read and offers efficient strategies for improving it. 2 

Br
ie

f N
am

es
  

B r i e f  N a m e s 

Coder centric view 
Quicker to produce,  
Costlier to consume 

discovarcy vs DISCOVARCY Reader centric view 
Costlier to produce, 
Quicker to consume 

Br
ie

f N
am

es
 

Reader Challenges Questions for Coders & Comments Coder Challenges 
d documentation 

derivable by 
deduction and  
decoding 

Does documentation help coders, readers, or 
neither? Ideal reader support is often too 
costly; but brief notes on higher design 

decisions in broken English (lacking time or 
writing skills) are usually extremely helpful. 

Documentation  
Describing  

Design 
Decisions 

D 

i inference If source code is the documentation, it should 
have relevant info included, not force reader 

inference of the coder’s state of mind. 

Info 
Included 

I 

s secrecy How much rare expertise is assumed? Are 
advanced coding tricks explained & marked? 

Source  
Simplicity 

S 

c complexity Complexity is easy to write, hard to read. 
Clarity, simplicity is hard to write, easy to read. 
Hard work: removing inessential complexity, 

without removing essential functionality. 

Code  
Clarity 

C 

o online  
odysseys 
overwhelming 
outsiders 

Does code offer offline ‘code-catchups’ and 
online links to key background overviews, 

reducing reader overwhelm? Or are endless 
online odysseys mandatory for outsiders?  

Offline-Online  
Overview 

 Offers  
 

O 

v vagueness Is the meaning of variables and functions 
tested & obvious from explicit or summarizing 
names? Using copy & paste, are names long 
enough to exclude random reuse of “x” etc? 

Vetted 
Variables 

V 

a arbitrary  
assumptions 

Different solutions build on different assumed 
axioms. Are they explicitly argued for?  

Argued  
Axioms 

A 

r random restrictions, 
reasons removed, 
rarely refactored 

Are restraints relevant or restrictions random 
and in need of refactoring? Are reasons 
recorded or relevant results removed?  

Relevant Restraints, 
Recording Rare and 

Regular Reasons  

R 

c cancelled  
comments  

We like complete, clear comments over chaos 
& contradictions, but few can write a book. Do 
not cancel comments, but time-stamp collect 
them to help others follow. Mark older ‘mixed 
quality’ texts as ‘retired’ until the next update.  

Collected 
 Comments 

C 

y years  
go quickly learning 
many poorly written 
codes bases 

Understanding confusing code can quickly 
become prohibitive. Reading clear code is 

learning from a teacher. What will you write?  
What will you see if you re-read in 10 years? 

Your  
Yield 

Y 

Properties of poor code (‘discovarcy’) are on a continuum with those of great code (‘DISCOVARCY’). 3 

Questions can help coders quickly add imperfect comments that save the day for their readers. 4 
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4. Example of an error a compiler could have caught by type checking:  1 

Effect of linearizing clock times on distributions of Peaks and Valleys  2 
 3 
Please see Methods in the main text for motivating the linearization of times and for 4 

details on how it works. To illustrate the effect in the context of real data analysis, we 5 

selected types of mRNA and protein from FlyClockbase that are affected to varying 6 

degrees. Their observed peak and valley times are in Table S1, which compares their 7 

respective ObsRaw (non-linearized) and ObsMod (linearized) times.  8 

 9 

Recall Example Context. For observing the impact of linearizing time, we 10 

remember that the time measurements in ObsRaw TimeSeries belong to the time type 11 

DailyZT, or DZT. If this information about types is understood by a compiler, then the 12 

compiler will know that such time measurements are recorded in time units of 13 

decimalized Hours and that they are reset to 0h at the dawn of each day, which will 14 

reoccur every 24h and increase a separate day counter by +1. If we ignore the day 15 

counter as usually done in circadian biology research, then DZT is a cyclical time type, 16 

which simultaneously is also a cyclical real number type. In contrast, all ObsMod 17 

TimeSeries are measured in linear time without resets, as defined by ContinuousZT, or 18 

CZT. A compiler that understands this type information will know how to convert CZT to 19 

DZT and back (by adjusting the additional number of days that have occurred; see main 20 

text). If the compiler understands the assumptions required for computing valid 21 

summary statistics, it can check if those assumptions are met. 22 

 For example, using the well-known equations for inferring the mean of a Normal 23 

distribution requires that all values exist on a linear real number line, before attempting 24 

to calculate averages. Using values of a fundamentally different type (e.g. with the value 25 

‘MyText’) would result in a compiler error (“Cannot use ‘MyText’ when averaging”). 26 

For time measurements of type CZT, the decision is easy, because the definition  27 

0 < CZT ≤ infinity can never generate cyclical time. For DZT time types, the decision is 28 

not as easy, because definitions like 0 < DZT ≤ 24h do not imply the end of time once 29 

the 24h mark has passed. Flies, clocks and the rest of the world simply move on and 30 

will generate new data points. A sloppy DZT implementation will ignore the day-counter 31 

and act as if controlled by a time-loop – albeit with no effect on the linear time 32 

experienced by flies. The logical contradiction between the existence of a  time-loop as 33 

assumed by such programs absence of such a time-loop in real life does not always 34 

matter. For example, if comparing only events from a single day, nothing can go wrong. 35 

However, some time series in FlyClockbase are longer than 24h, which can generate 36 

profound confusion, as explained next. 37 

 38 

Problem in principle. To illustrate the problem, let us consider an artificial 39 

dataset of DZT peak times for which a mean of 23h has been inferred for the first day 40 

and where the observed min and max has been 22.1h and 23.9h, respectively. Despite 41 
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a circular number type, calculating a mean of 23h is appropriate; no data is included 1 

from another day; hence, all times are effectively linear. Let us assume that the next 2 

peak added occurs 90 minutes after 23h. If measured in CZT, this new peak would add 3 

24.5h to an expected mean of 23h; the time remains linear and the mean remains valid. 4 

But expressed as DZT, this new peak would appear as a big outlier at 0.5h in simplistic 5 

comparisons with a mean of 23h (which implicitly drop a day). This type mismatch 6 

would misrepresent a peak of +1.5h after 23h as -22.5h, an erroneously large distance 7 

with the wrong sign. Such errors will bias inferred means in the wrong direction and 8 

greatly inflate inferred variances, possibly obscuring genuine biological signals. If 9 

undetected, these errors may substantially bias biological conclusions at unspecified 10 

cost to both reproducibility and biology. 11 

 12 

Problem in practice. Initially we were not aware of these logical subtleties in 13 

handling different types of time. Calculating averages and variances requires a linear 14 

scale, a condition that is completely met out-of-the-box for all Peak or Valley times of 15 

some core clock components reported in Table S1. In these cases, time-linearizing 16 

does not affect summary statistics, since all observations already belong to the same 17 

day (e.g. TIM Protein Peak, 18.41 ± 2.54h). However, if some observations belong to 18 

the previous or next day, a change in summary statistics can be observed (e.g. PER 19 

protein Peak: Raw 16.77 ± 5.48 to Mod 19.51 ± 3.40 h SD; see also the other average 20 

values in bold). To interpret SDs, it is instructive to consider random times of a day. 21 

 22 

Uninformative DZTs. As reported in the main text, SD > 6h  is on the order of 23 

the SD of a uniform distribution across the day (deterministic 1h intervals from 0 to 24h 24 

result in SD ± 7.36h around 12h and drawing 1,000 corresponding uniformly distributed 25 

values does not fundamentally change the results (SDs: 6.81, 6.92, 7.02 h). Informal 26 

tests reducing the sample size to 20 presented a similar picture, albeit with substantially 27 

more noise (as we would expect for sample sizes comparable to the number of time 28 

series for a component in FlyClockbase).  29 

 30 

Detecting excessive noise. We can use the random DZT results to detect some 31 

cases, where a clock signal is known to exist, but measurement or data handling 32 

problems have obscured the signal dramatically (so it looks like random noise). Indeed, 33 

Table S1 presents such cases. Peaks of Raw clk mRNA (SD ± 8.59h), PER protein (SD 34 

± 5.99h), and per mRNA valley (SD ± 6.22h) all show this problem, but there are also 35 

enough other cases to clearly demonstrate that not all time series are affected.  36 

 37 

  38 
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TABLE S1.  The impact of linearizing circadian time on summary statistics like 1 

   the Peak (A) and Valley (B) traits of time series.  2 
 3 

A  Peak 
Median 

Peak 
Avg ± SD 

 

Clock 
Component 

nRaw 
nMod  

Raw 
Circ 

Mod 
Linear 

Mod  
Maj 

Mod  
Odd 

Raw 
Circ 

Mod 
Linear 

Mod  
Maj 

Mod  
Odd 

nMaj 
nOdd 

clk mRNA 12 
12 

6.00 3.56 3.56 5.03 8.79 
± 8.59 

2.79 
± 3.16 

3.56 
± 1.12 

3.02 
± 3.73 

4 
8 

per mRNA 88 
88 

14.9 14.9 15.0 12.35 14.62 
± 1.68 

14.64 
± 1.65 

14.72 
± 1.01 

14.48 
± 2.87 

68 
22 

tim mRNA 48 
48 

14.83 14.83 15.0 12.0 14.67 
± 2.09 

14.54 
± 1.92 

14.85 
± 0.98 

14.14 
± 2.66 

30 
22 

PER protein 36 
36 

18.93 19.0 19.0 16.87 16.61 
± 5.99 

17.72 
± 4.79 

18.61 
± 2.10 

19.71 
± 5.90 

30 
10 

TIM protein 39 
39 

19.0 19.0 19.0 19.0 18.03 
± 3.50 

18.65 
± 2.83 

18.50 
± 1.35 

18.65 
± 4.29 

35 
11 

 4 

B  Valley 
Median 

Valley 
Avg ± SD 

 

Clock 
Component 

nRaw 
nMod  

Raw 
Circ 

Mod 
Linear 

Mod  
Maj 

Mod  
Odd 

Raw 
Circ 

Mod 
Linear 

Mod  
Maj 

Mod  
Odd 

nMaj 
nOdd 

clk mRNA 30 
30 

14.97 14.97 14.97 14.50 14.33  
± 1.67 

14.33 
 ± 1.67 

14.58  
± 0.69 

14.15  
± 2.12 

17 
17 

per mRNA 24 
24 

5.0 4.5 5.0 4.75 6.61  
± 6.22 

3.61 
± 2.60 

4.20 
± 1.36 

3.65  
± 3.40 

20 
10 

tim mRNA 21 
21 

5.0 5.0 5.0 5.0 4.86 
± 1.52 

4.86 
± 1.52 

5.13 
± 0.81 

4.84 
± 1.37 

18 
11 

PER protein 47 
47 

9.0 9.0 8.68 12.0 9.01 
± 2.17 

9.27 
± 2.10 

8.68 
± 0.92 

10.08  
± 3.06 

32 
15 

TIM protein 36 
36 

4.0 4.0 4.0 10 6.19  
± 3.26 

6.19  
± 3.26 

4.83 
± 1.51 

9.66 
± 3.98 

29 
10 

 5 
Bold values indicate suspiciously high SD suggestive of excessive noise. ObsRaw are in 6 

circular time and not yet linearized; ObsMod are in linearized time. Mod refers to data from the 7 

Mod6 PeakValleyTables; see main text Figure 3. To compare summary statistics of distributions 8 

that mostly come from usual or extreme values, statistics are also calculated for Maj (Majority) 9 

or Odd values. The counts of these values are given by nMaj or nOdd for usual majority or odd 10 

extreme values; these were collected from the middle of ObsMod or from its margins, 11 

respectively. For further explanations see text above. This table also draws on summary 12 

statistics of Odd6 to show the increased variability of odd values. The other results in this table 13 

are from a comparative TS tables analysis completed on 2016-08-16 for Obs Raw, Mod, and 14 

Maj. No outliers were removed for calculating Raw, Mod, or Odd. The number of Obs included 15 

is given by nRaw, nMod, nMaj, and nOdd, for Raw, Mod, Maj, and Odd, respectively. For related 16 

analyses see also Table 4 in the main text, as well as Table 6, Table 7, Figure 6, Figure 7, and 17 

parts of the Supplemental Statistical Analysis. 18 
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Solution by linearization. Close inspection indicated the problem (see above). 1 

We used these insights to devise a linearization procedure. The manual effort required 2 

for detecting the problem in the first place and then developing a solution consumed 3 

substantial amounts of research time. Other researchers will have to retrace or re-invent 4 

our work at substantial cost if they aim to avoid this problem. If a solution could be made 5 

available in the form of a compiler, then others could use and build on our results with 6 

almost no effort. 7 

 8 

How a simple VBIR compiler can help. Compilers can easily detect type-9 

mismatches such as “DZT” vs “CZT” and plainly refuse any operations that require any 10 

mix of types. While this would mean that our data could not be analyzed with automated 11 

help, it would also guarantee that the root problem of type mismatch is brought to the 12 

attention of researchers.  13 

 14 

How a more advanced VBIR compiler can help. Sophistication beyond plain 15 

checks of type labels requires dedicated code addressing specific problem using 16 

domain specific biological expertise. For example, a VBIR compiler with definitions for a 17 

well-developed type system for circadian time series analysis could automatically check 18 

for potential DZT vs CZT confusion when calculating statistics beyond day 1, while 19 

allowing day 1 to be calculated if all data points are indeed from that day. Such a 20 

compiler would use a test for matching types to deduce the implicit drop of days from 21 

inspecting the type mismatch in combination with the actual data available at days 22 

beyond the first and explore remaining safe options. If user-friendly enough, it would 23 

create an understandable error diagnosis and alert the biological model curator in 24 

charge. If intelligent enough, such a compiler will offer a list of potential solutions from 25 

which the biologist in charge can choose efficiently how to address this problem and 26 

newcomers could request additional information. If analyses could only be performed by 27 

lucky accident (because this dataset allowed it, but others might not), then this compiler 28 

could produce a warning to that effect, so curators can anticipate potential problems as 29 

new data arrives. 30 

 31 

Other examples. It would be easy to create a long and detailed list of cases 32 

where appropriate support by a compiler could have speeded up our work with 33 

FlyClockbase. Examples include the lack of support for expressing ranges or three-34 

point-estimates for parameter values or measurements with substantial uncertainty, the 35 

lack of warnings when spreadsheet parsing or calculating algorithms come across 36 

values of the wrong type, the lack of appropriate number systems that guarantee correct 37 

handling of cyclical and linear numbers and many more.  38 

  39 
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 1 

Compilers that directly assist in biological research. A sufficiently advanced 2 

compiler would be like a helpful assistant2, finding errors like needles in haystacks of 3 

potential problems, cutting debugging time, and preventing untold additional problems 4 

on the way. Such a compiler will be useful to the degree that it can provide diagnoses 5 

and abstractions for detailed and difficult challenges. These challenges need to be 6 

solved first by a human, who can then build/teach a compiler how to solve the problem. 7 

 8 

Expected cost reductions. Once the compiler will then be able to routinely 9 

perform the corresponding work the cost savings for VBIR development and teaching 10 

become substantial (the compiler can easily point to additional resources and more as 11 

demonstrated by the integrated help function of the R statistical programming language. 12 

If statistics has its language in R, why does biology not have its own language? The 13 

efficiencies gained would allow the scientists of today to enable the next generation of 14 

scientists tomorrow to get much faster to stand on the shoulders of giants. The compiler 15 

would be like an aerial cableway, which gets others faster to a place of uncluttered 16 

overviews. 17 

 18 

 19 

 20 

 21 

  22 

                                                        
2 See http://elm-lang.org/blog/compilers-as-assistants for an exposition of what it might mean if 
compilers actually operated as assistants. This problem is inextricably linked to questions of 
syntax design. For example, see the importance of operator priorities [Razali et al., 2015, 
Operators and Precedence in Programming Languages.] and parsing which impacts the 
flexibility and quality of error messages that a compiler can produce [see Grune & Jacobs, 2008, 
Parsing techniques: a practical guide. Springer, New York.] 
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TABLE 1.   Circadian clock components referenced in this study as introduced by their 1 

Brief, Explicit, Summarizing and Technical Name equivalents defined by using 2 

the Evolvix BEST Names concept. 3 

Brief 
Name 

Explicit  
Name  

Summarizing  
Name (description) 

Technical Name 
FlyBase ID 

clk clock Promotes transcription of per, tim, 
pdp1, vri, cwo 

FBgn0023076  

per period Binds TIM, inhibits CLK action 
 

FBgn0003068 

tim timeless Binds PER, inhibits CLK action, 
degraded in response to light 

FBgn0014396 

cry cryptochrome Activated by light, promotes TIM 
degradation 

FBgn0025680 

cwo clockwork orange Stabilizes "jitters" (minor variations) 
in the clock 

FBgn0259938 

pdp1 PAR-domain protein 1 Promotes transcription of clk 
 

FBgn0016694 

vri vrille Inhibits action of PDP1 
 

FBgn0016076 

pdf 
 

pigment-dispersing factor Synchronizes different clock neurons FBgn0023178 

sgg shaggy Phosphorylates TIM, promotes 
nuclear localization 

FBgn0003371 

jet jetlag F-box protein, contributes to TIM 
degradation 

FBgn0031652 

ck2a casein kinase 2 alpha Phosphorylates PER, promotes 
nuclear localization 

FBgn0264492 

dbt doubletime Phosphorylates PER, promotes 
degradation 

FBgn0002413 

nmo nemo Phosphorylates PER, promotes 
further phosphorylation 

FBgn0011817 

slmb slimb F-box protein, contributes to PER 
degradation 

FBgn0283468 

cyc cycle Binds to CLK 
 

FBgn0023094 

cu, noc curled, nocturnin Implicated in light response, 
metabolism, mRNA degradation 

FBgn0261808 

Brief Names and Explicit Names represent abbreviations and full common names, respectively. 4 

Summarizing Names provide a brief description, and Technical Names correspond to 5 

hyperlinked FlyBase Identifiers. In the text, we follow the convention of denoting the proteins in 6 

CAPITAL letters and mRNAs or genes in italics (hence the use of italics for the brief names 7 

here). More about the way synonymous dialects (defined by the Evolvix BEST Names concept) 8 

can help navigate biological naming complexity can be found elsewhere (LOEWE et al. (2014; 9 

2016) and LOEWE et al. (2017) for a more in-depth discussion of naming). 10 
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 1 

TABLE 2.   FlyClockbase and VBIR concepts and related keywords   2 

as introduced by their Brief, Explicit, and Summarizing Name  3 

equivalents defined by using the Evolvix BEST Names concept. 4 

 5 

Overview of concepts by naming gives the Brief and Explicit Names used in the main text for 6 

important FlyClockbase data structures (always in italics, usually capitalizing the beginning of 7 

significant words). Their Summarizing Name gives a description that could be turned into a 8 

rather long very descriptive name. The nature of these names is defined by the Evolvix BEST 9 

Names concept, see http://evolvix.org/naming and LOEWE et al. (2017). Order of entries loosely 10 

follows conceptual relations. See main text for more details. 11 

 12 

Brief 
Name 

Explicit  
Name  

Summarizing  
Name (description) 

   
 Italicized ProperNames Brief and Explicit names of FlyClockbase components 

are treated both as variables (hence italicized, indicating 
flexible content) and as proper nouns (hence Capitalized 
to contrast their special role with the generic role given 
by their name). In program code ConcatenateAllWords 
without spaces; our main text may add SomeSpaces 
BackIn for readability. 

   
VBIR Versioned  

Biological 
Information 
Resource 

Systematic collection of biological information for a 
specific purpose, irrespective of technology used to 
implement it. Like FlyClockbase, VBIRs usually need to 
cope with much uncertainty, contradictions, gaps, and 
numerous exceptions in biological data. Their versioning 
indicates that they store biological information using 
controlled immutable increasing versioning numbers that 
label each publicly released VBIR variant and help 
ensure that previously released data remains accessible 
under that label. 

POST POSTsystem Project Organization Stabilizing Tool system is at the 
very foundations of organizing files in FlyClockbase, 
Evolvix, and TabFS and Evolvix. Stable online reference: 
http://evolvix.org/post 

StabZ StablizingZone Backbone of a stabilizing versioning number system 
defined by the POST system of Evolvix; represented by 
the double capital letters ranging from MM to TT (from 
MockupModel to TrustedTested). See Supplemental 
Material Table P1. 

TabFS TabFS Tab-delimited table text file system for organizing the 
basic file layout of FlyClockbase and Evolvix 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 190 

Sec Section Topical area in a VBIR. 
SumS SummarySection Stores summarized statistics of published time series in 

FlyClockbase 
DetS DetailsSection Stores all details of non-summarized individual raw time 

series submissions in FlyClockbase  
to enable independent statistical analyses.  

Hbasic BasicNullHypothesis See main text Results for a full definition. 

Obs Observation Obs in FlyClockbase refers to biological observations 
that are closer to real-world biology than derived 
analyses (e.g. estimates, results). Obs stands in direct 
contrast to Simulations (Sim, may try to mirror a given 
Obs; see http://evolvix.org/post for more details).  

ObsRaw ObservationRaw Obs in the form of Raw data as received  
(use versioning to correct trivial errors if needed;  
no additional modifications allowed). 

ObsMod ObservationModified Any raw Obs modified before further processing, 
including the removal of obvious outliers (or any 
changes to input data that could be questioned). 
ObsMods start all with ObsRaw, and distinguish each 
modification by appropriate versioning, such as 
ObsMod6, originating from ObsMod5.  

ObsOdd ObservationOdd Any Obs classified as unusual, extreme or unexpected. 
Conceptual opposite of ObsMaj. Where possible store 
processing status as in ObsRawOdd, or ObsMod1Odd. 

ObsMaj ObservationMajority Any Obs classified as usual, typical or expected. 
Conceptual opposite of ObsMaj. Where possible, store 
processing status as in ObsMod6Maj (Majority of Mod6 
of Obs). 

Tbl Table A fundamental data structure in FlyClockbase; each Tbl 
is to be stored as a separate tab-delimited file that 
defines Rows and Columns and can be edited by 
spread-sheet software (see FlyClockbase for format 
details). Tbls for Content, Attributes, and Traits are very 
different. 

Col Column Minimal vertical selection of a Table, including each 
Row; first Row is ColumnHeader. 

Row Row Minimal horizontal selection of a Table, including each 
Col; first Col may be RowHeader or Time, or an 
immutable TableIndex for unambiguously identifying 
each Row. 

IDX IDIndex, 
TableIndex 

Identifier index column in a table of TabFS or 
FlyClockbase, where the type of index is usually 
specified by a sequence of additional suffixes. 
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ID Identifier An unambiguous label (= name) that can be used in its 
context to refer to specific content it denotes. 

IDL IDLocal Atomic identifier, local and thereby relative to its local 
context, as defined elsewhere. This shortest of all IDs is 
given by a single positive integer. 

IDF IDFragment An ID fragment requires context (for its first=top IDL), but 
also specifies contexts for each IDL it contains in its path 
of local IDs (separated by “.”) 

IDM IDMemory Identifier guaranteed to refer to a unique item within a 
defined memory area, such as FlyClockbase. It can 
easily be made globally unique by prefixing it with the 
IDG of its memory area. 

IDG IDGlobal Identifier as globally unique as possible; see figure 3 in 
Loewe et al. (2017). 

   
 1 

Itm Item Any entity that provides a Context for its Content, and 
that can itself be Content in some other Context. This 
makes Items nestable. Items can also have Attributes 
and Traits, which complement Content, albeit without 
being Content. 

Cxt Context Context belongs to an Item and contains Content, 
Attributes, and Traits.  

Cnt Content Any container for directly storing ‘the data itself’, 
describing data item(s) of primary interest; contains 
neither Attributes nor Traits. Content is always stored in 
some Context. 

Att Attribute Any container for storing ‘data about data (meta-data)’, 
describing the non-computable type and value of a 
fragment of information inherent to the content of a given 
item; contains no Traits. 

Tra Trait Any container for storing ‘data derived from data’, 
describing a defined type and computable value that 
capture an emergent feature derived from Content and 
Attributes.  

Ref Reference Refs in FlyClockbase, TabFS or Evolvix are always 
bibliographic references ready for citing in a paper.  

   
CntTbl ContentTable Frequently used Type of exclusively Content-storing 

Table (e.g. for TimeSeries); there exists always a related 
AttributeTable for storing newly learned Attributes.  

AttTbl AttributeTable Set of Attributes for a given ContentTable. This Type of 
Table stores exclusively Attributes and always refers to a 
ContentTable. 
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TraTbl TraitTable Table storing exclusively Traits. Always refers to a 
ContentTable (and its Attributes and code as source). 

 SearchResult Set of Tables with Content and Attributes copied and 
Traits computed from FlyClockbase  

 1 

BBin BioBinary A BBin stores 2 bits to distinguish 4 states enumerated 
by the OKScale (OK, OKO, KO, MIS), designed for 
statements in biology, where FullyTrue (OK) or 
FullyFalse (KO) are less appropriate than Intermediate 
(OKO), or assuming applicability is a Mistake (MIS). 

OK, OKO FullyTrue, Intermediate see BBin 
KO, MIS FullyFalse, Mistake see BBin 
OKS OKScale see BBin 
   
TS  TimeSeries Content data type central to FlyClockbase; stored in a 

Table with at least one Column for Time and one for an 
Obs of the amount of molecules specified in the 
ColumnHeader  

ZT ZeitgeberTime A time measure used in circadian clock research to 
denote the time that passed since the last dawn (i.e. 
Lights went “on”). Any event during the day is then 
measured in terms of decimalized hours after ZT = 0h. 
Range: 0h < ZT ≤ 24h. 

DZT DailyZeitgeberTime Identical to ZT. DZT replaces ZT in FlyClockbase and in 
this study. Its shows a decimalized hour of the day but 
hides its counter of days. DZT was defined to 
unmistakably refer to the circular nature of hours / day. 
Range: 0h < DZT ≤ 24h.  

CZT ContinuousZeitgeberTime Almost identical to DZT, but not quite. Both appear the 
same for the first 24h. They start diverging at the 
beginning of day 2 = end of day 1, when DZT time is 
“reset” to 0h, while CZT progresses steadily:  …, 23h, 
24h, 25h, … as measured in decimalized hours. Range: 
0h < CZT < unlimited h. 

 Peak Daily time of highest amount of a component. 
 Valley Daily time of lowest amount of a component. 
 PeakValleyTables The specific SearchResultTable compiled manually from 

FlyClockbase for testing hypotheses explored in this 
study.  

h hours Default unit for measuring time in this study. Applies to 
Peak, Valley, CZT, DZT, and ZT. Here a day is defined 
by 24h. Fractions of hours are decimal; FlyClockbase 
does not recognize minutes (e.g.: 0.9h = 54min; 1.5h = 
90 min; etc). 
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- comvar2 Robust statistical test for measuring the significance of 
differences in variance using bootstrap methods (albeit 
only for a P-value of 5%; see Statistical Methods for 
details). 

 1 

 2 

 3 

Avg Average Averages default to the arithmetic mean 
SD StandardDeviation, StDev Typically shown in plots of this study: the standard 

deviation inferred from n data points which are assumed 
to follow a Normal distribution; Var = SD2 

Var Variance Tested for significant differences by comvar2: the 
variance inferred using the same assumptions as for SD. 
Var = SD2 

n NumberObserved Number of observations in a given set. 
SEM StandardError_of_Mean Sometimes used in confusing ways to obscure 

variability. Ideally, all individual replicates are reported to 
enable reanalyzes; else quantiles or other summary 
statistics may aggregate values of the actual distribution 
of interest. SEM is not a measure of the data, but 
estimates errors of a summary statistic of the data; 
giving it a ‘3rd hand quality’. Some authors further 
degrade meta-analysis power by confusing SD and SEM 
(SALSBURG 1985; VAUX 2012).  

CI ConfidenceInterval 
 

Denotes a credible range of values for a point estimate.  
A CI is defined by repeating a point estimate procedure 
(infinitely) many times and creating a histogram of the 
results. In that histogram, the range of values of the 
given point estimates that a given percentage of values 
is expected to take, is defined as a CI. A CI is defined 
incompletely without 
  -  the percentage of all estimates it is to contain (e.g. 
95% or  0.95 when rejecting 2.5% of correct values on 
both sides),  
  -  type information about the point estimate (e.g. Avg, 
or Var),  
  -  specifying what is being replicated while measuring 
the CI  (experiments, bootstrap samples, etc.). 

Mi ValueCredibleMiddle Denotes the most credible Middle point value. The type 
of this value defines how to compute credible values for 
Lo, Mi or Hi. Hence, this trio can generally be reused for 
quantifying distributions of any type, including those 
implicitly defined by the output of a computational 
procedure or human intuition.  
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Min ValueMinimum Guaranteed minimum of all values of a type. 
Lo ValueCredibleLow Lower limit for a value that is still credible. 
Hi ValueCredibleHigh Higher limit for a value that is still credible. 
Max ValueMaximum Guaranteed maximum of all values of a type. The type 

defines whether observations or possibilities are to be 
considered.  

   
EMU ErrorMeasureUnknown An abstract error statement type for cases where nothing 

is known that could possibly limit potential errors. Used 
as default for unique Obs without error estimates. EMU 
is the equivalent to Nothing when it comes to making a 
statement about the limits of errors. EMU states that no 
information is available that might reduce the range of 
credible errors, not circumstantially, statistically, 
contextually, conceptually, numerically, or in any other 
way. EMU errors may be infinite (since unknown!), but 
they instantly collapse when estimating or observing 
actual errors in the real world. Under this logic, values 
with no attempt to quantify uncertainty are infinitely 
uncertain (not infinitely certain as often assumed). EMUs 
reward attempts to engage with uncertainty by 
estimating errors indirectly or by observing them directly 
when recording as many independent Obs replications 
as feasible.  

- Nothing Abstract type that is foundational to all other types that 
indicate the absence of a particular thing, idea or activity. 

- NotGiven A special type of Nothing dedicated to representing that   
(i) a certain observation must have existed and  
(ii) could in principle have been recorded, but  
(iii) for whatever reason, the information was NotGiven.  
To reduce ambiguity in FlyClockbase, we redefined 
symbols that are commonly used in ambiguous ways to 
represent the resulting contradiction in type. Banning 
such errors simplifies recognizing such problems when 
importing data. For example,  
does ‘NA’ stand for ‘NotAvailable’ or ‘NotApplicable’?  
Does ‘0’ indicate absence or is it a measure of time 
using cyclical or linear numbers? What type is implied in 
‘NULL’? 

- MethodRealm Specifies in which of the broad biological realms of 
observation a given time series was measured 
(in vitro, in vivo, ex vivo, post mortem) 

 1 

TABLE 2 END  2 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Scheuer et al.                  FlyClockbase: curating time series variances 

QQv1r4  Updates at bioRxiv https://doi.org/10.1101/099192 195 

TABLE 3.   Data in FlyClockbase counting independently observed  1 

D. melanogaster time series summaries available for each clock  2 

component in the Summary Section of FlyClockbase. 3 

 4 

Clock Component Time Series  
[n] Studies [n] 

per mRNA 89 42 
PER protein 77 26 
tim mRNA 51 27 
TIM protein 42 16 
clk mRNA 33 18 
vri mRNA 31 14 
cry mRNA 18 10 
CRY protein 16 6 
pdp1 mRNA 15 10 
CLK protein 10 5 
cwo mRNA 5 3 
PDF protein 4 2 
VRI protein 2 2 
jet mRNA 2 1 
dbt mRNA 2 2 
CYC protein 2 1 
cyc mRNA 1 1 
sgg mRNA 1 1 
ck2 mRNA 1 1 
PDP1 protein 1 1 
Total 403 86 

 5 

 6 

TABLE 3 END 7 
  8 
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 1 

TABLE 4.   Time series overview:  2 

average (Avg), standard deviation (SD), and number of time series available (n)  3 

for daily peak and valley times of some mRNA and proteins in FlyClockbase. 4 

 5 

Component 
of the Clock 

Peak 
Avg   ± SD [h] 

 
n 

Valley 
Avg   ± SD [h] 

 
n 

per mRNA 14.64 ± 1.65 88   3.61 ± 2.60 24 

tim mRNA 14.54 ± 1.92 48   4.86 ± 1.52 21 

TIM protein 18.41 ± 2.54 37   6.33 ± 3.18 35 

PER protein 19.50 ± 3.40 33   9.27 ± 2.10 40 

clk mRNA   2.79 ± 3.16 12 14.33 ± 1.67 30 

CLK protein 11.57 ± 3.18   5 12.51 ± 4.30   9 

CRY protein 23.02 ± 1.59 15   9.96 ± 3.73 16 

cry mRNA   6.77 ± 2.96 11 16.23 ± 2.54 17 

pdp1 mRNA 14.70 ± 1.81 15   4.68 ± 1.88   5 

 6 

A clock component is listed if at least four different time series values exist for both peak and 7 

valley. Statistics were computed for Mod6 modified PeakValleyTables (see Figure 3) without 8 

removing outliers. All times in decimal fractions of hours have been linearized such that CZT 9 

(given) is effectively equivalent to a corresponding DZT = ZT. For related analyses see also 10 

Table S1, Table 6, Table 7, Figure 6, Figure 7, and parts of the Supplemental Statistical 11 

Analysis. 12 

 13 

TABLE 4 END 14 

  15 
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TABLE 5.   Human error rates for four Mod5 PeakValleyTables. 1 

 2 

Clock 
Component 
TimeSeries 
counted 

Errors 
counted in 
FlyClock-
base  

Peak TraitTable Valley TraitTable 
All Peaks 
counted 

Errors  
counted 

All Valleys 
counted  

Errors  
counted 

per mRNA 
(88) 2 87 7 24 6 

tim mRNA 
(49) 1 48 2 20 0 

TIM protein 
(43) 1 29 4 34 6 

PER protein 
(57) 1 30 12 39 8 

 3 

 4 

To approximate an error rate for PeakValleyTables, we chose the four Mod5 tables of the most 5 

abundant clock components and re-examined the timing of each peak and valley in-depth. All 6 

errors were corrected in the Mod6 PeakValleyTables. Not all time series in FlyClockbase were 7 

long enough to include both a peak and a valley for day 1 (474 expected vs 311 observed peaks 8 

as shown in Figure 6). While the error rate for FlyClockbase is reasonably low for the columns 9 

tested (5 errors in at least about 5 effective columns in the big TimeSeries AttributeTable 10 

suggest an overall rate of at most about 5 / (5 * (88+49+57+43)) = 0.42% per cell; rule of thumb: 11 

ca 1% for trivial errors), manually exporting and computing TraitTables resulted in much higher 12 

error rates. Most of these are caused by the inconsistent manual application of technical 13 

procedures that had been agreed upon when analyzing the traits of highly heterogeneous time-14 

series in their broader context (the 25 peak errors and the 20 valley errors resulted in about 45 / 15 

311 = 14% errors; rule of thumb: > 10% for errors from forgetting one of a few rules). Ultimately, 16 

it is desirable to construct PeakValleyTables automatically via script. However, it is not clear 17 

whether this necessarily reduces the number of errors or the amount of time to achieve a given 18 

accuracy goal, unless data structures are rather uniform and/or the same errors reoccur often 19 

with only minor variations. A large number of procedural errors and their extreme heterogeneity 20 

can greatly complicate the (manual) implementation of code that needs to recognize each type 21 

of error in order to address it.  22 

 23 

TABLE 5 END 24 
  25 
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TABLE 6.   Timing distribution differences tested between per and tim   1 

to compare averages and variances of peak and valley times  2 

for proteins and mRNAs after removing outliers. 3 

 4 

 Point distribution  
CZT Observed [h] 

Differences Distribution 
of CZT point distributions [h] 

Test 

 per tim Lo 2.5% Middle 50%  Hi 97.5% P-Value 
Protein peak 
Var 4.1377 0.89211 0.97136 3.2456 5.6033 

  
* (P < 5%) 

Avg 18.644 18.915 −0.99996 −1.2345x10−5 0.99994 0.98753 
n 91% =30/33 78% =29/37     
mRNA peak  
Var 2.4877 4.4906 −4.1225 −2.0029 −0.0035509 

  
* (P < 5%) 

Avg 14.606 14.587 −0.83733 4.3138x10−6 0.99996 0.66505 
n 99% =87/88 100% =48/48     
Protein 
valley Var 3.7568 6.3773 −6.8437 −2.6205 1.3534   (P > 5%) 
Avg 9.4058 5.8421 3.00 4.00 5.00 1.489x10−7 
n 100% =39/39 94% =34/36     
mRNA valley 
Var 5.3608 1.3215 0.17418 4.0393 8.3148 

  
* (P < 5%) 

Avg 3.606 5.0894 −2.0611 −1.00 −1.8909x10−5 0.012835 
n 100% =24/24 100% =20/20     

 5 
Removal procedures have been described elsewhere (CARLING 2000; WILCOX 2012), see our 6 

approach (iii) in Statistical Methods, and Mod6 in Figure 3 (this table and Figure 6 are based on 7 

the same data). Abbreviations: Var = Variance calculated for data sampled from a given 8 

distribution to quantify spread; Avg = Average = arithmetic mean calculated for a sample to 9 

quantify the location of a distribution; n = numbers of observations without/with outliers; P = 10 

probability of rejecting the null-hypothesis that the point distributions observed for tim and per 11 

are drawn from the same underlying distribution according to an unpaired, two-sided Mann-12 

Whitney-U test for Avg, and the “comvar2” method with 105 bootstraps from Wilcox (2012) for 13 

Var, as described in Materials and Methods (significant differences are highlighted in bold). The 14 

additional digits in this table do not necessarily reflect accuracy. They were kept to simplify 15 

searching for their context in the Supplemental Statistical Analysis (searches are fast, even 16 

though not all mappings are unique; trailing zeroes were omitted by R and thus added back to 17 

four of the numbers; some digits are greyed out to reduce visual clutter). See main text for 18 

discussion and consequences of adding outliers back into this table. For related analyses see 19 

also Table 7, Figure 6, Figure 7, Table 4, Table S1 and parts of the Supplemental Statistical 20 

Analysis. 21 

TABLE 6 END 22 
  23 
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TABLE 7.   Impact of outlier removal approaches on  1 

differences in variance of protein peak times (PER – TIM). 2 

 3 

Outlier  
removal 
approach 

Outliers 
counted 
/ All data 

PER-TIM 
Variance  
Lo 2.5% CI  

PER-TIM 
Variance  
Mi 50%  

PER-TIM 
Variance  
Hi 97.5% CI  

 
Significant  
at P = 0.05 

No outliers 
removed 

0/33 (PER) 
0/37 (TIM) 

-8.308       4.7564         15.755 no 

Removal type (ii): 
Manual extremes 

3/30 (PER) 
1/36 (TIM) 

   -1.7526 1.3432 4.2201 no 

Removal type (iii): 
Carling (2000) 

3/30 (PER) 
8/29 (TIM) 

        0.97136      3.2456      5.6033 yes 

 4 

Manual removal of four extremely different time series (row (ii)) substantially narrows the 5 

distribution of differences in variance seen prior to removal. However, this does not yet achieve 6 

the statistical significance seen when applying the Carling (2000) outlier removal approach (iii) 7 

as used in Table 6. Each row reports one comparison that calculates Var(PER)-Var(TIM) using 8 

“comvar2”, 105 bootstraps; see Statistical Methods Section. As seen in rows 1-2, if the CI 9 

includes 0, the test indicates that the variances of both distributions are drawn from a common 10 

distribution with a probability of 5% or more. For related analyses see also Table 6, Figure 6, 11 

Figure 7, Table 4, Table S1 and parts of the Supplemental Statistical Analysis.  12 

 13 

TABLE 7 END 14 

 15 

  16 
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TABLE 8.   Standardization proxies: overview of potential approximations for  1 

quantifying method detail standardization and method detail similarity  2 

for independent observations of per mRNA. 3 

 4 

 5 

The count column specifies the number of time series or studies that used the general method 6 

type specified for the row. We approximated method standardization with a binary variable 7 

indicating whether or not any method references were cited in the paper. Here we assumed that 8 

papers who did not cite any method paper either adapted an existing method or did not closely 9 

follow a given set of instructions for other reasons (see text for implications). To approximate the 10 

similarity of methods that produced time series, we used another binary variable to indicate 11 

whether or not a given study shared at least one method reference with any of the other studies 12 

that cited at least one method reference. We assumed that shared references might indicate the 13 

use of more similar methods, which would result in more similar observations compared to ‘time 14 

series from papers that had only non-shared method references’ (but still required at least one 15 

method reference to be included). Note the subtle difference in logic when considering a 16 

comparison to ‘time series from papers that did not give shared method references’ (which 17 

includes those with no method references at all). See Figure 10 for a visualization of the 18 

corresponding sets and Figure 9 for the raw data on protocol use, which underpins this analysis.  19 

 20 

TABLE 8 END 21 

 22 
  23 

Measureme
nt method 

Count of 
time series 
/ studies 

Any method refs ≥ 1 
given for time series /  
given for studies 

Shared method refs ≥ 1 
given for time series /  
given for studies  

PCR 25  / 
13 

72% (18 / 25)  / 
54% (7 / 13) 

17% (3 / 18)  / 
29% (2 / 7) 

RPA 45  / 
24 

100% (45 / 45)  / 
100% (24 / 24) 

93% (42 / 45)  / 
88% (21 / 24) 

Northern 
Blot 

9  / 
5 

56% (5 / 9)  / 
60% (3 / 5) 

40% (2 / 5)  / 
67% (2 / 3) 

Microarray 4  / 
3 

0% (0 / 4)  / 
0% (0 / 3) 

not applicable 
not applicable 

RNA-Seq 4  / 
1 

100% (4 / 4)  / 
100% (1 / 1) 

not applicable 
not applicable 
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 1 

FIGURE 1 2 

 3 

 4 
 5 

FIGURE 1. Systems biology overview of the circadian clock in D. melanogaster. This 6 

simplified diagram shows the basic components of the D. melanogaster circadian clock. In one 7 

feedback loop, CLK binds CYC and promotes the transcription of per and tim. The proteins PER 8 

and TIM then form a complex and repress this effect of CLK. Light activates CRY by inducing a 9 

conformational change (denoted by *), and CRY and SGG work with JET to promote the 10 

degradation of TIM. Without TIM, PER is phosphorylated, interacts with SLMB, and is degraded. 11 

In a second feedback loop, the CLK/CYC complex promotes transcription of pdp1, vri, and cwo. 12 

PDP1 promotes transcription of clk, and VRI inhibits the action of PDP1. CWO weakly inhibits 13 

CLK-promoted transcription of per, tim, vri, pdp1, and itself. The notation in this diagram uses 14 

Systems Biology Graphical Notation Process Description level 1 version 1.3 (MOODIE et al. 15 

2011), with minor modifications.  16 

TIM
P

PDP1

vri

CLK

CWO

VRI

PER
P

JET SGG

CRY
*

SLMB
clk

pdp1

cwo

vri

tim

per

tim

pdp1

clk

per

CLK

CYC

TIM

PER

PER
P

TIM

PER

TIM

\\
\\

CRY

Phosphatases

Some Kinases

cwo

CYC

\\

Modulation

Strong Inhibition

Weak Inhibition

Association

Gene

Protein

Phosphoryl. Protein

Activated Protein

mRNA

Necessary Stimul.

Other Process, like 

Transcribt., Translat.

P

*

Unmodified Protein

Complex

Light

Stimulation
Dissociation

Degradation

Legend

\\ Omitted Process

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/099192doi: bioRxiv preprint 

https://doi.org/10.1101/099192
http://creativecommons.org/licenses/by/4.0/


Panoramic view of challenges in biological model curation 2017-07-14 

 Updates at bioRxiv https://doi.org/10.1101/099192          QQv1r4 202 

FIGURE 2 1 

 2 

 3 

FIGURE 2. Overview of FlyClockbase organization and data model. We extracted as much 4 

raw data and as many reported experimental details as possible from plotted time series 5 

summary figures and their publications. We stored bibliographic information in the References 6 

AttributeTable (Step S3) and stored figures as files ready for plot digitizing (Step S1). For 7 

convenient reanalysis, we included all files of open access studies in FlyClockbase. From each 8 

figure with appropriate Attributes we extracted the FlyClockbase TimeSeries Content (TS) itself 9 

as RawObservations (ObsRaw, Step S2). TS report some measure of the number of molecules 10 

of a given clock component as observed at a given time and in a given volume. The volume and 11 

other scaling factors are usually unknown and may be non-linear on occasion. Here we assume 12 

that amounts of Obs TS indicate a measure of relative abundance among neighboring amounts 13 

of the same given TS. To place each TS in its appropriate context, we collected as many TS 14 

Attributes as we could reasonably extract from the experimental details given in the original 15 

study (Step S4). These Attributes are stored in the SumS TS AttributeTables.  16 

 To obtain the more refined TS ContentTables ObsModified (ObsMod), we rechecked the 17 

data based on information in its associated publication (such as exact times of data collection, 18 

Step S5). Time series in SumS ObsRaw were not refined into ObsMod if they were shorter than 19 

six hours or if more than half of their values were missing or unreadable. All other TS were 20 

copied and modified into ObsMod and used with their respective Attributes for further analyses, 21 

ultimately aiming to produce a retrospective meta-analysis. To export the relevant data from 22 
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FlyClockbase requires a SearchResult, which includes the specified Content, Attributes, and 1 

computed Traits (stored in TS TraitTables). Such SearchResults could be compiled manually or 2 

automatically and are stored in a TableSet, which can include TS TraitTables. For the 3 

retrospective meta-analysis presented here we manually compiled TS TraitTables reporting one 4 

peak and one valley from each ObsMod TS measured in CZT (Steps S6, S7, S8). These peak-5 

valley TS TraitTables are further processed in Figure 3. Content and Attributes for >400 TS 6 

derived from published studies are stored in the Summary Section (SumS), which does not 7 

include raw experimental data of separately observed TS. These will be stored in DetS, the 8 

Detail Section, which is planned as an extension that will enable the submission and processing 9 

of more detailed and less summarized ObsRaw TS Content in order to enable researchers to 10 

compute their own independent summary statistics. 11 

  12 
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 1 

FIGURE 3 2 

 3 

 4 

 5 

FIGURE 3. Workflow for refining the time series traits reported in peak-valley-tables. 6 

These tables represent a SearchResult (as in Figure 2) and contain a special set of Traits and 7 

Attributes extracted from FlyClockbase. In this study we extracted the times associated with the 8 

maximum (“Peak”) and minimum (“Valley”) amounts of the first each day of each time series. 9 

Each row of a peak-valley table contains a peak observation and a valley observation for one 10 

day of one time series, along with Attributes of interest. One peak-valley table was produced for 11 

each clock component of interest.  12 

 Refinement of outliers (Mod1-Mod5). The tables for each component formed a set that 13 

was refined together (from RawèMod1è…etc.). Raw PeakValleyTables show data for every 14 

day of the time series, while all Modified (“Mod”) PeakValleyTables only show data for the first 15 

day of the time series. To start identifying outliers and potential errors in these tables, we 16 

searched for clock components in which the SD for peak, valley, or both exceeded 6 hours. We 17 

examined these clock components more closely and corrected errors to create the first 18 

collection of modified PeakValleyTables (“Mod1”). We chose SD = 6 as initial cutoff value, since 19 

it approximates a uniform random distribution over all 24 hours (to us a sign of problems in 20 

correctly identifying the right values. For each modified peak-valley table in Mod1, we then 21 

calculated the SD and mean for peaks and valleys. Individual time series observations outside 22 

of the mean ± 1 SD were noted for further investigation and recorded in a peak-valley table 23 

reserved for these “Odd” values (“Odd1”). We examined Odd values for potential errors that we 24 

knew could be caused by data handling in FlyClockbase and corrected them appropriately to 25 

create the next set of modified PeakValleyTables (“Mod2”). We repeated this process until we 26 

created Odd5 and Mod5. Refinement up to this point was geared towards checking statistical 27 

outliers for errors in handling data or determining traits (in contrast to our error analysis below). 28 
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 Human Error Analysis Context. When the refinement process was first mapped out, the 1 

plan was to stop at Mod5 and use this repeatedly refined dataset for calculating the final 2 

analyses of PER and TIM. Since the curators were diligent motivated researchers aware of 3 

potential errors and carefully working to avoid them, there was no expectation that substantial 4 

numbers of errors could still lurk beneath the surface. Due to the importance of our conclusions 5 

for modeling the differences in stochasticity of PER and TIM we decided to still review all 6 

FlyClockbase data before finalizing the statistical analysis of the main result of this paper. We 7 

started our review with several random tests, manually conducted on the spot. These detected 8 

enough errors to justify a more systematic approach. We decided to avoid shortcuts and focus 9 

on an exclusive complete in-depth re-review of all those time series in FlyClockbase where 10 

errors in our data handling or trait computation could have affected our conclusions about the 11 

peak or valley timing of per mRNA, tim mRNA, PER protein, and TIM protein.  12 

 Errors tested included the following notable cases. (i) Peaks and valleys from maxima 13 

and minima at the margins of brief time series were probably not genuine, as they would have 14 

been unlikely to coincide with the start or stop of time series observations. Excluding these 15 

substantially reduced the variance we observed. (ii) The first day was non-representative in 16 

some important respect. If peak or valley times during day 1, our usually monitored interval, 17 

were noticeably different from subsequent days, we concluded that measurements probably 18 

started too early and used the peak and valley from a day that followed closely. (iii) On rare 19 

occasions fields in FlyClockbase had been swapped or misprocessed in some way. 20 

 Benefits. While laborious, this effort payed off in multiple ways (see Results and 21 

Discussion): (i) It greatly increased confidence in our PER-TIM peak time variance analyses; 22 

see Results. (ii) We manually identified particularly extreme outliers not caused by errors on our 23 

side. This motivated us to analyze their impact by defining ‘outlier removal approach (ii)’ and 24 

choose more systematic outlier removal approaches; see Statistical Methods; see Discussion 25 

for potential implications. (iii) FlyClockbase now has an internal human error analysis, see 26 

Results. Error rates might be extrapolated to non-per/tim components or other VBIRs of 27 

comparable complexity. Currently not many opportunities exist for measuring real-world human 28 

error rates in advanced data organization scenarios. (iv) Valuable lessons in automation and 29 

VBIR compiler construction were learned as a compiler architect worked closely with expert 30 

curators during manual error identification. Such manual work is necessarily the first step 31 

towards automation of such checks in a corresponding VBIR compiler infrastructure as 32 

envisioned in the Discussion. 33 

 Datasets of interest. Mod6 is the most refined set of observations with the highest quality 34 

produced by this study and was used as the basis for all biological analyses presented here. It 35 

was produced by correcting in Mod5 all errors in the data handling or trait calculation of per, tim, 36 

PER or TIM, while copying all data for other clock components unchanged from Mod5. The 37 

dataset ObsMod7 is essentially identical to ObsMod6, except for replacing a few cells in the 38 

table that were not analyzed here, but caused problems when R parsed the file. ObsMod8 is 39 

identical to ObsMod7, except for manual removal of the manually identified outliers (see outlier 40 

removal approach (ii) in Statistical Methods). ObsMod7 and ObsMod8 are provided with the R-41 

source-code archive in the Supplemental Material.  42 

  43 
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FIGURE 4 1 

 2 

 3 

FIGURE 4. Where do models get their realism from? Overview of data sources reported. 4 

Surprisingly few experimentally observed time series are used for estimating parameters in D. 5 

melanogaster circadian clock simulation studies. We reviewed 66 modeling studies identified 6 

here by AuthorYear. Only three of these did estimate parameters directly from full time series 7 

observed in experiments (using only 14 of the 86 experimental studies included in 8 

FlyClockbase). These three studies (and one that used their results) are denoted on the left by 9 

rectangles and rhombuses. The pie chart above them illustrates how many experimental studies 10 

were used (blue, solid line, 14) or ignored (pink, dashed line, 72) by modelers. The 13 studies 11 

represented by pentagons chose the simpler (but not simple) approach of searching for clock 12 

parameter combinations that satisfied some of the abstract time series requirements such as 13 

period length, see gray inset box. The 49 ovals represent models with parameters mostly or 14 

entirely based on the work of other models. Colored shapes represent models that informed the 15 

parameters of other models, where arrows of the same color connect the original and the 16 

subsequent models it informs (gray indicates that a model was not yet used for parameterizing 17 

other models).  18 

  19 

Rand
2006

Time series traits abstracted from experimental observations
• Has a period of about 24 hours
• Includes feedback loops
• Is robust to minor changes
• Appears physiologically realistic
• Has appropriate light response, 

including phase shifts

• Oscillates with reasonable amplitude
• Simulates mutant behavior as expected  
• Components show nuclear localization
• Shows expected mRNA to protein delay
• Has appropriate amount of PER protein
• Has expected time of permRNA peak

Fathallah-
Shayk
2009

Roenneberg
1998

Ueda
2001

Ruoff
2005

Bagheri
2008a

Wang
2010

Risau-Gusman
2012

Risau-Gusman
2014

Fromentin
2010

Shaik
2008

Lebiedz
2012

Maeda
2012

Leloup
2000

Laroche
2004

Tsumoto
2006

Bagheri
2007

Miura
2008

Ueda
2002

Zak
2001

Barkai
2001

Scheper
1999b

Katakura
2006 Gonze

2000

Leloup
1997

Leloup
1998a

Gonze
2003

Goldbeter
1996

Hong
1997

Gonze
2004 Petri

2001

Leloup
2001

Smolen
2002

Leloup
1999a

Kuczenski
2007

Taylor
2014

Goldbeter
1995

Tyson
1999

Scheper
1999a

Smolen
2001

Smolen
2004

Xie
2007

Leloup
1998b

Gonze
2002a

Gonze
2002b Slaby

2007
Bagheri
2008c

Kurata
2007

Bagheri
2007

Bagheri
2008b

Yi
2006

Li
2008

Kulasiri
2008

Xie
2009

Forger
2002

Kurosawa
2006

Li
2012Bagheri

2005

Leloup
1999b

Nieto
2015

Nandi
2008

Zak
2004

Stelling
2004

Maeda
2012

Diambra
2012

Experimental studies with directly 
observed time series data that were

Used in parameter estimation
Ignored in parameter estimation

Models based on 
Direct Data

Direct experimental data

Shapes denote models with 
parameters based on:

Experimental data and 
time series abstractions

Time series abstractions

Other modeling studies

Models based on Abstract Time Series Requirements

Leise
2007



Scheuer et al.                  FlyClockbase: curating time series variances 

QQv1r4  Updates at bioRxiv https://doi.org/10.1101/099192 207 

FIGURE 5 1 

 2 

 3 

 4 
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 14 

 15 

 16 

FIGURE 5. Data accumulation over time: overview of experimental studies available in 17 

FlyClockbase and their use for parameter estimation over time. (A) All studies in 18 

FlyClockbase are displayed based on the year they were published. Most studies have not yet 19 

been used to inform model parameters (pink dashed line bars).  (B) Summary of studies that 20 

were later used for parameter estimation are shown as blue solid line bars. These 14 studies 21 

are given (HARDIN et al. 1992; ZENG et al. 1994; SEHGAL et al. 1995; MARRUS et al. 1996; SO 22 

AND ROSBASH 1997; BAE et al. 1998; LEE et al. 1998; BLAU 1999; BAE et al. 2000; KIM et al. 23 

2002; SHAFER et al. 2002; CYRAN et al. 2003; GLOSSOP et al. 2003; KADENER et al. 2007) and 24 

come from the richer collection of 86 studies reported in version variant QQv1 of FlyClockbase: 25 

(HARDIN et al. 1990; ZERR et al. 1990; ZWIEBEL et al. 1991b; HARDIN et al. 1992; HARDIN 1994; 26 

SEHGAL et al. 1994; ZENG et al. 1994; SEHGAL et al. 1995; VAN GELDER et al. 1995; BRANDES et 27 

al. 1996; MARRUS et al. 1996; QIU AND HARDIN 1996; VAN GELDER AND KRASNOW 1996; 28 

MAJERCAK et al. 1997; ROUYER et al. 1997; SO AND ROSBASH 1997; STANEWSKY et al. 1997; BAE 29 

et al. 1998; CHENG et al. 1998; DARLINGTON et al. 1998; EMERY et al. 1998; HAMBLEN et al. 30 

1998; KLOSS et al. 1998; LEE et al. 1998; STANEWSKY et al. 1998; BLAU 1999; ISHIKAWA et al. 31 

1999; BAE et al. 2000; ROTHENFLUH et al. 2000b; BAO et al. 2001; CLARIDGE-CHANG et al. 2001; 32 

MCDONALD et al. 2001; OKADA et al. 2001; KIM et al. 2002; SHAFER et al. 2002; STANEWSKY et 33 

al. 2002; UEDA et al. 2002; AKTEN et al. 2003; CYRAN et al. 2003; GLOSSOP et al. 2003; DISSEL 34 

et al. 2004; MAJERCAK et al. 2004; GLASER AND STANEWSKY 2005; CHEN et al. 2006; KOH et al. 35 

2006; WIJNEN et al. 2006; YU et al. 2006; FANG et al. 2007; KADENER et al. 2007; MATSUMOTO et 36 

al. 2007; MUSKUS et al. 2007; KIVIMÄE et al. 2008; MEISSNER et al. 2008; PESCHEL 2008; YOSHII 37 

et al. 2008; DUBRUILLE et al. 2009; KADENER et al. 2009; LEAR et al. 2009; PESCHEL et al. 2009; 38 

WULBECK et al. 2009; YOSHII et al. 2009; ZHENG et al. 2009; KULA-EVERSOLE et al. 2010; CHEN 39 

et al. 2011; CHIU et al. 2011; ITOH et al. 2011; LAMAZE et al. 2011; LIM et al. 2011; GRIMA et al. 40 

2012; HUGHES et al. 2012; KUMAR et al. 2012; LI AND ROSBASH 2013; RODRIGUEZ et al. 2013; 41 

HERMANN-LUIBL et al. 2014; LAMBA et al. 2014; LEE et al. 2014a; OH et al. 2014; PEGORARO et 42 

al. 2014; SHI et al. 2014; SIMONI et al. 2014; SUBRAMANIAN et al. 2014; WEISS et al. 2014; 43 

ZHENG et al. 2014; ABRUZZI et al. 2015; MA et al. 2015).  44 
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FIGURE 6 1 

 2 

 3 

FIGURE 6.  Hypotheses on timing variances in PER and TIM as tested by 4 

FlyClockbase data, which extends our understanding of circadian clocks in flies 5 

by enabling observations of significant differences in variance between peaks 6 

and valleys of different clock components.  7 

 8 

Here we summarize results from comparing mRNAs and proteins of per and tim. Yellow 9 

funnels highlight changes in respective variances between timing traits of per and tim 10 

that are not negligible (over 5% of 105 bootstraps of available data reject the 11 

correspondingly customized null-hypothesis Hbasic that variances are equal). For related 12 

analyses see also Table 6, Table 7, Figure 7, Table 4, Table S1 and parts of the 13 

Supplemental Statistical Analysis. Overall, the summary statistics for the timing of peaks 14 

and valleys of the mRNAs and proteins of per and tim are consistent with our current 15 

understanding of the D. melanogaster circadian clock.  16 
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 Open circles with dashed curves indicate mRNAs, and filled triangles with solid 1 

curves represent proteins; per (green) is shown in the top two, and tim (red) in the 2 

bottom two curves, all adjusted to fit locations of peaks and valleys within one cycle. 3 

Averages and SDs were calculated for CZT times, linearized as described in Materials 4 

and Methods, and then back-transformed to DZT (if differences existed as in the rare 5 

cases where day 1 of a time series was unusable).   6 

 The statistics shown report summaries for the n remaining time series after 7 

removing outliers by applying the method of Carling (2000) to the data in the TraitTables 8 

compiled from the time series observations in FlyClockbase and refined as described 9 

for ‘Mod6’ in Figure 3. Histograms of the data summarized here are shown in Figure 7 10 

as ‘CoreData’ and statistical results testing the significance of differences are reported 11 

in Table 6, the text of the Results Section, and in the Supplemental Statistical Analysis 12 

(automatically produced by the R script provided as Supplemental Material). Table 4 13 

and Table S1 present related results from an independent statistical analysis of the 14 

same data that was completely implemented using only spread-sheet software. While 15 

the results shown in this figure and the underlying outlier analysis were performed in R, 16 

the input dataset Mod6 analyzed by the R script was produced using spread-sheets. 17 

  18 
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FIGURE 7:1 

 2 
 3 

FIGURE 7. Histograms for per and tim mRNA and protein time series traits like 4 

peaks and valleys as observed in independent experiments show how 5 

FlyClockbase enables comparing variability. Here we compare the variability of 6 

timing for peaks (A, C) and valleys (B, D) of the proteins (A, B) and mRNAs (C, D) for 7 

the genes per (green) and tim (yellow). For all panels (A-D), we provide overlapping 8 

transparent histograms of all data (more transparent, dashed or dotted line) and of the 9 

core dataset from which outliers were removed by a boxplot method with Carling’s 10 

modification (less transparent, solid or no line). Descriptive summary statistics of the 11 

‘CoreData’ distributions (excluding outliers) are given in Figure 6 and measures of 12 
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statistical significance of differences are reported in Table 6 of the Results Section, and 1 

in the Supplemental Statistical Analysis (the annotated PDF of plots that were auto-2 

generated by the script that also produced the plots in this figure; for an overview of 3 

calculations in the script, see Statistical Methods; for details, see R code in 4 

Supplemental Material). We assessed the impact of manually identified rare extreme 5 

outliers by excluding them from a copy of the dataset (termed “NoXtremes”) for which 6 

we repeated all analyses, including R’s automated outlier detection using Carling’s 7 

modification; the results are not substantially different and are reported in the 8 

Supplemental Statistical Analysis. For other related analyses see also Table 6, Table 7, 9 

Figure 6, Table 4, and Table S1. 10 

 11 

 12 

  13 
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FIGURE 8: 1 

 2 
 3 

 4 

FIGURE 8. Comparisons of PCR vs non-PCR methods for measuring amounts of 5 

per mRNA in time series as enabled by FlyClockbase. Here we compare the 6 

variability of peak timing in all available time series of per mRNA without grouping by 7 

study, in order to contrast distributions of peak times obtained from time series (A) 8 

observed by all PCR methods combined (red) vs (blue) all non-PCR methods combined 9 

(blue); (B) observed by different PCR methods like qPCR or RT-PCR individually (red) 10 

vs (blue) all non-PCR methods combined (blue);  (C) observed in studies citing at least 11 

one method reference (green) vs (purple) studies with no method reference (purple); 12 
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and (D) observed in studies sharing two or more method references (green) vs (purple) 1 

studies with method references unique among studies contributing to per mRNA 2 

observations in FlyClockbase (and citing at least one method reference, purple). For all 3 

panels (A-D), we provide overlapping transparent histograms. Measures of statistical 4 

significance of differences are reported in the Results Section and parts of the 5 

Supplemental Statistical Analysis. For related data and analyses see also Table 8, 6 

Figure 9, and Figure 10. 7 

 8 

  9 
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FIGURE 9. Referenced protocol use similarity matrix for studies reporting per 1 

mRNA time series, grouping protocols by measurement approach. The vertical 2 

axis shows time series IDs of per mRNA time series grouped by broader measurement 3 

method, and the horizontal axis indicates the experimental protocols references cited. 4 

The numbers given in the table for each time series and reference refer to a 5 

classification key indicating which of several broader types of methods had been used 6 

(1 – RNA extraction; 2 – Expression analysis; 3 – SYBR green detection protocol; 4 – 7 

RNA quantification; 5 – RNA purification; 6 – serial dilutions; 7 – controls; 8 – general 8 

protocol; 9 – probes; 10 – hybridization, RNase digestion, electrophoretic product 9 

separation; 11 – dissection; 12 – transfer to gel, labeling probes, hybridization, washing; 10 

13 – PCR for cDNA library). Boxes shaded in gray represent the references cited by 11 

each time series, and the numbers in the gray boxes correspond to the broader types of 12 

methods to which this specific part of a protocol reference belongs. Gray boxes shaded 13 

in the “no reference” column indicate time series from studies without method 14 

references. All time series from the same study measured with a given method are 15 

outlined in dark grey. For related data and analyses see also Table 8, Figure 8, Figure 16 

10, and parts of the Supplemental Statistical Analysis. Table 8 provides summaries of 17 

counts of time series and studies based on information in this table. The details of 18 

experimental protocols are described in their respective references (OLIVER AND PHILLIPS 19 

1970; KONOPKA AND BENZER 1971; CATHALA et al. 1983; ZINN et al. 1983; OCONNELL AND 20 

ROSBASH 1984; THEURKAUF et al. 1986; CHOMCZYNSKI AND SACCHI 1987; CITRI et al. 21 

1987; LORENZ et al. 1989; SAMBROOK et al. 1989; HARDIN et al. 1990; ZWIEBEL et al. 22 

1991a; HARDIN AND HALL 1992; HARDIN 1994; SEHGAL et al. 1994; ZENG et al. 1994; 23 

SEHGAL et al. 1995; VAN GELDER et al. 1995; MARRUS et al. 1996; MYERS et al. 1996; 24 

MAJERCAK et al. 1997; STANEWSKY et al. 1997; ALLADA et al. 1998; BAE et al. 1998; 25 

CHENG et al. 1998; EMERY et al. 1998; PRICE et al. 1998; SIDOTE et al. 1998; STANEWSKY 26 

et al. 1998; MAJERCAK et al. 1999; CERIANI et al. 2002; GRIMA et al. 2002; UEDA et al. 27 

2002; MENET et al. 2010; NAGOSHI et al. 2010; ABRUZZI et al. 2011; KHODOR et al. 2011; 28 

RODRIGUEZ et al. 2013).  29 

 30 
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 32 
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Figure 10 1 

 2 

 3 
 4 

 5 

FIGURE 10: Logic of datasets in statistics: example for an interaction of statistics 6 

and formal logic where the logic for selecting datasets unnecessarily reduced the 7 

power of a statistical test.  8 

Here we illustrate the logic we used for constructing the datasets that group observed 9 

time series into the sets used for approximating the degree of method standardization 10 

and method similarities that produced the per mRNA time series observations in 11 

FlyClockbase. We denote as ‘any’ an individual time series from an individual study with 12 

a count of references to experimental protocols, where the count is ≥1; ‘no’ stands for a 13 

count of 0. Grouping A and B indicate test groupings performed by the R script in the 14 

Supplemental Material. Grouping C indicates the grouping suggested by a more 15 

thorough logical analysis performed after completing the statistical tests presented in 16 

the Results Section. For related data and analyses see also Table 8, Figure 8, Figure 9, 17 

and parts of the Supplemental Statistical Analysis. 18 
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FIGURE 11 1 

 2 

 3 

FIGURE 11: Biological model curator and compiler architect collaboration model 4 

for improving the integration of biological data into VBIRs while constructing the 5 

type system required by a VBIR compiler for handling the ubiquitous uncertainty 6 

of biological data more precisely. 7 

 Here we show how biological model curators and compiler builders can 8 

collaborate by depicting important aspects of the trans-disciplinary interactions that led 9 

to the construction of FlyClockbase, a versioned biological information resource (VBIR). 10 

We have been using our compiler expertise to inform fundamental decisions about 11 

conceptual data structures and file formats in FlyClockbase and TabFS (designed 12 

simultaneously, all formal definitions are beyond the scope of this paper).  13 

 Division of work. We divided work among domains as indicated by the dotted 14 

line. Above, biological model curators worked with a focus on constructing and using 15 

FlyClockbase in order to understand the circadian clock of Drosophila. On the other side 16 

was the compiler architect focusing on TabFS data structures and the logic necessary 17 

for representing the biological data collected by the curators for FlyClockbase.  18 

 Mutual benefits. Designs were chosen such that implementing the TabFS 19 

compiler logic remained as simple as possible, while enabling formal tests of the 20 
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integrity of VBIR data. In the present study, we developed many of the designs 1 

necessary for automation by manually pioneering important tasks. Doing so in a real-life 2 

research system of non-trivial complexity was important; this allowed us to explore 3 

many real-world details with substantial anticipated impacts on future use. The 4 

biological model curators focused on integrating and analyzing time series; this often 5 

enabled them to readily provide the compiler architect with detailed advance information 6 

about important use-cases and likely problems. The compiler architect could then 7 

evaluate potential design options long before implementation could start. This allowed 8 

for iterative reviews from several perspectives and with substantial time for analysis. It 9 

also resulted in a VBIR design and compiler logic that substantially complement each 10 

other and are thus prepared for automated testing of VBIR data integrity by following a 11 

number of simple rules.  12 

 Collaborative exchanges of insights at the dotted VBIR-TabFS compiler 13 

interface are exemplified as broad arrows, indicating some important discussion topics 14 

(in terms closer to computer science for brevity; our actual discussions were informal 15 

and used vocabulary closer to biology). Our trans-disciplinary communication interface 16 

required both the high-level aspects of human collaboration and the low-level aspects of 17 

technical information exchange. The information flows shown here critically depend on 18 

biological model curators with a deep understanding of, and passion for, the details of 19 

state-of-the-art biology. Their expertise is essential for defining the boundaries of the 20 

system that is being modeled. While working to quantify its uncertainties properly in the 21 

VBIR, the biologists must be committed to bringing all potential problems of 22 

interpretation to the attention of the architect of a compiler, which is being designed to 23 

meet the formal needs of the VBIR.  The architect must be able to select an appropriate 24 

mathematical logic formalism for representing the relevant biological problems in 25 

meaningful ways. The team needs excellent trans-disciplinary communication skills for 26 

efficiently describing, checking, and negotiating the uncounted decisions that 27 

collectively generate the systematic organization of an efficient VBIR. This requires a 28 

high sensitivity for the diffuse difficulties of accurately capturing computationally the 29 

uncertainties and contradictions in biological observations encountered while 30 

constructing a VBIR. Such biological problems require an appropriate logic formalism 31 

and thus need to be seen by the compiler architect, irrespective of perceived severity.  32 

 Traps. Avoiding do-it-yourself analyses of ‘simple problems’ by non-33 

computational biologists is important for protecting against deceptive simplicity. It may 34 

not be possible to solve such problems on desirable timelines; still, compiler developers 35 

have better chances of spotting the dangerous costly bugs they can cause, which helps 36 

to identify solutions (that may already exist for other reasons). For example, quantifying 37 

uncertainty with the cutting-edge logic formalism known as ‘fuzzy plurivaluationism’ 38 

enables the representation of both semantic indeterminacy and various degrees of truth 39 

(SMITH 2008); ‘BioBinaries’ extend Boolean logic in similar ways (see Supplemental 40 
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Material). It often takes a trained eye to spot the need for a richer logic and it can be 1 

particularly hard to hunt logic errors that omit the possibility of some options (PANKO 2 

2016). Finding an appropriate logic formalism is pivotal, because it is impossible to 3 

compute without assumptions about logic. Computers always produce logical answers, 4 

no matter how flawed their logic might be when interpreted by humans in a real-world 5 

context. Such problems are most efficiently addressed at the compiler level by enforcing 6 

an ‘appropriate’ type system. Naturally, related discussions revolve around how to 7 

define ‘appropriate common sense’.  8 

 Progress in defining type systems used for representing a biological system 9 

must be driven by those biologists who study the respective biology; to help them 10 

capture type defining ideas, we use the TabFS storage system of nested folders and 11 

tables which biologists can easily navigate using common operating systems and 12 

spreadsheet tools (see main text).  13 

 Cost of constructing VBIRs without an appropriate compiler. In contrast, 14 

without the appropriate logic and the equivalent of TabFS built into a corresponding 15 

VBIR compiler, it will still be necessary for each VBIR to construct, find or develop 16 

corresponding tools if quality is important. Unfortunately, economies of scale will be 17 

missing in this case, resulting in greatly reduced quality at greatly increased cost. Thus, 18 

developing VBIRs on a shoe-string budget will either limit VBIRs to comparatively 19 

simple datasets (thereby excluding much of biology) or is likely to trigger many rushed 20 

decisions about underpinning logic. We found that correspondingly simplistic type 21 

systems easily frustrate non-computing biologists by expecting them to coerce observed 22 

data and its uncertainties into an inappropriate logic (demanding a precision not 23 

provided by the data). This results in biases that are often near-impossible to detect, 24 

quantify, or exclude (e.g. by testing whether coercion indeed occurred). Thus, 25 

representing biological data in programming languages that do not readily support an 26 

appropriate logic can easily generate misleading code. It is possible in theory to work 27 

around such deficiencies. However, in practice, such logic mismatches often trigger 28 

huge costs to be paid after indeterminate times. This is particularly true if such logic has 29 

to be developed without the necessary time, logic expertise and compiler tools. As many 30 

professional programmers know from their own experience, “premature optimization is 31 

the root of all evil” (KNUTH 1974). This principle readily translates to premature choices 32 

of a logic formalism for representing a biological system, prematurely chosen type 33 

systems, the premature optimization of implementation speed and others that create 34 

numerous problems in computational biology. It is thus conceivable that a substantial 35 

contribution towards the notoriously difficult task of funding VBIR development might 36 

come from the construction of a compiler that simplifies these complex decisions by 37 

offering solutions that can represent biological information and uncertainty more easily.   38 

 Conclusions for FlyClockbase. Accordingly, we have been designing the 39 

FlyClockbase type system for maximizing simplicity and radical openness, allowing all 40 
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users to easily suggest necessary expansions (simply by changing cells in table text 1 

files of TabFS). Such suggestions still require review by a VBIR architect with expertise 2 

in formal type systems. However, more eyes are likely to identify more type-system 3 

challenges and might thus inspire better solutions. As indicated in the figure, many 4 

solutions are fragmented at first, and larger designs emerge later. Still, the ultimate 5 

integration goal for each VBIR is to find a single coherent architecture that is “as simple 6 

as possible, but not simpler” (EINSTEIN AND CALAPRICE 2011). 7 

 8 

 9 

 10 
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TABLE P1. The StablizingZone of the Project Organization Stabilizing Tool (POST) 1 

system is defined by the StabilityCodes MM to TT, presented by their BEST Names.  2 

Brief Explicit Summarizing Name 

MM MockupModel MockupModel_UsedFor_RapidPrototyping_InformalLearning__ 
   __ExpertimentsToBeThrownAway_StabilizingDesignNotCode 

NN NewNonfunctional NewNonfunctional_UsedFor_NotYetFunctioning_DeepFoundations__ 
   __ForLargerStableDesigns_ThatDoNotYetWorkForUsers 

OO OperatesOften OperatesOften_UsedFor_Systems_PartiallyWorkingForEndUsers__ 
   __while_StillMissing_ImportantFeatures_ToBeImplemented 

PP PreProbing PreProbing_UsedFor_Preparing_PeerReviewAndPublicProbing__ 
   __by_PolishingExistingFeatures_UntilSubmissionFor_Questioning 

QQ QualityQuest QualityQuest_UsedFor_Questioning_AxiomsDataScienceAccuracy__ 
   __RigorClarityUsability_InMany_ExpertBeginnerReviewRounds 

RR ReviewedRelease ReviewedRelease_UsedFor_NewReleasesRecommended_by__ 
   __QualityQuestEditors_after_AnsweringAllReviewerQuestions 

SS StableSource  StableSource_UsedFor_StunningSoftware_RunningInProduction__  
   __with_LongTermSuccess_and_VeryRareRevisionRequests 

TT TrustedTested  TrustedTested_UsedFor_Marking_VeryLongTermStableDesigns_in__ 
   __WellUnderstoodDomains_AllowingBackwardsCompatibleGrowth 

Both have been developed for the general-purpose programming features of Evolvix with the 3 

goal of facilitating the development of long-term backwards compatibility. For more details see 4 

this study of the Evolvix BEST Names concept (LOEWE et al. 2017). 5 

 6 

TABLE P2.  The BioBinary data type for cases in biology that are less than clear-cut. 7 

 8 
OK  Indicates the full agreement with a specified test that has been completely executed 9 

(equivalent to Boolean “true”); 10 

KO  Indicates the full disagreement in all points with the specified test that has been 11 

completely executed (equivalent to Boolean “false”); 12 

OKO Indicates any intermediate between OK and KO for cases that are well known not to 13 

be clear cut, albeit without storing any other information, such as a probability that 14 

could specify the distance from OK or KO (it is up to users to determine what they 15 

do want to store); No Boolean equivalent exist for OKO; 16 

MIS  Indicates any mistake or problem that made it impossible to reach any of the other 17 

three conclusions, irrespective of the nature of this problem (it is up to users to 18 

decide how much about the potentially infinite complexities of such problems they 19 

wish to store; no Boolean equivalent exists for MIS). 20 
 21 
This new data type has been designed for efficiently reasoning about biological observations 22 

with a certainty that is neither perfectly true nor false. More details elsewhere (LOEWE et al. 23 

2017). It is equivalent to parliamentary voting systems that have long distinguished the  24 

‘Yes’ (OK) and ‘No’ (KO) votes from ‘Abstain’ (OKO) and ‘NotPresent’ (MIS). 25 



Key Tables from the Appendix of FlyClockbase 
 

Scheuer et al. 2017-07-14      Updates at BioRxiv.org: https://doi.org/10.1101/099192 QQv1r4 
 

TABLE D1: The DISCOVARCY Documentation Style raises awareness for causes 1 

that make source code hard to read and offers efficient strategies for improving it. 2 
 3 
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B r i e f  N a m e s 

Coder centric view 
Quicker to produce,  
Costlier to consume 

discovarcy vs DISCOVARCY Reader centric view 
Costlier to produce, 
Quicker to consume 

Br
ie

f N
am

es
 

Reader Challenges Questions for Coders & Comments Coder Challenges 
d documentation 

derivable by 
deduction and  
decoding 

Does documentation help coders, readers, or 
neither? Ideal reader support is often too 
costly; but brief notes on higher design 

decisions in broken English (lacking time or 
writing skills) are usually extremely helpful. 

Documentation  
Describing  

Design 
Decisions 

D 

i inference If source code is the documentation, it should 
have relevant info included, not force reader 

inference of the coder’s state of mind. 

Info 
Included 

I 

s secrecy How much rare expertise is assumed? Are 
advanced coding tricks explained & marked? 

Source  
Simplicity 

S 

c complexity Complexity is easy to write, hard to read. 
Clarity, simplicity is hard to write, easy to read. 
Hard work: removing inessential complexity, 

without removing essential functionality. 

Code  
Clarity 

C 

o online  
odysseys 
overwhelming 
outsiders 

Does code offer offline ‘code-catchups’ and 
online links to key background overviews, 

reducing reader overwhelm? Or are endless 
online odysseys mandatory for outsiders?  

Offline-Online  
Overview 

 Offers  
 

O 

v vagueness Is the meaning of variables and functions 
tested & obvious from explicit or summarizing 
names? Using copy & paste, are names long 
enough to exclude random reuse of “x” etc? 

Vetted 
Variables 

V 

a arbitrary  
assumptions 

Different solutions build on different assumed 
axioms. Are they explicitly argued for?  

Argued  
Axioms 

A 

r random restrictions, 
reasons removed, 
rarely refactored 

Are restraints relevant or restrictions random 
and in need of refactoring? Are reasons 
recorded or relevant results removed?  

Relevant Restraint 
Recording Rare and 

Regular Reasons  

R 

c cancelled  
comments  

We like complete, clear comments over chaos 
& contradictions, but few can write a book. Do 
not cancel comments, but time-stamp collect 
them to help others follow. Mark older ‘mixed 
quality’ texts as ‘retired’ until the next update.  

Collected 
 Comments 

C 

y years  
go quickly learning 
many poorly written 
codes bases 

Understanding confusing code can quickly 
become prohibitive. Reading clear code is 

learning from a teacher. What will you write?  
What will you see if you re-read in 10 years? 

Your  
Yield 

Y 

Properties of code range from  poor (‘discovarcy’) to great code (‘DISCOVARCY’) on a continuum.  4 

Questions can help coders to save the day for their readers by adding fast imperfect comments.  5 
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 Long-term stability in VBIRs data structures will enable new biology.  1 
 2 
We suggest that a compiler could help curators to efficiently maintain long-term stable 3 

VBIRs in consistent formal states so that these VBIRs can be used as foundations, which 4 

are solid enough to build on them for the long term. This will eventually make it feasible to 5 

construct more advanced VBIRs on top of more basic ones. If foundational VBIRs describe 6 

causal genotypic or environmental information and more advanced VBIRs describe more 7 

consequential molecular, cellular, physiological, or other phenotypic information, then 8 

VBIRs enable the implementation of a full fitness-causality network that maps the 9 

genotypes and environments of an organism to its phenotypes in a transparent mechanistic 10 

way that connects well to the latest updates of all data that is available – if all relevant data 11 

and data structures are well curated and appropriately versioned for stability.  12 

 13 

Tombstone example 14 
 15 
Database technology that is not long-term backwards compatible poses a very real long-term danger to 16 
biological research. For example, the TIGR Gene Indices were first published at http://www.tigr.org/tdb/tgi  17 
(QUACKENBUSH et al. 2000). After their introduction, the TIGR Gene Index databases quickly became a 18 
well-known tool for biological discovery (LEE AND QUACKENBUSH 2003; PERTEA et al. 2003; LEE et al. 19 
2005). They are now no longer available online as documented on their tombstone:   20 
 21 

http://compbio.dfci.harvard.edu/tgi/ 22 
 23 
In case it eventually disappears, here some vital statistics about TGI, paraphrased from its tombstone: 24 
 25 

Supported by NIH, DOE and NSF 1998-2010, the relevant TGI papers were cited 26 
>2000 times. When the tombstone was written the TGI website still received  27 
>7 million hits per year (assuming the actual number on the tombstone was a typo). 28 
When funding ended in 2010, the team continued to maintain the website, but 29 
the hardware and software required behind the scenes began to fail. Effective 30 
July 15, 2014 operations had to be suspended, because there were not 31 
sufficient funds to maintain it properly. The software powering TGI (DFCI Gene 32 
Indices Software Tools) and the data sets it used was ‘fossilized’ to     33 
     ftp://occams.dfci.harvard.edu/pub/bio/tgi/software/  34 
     ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/. 35 

 36 
It is not up to us to comment on TGI’s science or its funding history. Neither is relevant to our main point: 37 
extinction is a real risk for VBIRs and fossilization into some archive is not a real life-saver. The 38 
haphazard nature of funding for biological information repositories is well known and a significant source 39 
of concern (EMBER et al. 2013). Less obvious is the impact of a stable VBIRs compiler for TGI. Thus: 40 
 41 
Imagine the software behind TGI would use appropriate abstractions and thus not fail. Imagine it could 42 
continue to operate reliably on different hardware, including that of users. Imagine the software would be 43 
long-term backwards compatible. Imagine it could help many biologists to contribute to curation of TGI. 44 
Imagine a whole community would annotate, improve, deprecate, or otherwise edit various aspects of TGI 45 
in order to preserve its benefits or point to improved successor tools. Imagine other biological research 46 
codes had built on long-term stable parts of TGI and could all continue to operate simply by copying TGI 47 
to a local hard drive. Then compare the simulation results from this imagination exercise to the observed 48 
tombstone above and ponder this question:   49 
 50 
How important are abstractions that can deliver long-term backwards compatibility?  51 
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 1 

Conclusion 2 

 3 

This study contributes important foundations to our overall goal of improving the 4 

reproducibility, reliability, and relevance of biological data analyses, starting with 5 

observations of the D. melanogaster circadian clock. To this end, we aim to automate as 6 

many repetitive tasks as possible by providing computational tools that can be efficiently 7 

used by experimental biologists. Ideally, this will inspire increased adoption of 8 

computational tools and empower biologists to expand their thinking capabilities to 9 

investigate new questions. This will be required to meet current grand challenges from 10 

personalizing medicine to predicting mechanistic fitness landscapes in evolutionary 11 

systems biology (LOEWE 2016). Such types of problems often require the analysis of 12 

innumerable smaller computational models, which is impossible without highly 13 

automated information processing to cut through the associated cognitive complexity.  14 

 15 

  FlyClockbase as a VBIR. The resource we compiled might be able to serve as 16 

an example for a versioned biological information resource that is organized in a 17 

radically simple way by being completely accessible as tables of text. It also exemplifies 18 

what a ‘small model’ in a grand challenge context might look if comparable in size to our 19 

clock model (see Figure 1) with similar amounts of time series or other experimental 20 

data. We expect such data to be as scattered as it was for FlyClockbase. Experience 21 

with time series in FlyClockbase suggests that many other datasets are probably also 22 

likely to contain a mix of broad general trends and numerous statements that remain 23 

incomplete, imprecise and contradictory. To successfully handle this avalanche of 24 

challenges in biology, we have been analyzing observations and models of the fly 25 

circadian clock. Simultaneously we have been collecting instances, where automation 26 

by a compiler could greatly increase the efficiency of integrating biological knowledge-27 

fragments and maintaining the integrity of a VBIR in face of common uncertainties in 28 

biological data.  29 

 Designing a compiler for biological data. The design of such a compiler is 30 

greatly improved in our experience, when developed simultaneously and in close 31 

collaboration with biological model curators who regularly expose compiler designers to 32 

the many imperfections of biological data. The seemingly perfect abstractions of 33 

compiler type systems need to meet the messy observations made in biology, and 34 

conversely, biological observations need to become more organized by learning from 35 

the abstraction techniques developed in computer science. Such trans-disciplinary 36 

communication is possible in our experience (see Figure 11 for an overview of the 37 

process). Consequently, our work in this study drills deep in distant areas from different 38 

disciplines, both basic and applied. The volume of relevant material forced us 39 

repeatedly to refer to Supplemental Material, the Evolvix BEST Names study (LOEWE 40 
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2016), or simply limit scope (usually indicated). A brief overview of the relevant research 1 

areas might illustrate these challenges for compiler construction.  2 

 Trans-disciplinary aspects. The seemingly disparate areas of enquiry in this 3 

study are deeply connected by our desire to improve the reproducibility and reliability of 4 

models in computational molecular systems biology. We study:  5 

(i) the molecular genetics of gene regulatory networks in Drosophila circadian 6 

clocks (reviewed in Figure 1),  7 

(ii) the statistics of robust differences in variance among observed time series traits 8 

(Figure 5), 9 

(iii) the applied mathematics of simulating time series from Continuous Time Markov 10 

Chain models (Figure 4 lists models, leaving simulation for later), 11 

(iv) the behavior of modelers, namely how they prefer to parameterize their models 12 

(Figure 4), 13 

(v) the human-computer interactions that help to reduce data smog and information 14 

overload by improving visualization and organization in plots, in models, in and 15 

data structures (Figure 1,2,6,7,9), 16 

(vi) the statistics of detecting human errors in spreadsheets, data analysis, logic, and 17 

source code (Figure 3, Table 5, Discussion, Supplementary Material),  18 

(vii) the data science of reproducibility for improving reliability, semantic, statistic, and 19 

other reproducibility of publishable research results from the early investigative 20 

stages (see Supplemental Material, Table P1 and the ‘DISCOVARCY’ 21 

Documentation Style), and 22 

(viii) the computer science of compilers and programming languages as needed for 23 

supporting the development of other biological information resources like 24 

FlyClockbase. This requires addressing a broad range of topics, including 25 

mathematical logic, type theory, arithmetic, syntax, semantics, memory 26 

organization, naming, and others. Figure 11 provides an overview of the types of 27 

interactions we have observed between biological model curators and a compiler 28 

architect while developing FlyClockbase. 29 

Thus, we touched the tips of many icebergs and often needed to limit our scope. Much 30 

of this tension was caused by our desire to build a compiler that understands the 31 

imprecisions and complexities of biology and supports the efficient construction of high-32 

quality VBIRs. We have pursued this goal by constructing such a VBIR and performing 33 

manually all tasks that we would like to delegate; this gave us the opportunity to reflect 34 

on the nature of the tasks and the quality of the outcome. This reduces the speed of 35 

both: compiler construction and VBIR construction, but simultaneously greatly increases 36 

quality. As argued by our analogy to aspects of population genetics theory, such 37 

increases in quality can be pivotal for the survival of a VBIR like FlyClockbase, which 38 

can easily be killed by small increases of inessential complexity. In this study, we 39 

provided a broad overview of this tandem work. We have removed from this paper all 40 
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aspects that can also stand on their own. For example, readers of this journal might be 1 

less interested in a formally complete description of the data structures that comprise 2 

Evolvix and the nuances of data models that contribute towards long-term stability. We 3 

endeavored to keep in the main text only those computational aspects that are most 4 

important for navigating the broader concepts used in FlyClockbase or that convey a 5 

general overview of our approach to reducing the cost of maintaining digital resources 6 

with the help of a compiler designed for this purpose. There is no reason why such a 7 

compiler could not be used by individual researchers collecting their own data, some of 8 

which they might want to share later. Therefore, our work presented here could also be 9 

seen from the following points of view. 10 

 11 

 View on gene expression variability. The most direct purpose of our study is to 12 

use FlyClockbase to generate and analyze hypotheses about circadian clocks in D. 13 

melanogaster. We analyzed patterns of circadian variability across diverse independent 14 

studies of fruit flies, accumulating the largest number of time series for this purpose to 15 

date (to our knowledge).  We have used the statistical power of FlyClockbase to detect 16 

consistent differences in the variance of peak times for the important clock proteins PER 17 

and TIM. This led us to hypothesize that these differences have mechanistic causes that 18 

are worth investigating with the methods of computational molecular systems biology 19 

(out of scope here). Our detailed analysis of variances in the peaks of PER and TIM  20 

and the potential causes for outliers (see above) suggests the removal of outliers by 21 

default using the method of Carling (2000) to focus more efficiently on estimating what 22 

typical clocks usually do (without suppressing natural variability in time series). Similarly, 23 

FlyClockbase can be used to compare the accuracy of different observation methods 24 

(Figure 8) and many other Attributes. An important contribution of FlyClockbase towards 25 

simulations of fly clock models of gene expression variability is its rich set of over 400 26 

wildtype time series that can be used - in principle - to improve estimates for circadian 27 

clock parameters. Such estimates might change the rather sobering observation that 28 

most clock modelers do not use most experimental observations when deciding on the 29 

parameter values for their simulations (see Figure 4). A study using state-of-the-art 30 

inference methods for obtaining the best possible clock model has been moved beyond 31 

the scope of this paper but could start immediately.  32 
 33 
 View on simplifying VBIRs development. The broader purpose of our study is 34 

to develop, describe, and use FlyClockbase as a real-world testing ground for designing 35 

an extraordinarily reliable yet simple system for long-term backwards-compatible data 36 

integration. We also explored how to annotate, name, reference, identify, store, query, 37 

retrieve, and analyze the imperfect and complex biological data and its translation into 38 

well-defined computational concepts. Developing these capabilities is essential for the 39 

long-term mission of programming languages like Evolvix that aim to provide built-in 40 

support for biological research. This goal requires unusual amounts of direct user 41 
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feedback from experimental biologists to the language designers, as described 1 

elsewhere (LOEWE 2016). Since computers and their computations are ultimately 2 

abstract, software engineers have come to value the input of so called ‘domain experts’ 3 

without whom it would be impossible to develop efficient and reliable non-trivial 4 

systems. Such feedback is easier to provide in engineering and other technical 5 

scenarios where domain experts and software engineers tend to speak a similar 6 

language. However, such a shared language does not usually exist in biology where the 7 

‘domain experts’ are experimental biologists who often are not used to expressing their 8 

expertise in a form easily understood by software engineers. It is an important goal of 9 

Evolvix to fill that gap and enable the best experimental biologists to express their 10 

expertise in a form that is readily translatable into computable models. Simplifying the 11 

construction of VBIRs is an essential component of this larger goal and critically 12 

important for evolutionary systems biology (LOEWE 2016).  13 
 14 
 View on Evolutionary System Biology. The ultimate long-term purpose of 15 

FlyClockbase is to substantially contribute towards implementing the vision of 16 

mechanistic simulations in evolutionary systems biology as detailed elsewhere (LOEWE 17 

2009; LOEWE 2012; LOEWE 2016). Evolutionary systems biology aims to quantify fitness 18 

landscapes by mapping genotypes (via realistic fitness causality networks) to 19 

phenotypes and ultimately fitness. Since circadian clocks have a large impact on 20 

fitness, their behavior is of direct evolutionary importance (BEAVER et al. 2002; BEAVER 21 

et al. 2003; DODD et al. 2005; LOEWE AND HILLSTON 2008; AKMAN et al. 2010; BEAVER et 22 

al. 2010). Constructing a high-quality model of a circadian clock in D. melanogaster 23 

could thus provide the opportunity to explore many mutant options in silico (LOEWE AND 24 

HILLSTON 2008) and thus bring us closer to the goal of quantifying fitness landscapes of 25 

interest (LOEWE 2009; LOEWE 2012; LOEWE 2016). To enable this vision, myriads of 26 

models on the scale of FlyClockbase will need to be constructed, connected and 27 

analyzed both individually and in various combinations. Most of today’s tools do not 28 

manage imprecision with the high degree of precision that is needed for integrating 29 

models at such a scale. To address these problems, we need the VBIRs automation 30 

discussed above and other new approaches to biological model curation.  31 

 32 

 Biological model curation. The substantial needs for biological model curation 33 

illustrated in this study highlight a challenge faced by biology as a discipline. 34 

Researchers have accumulated very large amounts of biological data that is currently 35 

scattered across the scientific literature in forms that are difficult to access efficiently (or 36 

become completely inaccessible as lab notebooks are being thrown out or primary data 37 

is lost from hard drives). In FlyClockbase we integrated scattered data from across the 38 

literature. The substantial amount of work involved forced us to acknowledge, that it is 39 

not possible to engage in the integration of biological information at this scale without a 40 

substantial investment of time. Even if VBIRs construction is eventually simplified to the 41 
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highest possible degree by the most user-friendly compiler and VBIRs construction 1 

environment imaginable, the need for model curation in biology will not become trivial. 2 

On the contrast, such a compiler could motivate a new generation of biologists to 3 

actually revisit and integrate data that has long been ignored, because using it without 4 

compiler support would have been too tedious. This possibility will likely boost interest in 5 

a currently unusual avenue to biological research that is not well represented in the 6 

biological job market of today. 7 

 Status quo. For a long time, most biology undergraduates have been aiming to 8 

work at the bench in a wet-lab. Biologists overly focused on wet-lab work might 9 

undervalue the importance of biological model curation by underestimating the 10 

intellectual efforts it requires. However, what use is experimental data if it remains 11 

inaccessible? While biological model curation does not generate new data per se, it 12 

makes existing experimental observations accessible in integrated forms. The resulting 13 

information repositories, such as GeneBank, are prime sources of data used by 14 

computational biologists. The rising importance of computational modeling and 15 

bioinformatics in biology is now recognized well enough so that students in these areas 16 

can readily self-identify and point to labs, role models and career paths. Such 17 

computational professions require substantial training in formal methods, quantitative 18 

approaches and computational tools – usually not easily understood by experimental 19 

biologists who dedicate their career to investigating a particular system in great detail. 20 

Conversely, many computational, mathematical, and other programming biologists 21 

struggle to develop enough dedication for a career committed to studying a single 22 

biological system. The time they take to develop their computational expertise takes 23 

away from the time they have to develop their biological intuitions to the level required 24 

for high-quality biological model curation.  25 

 A growing avenue to biological research. Work on biological model curation 26 

which was integral to obtaining the results we presented alerted us to a rising need for 27 

the integration of biological data. As shown by the new biological insights presented in 28 

this study, biological model curation is as essential to biological research as 29 

bioinformatics algorithm development, original lab observations, and field data 30 

collecting. It does not stand behind lab experiments or computational work in its 31 

potential for contributing new biological insights. The low entry bar to model curation 32 

should not be mistaken for a lacking ability to advance the cutting edge of science. Each 33 

major avenue of biological research has trivial activities that do not speak to its potential 34 

for biological innovation.  Pipetting samples into tubes does not reflect the complexities 35 

of experimental biology. Defining the initial values for a few variables in a program does 36 

not reflect the potential for innovations from computational biology. Similarly, the simple 37 

activity of comparing a few numbers from a few studies in a spreadsheet does not 38 

reflect the importance of biological model curation for progress towards addressing 39 

grand scientific challenges. In our experience, in depth biological model curation for 40 
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non-trivial questions requires a substantial amount of attention that will not realistically 1 

leave much room for additional work on the side, whether in wet-lab or in computation. 2 

The FlyClockbase work present here demanded the undivided attention of several 3 

researchers and integrators. Model curation work is easy to scale up or down, but 4 

significant new findings still require dedicated resources – as everywhere in research. 5 

 What it takes to do biological model curation. While biological model curators are 6 

still rare, their work has more history that commonly known (see Introduction on 7 

biocurators). Biological model curators must have sufficient interests in the wet-lab work 8 

necessary for generating the observations they curate to know about typical pitfalls, but 9 

they typically do not work at the bench. They must be sufficiently aware of the strengths 10 

and weaknesses of relevant modeling approaches and extract the most relevant 11 

information from the scientific literature, but they do not need to be expert programmers. 12 

Most importantly, they need a passion for ‘their’ system to the point where they want to 13 

know everything about it, irrespective of the method used to observe it. This will enable 14 

them to accumulate enough expertise for learning about the strengths and weaknesses 15 

of different methods of observation and for developing an intuition about the quality of a 16 

given data set. Such expertise is essential for helping to improve the overall 17 

reproducibility of statistical processing pipelines by improving quality of relevant input 18 

data, as recently called for (LEEK AND PENG 2015).  19 

 On the shoulders of giants. We aimed to stand on the shoulders of giants in fly 20 

clock research. This would have been impossible without the biological contributions 21 

from the high-quality model curation work that resulted in FlyClockbase. To enable more 22 

biologists to stand on the shoulders of their giants we have been working towards 23 

capturing our experiences with FlyClockbase in the definitions of VBIRs. We expect that 24 

constructing a corresponding VBIRs complier will greatly accelerate the integration of 25 

the biological expertise required to meet the grand challenges of our time. One of these 26 

is to understand the long causality chain that starts with the daily rhythms of core clocks 27 

and ends with detailed mechanisms for the changes in health and fitness caused by the 28 

daily rhythms of the thousands of genes under circadian control. 29 

 30 

  31 
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Are VBIRs like FlyClockbase
The New Genome Projects?

Why VBIRs?
Genome projects convincingly show 
that batch processing of similar tasks 
boosts biological research efficiency. 
Costly reads of single genes shrank to 
simple queries in the post-genomics 
era, changing biology profoundly.   

Why is batch-processing efficient? 
It inspires tools and workflows that 
speed-up tasks and reuse setup 
overheads. It improves quality by 
standardization. It inspires useful 
division of labor: a few can improve 
genome quality (via updates), used by 
many for testing hypotheses. Bundling 
updates into versions helps to improve 
quality by archiving and citing well-
defined genome states reproducibly.

We extend these ideas to other bio 

data types by introducing the VBIR 

concept for supporting FAIR data, 

Versioned    çè Findable
Biological çè Accessible
Information  çè Interoperable
Resource çè Reusable,

highlighting rich interactions. Serving 
its well-defined scope, a VBIR stores 
all integrated data and updates in 
reproducibly versioned states of a well-
structured biological info resource. 

VBIRs vary widely in scope, size, 
implementation approach, etc. Yet, as 
indicated by the 'V', they provide past 
versioned variants via long-term, 
stable, reproducible URLs. Stable 
causal VBIRs inspire construction of 
consequential VBIRs, and help capture 
complex biological expertise in 
causality networks. Reproducibility of 
overall conclusions depends on the 
stability of VBIR data formats and the 
reliability of recalculations after auto-
importing changed causal VBIRs. 
Such active networks of VBIRs can 
infer values, test hypotheses, or 
simulate complex biological systems. 
VBIR stability is key for efficient 

computing in evolutionary systems 
biology and personalizing medicine. 
They are also critical for meeting the
grand challenge of reducing the 
~$7bn/yr invested in studies with 
irreproducible data analyses. 

More details? See BioRxiv.org:  
https://doi.org/10.1101/099192
We acknowledge NSF Career Award 1149123 to L.L. 
for support, and many others as listed in our full report.
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Overview: Most humans are quick to spot differences, but it takes statistics to see if they matter on average.
Many statistical tests detect differences between means. Robust tests for differences in variance are more
difficult to find. Yet their use does not guarantee meaningful results, because data errors can easily bias
observed variances beyond recognition. We demonstrated how to resolve these challenges for documenting
statistically significant differences between the peak time variances of the circadian clock proteins PERIOD and
TIMELESS from observations of wildtype control Drosophila melanogaster over 25 years of clock research. For
our analyses we used FlyClockbase, a new Versioned Biological Information Resource (VBIR) with 400+
time series relevant to fly clocks. We have been designing a VBIR format for maximizing ease of use and
reliable access to data in order to simplify directly integrating observed time series into parameter estimates for
mechanistic fly clock models. The challenges we faced inspired us to improve the efficiency of biological model
curation, an activity that will become increasingly important as we strive to make better use of all available
expertise. We continue to improve the definition of VBIRs and explore ways in which they can be used more
efficiently to address the grand challenge of mechanistically mapping genotypes to phenotypes.

Figure 1: Transdisciplinary workflow improving reproducibility of data analyses. Well-curated VBIRs, like
FlyClockbase, boost reproducibility and hypothesis testing speed, like genome projects. We show this by inte-
grating into FlyClockbase 86 studies observing time series of (A) wildtype fly circadian clock molecular
components, inferring (B) the peak hours of proteins PER and TIM, revealing differences in variances. (C) Our
need for reducing data errors inspired compiler designs for simplifying biological model curation. We found this
requires cross-disciplinary effort: real-world bioresearch must meet compiler design for inspiring the complex
error checks required by (usually) imperfect biodata. We have been developing a VBIR data-format that helps
biologists to capture relevant (bio) domain expertise in ways that are more accessible to experts and compilers.

One page overview 
of significance:
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 15 

General Article Summary 16 

 17 

Circadian clocks impact health and fitness by controlling daily rhythms of gene-18 

expression through complex gene-regulatory networks. Deciphering how they work 19 

requires experimentally tracking changes in amounts of clock components. We 20 

designed FlyClockbase to simplify data-access for biologists and modelers, curating 21 

over 400 time series observed in wildtype fruit flies from 25 years of clock research. 22 

Substantial biological model curation was essential for identifying differences in peak 23 

time variance of the clock-proteins ‘PERIOD’ and ‘TIMELESS’, which probably stem 24 

from differences in phosphorylation-network complexity.  25 

      We repeatedly encountered systemic limitations of contemporary data analysis 26 

strategies in our work on circadian clocks. Thus, we used it as an opportunity for 27 

composing a panoramic view of the broader challenges in biological model curation, 28 

which are likely to increase as biologists aim to integrate all existing expertise in order to 29 

address diverse grand challenges. We developed and tested a trans-disciplinary 30 

research workflow, which enables biologists and compiler-architects to define biology-31 

friendly compilers for efficiently constructing and maintaining Versioned Biological 32 

Information Resources (VBIRs). We report insights gleaned from our practical clock 33 

research that are essential for defining a VBIRs infrastructure, which improves the 34 

efficiency of biological model curation to the point where it can be democratized.  35 

 36 

Latest version at BioRxiv.org :  https://doi.org/10.1101/099192 37 
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