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Abstract: 151 

Null hypothesis significance testing (NHST) has several shortcomings that are likely 

contributing factors behind the widely debated replication crisis of psychology, cognitive 

neuroscience and biomedical science in general. We review these shortcomings and suggest that, 

after about 60 years of negative experience, NHST should no longer be the default, dominant  

statistical practice of all biomedical and psychological research. Different inferential methods 

(NHST, likelihood estimation, Bayesian methods, false-discovery rate control) may be most 

suitable for different types of research questions. Whenever researchers use NHST they should 

justify its use, and publish pre-study power calculations and effect sizes, including negative 

findings. Studies should optimally be pre-registered and raw data published. The current 

statistics lite educational approach for students that has sustained the widespread, spurious use 

of NHST should be phased out. Instead, we should encourage either more in-depth statistical 

training of more researchers and/or more widespread involvement of professional statisticians 

in all research. 
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‘What used to be called judgment is now called prejudice and what used to be called 

prejudice is now called a null hypothesis. In the social sciences, particularly, it is dangerous 

nonsense (dressed up as the ‘scientific method’) and will cause much trouble before it is widely 

appreciated as such.’ (Edwards, 1972; p.180.) 

'...the mathematical rules of probability theory are not merely rules for calculating 

frequencies of random variables; they are also the unique consistent rules for conducting 

inference (ie. plausible reasoning)' (Jaynes, 2003; p.xxii) 

1. The replication crisis and Null Hypothesis Significance Testing (NHST) 

There is increasing discontent that many areas of psychological science, cognitive 

neuroscience, and biomedical research (Ioannidis 2005; Ioannidis et al. 2014) are in a crisis of 

producing too many false positive non-replicable results (Nosek et al. 2015). This wastes 

research funding, erodes credibility and slows down scientific progress. Since more than half a 

century many methodologists have claimed repeatedly that this crisis may at least in part be 

related to problems with Null Hypothesis Significance Testing (NHST) (Rozeboom 1960; 

Bakan 1966; Meehl 1978; Gigerezner 1998; Nickerson 2000). However, most scientists (and in 

particular psychologists, biomedical scientists, social scientists, cognitive scientists and 

neuroscientists) are still near exclusively educated in NHST, they tend to misunderstand and 

abuse NHST and the method is near fully dominant in scientific papers (Chavalarias, Wallach 

and Ioannidis, 2016). Here we provide an accessible critical reassessment of NHST and 

suggest that while it may have some legitimate uses NHST should be abandoned as the de 

factor cornerstone of research. 

2. The origins of NHST as a weak heuristic and a decision rule 

2.1 NHST as a weak heuristic based on the p value: Fisher 

p values were widely popularized by Fisher (1925). In the context of the current NHST 

approach Fisher only relied on the concepts of the null hypothesis (H0) and the exact p value 
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(hereafter p will refer to the p value and ‘pr’ to probability; see Appendix 1 for terms). He 

thought that experiments should aim to reject (or ‘nullify’; henceforth the name ‘null 

hypothesis’) H0 which assumes that the data demonstrates random variability according to 

some distribution around a certain value. Discrepancy from H0 is measured by a test statistic 

whose values can be paired with one or two-tailed p values which tell us how likely it is that we 

would have found our data or more extreme data if H0 was really correct. Formally we will 

refer to the p value as: pr(data or more extreme data | H0). It is important to realize that the p 

value represents the ‘extremeness’ of the data according to an imaginary data distribution 

assuming there is no bias in data sampling. 

The late Fisher viewed the exact p value as a heuristic piece of inductive evidence 

which gives an indication of the plausibility of H0 together with other available evidence, like 

effect sizes (see Gigerenzer et al. 2004; Hubbard and Bayarri, 2003). Fisher recommended that 

H0 can usually be rejected if p ≤ 0.05 but in his system there is no mathematical justification for 

selecting a particular p value for the rejection of H0. Rather, this is up to the substantively 

informed judgment of the experimenter. Fisher thought that a hypothesis is demonstrable only 

when properly designed experiments 'rarely fail' to give us statistically significant results 

(Gigerenzer et al. 1989, p96; Goodman, 2008). Hence, a single significant result should not 

represent a ‘scientific fact’ but should merely draw attention to a phenomenon which seems 

worthy of further investigation including replication (Goodman 2008). In contrast to the above, 

until recently replication studies have been very rare in many scientific fields; lack of 

replication efforts has been a particular problem in the psychological sciences (Makel, Plucker 

and Hegarty, 2012), but this may hopefully change with the wide attention that replication has 

received (Nosek et al. 2015). 

2.2 Neyman and Pearson: a decision mechanism optimized for the long-run 

The concepts of the alternative hypothesis (H1), α, power, β, Type I and Type II errors 
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were introduced by Neyman and Pearson (Neyman and Pearson, 1933; Neyman 1950) who set 

up a formal decision procedure motivated by industrial quality control problems (Gigerenzer et 

al. 1989). Their approach aimed to minimize the false negative (Type II) error rate to an 

acceptable level (β) and consequently to maximize power (1-β) subject to a bound (α) on false 

positive (Type I) errors (Hubbard and Bayarri, 2003). α can be set by the experimenter to an 

arbitrary value and Type-II error can be controlled by setting the sample size so that the 

required effect size can be detected (see Appendix 2 for illustration). In contrast to Fisher, this 

framework does not use the p value as a measure of evidence. We merely determine the critical 

value of the test statistic associated with α and reject H0 whenever the test statistic is larger than 

the critical value. The exact p value is irrelevant because the sole objective of the decision 

framework is long-run error minimization and only the critical threshold but not the exact p 

value plays any role in achieving this goal (Hubbard and Bayarri, 2003). Neyman and Pearson 

rejected the idea of inductive reasoning and offered a reasoning-free inductive behavioural 

rule to choose between two behaviours, accepting or rejecting H0, irrespective of the 

researcher's belief about whether H0 and H1 are true or not (Neyman and Pearson, 1933).  

Crucially, the Neyman-Pearson approach is designed to work efficiently (Neyman and 

Pearson, 1933) in the context of long-run repeated testing (exact replication). Hence, there is a 

major difference between the p value which is computed for a single data set and α, β, power, 

Type I and Type II error which are so called 'frequentist' concepts and they make sense in the 

context of a long-run of many repeated experiments. If we only run a single experiment all we 

can claim is that if we had run a long series of experiments we would have had 100α% false 

positives (Type I error) had H0 been true and 100β% false negatives (Type II error) had H1 been 

true provided we got the power calculations right. Note the conditionals. 

In the Neyman-Pearson framework optimally setting α and β assures long-term 

decision-making efficiency in light of our costs and benefits by committing Type I and Type II 
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errors. However, optimizing α and β is much easier in industrial quality control than in research 

where often there is no reason to expect a specific effect size associated with H1 (Gigerenzer et 

al. 1989). For example, if a factory has to produce screw heads with a diameter of 1±0.01 cm 

than we know that we have to be able to detect a deviation of 0.01 cm to produce acceptable 

quality output. In this setting we know exactly the smallest effect size we are interested in (0.01 

cm) and we can also control the sample size very efficiently because we can easily take a 

sample of a large number of screws from a factory producing them by the million assuring 

ample power. On the one hand, failing to detect too large or too small screws (Type II error) 

will result in our customers cancelling their orders (or, in other industrial settings companies 

may deliver faulty cars or exploding laptops to customers exposing themselves to substantial 

litigation and compensation costs). On the other hand, throwing away false positives (Type I 

error), i.e. completely good batches of screws which we think are too small or too large, will 

also cost us a certain amount of money. Hence, we have a very clear scale (monetary value) to 

weigh the costs and benefits of both types of errors and we can settle on some rationally 

justified values of α and β so as to minimize our expenses and maximize our profit. 

In contrast to such industrial settings, controlling the sample size and effect size and 

setting rational α and β levels is not that straightforward in most research settings where the 

effect sizes being pursued are largely unknown and deciding about the requested size of a good 

enough effect can be very subjective. For example, what is the smallest difference of interest 

between two participant groups in a measure of 'fMRI activity'? Or, what is the smallest 

difference of interest between two groups of participants when we measure their IQ or reaction 

time? And, even if we have some expectations about the 'true effect size', can we test enough 

participants to ensure a small enough β? Further, what is the cost of falsely claiming that a 

vaccine causes autism thereby generating press coverage that grossly misleads the public 

(Godlee, 2011; Deer 2011)? What is the cost of running too many underpowered studies 
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thereby wasting perhaps most research funding, boosting the number of false positive papers 

and complicating interpretation (Schmidt, 1992; Ioannidis 2005; Button et al. 2013)? More 

often than not researchers do not know the 'true' size of an effect they are interested in, so they 

cannot assure adequate sample size and it is also hard to estimate general costs and benefits of 

having particular α and β values. While some “rules of thumb” exist about what are small, 

modest, and large effects (e.g. Cohen, 1962; Cohen, 1988; Sedlmeier and Gigerenzer, 1989; 

Jaeschke et al. 1989), some large effects may not be actionable (e.g. a change in some 

biomarker that is a poor surrogate and thus bears little relationship to major, clinical outcomes), 

while some small effects may be important and may change our decision (e.g. most survival 

benefits with effective drugs are likely to be small, but still actionable).  

Given the above ambiguity, researchers fall back to the default α=0.05 level with 

usually undefined power, these unjustified α and β levels completely discredit the originally 

intended 'efficiency' rationale of the creators of the Neyman-Pearson decision mechanism 

(Neyman and Pearson, 1933). 

2.4. NHST in its current form 

The current NHST merged the above concepts and is often applied stereotypically as a 

‘mindless null ritual’ (Gigerenzer, 2004). Researchers set H0 nearly always ‘predicting’ zero 

effect but do not quantitatively define H1. Hence, pre-experimental power cannot be calculated 

for most tests which is a crucial omission in the Neyman-Pearson framework. Researchers 

compute the exact p value as Fisher did but also mechanistically reject H0 and accept the 

undefined H1 if p≤(α=0.05) without flexibility following the behavioural decision rule of 

Neyman and Pearson. As soon as p≤α, findings have the supposed right to become a scientific 

fact defying the exact replication demands of Fisher and the belief neutral approach of Neyman 

and Pearson. Researchers also interpret the exact p value and use it as a relative measure of 

evidence against H0, as Fisher did. A 'highly significant' result with a small p value is perceived 
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as much stronger evidence than a weakly significant one. However, while Fisher was conscious 

of the weak nature of the evidence provided by the p value (Wasserstein and Lazar, 2016), 

generations of scientists encouraged by incorrect editorial interpretations (Bakan 1966) started 

to exclusively rely on the p value in their decisions even if this meant neglecting their 

substantive knowledge: scientific conclusions merged with reading the p value (Goodman, 

1999). 

3. Neglecting the full context of NHST leads to confusions about the p value 

Most textbooks illustrate NHST by partial 2×2 tables (see Table 1) which fail to 

contextualize long-run conditional probabilities and fail to clearly distinguish between 

long-run probabilities and the p value which is computed for a single data set (Pollard and 

Richardson, 1987). This leads to major confusions about the meaning of the p value (see Box 

1). 

First, both H0 and H1 have some pre-study or ‘prior’ probabilities, pr(H0) and pr(H1). 

This means that before the study is run we may have some knowledge about the validity of H0 

and H1. For example, we may know about a single published study claiming to demonstrate H1 

by showing a difference between appropriate experimental conditions. However, in 

conferences we may have also heard about 9 highly powered but failed replication attempts 

very similar to the original study. In this case we may assume that the odds of H0:H1 are 9:1, 

that is, pr(H1) is 1/10. Of course, these pre-study odds are usually hard to judge unless we 

demand to see our colleagues’ ‘null results’ hidden in their drawers because of the practice of 

not publishing negative findings. Current scientific practices appreciate the single published 

‘positive’ study more than the 9 unpublished negative ones perhaps because NHST logic only 

allows for rejecting H0 but does not allow for accepting it and because researchers erroneously 

often think that the single published positive study has a very small, acceptable error rate of 

providing false positive statistically significant results which equals α, or the p value. So, they 
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often spuriously assume that the negative studies somehow lacked the sensitivity to show an 

effect while the single positive study is perceived as a well-executed sensitive experiment 

delivering a 'conclusive' verdict rather than being a 'lucky' false positive (Bakan, 1966). 

NHST completely neglects the above mentioned pre-study information and exclusively 

deals with rows 2-4 of Table 1. NHST computes the one or two-tailed p value for a particular 

data set assuming that H0 is true. Additionally, NHST logic takes long-run error probabilities (α 

and β) into account conditional on H0 and H1 These long-run probabilities are represented in 

typical 2x2 NHST contingency tables but note that β is usually unknown in real studies. 

As we have seen, NHST never computes the probability of H0 and H1 being true or 

false, all we have is a decision mechanism hoping for the best individual decision in view of 

long-run Type I and Type II error expectations. Nevertheless, following the repeated testing 

logic of the NHST framework, for many experiments we can denote the long-run probability of 

H0 being true given a statistically significant result as False Report Probability (FRP), and the 

long-run probability of H1 being true given a statistically significant result as True Report 

Probability (TRP). FRP and TRP are represented in Row 5 of Table 1 and it is important to see 

that they refer to completely different conditional probabilities than the p value. 

Simply put, the p value is pretty much the only thing that NHST computes but scientists 

usually would like to know the probability of their theory being true or false in light of their 

data (Jaynes, 2003; Pollard and Richardson, 1987; Goodman 1993). That is, researchers are 

interested in the post-experimental probability of H0 and H1. Most probably, for the reason that 

researchers do not get what they really want to see and the only parameter NHST computes is 

the p value it is well-documented (Oakes, 1986; Gliner et al. 2002; Wilkerson and Olson, 2010; 

Hoekstra et al. 2014; Castro-Sotos 2007; 2009) that many, if not most researchers confuse FRP 

with the p value or α and they also confuse the complement of p value (1-p) or α (1-α) with TRP 

(Pollard and Richardson, 1987; Cohen 1994). These confusions are of major portend because 
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the difference between these completely different parameters is not minor, they can differ by 

orders of magnitude, the long-run FRP being much larger than the p value under realistic 

conditions (Sellke et al. 2001; Ioannidis 2005). The complete misunderstanding of the 

probability of producing false positive findings is most probably a key factor behind vastly 

inflated confidence in research findings and we suggest that this inflated confidence is an 

important contributor to the current replication crisis in biomedical science and psychology.  

3.1 Serious underestimation of the proportion of false positive findings in NHST 

Ioannidis (2005) has shown that most published research findings relying on NHST are 

likely to be false. The modelling supporting this claim refers to the long-run FRP and TRP 

which we can compute by applying Bayes' theorem (see computational details and illustrations 

in Appendix 3). The calculations must consider α, the power (1-β) of the statistical test used, 

the pre-study probabilities of H0 and H1, and it is also insightful to consider bias (Berger 1985; 

Berger and Sellke, 1987; Berger and Delampady, 1987; Sellke, Bayari and Berger, 2001; 

Pollard and Richardson, 1987; Lindley 1993; Sterne and Smith, 2001; Ioannidis 2005). 

While NHST neglects the pre-study odds of H0 and H1, these are crucial to take into 

account when calculating FRP and TRP. For example, let's assume that we run 200 

experiments and in 100 studies our experimental ideas are wrong (that is, we test true H0 

situations) while in 100 studies our ideas are correct (that is, we test true H1 situations). Let's 

also assume that the power (1-β) of our statistical test is 0.6 and α = 0.05. In this case in 100 

studies (true H0) we will have 5% of results significant by chance alone and in the other 100 

studies (true H1) 60% of studies will come up significant. FRP is the ratio of false positive 

studies to all studies which come up significant: 

��� �  
����	 
���
��	�

��� �
�
��
������ ����������
 �	���
�

�  
5% �� 100 �
���	�

5% �� 100 �
���	� � 60% �� 100 �
���	�
 �  

5

5 �  60
�   

5

65
� 0.0769 
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That is, we will have 5 false positives out of a total of 65 statistically significant 

outcomes which means that the proportion of false positive studies amongst all statistically 

significant results is 7.69%, higher than the usually assumed 5%. However, this example still 

assumes that we get every second hypothesis right. If we are not as lucky and only get every 

sixth hypothesis right then if we run 600 studies, 500 of them will have true H0 true situations 

and 100 of them will have true H1 situations. Hence, the computation will look like:  

��� �  
����	 
���
��	�

��� �
�
��
������ ����������
 �	���
�

�  
5% �� 500 �
���	�

5% �� 500 �
���	� � 60% �� 100 �
���	�
 �  

25

25 �  60
�   

25

85

� 0.2941 

Hence, nearly 1/3 of all statistically significant findings will be false positives 

irrespective of the p value. Of course, estimating pre-study odds is difficult, primarily due to 

the lack of publishing negative findings and to the lack of proper documentation of 

experimenter intentions before an experiment is run: We do not know what percent of the 

published statistically significant findings are lucky false positives explained post-hoc when in 

fact researchers could not detect the originally hypothesized effect. However, it is reasonable to 

assume that only the most risk avoidant studies have lower H0:H1 odds than 1, relatively 

conservative studies have low to moderate H0:H1 odds (1-10) while H0:H1 odds can be much 

higher in explorative research (50-100 or even higher) (Ioannidis, 2005). 

Bias is another important determinant of FRP and TRP (Ioannidis 2005). Whenever H0 

is not rejected findings have far more difficulty to be published and the researcher may feel that 

she wasted her efforts. Further, positive findings are more likely to get cited than negative 

findings (Kivimäki et al. 2014; Jannot et al. 2013; Kjaergard and Gluud, 2002). Consequently, 

researchers may often be highly biased to reject H0 and publish positive findings. Researcher 

bias affects FRP even if our NHST decision criteria, α and β, are formally unchanged. 
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Ioannidis (2005) introduced the u bias parameter. The impact of u is that after some data 

tweaking and selective reporting (see 4.6) u fraction of otherwise non-significant true H0 

results will be reported as significant and u faction of otherwise non-significant true H1 results 

will be reported as significant. If u increases, FRP increases and TRP decreases. For example, 

if α = 0.05, power = 0.6 and H0:H1 odds = 1 then a 10% bias (u = 0.1) will raise FRP to 18.47%. 

A 20% bias will raise FRP to 26.09%. If H0:H1 odds = 6 then FRP will be 67.92%. Looking at 

these numbers the replication crisis does not seem surprising: using NHST very high FRP can 

be expected even with modestly high H0:H1 odds and moderate bias (Etz and Vanderckhove, 

2016). Hence, under realistic conditions FRP not only extremely rarely equals α or the p value 

(and TRP extremely rarely equals 1-α and/or 1-p value) but also, FRP is much larger than the 

generally assumed 5% and TRP is much lower than the generally assumed 95%. Overall, α or 

the p value practically says nothing about the likelihood of our research findings being true or 

false. 

3.2 The neglect of power reinterpreted 

In contrast to the importance of power in determining FRP and TRP, NHST studies 

tend to ignore power and β and emphasize α and low p values. Often, finding a statistically 

significant effect erroneously seems to override the importance of power. However, statistical 

significance does not protect us from false positives. FRP can only be minimized by keeping 

H0:H1 odds and bias low and power high (Button et al. 2013; Pollard and Richardson, 1987; 

Bayarri et al. 2016). Hence, power is not only important so that we increase our chances to 

detect true effects but it is also crucial in keeping FRP low. While power in principle can be 

adjusted easily by increasing sample size, power in many/most fields of biomedical science 

and psychology has been notoriously low and the situation has not improved much during the 

past 50 years (Button et al. 2013; Cohen 1962; Sedlmeier and Gigerenzer, 1989; Rossi, 1990; 

Hallahan and Rosenthal, 1996). Clearly, besides making sure that research funding is not 
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wasted, minimizing FRP also provides very strong rationale for increasing the typically used 

sample sizes in studies.  

4. NHST logic is incomplete 

4.1 NHST misleads because it neglects pre-data probabilities 

Besides creating conceptual confusion and generating misleading inferences especially 

in the setting of weak power, NHST has further serious problems. NHST logic is based on the 

so-called modus tollens (denying the consequent) argumentation: It sets up a H0 model and 

assumes that if the data fits this model than the test statistic associated with the data should not 

take more extreme values than a certain threshold (Meehl, 1967; Pollard and Richardson, 

1987). If the test statistic contradicts this expectation then NHST assumes that H0 can be 

rejected and consequently its complement, H1 can be accepted. While this logic may be able to 

minimize Type I error in well-powered high-quality well-controlled tests (2.2), it is inadequate 

if we use it to decide about the truth of H1 in a single experiment, because there is always space 

for Type I and Type II error (Falk and Greenbaum, 1995). So, our conclusion is never certain 

and the only way to see how much error we have is to calculate the long-run FRP and TRP 

using appropriate α and power levels and prior H0:H1 odds. The outcome of the calculation can 

easily conflict with NHST decisions (see Appendix 4). 

4.2 NHST neglects predictions under H1 facilitating sloppy research 

NHST does not require us to specify exactly what data H1 would predict. Whereas the 

Neyman-Pearson approach requires researchers to specify an effect size associated with H1 and 

compute power (1-β), in practice this is easy to neglect because the NHST machinery only 

computes the p value conditioned on H0 and it is able to provide this result even if H1 is not 

specified at all. A widespread misconception flowing from the fuzzy attitude of NHST to H1 is 

that rejecting H0 allows for accepting a specific H1 (Nickerson 2000). This is what most 

practicing researchers do in practice when they reject H0 and argue for their specific H1 in turn. 
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However, NHST only computes probabilities conditional on H0 and it does not allow for the 

acceptance of either H0, a specific H1 or a generic H1. Rather, it only allows for the rejection of 

H0. Hence, if we reject H0 we will have no idea about how well our data fits a specific H1. This 

cavalier attitude to H1 can easily lead us astray even when contrasting H0 just with a single 

alternative hypothesis as illustrated by the invalid inference based on NHST logic in Table 2 

(Pollard and Richardson, 1987). 

Our model says that if H0 is true, it is a very rare event that Harold is a member of 

congress. This rare event then happens which is equivalent to finding a small p value. Hence, 

we conclude that H0 can be rejected and H1 is accepted. However, if we carefully explicate all 

probabilities it is easy to see that we are being mislead by NHST logic. First, because we have 

absolutely no idea about Harold’s nationality we can set pre-data probabilities of both H1 and 

H0 to 1/2, which means that H0:H1 odds are uninformative, 1:1. Then we can explicate the 

important conditional probabilities of the data (Harold is a member of congress) given the 

possible hypotheses. We can assign arbitrary but plausible probabilities: 

pr(data|H0) = pr(Harold is member of congress | American) = 10-7 

pr(data|H1) = pr(Harold is member of congress | not American) = 0 

That is, while the data is indeed rare under H0, its probability is actually zero under H1 (in other 

words, the data is very unlikely under both the null and the alternative models). So, even if p ≈ 

0.0000001, it does not make sense to reject H0 and accept H1 because this data just cannot 

happen if H1 is true. If we only have these two hypotheses to choose from then it only makes 

sense to accept H0 because the data is still possible under H0 (Jaynes, 2003). In fact, using 

Bayes' theorem we can formally show that the probability of H0 is actually 1 (Appendix 5). 

In most real world problems multiple alternative hypotheses compete to explain the 

data. However, by using NHST we can only reject H0 and argue for some H1 without any 

formal justification of why we prefer a particular hypothesis whereas it can be argued that it 
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only makes sense to reject any hypothesis if another one better fits the data (Jaynes, 2003). We 

only have qualitative arguments to accept a specific H1 and the exclusive focus on H0 makes 

unjustified inference too easy. For example, if we assume that H0 predicts normally distributed 

data with mean 0 and standard deviation 1 then we have endless options to pick H1 (Hubbard 

and Bayarri, 2003): Does H1 imply that the data have a mean other than zero, the standard 

deviation other than 1 and/or does it represent non-normally distributed data? NHST allows us 

to consider any of these options implicitly and then accept one of them post-hoc without any 

quantitative justification of why we chose that particular option. Further, merging all 

alternative hypotheses into a single H1 is not only too simplistic for most real world problems 

but it also poses an 'inferential double standard' (Rozeboom, 1960): The procedure pits the 

well-defined H0 against a potentially infinite number of alternatives. 

Vague H1 definitions (the lack of quantitative predictions) enable researchers to avoid 

the falsification of their favourite hypotheses by intricately redefining them (especially in 

fields such as psychology and cognitive neuroscience where theoretical constructs are often 

vaguely defined) and ever providing any definitive assessment of the plausibility of a favourite 

hypothesis in light of credible alternatives (Meehl, 1967). This problem is reflected in papers 

aiming at the mere demonstration of often little motivated significant differences between 

conditions (Giere, 1972) and post-hoc explanations of likely unexpected but statistically 

significant findings. For example, neuroimaging studies often attempt to explain why an fMRI 

BOLD signal ‘deactivation’ happened instead of a potentially more reasonable looking 

‘activation’ (or, vice versa). Most such findings may be the consequence of the data randomly 

deviating into the wrong direction relative to zero between-condition difference. Even multiple 

testing correction will not help such studies as they still rely on standard NHST just with 

adjusted α thresholds. Similarly, patient studies often try to explain an unexpected difference 

between patient and control groups (e.g. the patient group is ‘better’ on a measure) by some 
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kind of ‘compensatory mechanism’. In such cases what happens is that ‘the burden of inference 

has been delegated to the statistical test', indeed, and simply because p ≤ α odd looking 

observations and claims are to be trusted as scientific facts (Bakan, 1966, p423; Lykken 1968). 

Finally, paradoxically, when we achieve our goal and successfully reject H0 we will 

actually be left in complete existential vacuum because during the rejection of H0 NHST ‘saws 

off its own limb’ (Jaynes, 2003; p524): If we manage to reject H0 then it follows that pr(data or 

more extreme data|H0) is useless because H0 is not true. Thus, we are left with nothing to 

characterize the probability of our data in the real world; we will not know pr(data|H1) for 

example, because H1 is formally undefined and NHST never tells us anything about it. In light 

of these problems Jaynes (2003) suggested that the NHST framework addresses an ill-posed 

problem and provides invalid responses to questions of statistical inference. 

4.4 The p value may exaggerate evidence against H0 

The definition of the p value as pr(data or more extreme data | H0) is only justified 

informally by claiming that the p value is a measure of the 'surprise' felt when a rare event 

happens (Berger and Delampady, 1987). However, as we have seen our surprise at a rare event 

does not guarantee that H0 can be rejected: it may be surprising to find a member of Congress 

but this does not make him/her less likely to be American. Second, it can be shown formally 

that the definition of the p value does exaggerate the evidence against H0 by about one order of 

magnitude which greatly biases NHST procedures towards the rejection of H0 (see Berger and 

Sellke, 1987; Berger and Delamdapy, 1987; Goodman, 1993). 

4.5 NHST is unsuitable for large datasets 

In consequence of the recent 'big data' revolution access to large databases has 

increased dramatically potentially increasing power tremendously. However, NHST leads to 

worse inference with large databases than with smaller ones (Meehl, 1967; Khoury and 

Ioannidis, 2014). This is due to how NHST tests statistics are computed, the properties of real 
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data and to the lack of specifying data predicted by H1 (Bruns and Ioannidis, 2016). 

Most NHST studies rely on nil null hypothesis testing which means that H0 expects a 

true mean difference of exactly zero between conditions with some variation around this true 

zero mean. Further, NHST machinery guarantees that we can detect any tiny irrelevant effect 

sizes if sample size is large enough. This is because test statistics are typically computed as the 

ratio of the relevant between condition differences and associated variability of the data 

weighted by some function of the sample size (difference/variability × f(sample size)). The p 

value is smaller if the test statistic is larger. Thus, the larger is the difference between 

conditions and/or the smaller is variability and/or the larger is the sample size the larger is the 

test statistic and the smaller is the p value. Consequently, by increasing sample size enough it is 

guaranteed that H0 can be rejected even with miniature effect sizes (Ziliak et al. 2008). 

Parameters of many real data sets are much more likely to differ than to be the same for 

reasons completely unrelated to our hypotheses (Edwards, 1972; Meehl, 1967; 1990). First, 

many psychological, social and biomedical phenomena are extremely complex reflecting the 

contribution of very large numbers of interacting (latent) factors, let it be at the level of society, 

personality or heavily networked brain function or other biological networks (Lykken 1968; 

Gelman, 2014). Hence, if we select any two variables related to these complex networks most 

probably there will be some kind of at least remote connection between them. This 

phenomenon is called ‘crud factor’ Meehl (1990) or ‘ambient correlational noise’ (Lykken, 

1968) and it is unlikely to reflect a causal relationship. In fact some types of variables, such as 

intake of various nutrients and other environmental exposures are very frequently correlated 

among themselves and with various disease outcomes without this meaning that they have 

anything to do with causing disease outcomes (Patel and Ioannidis, 2014a,b). Second, unlike in 

physical sciences it is near impossible to control for the relationship of all irrelevant variables 

which are correlated with the variable(s) of interest (Rozeboom 1960; Lykken 1968). 
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Consequently, there can easily be a small effect linking two randomly picked variables even if 

their statistical connection merely communicates that they are part of a vast complex 

interconnected network of variables. Only a few of these tiny effects are likely to be causal and 

of any portend (Siontis and Ioannidis, 2011). 

The above issues have been demonstrated empirically and by simulations. For example, 

Bakan (1966; see also Meehl, 1967; Nunally, 1960; Berkson, 1938) subdivided the data of 

60,000 persons according to completely arbitrary criteria, like living east or west of the 

Mississippi river, living in the north or south of the USA, etc. and found all tests coming up 

statistically significant. Waller (2004) examined the personality questionnaire data of 81,000 

individuals to see how many randomly chosen directional null hypotheses can be rejected. If 

sample size is large enough, 50% of directional hypothesis tests should be significant 

irrespective of the hypothesis. As expected, nearly half (46%) of Waller's (2004) results were 

significant. Simulations suggest that in the presence of even tiny residual confounding (e.g. 

some omitted variable bias) or other bias, large observational studies of null effects will 

generate results that may be mistaken as revealing thousands of true relationships (Bruns and 

Ioannidis, 2016). Experimental studies may also suffer the same problem, if they have even 

minimal biases.  

 

Due to the combination of the above properties of some psychological data sets and 

statistical machinery theory testing radically differs in sciences with exact and non-exact 

quantitative predictions (Meehl, 1967). In physical sciences increased measurement precision 

and increased amounts of data increase the difficulties a theory must pass before it is accepted. 

This is because theoretical predictions are well defined, numerically precise and it is also easier 

to control measurements (Lykken, 1968). That is, a theory may predict that a quantity should 

exactly be let’s say 5 and the experimental setup can assure that really only very few factors 
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influence measurements -  these factors can then be taken into account during analysis. Hence, 

increased measurement precision will make it easier to demonstrate a departure from 

numerically exact predictions. So, a 'five sigma' deviation rule may make good sense in physics 

where precise models are giving precise predictions about variables.  

In sciences using NHST without clear numerical predictions the situation is the 

opposite of the above, because NHST does not demand the exact specification of H1, so 

theories typically only predict a fairly vague 'difference' between groups or experimental 

conditions rather than an exact numerical discrepancy between measures of groups or 

conditions. However, as noted, groups are actually likely to differ and if sample size increases 

and variability in data decreases it will become easier and easier to reject any kind of H0 when 

following the NHST approach. In fact, with precise enough measurements and large enough 

sample size H0 is guaranteed to be rejected on the long run even if the underlying processes 

generating the data in two experimental conditions are exactly the same. Hence, ultimately any 

H1 can be accepted, claiming support for any kind of theory. For example, in an amusing 

demonstration Carver (1993) used Analysis of Variance to re-analyze the data of Michelson 

and Morley (1887) who suggested that the speed of light is constant (H0) thereby providing the 

empirical basis for Einstein's theory of relativity. Carver (1993) found that that the speed of 

light was actually not constant at p<0.001. The catch? The effect size as measured by Eta2 was 

0.005. While some may feel that Einstein’s theory has now been falsified, perhaps it is also 

worth considering that here the statistically significant result is essentially insignificant. 

A typical defence of NHST may be that we actually may not want to increase power 

endlessly, just as much as we still think that it allows us to detect reasonable effect sizes (Giere, 

1972). A more reasoned approach may be to consider explicitly what the consequences 

(“costs”) are of a false-positive, true-positive, false-negative, and true-negative result. Explicit 

modelling can suggest that the optimal combination of Type 1 error and power may need to be 
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different depending on what these assumed costs are (Ioannidis, Hozo and Djulbegovic, 2014). 

Different fields may need to operate at different optimal ratios of false-positives to 

false-negatives (Ioannidis, Tarone and McLaughlin, 2011). 

4.6 NHST may foster selective reporting 

Because NHST never evaluates H1 formally and it is fairly biased towards the rejection 

of H0, reporting bias against H0 can easily infiltrate the literature even if formal NHST 

parameters are fixed (see about the ‘u’ bias parameter in 3.1; ). Overall, a long series of 

exploratory tools and questionable research practices are utilized in search for statistical 

significance (Johns 2012, Ioannidis and Trikalinos, 2007). Researchers can influence their data 

during undocumented analysis and pre-processing steps and by the mere choice of structuring 

the data (constituting researcher degrees of freedom; Simmons et al. 2011). This is particularly 

a problem in neuroimaging where the complexity and idiosyncrasy of analyses is such that it is 

usually impossible to replicate exactly what happened and why during data analysis (Carp 

2012; Vul et al. 2009; Kriegeskorte et al. 2009). Another term that has been used to describe the 

impact of diverse analytical choices is “vibration of effects” (Ioannidis, 2008). Different 

analytical options, e.g. choice of adjusting covariates in a regression model can result in a cloud 

of results, instead of a single result, and this may entice investigators to select a specific result 

that is formally significant, while most analytical options would give non-significant results or 

even results with effects in the opposite direction (‘Janus effect’; Patel, Burford and Ioannidis, 

2015). Another common mechanism that may generate biased results with NHST is when 

investigators continue data collection and re-analyse the accumulated data sequentially without 

accounting for the penalty induced by this repeated testing (DeMets and Lan, 1994; Goodman 

1999). The unplanned testing is usually undocumented and researchers may not even be 

conscious that it exposes them to Type I error accumulation. Bias may be the key explanation 

why in most biomedical and social science disciplines, the vast majority of published papers 
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with empirical data report statistically significant results (Fanneli 2010; Kavvoura et al. PLoS 

Med 2007; Chavalarias et al. 2016). 

4.7 The rejection of H0 is guaranteed on the long-run 

If H0 is false, with α = 0.05, 5% of our tests will be statistically significant on the 

long-run. The riskier experiments we run, the larger are H0:H1 odds and bias and the larger is 

the long-run FRP (3.3). Coupled with the fact that a large number of unplanned tests may be 

run in each study and that negative results and failed replications are often not published, this 

leads to 'unchallenged fallacies' clogging up the research literature (Ioannidis, 2012; p1; Bakan 

1966; Sterling 1959; Sterling et al. 1995). Moreover, such published false positive true H0 

studies will also inevitably overestimate the effect size of the non-existent effects or of existent, 

but unimportantly tiny, effects (Schmidt, 1992; 1996; Sterling et al. 1995; Ioannidis 2008). 

These effects may even be confirmed by meta-analyses, because meta-analyses typically are 

not able to incorporate unpublished negative results (Sterling et al. 1995) and they cannot 

correct many of the biases that have infiltrated the primary studies.  

Given that the predictions of H1 are rarely precise and that theoretical constructs in 

many scientific fields (including psychology and cognitive neuroscience) are often poorly 

defined, it is easy to claim support for a popular theory with many kinds of data falsifying H0 

even if the constructs measured in many papers are just very weakly linked to the original 

paper, or not linked at all. Overall, the literature may soon give the impression of a steady 

stream of replications throughout many years. Even when “negative” results appear, citation 

bias may still continue to distort the literature and the prevailing theory may continue to be 

based on the “positive” results. Hence, citation bias may maintain prevailing theories even 

when they are clearly false and unfounded (Greenberg, 2009). 

4.8 NHST does not facilitate systematic knowledge integration 

Due to high FRP the contemporary research literature provides statistically significant 
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‘evidence’ for nearly everything (Schoenfeld and Ioannidis, 2012). Because NHST emphasizes 

all or none p value based decisions rather than the magnitude of effects, often only p values are 

reported for critical tests, effect size reports are often missing and interval estimates and 

confidence intervals are not reported. In an assessment of the entire biomedical literature in 

1990-2015, 96% of the papers that used abstracts reported at least some p value below 0.05, 

while only 4% of a random sample of papers presented consistently effect sizes with 

confidence intervals (Chalalarias, Wallach and Ioannidis, 2016). However, oddly enough, the 

main NHST ‘measure of evidence’, the p value cannot be compared across studies. It is a 

frequent misconception that a lower p value always means stronger evidence irrespective of the 

sample size and effect size (Oakes, 1986; Schmidt, 1996; Nickerson, 2000). Besides the 

non-comparable p values, NHST does not offer any formal mechanism for systematic 

knowledge accumulation and integration (Schmidt, 1996) unlike Bayesian methods which can 

take such pre-study information into account. Hence, we end up with many fragmented studies 

which are most often unable to say anything formal about their favourite H1s (accepted in a 

qualitative manner). Methods do exist for the meta-analysis of p values (see e.g. Cooper, 

Hedges and Valentine, 2009) and these are still used in some fields. However, practically such 

meta-analyses still say nothing about the magnitude of the effect size of the phenomenon being 

addressed. These methods are potentially acceptable when the question is whether there is any 

non-null signal among multiple studies that have been performed, e.g. in some types of genetic 

associations where it is taken for granted that the effect sizes are likely to be small anyhow 

(Evangelou and Ioannidis, 2013). 

5. The state of the art must change 

5.1 NHST is unsuitable as the cornerstone of scientific inquiry in most fields 

In summary, NHST provides the illusion of certainty through supposedly 'objective' 

binary accept/reject decisions (Cohen, 1997; Ioannidis 2012) based on practically meaningless 
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p values (Bakan 1966). However, researchers usually never give any formal assessment of how 

well their theory (a specific H1) fits the facts and, instead of gradual model building 

(Gigerenzer 1988) and comparing the plausibility of theories, they can get away with 

destroying a strawman: they disprove an H0 (which happens inevitably sooner or later) with a 

machinery biased to disproving it without ever going into much detail about the exact 

behaviour of variables under exactly specified hypotheses (Kranz 1999; Jaynes 2003). NHST 

also does not allow for systematic knowledge accumulation. In addition, both because of its 

shortcomings and because it is subject to major misunderstandings it facilitates the production 

of non-replicable false positive reports. Such reports ultimately erode scientific credibility and 

result in wasting perhaps most of the research funding in some areas (Nosek 2015; Ioannidis 

2005; Macleod, Michie, Roberts, Dirnagl, Chalmers, Ioannidis, Al-Shahi Salman, Chan and 

Glasziou, 2014). 

NHST seems to survive for various reasons. First, it allows for the easy production of a 

large number of publishable papers (irrespective of their truth value) providing a response to 

publication pressure. Second, NHST seems deceptively simple: because the burden of 

inference (Bakan, 1966) has been delegated to the significance test all too often researchers’ 

statistical world view is narrowed to checking an inequality: is p ≤ 0.05 (Cohen, 1994)? After 

passing this test, an observation can become a 'scientific fact' contradicting the random nature 

of statistical inference (Gelman, 2014). Third, in biomedical and social science NHST is often 

falsely perceived as the single objective approach to scientific inference (Gigerenzer et al. 

1989) and alternatives are simply not taught and/or understood. 

We have now decades of negative experience with NHST which gradually achieved 

dominance in biomedical and social science since the 1930s (Gigerenzer et al. 1989). Critique 

of NHST started not much later (Jeffreys, 1939) and has been forcefully present since then 

(Rozeboom, 1960; Nunnaly, 1960; Eysenck 1960; Clark 1963; Jeffreys, 1961; Bakan 1966; 
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Mehl 1967; Lykken 1968) and continues to-date (Wasserstein and Lazar, 2016). The problems 

are numerous, and as Edwards (1972, p179) concluded 44 years ago: 'any method which invites 

the contemplation of a null hypothesis is open to grave misuse, or even abuse'. Time has proven 

this statement and that problems are unlikely to go away. We suggest that that it is really time 

for change now.  

5.2 If theory is weak we need to focus on estimating effect sizes and their 

uncertainty 

In basic biomedical and psychology research we often cannot provide very well worked 

out hypotheses and even a simple directional hypothesis may seem particularly enlightening. 

Such rudimentary state of knowledge can be respected. However, in such pre-hypothesis stage 

substantively blind all or nothing accept/reject decisions may be unhelpful and may maintain 

our ignorance rather than facilitate organizing new information into proper scientific models. It 

is much more meaningful to focus on assessing the magnitude of effects along with estimates 

of uncertainty, let these be error terms or Bayesian credible intervals (Luce, 1988; Edwards, 

1972; Jaynes 2003; Schmidt, 1996; Gelman 2013; Lakens & Evers, 2014; see Morey et al. 

2016 for why classical confidence intervals are not appropriate uncertainty measures). These 

provide more direct information on the actual 'empirical' behaviour of our variables. Gaining 

enough experience with interval estimates and assuring their robustness by building replication 

into design (Nosek et al. 2013) may then allow us to describe the behaviour of variables by 

more and more precise scientific models which may provide more clear predictions (Jaynes 

2003; Schmidt, 1996; Gelman 2013). 

The above problem does not only concern perceived 'soft areas' of science where 

measurement, predictions, control and quantification are thought to be less rigorous than in 

‘hard’ areas (Meehl, 1978). In many fields, for example, in cognitive neuroscience, the 

measurement methods may be 'hard' but theoretical predictions and analysis often may be just 
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as 'soft' as in any area of 'soft' psychology: Using a state of the art fMRI scanner for data 

collection and extremely complicated and often not clearly understood black box software for 

data analysis will not make a badly defined theory well defined. In fact, in such pretend-hard 

areas the situation may even be worse because technology allows us to measure a huge number 

of variables and run an immense number of tests (many of them undocumented and hence, 

uncorrected for multiple testing) and analyze the data by highly complex obscure black box 

processes and non-replicable idiosyncratic approaches. All these problems will only boost the 

number of false positive unreplicable findings (Carp, 2012; Vul et al. 2009; Kriegeskorte et al. 

2009). 

5.3 Improved reporting and alternative statistical inference methods are needed 

While we need substantial change, criticism of NHST should not ‘lapse into 

methodological anarchy out of despair or confusion’ (Giere, 1972, p.171). For example, 

recently, the Journal of Basic and Applied Social Psychology banned NHST from their articles 

(Trafimov and Marks, 2015; see Hunter, 1997). The decision prompted critical responses from 

several high profile statisticians who objected to the approach of the journal editors and their 

negative view on the controversies of statistical inference in general 

(https://www.statslife.org.uk/news/2116-academic-journal-bans-p-value-significance-test), 

which sharply contrasts with the view of the renowned physicist ET Jaynes (2003; pp. xxii; see 

starting quotes) who plausibly defined probability theory as the 'logic of science'. Let's make it 

clear that we are not arguing against statistical inference in general and we do not want to ban 

NHST. Quantitative and well justified statistical inference should be at the core of the scientific 

enterprise. We argue against the default and mindless application of NHST. 

It may be reasonable to use NHST in some cases. One such case is when very precise 

quantitative theoretical predictions can be tested, hence, both power and effect size can be 

estimated well as intended by Neyman and Pearson (1933). Further, when theoretical 
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predictions are not precise, we powered NHST tests may be used as an initial heuristic look at 

the data as Fisher (1925) intended. In this second case NHST tests must be followed up by 

more robust procedures to estimate effect sizes and interval estimates (e.g. by the now widely 

available bootstrap and permutation procedures) and (if there are clear hypotheses) more 

robust likelihood estimation or Bayesian techniques to test hypotheses. As Fisher was well 

conscious, NHST procedures can only suggest that something is really important if they 'rarely 

fail' to give us statistically significant results (Gigerenzer et al. 1989, p96; Goodman, 2008). 

Hence, strong claims require the replication of NHST tests optimally within the initial study. 

These replications must be well powered to keep FRP low. In all cases when NHST is used its 

use must be justified clearly rather than used as an automatic default and single cornerstone 

procedure. As discussed, NHST can only reject H0 and can accept neither a generic or specific 

H1. So, on its own NHST cannot provide evidence ‘for’ something even if findings are 

replicated. 

Statistical reporting must improve substantially. Optimally, raw data should be 

published because data parameters of interest depend on the choice of models and analyses. 

Regarding the actually chosen analyses, the distribution (very rarely plotted at the moment) 

and important parameters of the data should be communicated (e.g. means and standard 

deviations in the original units of measurement as well as confidence and/or credible intervals). 

Regarding NHST procedures, researchers should report power calculations for each test 

including those with non-significant results and the number of cases should clearly be reported 

for each test. In the age of internet all important results can be communicated as online 

supplementary material, so there is not much excuse for not doing this. Improved access to raw 

data, algorithms and code would also be helpful and efficient ways to promote such 

reproducible research practices need to be found (Doshi, Goodman, Ioannidis, 2013; Diggle 

and Zeger, 2010; Keiding 2010; Laine, Goodman and Griswold, 2007; Peng, 2009; Peng, 
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2011). Incentives such as a badge system may help promote availability of more raw data 

(Nosek et al. 2015). Diverse stakeholders (journals, funders, institutions, and more) may 

contribute to align incentives with better research practices (Ioannidis 2014).  

Hypotheses could be tested by either likelihood ratio testing, and/or Bayesian methods 

which usually view probability as characterizing the state of our beliefs about the world 

(Jaynes, 2003; Pearl 1998; MacKay, 2003; Gelman et al. 2014; Sivia and Skilling, 2006). The 

above alternative approaches require model specifications about alternative hypotheses, they 

can give probability statements about H0 and alternative hypotheses, they allow for clear model 

comparison, are insensitive to data collection procedures and do not suffer from problems with 

large samples. In addition, Bayesian methods can also factor in pre-study (prior) information 

into model evaluations which may be important for integrating current and previous research 

findings. Hence, the above alternative approaches seem more suitable for the purpose of 

scientific inquiry than NHST and ample literature is available on both. The problem is that 

usually none of these alternative approaches are taught properly in statistics courses for 

students in psychology, neuroscience, biomedical science and social science. For example, 

across 1000 abstracts randomly selected from the biomedical literature of 1990-2015, none 

reported results in a Bayesian framework (Chavalarias, et al. 2016). 

5.4 Better training and better use of statistical methods: from believers to thinkers 

We argue that the practice of relying on (good-willed) editorial dictates rather than 

informed statistical thinking is a symptom of a core problem: the statistical subject knowledge 

of many researchers in biomedical and social science has been shown to be poor (Oakes, 1986; 

Gliner et al. 2002; Wilkerson and Olson, 2010; Hoekstra et al. 2014; Castro-Sotos 2007; 2009). 

NHST perfectly fits with poor understanding because of the perceived simplicity of 

interpreting its outcome: is p ≤ 0.05 (Cohen, 1994)? 

We suggest that the weak statistical understanding is probably due to inadequate 
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'statistics lite' education based on supposedly 'user friendly' dumbed down statistics cookbooks 

which may do more harm than good. This approach does not build up appropriate mathematical 

fundamentals and does not provide scientifically rigorous introduction into statistics. Hence, 

students' knowledge may remain imprecise, patchy and prone to serious misunderstandings. 

What this approach achieves, however, is providing students with false confidence of being 

able to use inferential tools whereas they usually only interpret the p value provided by black 

box statistical software. While this educational problem remains unaddressed, poor statistical 

practices will prevail regardless of what procedures and measures may be favoured and/or 

banned by editorials. 

Understanding probability is difficult. Common sense is notoriously weak in 

understanding phenomena based on probabilities (Gigerenzer et al. 2005). We cannot assume 

that without proper training biomedical and social science graduates would get miraculously 

enlightened about probability. Some of the best symbolic thinking minds of humanity devoted 

hundreds of years to the proper understanding of probability and statisticians still do not agree 

on how best to draw statistical inference (Stigler 1986; Gigerenzer et al. 1989), e.g. the recent 

ASA statement on p values (Wasserstein and Lazar, 2016) was accompanied by 21 editorials 

from the statisticians and methodologists who participated in crafting it and who disagreed in 

different aspects among themselves.  

One approach would be to phase out the 'statistics lite education approach for all 

research stream students and teach statistics rigorously, based on two years of calculus. Besides 

NHST, Bayesian and likelihood based approaches should also be taught, with explanation of 

the strengths and weaknesses of each inferential method. An alternative and/or complementary 

approach would be to enhance the training of professional applied statisticians and to ensure 

that all research involves knowledgeable statisticians or equivalent methodologists. At a 

minimum, all scientists should be well trained in understanding evidence and statistics and 
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being in a position to recognize that they may need help from a methodologist expert (Marusic 

A, Marusic, 2003; Moharar, Rahimi and Najafi, 2009; Vujaklija, Hren, Sambunjak, 

Vodopivec, Ivanis, Marusic and Marusic, 2010).  

All too often statistical understanding is perceived as something external to the subject 

matter of substantive research. However, it is important to see that statistical understanding 

influences most decisions about substantive questions, because it underlies the thinking of 

researchers even if this remains implicit. While common sense 'statistics' may be able to cope 

with simple situations, common sense is not enough to decipher scientific puzzles involving 

dozens, hundreds, or even thousands of interrelated variables. In such cases well justified 

applications of probability theory are necessary (Jaynes, 2003). Hence, instead of delegating 

their judgment to 'automatized' but ultimately spurious decision mechanisms, researchers 

should have confidence in their own informed judgment when they make an inference. 

5.4 There is no automatic inference: New-old dangers ahead? 

Perhaps the most worrisome false belief about statistics is the belief in automatic 

statistical inference (Bakan 1966), the illusion that plugging in some numbers into some black 

box algorithm will give a number (perhaps the p value or some other metric) that conclusively 

proves or disproves hypotheses (Bakan 1966). There is no reason to assume that any kind of 

'new statistics' (Cummings, 2008) will not suffer the fate of NHST if statistical understanding 

is inadequate. For example, it has been shown that confidence intervals are misinterpreted just 

as badly as p values by undergraduates, graduates and researchers alike and self-declared 

statistical experience even slightly positively correlates with the number of errors (Hoekstra et 

al. 2014). Similarly, the proper use of Bayesian methods may require use of advanced 

simulation methods and a clear understanding and justification of probability distribution 

models. In contrast to this, it is frequent to see a kind of 'automatic' determination of Bayes 

factors or posterior estimates, again, provided by black box statistical packages which again, 
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promise to take the load of thinking off the shoulders of researchers. 

There is no reason to assume that understanding 21st and 22nd century science will 

require less mathematical and statistical understanding than before. If statistical understanding 

does not improve it will not matter whether editorials enforce bootstrapping, likelihood 

estimation or Bayesian approaches, they will all remain mystical to the untrained mind and 

open to abuse such as the NHST of the 20th century. 

Acknowledgments. DS is supported by the James S McDonnell Foundation. 

BOX 1: Major confusions about the p value 

1. Many practicing researchers and even some statisticians confuse the roles of the p 

value and α (Hubbard and Bayarri 2003). These researchers set α = 0.05 before they run an 

experiment but once they compute the p value they falsely assume that the p value will now 

represent the actual data-dependent Type I error probability somehow replacing the 

Neyman-Pearson α level while also interpreting it as the strength of evidence against H0 as 

used by Fisher (Goodman, 1993; 1999; Nickerson 2000). However, α is always fixed 

independently of what p value we find in an experiment whereas p values can be considered 

random variables, varying widely from experiment to experiment (Murdoch et al. 2008; Hung 

et al. 1997; Simonsohn et al. 2014a,b; Sterling 1959). Currently, the expression 'significance 

level' is used interchangeably for both the p value and α reflecting the confusion about them 

(Hubbard and Bayarri 2003).  

2. Many practicing researchers falsely assume that if p = 0.01 then the probability of a 

false positive finding given the data (pr(H0|data) is 0.01. Conversely, they also assume that if p 

= 0.01 then the probability of a truly positive finding given the data (pr(H1|data) is 1 - p = 0.99. 

Yet, others confuse the p value with the 'updated' H0:H1 odds after a study was run, and/or with 

replication success (Bakan, 1966; Meehl, 1967; Pollard and Richardson, 1987; Cohen 1994; 

Hunter, 1997; Goodman, 1999; Oakes, 1986; Gliner et al. 2002; Wilkerson and Olson, 2010; 
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Hoekstra et al. 2014; Castro-Sotos 2007; 2009). These false assumptions are not only 

thoroughly wrong, they also deeply underestimate the probability of false positive findings and 

highly overestimate the probability of truly positive findings and replication success. The 

network of confusions outlined here constitute what Goodman (1999) termed the 'p value 

fallacy' (see Goodman, 1999; Goodman 2008; Nickerson 2000 and Wagenmakers, 2007 for 

excellent reviews). 
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