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Abstract  27 

Diagnostic accuracy statistics, including predictive values, risk-differences, Youden’s index and 28 

Area Under the Curve (AUC), assess the promise of novel biomarkers proposed as diagnostic 29 

tests.  We reinterpret these statistics in light of risk-stratification (how well a biomarker separates 30 

those at higher risk from those at lower risk) to better understand their implications for public-31 

health programs. We introduce an intuitively simple statistic, Mean Risk Stratification (MRS): 32 

the average change in risk (pre-test vs. post-test) revealed for tested individuals.  High MRS 33 

implies better risk separation achieved by testing.  MRS demonstrates that conventional 34 

predictive values can mislead because they do not account for disease prevalence or test-35 

positivity rates.  Little risk-stratification is possible for rare diseases, demonstrating a “high-bar” 36 

to justify population-based screening.  Importantly, we demonstrate that the risk-difference, 37 

Youden’s index, and AUC measure only multiplicative relative gains in risk-stratification: 38 

AUC=0.6 achieves only 20% of maximum risk-stratification (AUC=0.9 achieves 80%).  39 

However, large relative gains in risk-stratification might not imply large absolute gains if disease 40 

is rare or if the test is rarely positive. We illustrate MRS by our experience comparing the 41 

performance of cervical cancer screening tests in China vs. the USA.  The test with the worst 42 

AUC=0.72 in China (visual inspection with ascetic acid) provides twice the risk-stratification of 43 

the test with best AUC=0.83 in the USA (human papillomavirus and Pap cotesting) because 44 

China has three times more cervical precancer/cancer.  MRS could be routinely calculated to 45 

better understand the clinical/public-health implications of standard diagnostic accuracy 46 

statistics.     47 

48 
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Introduction 49 

After a new biomarker is convincingly associated with disease, the next question is whether it 50 

might have clinical/public-health use as a predictive test.  Proof of clinical/public-health utility 51 

requires absolute (not relative) risks for test results, a valuable risk-reducing intervention, and a 52 

comprehensive cost-effectiveness analysis that balances benefits, harms, and costs. Upon 53 

biomarker discovery, information required for a comprehensive analysis is usually unavailable.  54 

But it remains important to assess preliminarily, without considering costs, benefits, or harms, 55 

whether the new biomarker is predictive enough to justify formal cost-effectiveness analyses.  56 

Standard metrics reported for binary biomarkers1 provide at best indirect information 57 

about predictiveness for clinical/public-health use.  The odds-ratio is a well-known poor measure 58 

of predictiveness2.  When comparing two tests, it is uncommon for one test to have both higher 59 

sensitivity and specificity, or both higher positive predictive value (PPV) and lower complement 60 

of the negative predictive value (cNPV). Two summary statistics, Youden's Index3 and the Area 61 

Under the Receiver Operating Characteristic Curve (AUC) statistic (AUC is also used for 62 

continuous tests)4,5,  have been correctly criticized for not taking predictive values (i.e. absolute 63 

risks) into account, and for not permitting differential weighting of false-positive versus false-64 

negative errors6.  The AUC is the probability that someone with disease has higher risk than 65 

someone without disease, which requires only the risk ranks, not the absolute risks themselves4. 66 

Because the AUC for a binary test is the average of 1 and Youden's Index7, key criticisms of the 67 

two tests are shared.  68 

There is a need to better understand the implications of standard diagnostic accuracy 69 

metrics for clinical/public-health utility.  We reinterpret standard metrics in light of a novel 70 
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framework for quantifying risk-stratification. Risk-stratification quantifies the ability of a test to 71 

separate those at high risk of disease from those at low risk, allowing clinicians to intervene only 72 

for those that testing indicates are more likely to develop disease, and not intervene for those that 73 

testing indicates will likely not develop disease.   We introduce two new broadly applicable, 74 

linked statistics that have proven useful in our epidemiologic work on identifying potentially 75 

useful biomarker tests for cervical cancer screening. We define mean risk-stratification (MRS) as 76 

the average change in risk of disease that a test reveals for tested individuals.  We also define a 77 

complementary statistic, the Number Needed to Test (NNTest), which quantifies how many 78 

people require testing to identify one more disease case than random selection would. We use 79 

MRS and NNTest to demonstrate that disease prevalence and test-positivity are crucial for 80 

evaluating risk-stratification and interpreting standard metrics.  In particular, becaue the 81 

maximum MRS is proportional to disease prevalence, little risk-stratification is possible for rare 82 

diseases, demonstrating a “high-bar” to justify population-based screening.  The novel statistics 83 

help place the risk-difference, Youden’s index and AUC into perspective: they measure 84 

multiplicative relative gains in risk-stratification, which might not imply large absolute gains if 85 

disease is rare.  Thus AUC cannot be used to rank tests between populations with different 86 

disease prevalence, and we show examples from our experience.  Our webtool calculates 87 

MRS/NNTest (http://analysistools-dev.nci.nih.gov/biomarkerTools). 88 

 89 

Background for Examples: Cervical cancer screening tests 90 

Human papillomavirus (HPV) causes almost all cervical cancer8, leading to development of 91 

prophylactic vaccines and HPV DNA testing for screening. HPV DNA-based screening is 92 
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starting to replace cervical cytology (“Pap smears”), but many new tests are available or being 93 

rapidly developed9-10.  For low/middle-income countries, visual inspection with acetic acid 94 

(VIA), a simple low-cost, but unreliable and inaccurate test has been proposed11,12. To expedite 95 

cervical screening guidelines development13, we propose using MRS/NNTest to better interpret 96 

standard diagnostic accuracy statistics to identify potentially useful biomarkers for further 97 

definitive cost-effectiveness evaluations.  98 

To illustrate the use of MRS/NNTest, we present data from 2 collaborations.  Colleagues 99 

in China evaluated 3 cervical screening tests (HPV testing, cervical cytology, and VIA) in a 100 

previously unscreened population of 30,371 women, to select a test as the basis for a future 101 

nationwide screening program.14   Second, to support the development of US cervical screening 102 

guidelines, we previously analyzed data on 1.4 million women screened since 2003 in the USA 103 

at Kaiser Permanente Northern California (KPNC) with cervical cytology, HPV testing, or both 104 

concurrently (“cotesting”)15.  105 

Table 1 shows the standard metrics for each test in China and KPNC (USA).  When 106 

comparing two tests in the same population, there is usually a dilemma, namely, a tradeoff of 107 

sensitivity vs. specificity, or PPV vs. cNPV, which makes it hard to draw firm conclusions on the 108 

basis of a single statistic.   109 

 110 

Methods:  Mean Risk-stratification and Number Needed to Test  111 

In the absence of test results or other pre-test information, each individual can only be assigned  112 

as a best guess the same population-average risk.  After taking a test, people learn how their 113 
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predicted individual risks differ from population-average.  Tests are most useful when they 114 

reveal that risk is far enough from population-average risk to justify a change in management.  115 

Denote disease risk in the population as P(D+) and the fraction testing positive as 116 

P(M+).  The positive predictive value is PPV=P(D+|M+).  The complement of negative 117 

predictive value is cNPV=P(D+|M-).   118 

Mean Risk-Stratification (MRS) is a weighted average of the increase in risk among 119 

those who test positive (i.e., PPV – P(D+)) and the decrease in risk among those who test 120 

negative (i.e., P(D+) – cNPV): 121 

 MRS = {PPV − P(D+)}P(M+)+ {P(D+)− cNPV}P(M−).     (1) 122 

MRS is the average difference between predicted post-test individual risk and population-123 

average risk.  Stated simply, MRS is the average change in risk that a test reveals for tested 124 

individuals.  It is easy to show that the two terms on the right-hand side of MRS are equal.  Thus 125 

 MRS = 2{P(D+,M+)− P(D+)P(M+)},     (2) 126 

where P(D+,M+) is a joint probability.  The latter form shows that MRS assesses departure from 127 

independence akin to Pearson’s correlation, the Mantel-Haenszel test16, and Lewontin’s D’17.  128 

The eAppendix relates MRS to many statistics, including discretized versions of statistics used 129 

for continuous biomarkers18-22.   130 

An inverse expression of MRS is also useful. A test is only useful if it is substantially 131 

better than random selection.  Random selection will identify cases by sheer luck: P(D+,M+) 132 

would equal P(D+)P(M+).  The Number Needed to Test (NNTest), to identify 1 more disease 133 

case than random selection is 134 
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 NNTest = 1
P(D+,M+)− P(D+)P(M+)

.   135 

Therefore,NNTest = 2
MRS

.  Although MRS and NNTest convey the same information, they are 136 

on different scales.  MRS is on the scale of absolute risk, allowing comparison to absolute risks 137 

of other diseases.  NNTest interprets test performance in terms of numbers of people tested, 138 

which may help with considering the benefits, harms, and costs associated with the test and 139 

subsequent interventions.   140 

For example, HPV testing in an unscreened population in China14 changed the risk of 141 

cervical precancer/cancer on average by MRS=2.6%, requiring NNTest=77 women to test to 142 

identify 1 more precancer/cancer (Table 1).   At KPNC, a heavily screened low-risk population 143 

in the USA15, HPV testing had MRS=0.71%, requiring NNTest=280.  MRS conveys how much 144 

less informative cervical screening, including HPV testing, is in the USA vs. China, due to lower 145 

prevalence of disease due to previous screening and treatment.  NNTest conveys how much less 146 

efficient HPV testing is in the US vs. China.  More broadly, MRS/NNTest demonstrate the 147 

inherent limits of screening for uncommon diseases like cancer:  although the few individuals 148 

testing positive may have large change in risk, the average change in risk following testing all 149 

individuals (the big majority of whom test negative) is modest.  Consequently, hundreds may 150 

require screening to identify only one more disease case. 151 

The factor of 2 in MRS merits explanation.  1/MRS is the number needed to test to 152 

identify, on average, 1 different outcome than random selection: 0.5 more disease cases and thus 153 

also 0.5 fewer non-disease cases.  Thus 2/MRS is the number needed to test to identify 1 more 154 

disease case and thus also 1 fewer non-disease case, which is a more natural scaling.   155 
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 For a perfect test (PPV=1 and cNPV=0), the equation for MRS (1) reveals that the 156 

maximum MRS is 50%, which occurs when disease prevalence and test positivity are both 50%.  157 

The maximum MRS is not 100% because even if the PPV yields an increase of nearly 1, then the 158 

cNPV can yield only a small decrease, and the two are averaged.  MRS can be negative 159 

(indicating that test-positivity and negativity should be interchanged) and thus MRS is always in 160 

the range of [-50%, 50%].  The minimum NNTest is 4 (occuring when disease prevalence and 161 

test positivity are both 50%) because random selection tests positive for 2 people out of 4, of 162 

which 1 will have disease, thus finding half the 2 disease cases by chance.  NNTest can also be 163 

negative (< -4), indicating that test-positivity and negativity should be interchanged.   164 

When cross-sectional population 2x2 table data are available (not case-control counts),  165 

MRS/NNTest can be calculated simply using the cross-product difference, or the determinant, of 166 

the probabilities in the interior of the 2x2 table. Denoting  a=P(D+,M+), b=P(D+,M-), c=P(D-167 

,M+), d=P(D-,M-), and substituting P(D+)=a+b and P(M+)=a+c into MRS equation (2): 168 

 MRS = 2(ad − bc) and NNTest = 1
ad − bc

.    (3) 169 

The odds ratio is the cross-product ratio 𝑎𝑑/𝑏𝑐, hence it is dimensionless.  In contrast, MRS is 170 

on the scale of risk-differences, and NNTest represents a number of people.  In particular, if 171 

a,b,c,d represent cell counts (rather than probabilities) with n being their sum then 172 

MRS = 2(ad − bc)
n2

and NNTest = n2

ad − bc
.  173 
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Note that n2 does not cancel out as it does in the odds ratio.  If n is the sample size and a,b,c,d are 174 

probabilities (not counts), the asymptotic variance of MRS can be calculated with the delta-175 

method16 on a quadrinomial likelihood for 2x2 tables:   176 

 
Var(MRS) = 4(ad(a + d)+ bc(b + c)−MRS2 ) / n

Var(NNTest) =Var(MRS)× 4 /MRS4 .
  177 

 178 

Results: Implications of MRS and NNTest for evaluating diagnostic tests 179 

1.  Tests with excellent PPV and cNPV provide little risk-stratification if the tests are rarely 180 

positive. 181 

Intuitively, risk-stratification seems like it depends only on how far the absolute risks, the PPV 182 

and cNPV, spread apart: the risk-difference t=PPV-cNPV. Substitute into the MRS equation (1) 183 

P(D+) = PPV × P(M+)+ cNPV × P(M−),  and denoting p=P(M+), yields: 184 

 MRS = 2tp(1− p)   185 

and thusNNTest = 1
tp(1− p)

.    Risk-stratification depends on not only the spread between 186 

absolute risks (the risk-difference), but also test-positivity.  187 

A rarely positive test, no matter how big the risk-difference, provides little risk-188 

stratification. For example, consider the hypothetical use of cervical cytology (contrary to usual 189 

practice to make a point), dichotomized simply as cancer or not cancer ("not cancer'' includes all 190 

precancerous and negative cytology results).  At KPNC, the 5-year PPV for finding a precancer 191 

or cancer, following a cytology result of cancer, is 84%, the cNPV is 0.519%, and the overall 192 
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precancer/cancer prevalence is 0.524%23.  The risk-difference t=84%-0.519%=83.5% is 193 

enormous, suggesting high risk-stratification.  However, the probability of having a cytology 194 

result of cancer is only 0.006%.  Consequently, only with probability 0.006% does a woman get 195 

the dramatic risk increase PPV-P(D+)=84%-0.524%=83.5%.  Almost all the time (99.994%), 196 

she has a trivial risk decrease P(D+)-cNPV=0.524%-0.519%=0.005%.  The MRS is 0.01%: only 197 

1 extra precancer/cancer on average will be found over 5 years per 10,000 women using this test 198 

versus random selection.  The NNTest=20,086 is an enormous number of women to screen to 199 

improve upon random selection.  Thus good risk-stratification requires both a sufficiently large 200 

risk-difference and a test that is positive sufficiently often.   201 

Figure 1 plots the relationship of MRS/NNTest to the risk-difference for 3 test positivity 202 

rates. When risk-difference is 1, the maximum MRS and minimum NNTest are achieved.  The 203 

importance of test positivity is illustrated by noting that, the MRS/NNTest achieved for risk-204 

difference of 1 is also obtained for a risk-difference of approximately only 0.1 when the test is 10 205 

times as positive (dashed line).  Thus a perfect marker for a rarely positive test provides the same 206 

risk-stratification as a much weaker-associated marker that is 10 times as positive. 207 

 208 

2.   AUC and Youden’s index do not fully measure risk-stratification, because risk-209 

stratification depends strongly on disease prevalence 210 

Neither Youden’s index J=Sens+Spec-1 nor AUC depend on absolute risk, but are related to 211 

MRS/NNTest.  Writing each joint probability in MRS equation (3) as a function of sensitivity 212 

and specificity (let p*=P(D+)): 213 
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MRS = 2(ad − bc) = 2{(Sens × p*)(Spec × (1− p*))− (cSens × p*)(cSpec × (1− p*))}

= 2J(1− p*)p*,
  214 

and thusNNTest = 1
J(1− p*)p*

.    For binary tests, the AUC is the average of sensitivity and 215 

specificity5, thus substitute J = 2 × AUC −1  to get MRS/NNTest in terms of AUC.  Thus 216 

MRS/NNTest are functions of Youden’s index or AUC and disease prevalence.  High AUC or 217 

Youden’s index do not imply good risk-stratification if the disease is too rare. Thus: 218 

• Disease prevalence defines the maximal amount of risk-stratification that a test can provide. 219 

Setting J=1 as a perfect biomarker, the maximum MRS for a disease is 2P(D+)P(D-); minimum 220 

NNTest is 1/(P(D+)P(D-)).  The rarer the disease, the less risk-stratification is possible.  If the 221 

maximum risk-stratification is small, every test must inevitably have low risk-stratification   This 222 

is a reality of general-population cancer screening: on average, screening tests for uncommon 223 

diseases such as cancer do not reveal much risk information to tested individuals, and thus, 224 

hundreds require screening to identify one more case than would be found by random selection. 225 

In Table 1, the same tests have greater MRS (and lower NNTest) in an unscreened higher-226 

risk population (China; 1.6% disease prevalence ) than a screened low-risk population (USA 227 

KPNC; 0.55% disease prevalence).  The maximum possible MRS is 3 times greater in China vs. 228 

KPNC (MRS: 3.2% vs. 1.1%; minimum NNTest: 64 vs. 183, respectively).  A test with a fixed 229 

Youden’s index (or AUC) should stratify risk better in populations with more disease, such as 230 

unscreened populations or populations enriched for high-risk people (such as referral 231 

populations), because the maximum possible risk-stratification is greater. 232 
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Figure 2 plots the relationship of MRS/NNTest to AUC for 3 uncommon disease 233 

prevalences. The importance of disease prevalence is illustrated by noting that, the maximum 234 

MRS/NNTest (achieved for AUC=1) is also obtained if AUC=0.55 when disease is 10 times as 235 

prevalent (dashed line); AUC=0.6 is required if disease is 5 times as prevalent.  Thus a perfect 236 

marker for a rare disease provides the same risk-stratification as a weakly associated marker for a 237 

disease that is 5 or 10 times as prevalent. 238 

 239 

• The risk-stratification implications of Youden's index or AUC depend on disease prevalence.  240 

A test with high Youden’s index or AUC in a population with low disease prevalence may 241 

provide less risk-stratification than a test with lower Youden’s index or AUC in a population 242 

with higher disease prevalence. 243 

In Table 1, cotesting at KPNC in the USA has a greater AUC than VIA in China (83% in 244 

KPNC vs. 72% in China), but VIA in China has a better MRS (0.7% vs. 1.4%) and NNTest (275 245 

vs. 140) than cotesting at KPNC.  Cotesting is incontestably more accurate than VIA12, but VIA 246 

stratifies risk better in an easier setting (unscreened population) than cotesting stratifies risk in a 247 

harder setting (heavily screened population).   Thus, conducting even VIA in China could 248 

identify more treatable precancer (and hence prevent more cervical-cancer death) than cotesting 249 

at KPNC. Figure 2 shows that for fixed AUC, the MRS/NNTest are dramatically better as 250 

disease becomes more prevalent.   251 

  252 
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• Youden's index is the percent of maximum risk-stratification actually achieved by the test.  253 

This helps us interpret the meaning of increases in AUC in terms of risk-stratification. 254 

Youden’s index (J) is the ratio of the MRS to the maximum MRS achievable for the disease in 255 

that population: 256 

 MRS
max(MRS)

= 2P(D+)P(D−)× J
2P(D+)P(D−)

= J   257 

Therefore Youden's index, instead of measuring risk-stratification, measures the percent of 258 

maximum risk-stratification actually achieved.  This reiterates that Youden’s index and AUC can 259 

be high, yet conceal that there is little risk-stratification for uncommon diseases. 260 

This expression also helps interpret the sometimes obscure meaning of increases in AUC24,25. 261 

Since J = 2 × AUC −1 , each 1% increase in AUC implies a 2% increase in MRS (or decrease in 262 

NNTest).  Thus MRS doubles from AUC=0.6 to 0.7.  An AUC=0.6 is widely considered to be 263 

“modest”, and indeed, only 20% of the maximum MRS is achieved.  An AUC=0.7 is widely 264 

considered “good”, but only 40% of the maximum MRS is achieved.  An AUC=0.9 is required to 265 

achieve 80% of the maximum MRS.   The top axis of Figure 2 shows how the percent of 266 

maximum MRS increases linearly with AUC.  As disease becomes rarer, such as for prevalence 267 

of 1/10,000, there is little discernible increase in MRS as AUC increases. 268 

Similarly, this expression interprets the risk-stratification implied by an odds-ratio.  The 269 

minimum odds-ratio required to achieve a Youden’s index has sensitivity equal to specificity.  270 

Table 2 shows the minimum odds-ratio required to achieve each fraction of the maximum MRS 271 

(the maximum odds-ratio is always infinity, when sensitivity or specificity are 100%).  For 272 

example, a marker with odds-ratio of 3.4 can attain no higher than 30% of the maximum MRS.  273 
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If specificity must be high (say 95%), then OR=3.4 can attain no higher than 10% of the 274 

maximum MRS.  Seemingly large odds-ratios do not suffice to imply large risk-stratification.  275 

The odds-ratios in Table 1 follow this pattern.  At KPNC, the 3 tests with the lowest and similar 276 

MRS of about 0.3% have odds-ratios varying widely (13-36).  Similarly, the 4 best tests in China 277 

have similar MRS (2.6%-2.8%), but odds-ratios vary widely (108-206).  Thus odds-ratios reveal 278 

little about risk-stratification. 279 

 280 

• It is important to distinguish rankings of different tests refering to the same population or 281 

between populations.  Either can be useful depending on the objective. 282 

MRS/NNTest and J/AUC will rank the risk-estimation of tests in the same order in the same 283 

population because disease prevalence is fixed (see Table 1) – in Figure 1, the MRS increases 284 

monotonically with AUC.  Thus comparing the MRS/NNTest for 2 tests in the same population 285 

is equivalent to comparing their J/AUCs, which is useful for hypothesis testing. However, when 286 

prevalence varies across populations, J/AUC do not necessarily even rank test risk-stratification 287 

correctly according to MRS/NNTest. For example, a test with AUC=1 has less risk-stratification 288 

than a test with AUC>0.55 for a disease 10 times as prevalent (Figure 2, dashed line).  289 

Consequently, comparing the risk-stratification of the same test among populations with different 290 

prevalence requires MRS/NNTest to account for differing disease prevalence across populations.  291 

 292 

• MRS and NNTest could be calculated by combining an estimate of Youden’s index (or AUC) 293 

in one study with disease prevalence from a target population.   294 
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MRS/NNTest can be calculated by combining an estimate of Youden’s index from case-control 295 

data with disease prevalence from a target population, to quickly assess the risk-stratification 296 

implications of a new biomarker in the target population.  However, Youden’s index for a new 297 

test might not be transportable between populations.  For example, Youden’s index and AUC for 298 

a given test or test combination are larger in China than at KPNC (Table 1). In China, cervical 299 

cytology maintains sensitivity because the women in China are generally unscreened and 300 

longstanding prevalent lesions are obvious.  In KPNC, cervical cytology has low sensitivity 301 

because obvious lesions have been removed by prior screening.   302 

 303 

3. MRS/NNTest for a rare disease is determined by the difference between specificity and 304 

test-negativity. 305 

For a rare disease, MRS = 2J(1− p*)p* ≈ 2Jp*  and NNTest ≈
1
Jp*

.  For a rare disease, NNTest 306 

is the inverse of Youden’s index scaled by disease prevalence. These approximations are easily 307 

rewritten as MRS ≈ 2(Spec − P(M−))  and NNTest ≈
1

Spec − P(M−)
.  Although specificity is 308 

acknowledged as the most important quality of biomarkers for rare diseases26, specificity can be 309 

artificially boosted by increasing test-negativity. MRS/NNTest balances specificity and test-310 

negativity.  Also Spec − P(M−)  represents the increase in specificity versus random selection 311 

(for random selection, specificity equals test-negativity). In Table 1, the test at KPNC with the 312 

best MRS/NNTest is cotesting, which has the lowest specificity but also has the highest 313 

sensitivity and the lowest test-negativity at 92.5%.  The minimal required test specificity is set by 314 
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test-negativity.  For example, 95% of US women are HPV-negative.  Thus HPV tests must have 315 

specificity >95% in the US, and 96% specificity is required to achieve an NNTest of 100 in the 316 

US. As a rule of thumb, attaining an NNTest of 100 requires that specificity exceed test-317 

negativity by 1%.   318 

 319 

Discussion 320 

After a biomarker-disease association is confirmed, assessment of the predictive capacity of the 321 

biomarker is necessary to preliminarily understand the clinical/public-health implications of the 322 

biomarker. We introduced two linked metrics, MRS and NNTest, for quantifying risk-323 

stratification from binary diagnostic tests. MRS is the average change in risk that a test reveals 324 

for an individual patient. NNTest is the number needed to test to identify 1 more disease case 325 

than random selection.  We presented 3 major findings on using MRS/NNTest to better 326 

understand the clinical/public-health implications of standard diagnostic accuracy statistics. 327 

First, MRS/NNTest demonstrate that there is little risk-stratification possible for rare 328 

diseases or for rarely positive tests. Thus screening for rare diseases requires a strong 329 

justification. China has 3 times the precancer/cancer prevalence of KPNC in the USA, and all 330 

tests, including VIA, the weakest cervical screening test, provide far more risk-stratification in 331 

China than at KPNC.  332 

Second, MRS/NNTest demonstrate that the risk-difference, Youden’s index, and AUC 333 

measure multiplicative relative gains in risk-stratification, which might not imply large absolute 334 

gains if disease is too rare or if the test is too rarely positive. An AUC=0.6 achieves only 20% of 335 
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maximum risk-stratification.  An AUC=0.9 is required to achieve 80%.  These findings are 336 

generally in accord with intuition that AUC appropriately casts ‘pessimism’ on the power of risk 337 

prediction 24.  Within a population, Youden’s index and AUC will rank tests for risk-338 

stratification in the same order as MRS/NNTest, although rankings may differ across populations 339 

with differing disease prevalence.  340 

Third, for uncommon diseases, MRS/NNTest provide a sufficient criterion that ensures 341 

high risk-stratification: a high difference between specificity and test-negativity. Thus 342 

MRS/NNTest emphasizes the dominant role of specificity, but penalizes for artificially 343 

increasing specificity at the expense of test-negativity. Although researchers tend to focus on 344 

sensitivity when designing tests, focusing on the difference between specificity and test-345 

negativity would optimize risk-stratification.  346 

This first paper presents the concept of MRS/NNTest.  We will extend MRS/NNTest to 347 

continuous outcomes to quantify risk-stratification from risk-prediction models and to compare 348 

MRS/NNTest to new statistics for evaluating risk models, such as decision curves27. Research on 349 

estimating MRS/NNTest from different study designs and statistical models is important.  For 350 

uncommon diseases like cancer, the MRS is small and NNTest is large, and more experience is 351 

necessary to develop an intuitive sense of sufficient MRS/NNTest in various settings. 352 

Although etiologic epidemiology progresses using association statistics, standard diagnostic 353 

accuracy statistics used in applied epidemiology and public-health are easy to misinterpret. There 354 

is a torrent of new biomarkers and risk-prediction models, but evaluating them remains 355 

challenging, and many are used clinically without sufficient formal study28.  The STARD 356 

guidelines1 require reporting sensitivity, specificity, predictive values, or AUC, but none of these 357 
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directly informs about risk-stratification and the odds-ratio reveals little about risk-stratification.  358 

Thus MRS/NNTest might be worth adding to studies of test performance to quantify risk-359 

stratification and better understand the meaning of standard statistics.  For example, it would be 360 

immediately clear from MRS/NNTest why BRCA1/2 testing of all women, justified on the basis 361 

of high PPV and risk-difference29, would have little public-health value because of low mutation 362 

prevalence (0.25%).  However, MRS/NNTest would also immediately clarify that restricting 363 

testing to populations with higher mutation prevalence, such as Ashkenazi Jews (2.5%), is more 364 

likely to have public-heath value.  MRS/NNTest can help temper premature claims of 365 

clinical/public-health utility but also help justify future definitive studies that account for all 366 

necessary components (benefits, harms, and costs) to decide clinical/public-health usefulness. 367 

Our risk-stratification webtool is publicly available (http://analysistools-368 

dev.nci.nih.gov/biomarkerTools).369 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080366doi: bioRxiv preprint 

https://doi.org/10.1101/080366
http://creativecommons.org/licenses/by/4.0/


References 

1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, 
Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, 
Korevaar DA, Cohen JF, Group S. STARD 2015: an updated list of essential items for 
reporting diagnostic accuracy studies. BMJ 2015;351:h5527. 

2. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio 
in gauging the performance of a diagnostic, prognostic, or screening marker. Am J 
Epidemiol 2004;159(9):882-890. 

3. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3(1):32-35. 
4. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology 1982;143(1):29-36. 
5. Cantor SB, Kattan MW. Determining the area under the ROC curve for a binary 

diagnostic test. Med Decis Making 2000;20(4):468-470. 
6. Greenhouse SW, Cornfield J, Homburger F. The Youden index: letters to the editor. 

Cancer 1950;3(6):1097-1101. 
7. Hilden J, Glasziou P. Regret graphs, diagnostic uncertainty and Youden's Index. Stat Med 

1996;15(10):969-986. 
8. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human 

papillomavirus and cervical cancer. Lancet 2007;370(9590):890-907. 
9. Castle PE, Stoler MH, Wright TC, Jr., Sharma A, Wright TL, Behrens CM. Performance 

of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping 
for cervical cancer screening of women aged 25 years and older: a subanalysis of the 
ATHENA study. Lancet Oncol 2011;12(9):880-90. 

10. Wentzensen N, Fetterman B, Castle PE, Schiffman M, Wood SN, Stiemerling E, 
Tokugawa D, Bodelon C, Poitras N, Lorey T, Kinney W. p16/Ki-67 Dual Stain Cytology 
for Detection of Cervical Precancer in HPV-Positive Women. J Natl Cancer Inst 
2015;107(12):djv257. 

11. Shastri SS, Mittra I, Mishra GA, Gupta S, Dikshit R, Singh S, Badwe RA. Effect of VIA 
screening by primary health workers: randomized controlled study in Mumbai, India. J 
Natl Cancer Inst 2014;106(3):dju009. 

12. Gravitt PE, Paul P, Katki HA, Vendantham H, Ramakrishna G, Sudula M, Kalpana B, 
Ronnett BM, Vijayaraghavan K, Shah KV, Team CS. Effectiveness of VIA, Pap, and 
HPV DNA testing in a cervical cancer screening program in a peri-urban community in 
Andhra Pradesh, India. PLoS One 2010;5(10):e13711. 

13. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, Solomon D, 
Wentzensen N, Lawson HW, Conference ACG. 2012 updated consensus guidelines for 
the management of abnormal cervical cancer screening tests and cancer precursors. 
Obstet Gynecol 2013;121(4):829-46. 

14. Zhao FH, Hu SY, Zhang Q, Zhang X, Pan QJ, Zhang WH, Gage JC, Wentzensen N, 
Castle PE, Qiao YL, Katki HA, Schiffman M. Risk assessment to guide cervical 
screening strategies in a large chinese population. Int J Cancer 2016. 

15. Katki HA, Kinney WK, Fetterman B, Lorey T, Poitras NE, Cheung L, Demuth F, 
Schiffman M, Wacholder S, Castle PE. Cervical cancer risk for women undergoing 
concurrent testing for human papillomavirus and cervical cytology: a population-based 
study in routine clinical practice. Lancet Oncol 2011;12(7):663-72. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080366doi: bioRxiv preprint 

https://doi.org/10.1101/080366
http://creativecommons.org/licenses/by/4.0/


 

 20 

16. Lachin JM. Biostatistical Methods: The Assessment of Relative Risks. New York: Wiley-
Interscience, 2000. 

17. Lewontin RC. The Interaction of Selection and Linkage. I. General Considerations; 
Heterotic Models. Genetics 1964;49(1):49-67. 

18. Bura E, Gastwirth JL. The Binary Regression Quantile Plot: Assesing the Importance of 
Predictors in Binary Regression Visually. Biometrical Journal 2001;43:5-21. 

19. Fleiss JL, Cohen J. The equivalence of the weighted Kappa and the intraclass correlation 
coefficient as a measure of reliability:. Educational and Psychological Measurements 
1973;33:613-619. 

20. Kraemer HC. Reconsidering the odds ratio as a measure of 2x2 association in a 
population. Stat Med 2004;23(2):257-270. 

21. Pencina MJ, D'Agostino RB, D'Agostino RB, Vasan RS. Evaluating the added predictive 
ability of a new marker: from area under the ROC curve to reclassification and beyond. 
Stat Med 2008;27(2):157-72; discussion 207-12. 

22. Wacholder S. The impact of a prevention effort on the community. Epidemiology 
2005;16(1):1-3. 

23. Katki HA, Schiffman M, Castle PE, Fetterman B, Poitras NE, Lorey T, Cheung LC, 
Raine-Bennett T, Gage JC, Kinney WK. Benchmarking CIN 3+ risk as the basis for 
incorporating HPV and Pap cotesting into cervical screening and management guidelines. 
J Low Genit Tract Dis 2013;17(5 Suppl 1):S28-35. 

24. Baker SG, Schuit E, Steyerberg EW, Pencina MJ, Vickers A, Moons KG, Mol BW, 
Lindeman KS. How to interpret a small increase in AUC with an additional risk 
prediction marker: decision analysis comes through. Stat Med 2014;33(22):3946-59. 

25. Pencina MJ, D'Agostino RB, Massaro JM. Understanding increments in model 
performance metrics. Lifetime Data Anal 2013;19(2):202-18. 

26. Wentzensen N, Wacholder S. From differences in means between cases and controls to 
risk stratification: a business plan for biomarker development. Cancer Discov 
2013;3(2):148-157. 

27. Vickers AJ. Decision analysis for the evaluation of diagnostic tests, prediction models 
and molecular markers. Am Stat 2008;62(4):314-320. 

28. Vickers AJ. Prediction models: revolutionary in principle, but do they do more good than 
harm? J Clin Oncol 2011;29(22):2951-2. 

29. King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 
2014 Lasker Award. JAMA 2014;312(11):1091-2. 

 

 
 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080366doi: bioRxiv preprint 

https://doi.org/10.1101/080366
http://creativecommons.org/licenses/by/4.0/


 

 21 

 
		 Cervical	screening	 Odds	 Test	 		 		 		 		 Youden's	 		 		 		

Population	 testing	modality	 ratio	 positivity	 	PPV	 cNPV	 Sensitivity	Specificity	 Index	 AUC	 MRS	 NNTest	
Unscreened	
population	
in	China	

VIA	 	11		 10.7%	 8.3%	 0.83%	 55%	 90.1%	 45%	 72%	 1.43%	 	140		
HPV	 	206		 17.3%	 9.1%	 0.05%	 98%	 84.0%	 82%	 91%	 2.60%	 	77		
Pap	 	108		 16.7%	 9.4%	 0.10%	 95%	 84.6%	 80%	 90%	 2.60%	 	77		

Screened	
population	
KPNC	(USA)	

HPV/Pap	Cotesting	 	37		 7.5%	 5.4%	 0.16%	 74%	 92.9%	 67%	 83%	 0.73%	 	275		
HPV	 	47		 5.1%	 7.6%	 0.17%	 70%	 95.3%	 65%	 83%	 0.71%	 	280		
Pap	 	13		 3.8%	 4.7%	 0.36%	 34%	 96.3%	 30%	 65%	 0.32%	 	633		

 
 
Table 1.  Characteristics of cervical screening tests in two populations: an unscreened population 
in China (1.6% precancer/cancer prevalence)16 and a previously heavily screened population in 
the USA at Kaiser Permanente Northern California (0.55% precancer/cancer prevalence)17.  
Acronyms: HPV (human papillomavirus), Pap (Papanicolaou Test), KPNC (Kaiser Permanente 
Northern California), VIA (visual inspection with acetic acid), PPV (positive predictive value), 
cNPV (complement of negative predictive value), AUC (Area under the receiver operating 
characteristic curve), MRS (Mean Risk Stratification), NNTest (Number Needed to Test) 
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%	of	maximum	risk-
stratification	achieved	

minimum	odds-ratio	required	
overall	 fix	specificity=95%	

0%	 1.0	 1.0	
10%	 1.5	 3.4	
20%	 2.3	 6.3	
30%	 3.4	 10.2	
40%	 5.4	 15.5	
50%	 9.0	 23.2	
60%	 16.0	 35.3	
70%	 32.1	 57.0	
80%	 81.0	 107.7	
90%	 361.0	 361.0	
100%	 Infinity	 Infinity	

 
Table 2.  The minimum odds-ratios required for a marker to account for each fraction of the 
maximum possible risk-stratification.  The right column provides the minimum odds-ratio if 
specificity must be high (set at 95%). 
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Figure 1.  Risk-difference vs. MRS and NNTest for 3 test positivities (1%, 10%, and 25%).  
Acronyms: MRS (Mean Risk Stratification), NNTest (Number Needed to Test) 
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Figure 2.  AUC vs. MRS and NNTest for 3 disease prevalences (1/100, 1/1,000, and 1/10,000).  
Acronyms:  AUC (Area under the receiver operating characteristic curve), MRS (Mean Risk 
Stratification), NNTest (Number Needed to Test) 
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