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Abstract

Background

The 2014-5 West African Ebola epidemic highlights the need for rigorous, rapid clinical trials under
difficult circumstances. Challenges include temporally and spatially patchy transmission, and the
responsibility to deliver public health interventions during a randomized trial. An innovative design
such as ring vaccination with an immediate arm and a delayed arm can address these issues, but
complex trials raise complex analysis issues.

Methods and Findings

We present a stochastic, compartmental model for a ring vaccination trial of a vaccine for an Ebola-
like disease. After identification of an index case, a ring of primary contacts is recruited and either
vaccinated immediately or after a delay of 21 days. The primary outcome of the trial is effectiveness
calculated from cumulative incidence in the two arms, counting cases only from a pre-specified
window in which the immediate arm is assumed to be fully protected and the delayed arm is not
protected. The results of simulating the trial are used to calculate the sample size necessary for 80%
power and the estimates of effectiveness are reported under a variety of assumptions regarding the
trial design and implementation.

The three key components of sample size calculations — attack rate in controls, estimate of incidence
difference between the arms, and intracluster correlation coefficient — are dependent on trial design
and implementation in a way that can be quantitatively predicted by the model. Under baseline
parameter assumptions, we found that a total of 8,900 study participants were needed to achieve
80% power to detect a difference in attack rate between the two arms, whereas a standard
approach with the same parameters returns a necessary sample size of 7,100 individuals. Such a
study would on average return a vaccine effectiveness estimate of 69.81%, with average 95%
confidence interval (41.2%, 84.2%).

We found that for this design the necessary sample size and estimated effectiveness are sensitive to
properties of the vaccine —in particular, pre-exposure and post-exposure efficacy; to two setting-
specific parameters over which investigators have little control — rate of infections from outside the
ring and overall attack rate in the controls; and to three parameters that are determined by the
study design — the time window in which cases are counted, intensity of case-detection and
administrative delay in vaccinating individuals.

This approach replaces assumptions about parameters in the trial with assumptions about disease
dynamics and vaccine characteristics at the individual level.

Conclusions

Incorporating simulation into the trial design process can improve robustness of sample size
calculations. Simulation can identify optimal values for study design parameters that can be
controlled. For this specific trial design, vaccine effectiveness depends on properties of the ring
vaccination design and on the measurement window, as well as the epidemiologic setting. Rejecting
the null likely indicates one or more types of vaccine efficacy at the individual level, but the
magnitude of the effect will vary across settings.
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1. Introduction

The West African Ebola epidemic highlighted the need to identify a range of trial designs to evaluate
vaccine effects rapidly, efficiently and rigorously during emerging disease outbreaks. The ring-
vaccination trial approach employed in the Ebola ¢a suffit trial in Guinea is one innovative approach
(1), which produced valuable evidence that the vaccine could prevent Ebola infection (2) and may
become a paradigm for evaluation of future vaccines against emerging diseases. Other approaches
considered include individual randomization and a stepped-wedge design.(3, 4) Therefore in
considering such a design in the future, it will be important to define the circumstances under which
it is likely to be successful, so that these different study designs may be compared for their prospects
of obtaining valuable data. Two key determinants of the value of the data produced by a particular
design are (i) the sample size required to obtain power to test for vaccine effectiveness, and (ii) the
likely point estimate of effectiveness obtained by the trial design, for a given set of conditions. We
use a simulation model of a ring-vaccination trial to evaluate these two aspects under various
assumptions about the properties of the vaccine, the trial, and the population.

Although the only implementation of the ring trial design has been in Guinea during the Ebola
epidemic, lessons can be learned and extended to other diseases and contexts. Here, we examine
the tail end of an epidemic of a disease with a latent and asymptomatic phase with effective contact
tracing to illustrate a more widely-applicable set of findings. In particular, we use baseline
parameters values consistent with Ebola in West Africa in 2014-5, but we vary several assumptions
over broader ranges than those occurring in the Ebola ¢a suffit trial, with the aim of being relevant
to a range of potential future situations.

2. Methods

2.1. Ring vaccination trial

The simulation is based on a stochastic, susceptible-exposed-infectious-detected-removed-
vaccinated (SEIDRV) model for individual disease events, and it represents progression of the disease
within the context of a ring vaccination trial, wherein a ring is randomised either to immediate
vaccination (on day 1) or delayed vaccination (on day 22), and all individuals in the ring receive
vaccination on that day.(2) Thus in the baseline scenario we assumed that no individuals are
ineligible or refuse the vaccine, so that all susceptible or exposed individuals in the ring are
vaccinated, and that there is no heterogeneity or administrative delay affecting the day of
vaccination. When we vary the administrative delay, we assume that the delay applies to both arms,
so that the delayed arm is still vaccinated 21 days after the immediate arm.

Once aring in the trial is initiated by first identifying an index case, there are 50 contacts who make
up that index case’s ring. There is no spillover between rings, and the index case is not included in
the estimation of vaccine efficacy. A ring is counted whether or not it contains any cases infected by
the index case or by external infection; some rings will have secondary attack rates of 0 because the
index was detected and isolated before he infected anyone else, and no external infection occurred.
During the follow-up of a ring, each case is detected at with daily probability py.

Because both arms receive the vaccine, cases are only counted during a window in which the
immediate arm is presumed to be protected by the vaccine, and the delayed arm is not protected.
The window length is set to 21 days, equal to the vaccination delay between the arms, and the start
of the window is set at baseline to be 16 days from index case identification, which is a natural
choice as the sum of the vaccine ramp-up period and the mean incubation period.(1) Once detected,
secondary cases are counted towards the cumulative incidence in an arm if they developed
symptoms during the time window (though they may be detected after that window ends).
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For additional details on the disease transmission model, ring initiation, and analysis of the trial see
the supplementary appendix.

2.2. Choice of parameters

Table 1 shows the parameters used in the model, their meanings, values under baseline

assumptions, and references or justifications.

Parameter | Meaning Default value | Reference
Ro Average detected secondary | 0.61 Calibration to 2% detected monthly
infections from each infected attack rate with background case
individual ina susceptible detection, from a single index case
population, in the presence
of background case detection
Mean Mean latent period length 9.31 (5)
(latent) (days)
Variance Variance of latent period 27.92 (5)
(latent) length (days?)
Mean Mean infectious period 7.41 (5)
(infectious) | length (days)
Variance Variance of infectious period | 10.49 (5)
(infectious) | length (days?)
Pgn Daily probability of detection | 0.2 Mean of 5 days to hospitalization (6)
before start of trial
Py Daily probability of detection | 0.2 Baseline assumption, corresponding
after start of trial to no change in detection from
background rate during the trial
VE max Maximum individual vaccine | 0.7 Baseline assumption (7)
efficacy
Dtart First day of counting cases 16 Assumption (based on sum of
vaccine ramp-up period and mean
incubation period)
F External force of infection 0 Assumption (following rationale of a

ring vaccination trial designed to
place vaccine in areas of high local
transmission)

Table 1: Table of parameter values and meanings, and references for those parameters which were

chosen using the literature

The context we are modeling is the end of an epidemic, so that Ry is less than one. In order to
calibrate the model, we set Ry to reproduce a monthly detected attack rate of 2% when starting
from one infected individual in a ring of 50 susceptible individuals, in the presence of background
case detection and the absence of vaccination.
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3. Results

Under the baseline parameter assumptions listed above, the sample size necessary in each arm to
achieve 80% power to detect a difference in cumulative incidence between the two arms is 89 rings,
each containing 50 individuals, making a total of 8,900 study participants. This trial would on average
return a vaccine efficacy estimate of 69.81%, with average 95% Cl (41.2, 84.2).

3.1. Determinants of vaccine effectiveness estimate

Under baseline parameters in this model, the median vaccine effectiveness calculated from
performing 100 trials with 89 rings in each arm was 70%. This value should include direct and
indirect effects, so we would expect it to exceed the direct effect of 70%. However, while direct
effects begin immediately, indirect effects are only important in the second generation of
preventable cases onwards. The time window was chosen to capture a period of time in which the
immediate arm receives full protection of the vaccine and the delayed arm receives none. The length
of the window (21 days) is slightly larger than the average generation interval (17 days) so on
average it will not capture many members of this second generation in the immediate arm. If we
were to extend the time window to capture indirect effects, we would include time in which the
delayed arm is receiving protection from the vaccine, leading to a downward bias in the vaccine
effectiveness estimate.

Figure 1 shows the effect of six variables on the point estimate of vaccine effectiveness: daily
probability of detection, true individual vaccine efficacy, force of external infection, baseline attack
rate in the unvaccinated population, administrative delay in vaccination, and start day of case-
counting window.
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Figure 1: Point estimate of vaccine effectiveness derived from a trial with 80% power to detect
vaccine effect shown against: (left to right, top to bottom) A: daily probability of detection, B: true
individual vaccine efficacy, C: force of external infection, D: baseline attack rate in the unvaccinated
population, E: administrative delay in vaccination, and F: start day of case-counting window. In each
panel, the VE estimate corresponding to the baseline parameter set is highlighted in red, and the
gray line represents the individual vaccine efficacy of 70%. All other parameters are set at the
baseline values.
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Firstly, if there is enhanced surveillance in both arms of the trial leading to more rapid isolation of
infectious cases (py>pen), this will modestly reduce effectiveness estimates (Figure 1A). Secondly, the
properties of the vaccine and the immune response in the individual (encapsulated in the model by
maximum efficacy, ramp-up time, and post-exposure efficacy) work together to determine the
effectiveness in a population in a way that we cannot express in a closed form. Qualitatively, as
individual efficacy increases the effectiveness will increase (Figure 1B). Vaccine efficacy estimate also
increases with increasing post-exposure efficacy (Figure S1). Thirdly, the percentage of infections
from within the ring shows a weak negative association with the estimate of vaccine effectiveness
(Figure 1C). While the magnitude of indirect effects is modest as discussed above, they are almost
negligible when most infections are from outside the ring, because preventing infections within the
ring does not confer as much protection to susceptible individuals. Delay between ring formation
and vaccination means that by the beginning of the time window the vaccine has had less time to
prevent cases in the immediate arm. Thus the reduction in incidence in the immediate arm does not
reflect the true effect of the vaccine and the vaccine effectiveness estimate is reduced (Figure 1D). A
higher attack rate leads to more cases in both arms, so in the immediate arm there will be a modest
increase in tertiary cases (i.e. those that could be prevented by the indirect effect of the vaccine) and
thus a small increase in indirect effects (Figure 1E).

A major determinant of the effectiveness estimate is the choice of time window in which to count
cases, as seen in Figure 1F. Not surprisingly, starting the window too early reduces the estimated
effectiveness because it includes a period of time during which the vaccine cannot affect the
incidence of cases becoming symptomatic — many cases becoming symptomatic on day 8, for
example, will have been infected by the index case prior to isolation, or will have been infected by a
contact on (say) day 3, before the vaccine had time to induce protection.

Starting the window later than the baseline of 16 days allows the trial to capture later generations in
the chain of transmission, from a vaccinated person to another vaccinated person. This increases the
vaccine effectiveness estimate as it includes indirect effects. One might expect to see that starting
the window too late would reduce effectiveness estimates because it would include a period when
the delayed group was also protected by the vaccine. This does not appear to be the case, at least up
to a start time of 35 days (Figure 1F). Before vaccination, incidence in both arms is decreasing at the
same exponential rate, and thus in proportion to each other. The effect of vaccination is to increase
the rate of decline in the immediate arm by interrupting potential transmission chains. The
difference between the two arms increases as indirect effects come into play, until the delayed arm
receives vaccination. The effect of vaccination in the delayed arm is to increase the rate of decline so
that it is equal to the rate in the immediate arm. This explains why the VE estimate doesn’t decrease
for later time windows; the incidence in the delayed arm doesn’t ‘catch up’ with that in the
immediate arm, it merely ‘keeps pace’ when the vaccine begins to have an effect. Figure 2 shows, on
the log scale, the change in incidence rate decline in the delayed arm that happens around day 30-
35, or 9-14 days after vaccination. After that, the two lines are parallel on the log scale, meaning that
they are declining in proportion and so the VE estimate, which is based on the incidence ratio,
doesn’t change.
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Figure 2: Simulated log incidence rate of detected disease in the trial, in the immediate arm (black
circles) and delayed arm (blue circles), with linear fit in the immediate arm (black line) and piecewise
linear fit in the delayed arm (blue line). The change in rate in the delayed arm corresponds to the
direct effect of the vaccine. Circles represent means over 15,000 simulations.
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3.2. Determinants of sample size

Figure 3 shows the effect of six variables on the required sample size: baseline attack rate in
unvaccinated population, start day of case-counting window, daily probability of detection, true
individual vaccine efficacy, administrative delay in vaccination, and force of external infection.
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Figure 3: Number of rings per arm required to achieve 80% power to detect a difference in
cumulative incidence between the two arms against six key parameters: (left to right, top to bottom)
A: baseline attack rate in unvaccinated population, B: start day of case-counting window, C: daily
probability of detection, D: true individual vaccine efficacy, E: administrative delay in vaccination,
and F: force of external infection. In Figure 3C, sample sizes are shown for VE estimates based on
only detected cases (black) and on all cases (blue). In each panel, the sample size estimate
corresponding to the baseline parameter set is highlighted in red, and the sample size derived from
a standard approach is shown by the gray line. All other parameters are set at the default values.
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The effect of each parameter on the sample size can be understood through its effect on one or
more of the three factors that determine the power of this trial: the number of events, how they are
distributed between the two arms, and the level of clustering. Respectively these factors are
represented by the attack rate in the controls, the cumulative incidence difference between the
arms, and the intracluster correlation coefficient (1CC).(8)

Variables that decrease the incidence rate in the controls and cases will decrease the power because
for the same sample size the trial will observe fewer events. The baseline detected attack rate
among unvaccinated individuals is a simple example of such a parameter (Figure 3A). Two other
parameters act on the overall incidence in the trial. Firstly, making the start of the case-counting
window later decreases incidence in both arms because with Ro<1 the incidence is on average
declining (Figure 2), so across all rings in the trial the number of cases decreases over the follow-up
period (Figure 3B). Secondly, the case detection decreases detected incidence rate at both extremes
(Figure 3C). When case detection is high, transmission chains are interrupted by case isolation and
the true incidence decreases. When case detection is low, many cases die or recover before they can
be detected and consequently the detected incidence decreases.

Variables that make the two arms of the trial appear more different will increase the power of the
trial since the ability to differentiate between them is increased, and Figure 1 identifies such
variables. Vaccine characteristics, in particular vaccine efficacy (Figure 3D), are simple examples of
such a parameter, since the immediate arm receives greater protection against disease compared to
the delayed arm. Changes to two other parameters increase the incidence difference in this way, as
explained above: reducing the delay between ring formation and vaccination (Figure 3E) and starting
the case-counting window earlier (Figure 3B).

The effect of the timing of starting to count cases thus reflects two opposing forces on the sample
size: it decreases sample size by increasing the incidence difference, and it increases sample size by
decreasing the overall incidence. When the window is early, the former of these effects dominates
as seen by the increase in sample size for early time windows in Figure 3B. When the window is late,
the latter effect dominates, as seen by the increase in sample size for late time windows in the same
figure.

Finally, the level of clustering in the population inflates the sample size. It is often not intuitive to
predict the direction in which a parameter will cause the ICC to change, and in many cases the ICC is
not sensitive to the parameter. One exception is the infection from outside the ring (Figure 3F). The
most significant effect of introducing external infection and reducing within-ring transmission is to
decouple infection probability for one individual within a ring from that of others within the same
ring. This reduces clustering in incidence (making it more Poisson-like), thus reducing the ICC and the
necessary sample size.

4. Discussion

The ring-vaccination, cluster-randomized design has two key strengths that make it a good candidate
when disease transmission exhibits spatiotemporal variation. Firstly, by including members of the
study population who are contacts of cases, the trial preferentially selects those at higher risk of
disease acquisition, leading to an increase in efficiency while preserving Type | error through
randomization. Secondly, even those study subjects who are randomized to delayed vaccination are
theoretically in close contact with the study team meaning that the population who are at the
highest risk are followed closely.(9)

In addition, vaccination of clusters when they arise allows for roll-out of the vaccine, meaning that
this design is appropriate when logistical constraints make immediate mass vaccination impossible
or inappropriate. In this respect it is similar to a stepped-wedge cluster trial, in which prespecified
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clusters within the study population are vaccinated in a random order. Although we have not made a
direct comparison in this study, Bellan et al (10) showed that the stepped-wedge design is
underpowered when the incidence declining because it cannot prioritize the vaccine for those at
highest risk. The ring vaccination design, on the other hand, is inherently risk-prioritized because all
study participants should be at higher risk than the general population.

All trials should be correctly powered in order to avoid erroneous rejection of an efficacious vaccine,
leading to a waste of valuable resources. For a trial design with several complexities such as the one
presented here, a sophisticated approach to sample size calculation is merited. A standard approach
to sample size calculation for this trial would involve specifying the attack rate among the controls,
the desired effect of the vaccine on the population level, and the ICC. In the context of a serious
epidemic, these parameters are unlikely to be estimated with certainty; for example, the ICC
requires cluster-level data to be estimated accurately. Therefore, the modeling approach replaces
assumptions about these cluster-level quantities with assumptions about population-level
parameters and disease characteristics, which are more likely to be available through analysis of
data from the outbreak.

A second advantage of the modeling approach is that, based as it is on a simulating the transmission
of disease within a trial, it is possible to explore the impact of parameters describing the design of
the trial and the properties of the disease. The added detail gained from specifying the disease
model allowed us in this study to identify some key issues with the design that are worth
considering.

Firstly, as seen in Figure 3C, increasing case-finding efficiency above background rate has a negative
impact on power, as fast isolation of cases in both arms leads to an overall decrease in cases
observed by the trial. In future trials it is worth considering if there are alternative endpoints that
can be used that could allow for less intensive follow-up or post-trial detection of cases.

Secondly, a key design consideration in the delayed-arm ring-vaccination trial is when to count
cases. An intuitively appealing approach is to place the window so that the immediate arm is
receiving full protection and the delayed arm none. This should in theory minimize bias caused by
misclassification of unvaccinated individuals as vaccinated and vice-versa. While this placement
achieves nearly maximal power, it does not maximize the VE estimate. Indirect effects that are
important later in time increase the VE estimate for later time windows, while at the same time
declining incidence within each ring decreases power for later time windows.

Finally, the above point draws attention to the fact that caution is required when interpreting the VE
estimate produced by the trial. As seen in Figure 1, many parameters that are not characteristics of
the vaccine can influence the estimated effectiveness. Whether this is due to misclassification (for
example, when the time window is too early) or due to indirect effects (for example, when the
attack rate is high enough to measure significant protection of tertiary cases), the context of the trial
should be taken into account when considering the VE estimate.

The focus of this model was to explore parameters within each ring and understand how they affect
the quality of data coming from the trial. As a result, we did not consider the wider context of the
population disease dynamics, and in particular how and when the rings arise. For example, we
calibrated R, to a secondary attack rate in a cluster was 2%, which is not necessarily comparable to
the monthly cumulative incidence in the population. If transmission takes place mainly in clusters
then population cumulative incidence could be somewhat lower than cluster secondary attack rate,
increasing the efficiency of a ring-vaccination trial relative to a stepped-wedge cluster trial or
individual RCT. Linking this model to a model of disease within the general population would allow
us to make direct comparisons to other trial designs such as the stepped-wedge cluster trial and the
individually-randomized trial investigated elsewhere,(10, 11) but it would require detailed
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information about the nature of clustering of the disease in this context, and for simplicity we
focused on the within-ring dynamics only.

As with every model, there are limitations to these simulation results. The strength of the modeling
approach compared with a standard approach is that it better estimates the parameters on which
the sample size depends. However, some of the model parameters might still be uncertain in a
situation in which such a model might be useful. For example, we are likely to have little information
about the characteristics of a disease, in particular its latent and incubation period, and its Rq. The
simulation results are heavily dependent on these assumptions, and so they cannot be used at the
very outset of epidemic, or else they risk being highly inaccurate. Even at the end of the West
African Ebola epidemic, there were no more than four or five reliable calculations of the latent and
infectious periods of EVD, and indeed there is perhaps evidence that the latent and incubation
periods do not precisely overlap.(12) In addition, we have considered only the simplest method of
analysis for the trial — a comparison of attack rates between the two arms after correction for
clustering of cases within rings. More sophisticated methods, including time-to-event analyses
incorporating ring-level random effects, as performed in the Ebola ¢a suffit trial, would have
somewhat different sample size requirements.

In an epidemic situation, when the Ry has changed over time and with a previously untested vaccine,
power calculations can be very sensitive to parameters about which very little is known. Simulations
such as these can be important aids in understanding a range of values for these parameters before
a trial is carried out, and thus ensuring that the trial has sufficient power to detect an efficacious
vaccine. In this trial, a finding significantly different from the null likely indicates one or more types
of vaccine efficacy at the individual level, but the magnitude of the effect and the power to detect
the effect will vary across settings.
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Supplementary Information

S1 Appendix. Additional detail on methods, including disease transmission model and simulation and
analysis of trial.

S1. Appendix

S1.1. Disease transmission model

To simulate the spread of a disease within a small (m=50) community of individuals who have close
contact with each other (henceforth a “ring”), we used a stochastic, compartmental model with five
compartments: susceptible, exposed, infectious, isolated, and removed (either recovered or dead).
The time step was one day, and all processes such as infection, disease progression, etc. are
discretized to occur at the end of a particular day. We assumed that individuals become infectious
when symptoms appear, meaning that the latent period and incubation period are concurrent
(WHO. http://www.who.int/mediacentre/factsheets/fs103/en/). Each individual in the susceptible
compartment has a daily force of infection from two sources: externally from individuals not
contained within the ring, and internally from individuals within the ring. The former is denoted by a
fixed hazard F/day, and the latter has hazard equal to Bl/day, where B is the transmission rate
constant and | is the number of infectious individuals in the ring. An individual who becomes
infected is placed in the exposed compartment, where they spend a number of days determined by
a gamma distribution, with mean 9.31 days and variance 27.92 (days’).[1] At the end of the latent
period, the individual is moved into the infectious compartment, where they spend a number of
days determined by an independent gamma distribution with mean 7.41 days and variance 10.49
(days?).[1] While an individual is in the infectious compartment, they have a per-day probability of
being detected and isolated, py. The act of isolation immediately ends their infectiousness, meaning
that case detection stops transmission. This phenomenon is a departure from how the Ebola ¢a suffit
trial was run, but we model it here because it introduces interesting design issues. If they reach the
end of the infectious period without being detected, they are placed into the removed category, at
which point they are no longer infectious. In this model we have not allowed for a post mortem
period of infectiousness, nor the possibility of sexual transmission among those recovered, nor of
asymptomatic infections. Finally, we assume that the epidemic is ending due to behavior change and
other factors, rather than depletion of susceptibles. Therefore there are no recovered individuals in
the initial population.

$1.2. Ring vaccination trial details

Initially, we considered a vaccine whose only effect was pre-exposure prophylaxis; in initial runs we
assumed the vaccine had no effect if given to a person who was exposed but not yet infectious, an
assumption we later relaxed. After administration of the vaccine, a ramp-up period (Dramp, Set in the
baseline runs to 7 days) occurs during which vaccine efficacy (VE) rises linearly from 0% to the
maximum individual efficacy (VEmay, Set at baseline to 70%), after which there is no change in the
individual efficacy over the study period.[2] The vaccine is leaky,[3] providing partial protection to all
individuals, so that the effect of the vaccine is to reduce the force of infection on a vaccinated
individual by a factor of (1 — VE). When included, post-exposure vaccine effects were modelled as
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follows: when a vaccinated, latently infected subject leaves the exposed class, he will move straight
to the removed class with probability ppep.

To initiate rings, we simulated the following steps: One infected individual (not counted in the m=50)
is infected, and the length of his infectious period is drawn from the gamma distribution. As he
progresses through his infectious period, susceptible members of the ring can be infected with daily
probability 1 — e®'"*F In addition, the index case can be detected and isolated with daily probability
pgx. For baseline simulations we set pgy=0.2, meaning that it takes on average 5 days to detect and
isolate an infected individual.[4] If he is detected before his infectious period ends, he is rendered
non-infectious by isolation, and he becomes the index case for a ring, which proceeds as described
below. If he is not detected before recovering or dying, he is effectively invisible to trial
investigators, so he is not counted as an index case, and the simulation is terminated and repeated
again, without counting the “invisible” case as part of the study sample.

$1.3. Trial simulation and analysis

To calculate the sample size required for a desired power, a cluster-level analysis is performed, using
a t-test to compare cumulative incidence [5] in the two arms from a simulated trial with k=15,000
rings. This sample size calculation includes an inflation factor (1 + p*(m-1)), where p is the
intracluster correlation coefficient (ICC), calculated as per Shoukri,[6] adjusting for the covariate of
trial arm. The cumulative incidence of detected EVD cases is recorded in each arm of the trial, and
the vaccine effectiveness is estimated as VEes = (1 — Climm/Clgel) ¥100, where Clim is the cumulative
incidence in the immediate arm and Clg is the cumulative incidence in the delayed arm. Since we
expect the event to be rare, this calculation of vaccine effectiveness will be approximately equal to
the measure using the hazard ratio.[3] As we are assuming no vaccine ineligibility or refusal, this
guantity estimates the combination of the direct and indirect effect of the vaccine.[7] In order to
output the likely estimate of vaccine effectiveness derived from this trial, we perform the trial 100
times at the required sample size calculated above, and we report the median vaccine effectiveness
estimate from these 100 trials. All simulation was performed using R. [8]
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S1 Figure. Point estimate of vaccine effectiveness derived from a trial with 80% power to detect
vaccine effect shown against post-exposure vaccine efficacy.
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S1. R code used in this study

#Updated July 28 2016 by Matt Hitchings
#By Marc Lipsitch, Harvard T.H. Chan School of Public Health

# Ring vaccine simulation comparing two ring delays

# In this update I have rewritten the main loop (i.e. the simulation of the trial) as a
function, to

# make it more flexible. This way I can, in a separate script, run the trial once to determine
# the required sample size, then run it again multiple times to get the VE CI.

# Results should not be shown publicly without written permission of Marc Lipsitch
mlipsitc@hsph.harvard.edu

simulatetrial<-function(pdhosp, VEmax, startcount,nsim,R0,extfoi numerator, admin_delay=0,
VEtake=6, PEPVE=0, Vuptake=1, window_ length=21) {

#Defaults for inputs: pdhosp=0.16, VEmax=0.7, startcount=18, R0=0.61, extfoi numerator=0,
VEtake=6, PEPVE=0

# Changeable parameters
pdhosppre<-0.2
startcount<-startcount+admin_delay
endcount<-startcount+window_length

#FIXED SIMULATION PARAMETERS

m<-50 #ring size

endfu<-84 #end of followup 12 weeks

tvacs =admin_delay+c(1,l+window_length) #day vaccine introduced

#natural history

maxnE<-21 #maximum days incubation/latent

maxnI<-14 #maximum days infectious

meannI<-7.41 #mean days infectious, used to calculate beta

nSV<-endfu # days post vaccine to track people's susceptibility

extfoi<-extfoi numerator/100/endfu #foi per capita from outside the ring - default to 1%
over the full course of observation (so divide by endfu)

beta<-R0/m/2.94# daily infectiousness of an I

nSV<-endfu # days post vaccine to track people's susceptibility

# Parameters for gamma distribution of incubation and infectious periods
inc_shape<-3.04

inc_rate<-0.33

inf shape<-5.29

inf rate<-0.71

# Make vectors of conditional probability for whether individuals go to
# next stage of infection

# I've specified the maximum length of each period, so the last entry of the
# vector is 1

inc_probs<-c(rep(0,maxnE-1),1)

inf probs<-c(rep(0,maxnI-1),1)

for (index in 1:(maxnE-1)) {
inc_probs[index]<-(pgamma(index,inc_shape,inc_rate) - pgamma(index-
1,inc_shape,inc_rate))/(l-pgamma(index-1,inc_shape,inc_rate))
}
for (index in 1:(maxnI-1)) {
inf probs[index]<-(pgamma(index,inf shape,inf rate) - pgamma(index-
1,inf shape,inf rate))/(l-pgamma(index-1,inf shape,inf rate))
}

# Vaccine efficacy
#starts protecting on day VEstart, ramps up over VEtake days to VEmax

VEstart<-1

VES<-c(rep(0,VEstart), (VEmax/VEtake)* (1l:VEtake), rep(VEmax,endfu-VEstart-VEtake)) #Vaccine
efficacy vs infection each day after vaccination

VEI<-0 #reduced infectiousness if any of vaccinated person who becomes infected (before or
after vaccination)

betav<-beta* (1-VEI)

SAR<-vector()

trueSAR<-vector ()

pi<-vector()

library(Hmisc)

# A function that takes a vector and outputs the indices of the non-zero
# elements, with duplicates for elements that are greater than 1
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vectortoindices<-function(vec) {
indices<-which(vec>0)
output<-vector()

for (index in indices) {

for (count in l:vec[index]) {
output<-c (output, index)
}
}
output

}

# A function to do multiple outcomes from a function
list <- structure(NA,class="result")
"[<-.result" <- function(x,...,value) {
args <- as.list(match.call())
args <- args[-c(l:2,length(args))]
length(value) <- length(args)
for(i in seq(along=args)) {
a <- args[[i]]
if(!missing(a)) eval.parent(substitute(a <- v,list(a=a,v=value[[i]])))
}

X

}

# CORE FUNCTIONS
#A time-advancing function to slide people along the conveyor,
# possibly switching from end of state OLD to beg of state NEW
tplus<-function(old,new){

c(tail(old,1l),head(new,-1))
}

# A function to randomly pick, for each exposed and infected individual,
# whether they remain in that class or move to the next class.
random_periods<-function(old,probabilities){

ones_switching<-rbinom(length(old),old,probabilities)
ones_staying<-old-ones_switching
num_switching<-sum(ones_switching)

period_lengths<-vector()
if (num_switching>0){
period_lengths<-vectortoindices(ones_switching)

}

list(outl=num switching,out2=ones_staying,out3=period_lengths)

}

# A function to take the vector of hospitalized individuals and update a data
# frame with info on when they were hospitalized and when they became infectious
# This will only work if subjects can only be hospitalized during their
# infectious period, which is a reasonable assumption
hosptodayinf<-function(daysinfhosp, tohosp,t){
# Each entry of tohosp represents the number of individuals hospitalized
# on that day, which is the day of their infectious period. For each entry
# make a new vector that contains the day of hospitalization (measured in
# time since trial start) and the day of symptom onset
for (index in l:length(tohosp)) {
if (tohosp[index]1>0) {
for (subject in l:tohosp[index]){
# Day of hospitalization is t, day of symptom onset is t-index+1
temp<-data.frame(dayinf=t-index+1,dayhosp=t)
daysinfhosp<-rbind(daysinfhosp,temp)

}
} else {}
}

daysinfhosp}

# # advance time and progress state, possibly incorporating PEPVE
update<-function(state,pdhosp)
{

x<-state

# Advance unvaccinated exposed and infected, taking into account random incubation/
# infectious periods
list[incu_numswitch,incu_stay,inculengths]<-random_periods(x$EU,inc_probs)
newEU<-tplus(0,incu_stay)
list[infu_numswitch,infu_stay,infulengths]<-random_periods(x$IU,inf probs)
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newIU<-tplus(incu_numswitch,infu_stay)
newRU<-x$RU+infu_numswitch

# Advance vaccinated exposed and infected, taking into account random incubation/

# infectious periods

list[incv_numswitch,incv_stay,incvlengths]<-random_periods(x$EV,inc_probs)

newEV<-tplus(0,incv_stay)

newSV<-tplus(0,x$SV) # vaccinated susceptibles move en masse to being vaccinated for one
more day

list[infv_numswitch,infv_stay,infvlengths]<-random_periods(x$IV,inf probs)

IVPrev<-rbinom(1l,incv_numswitch,PEPVE) #prevention by PEP of progression

# from last day of EV

newIV<-c(incv_numswitch-IVPrev,head(infv_stay,-1)) #else progress to IV[1]

newRV<-x$RV+infv_numswitch+IVPrev

X$SEU<-newEU

x$IU<-newIU

X$RU<-newRU

xX$SV<-newSV

X$SEV<-newEV

x$IV<-newIV

X$RV<-newRV

# If anyone switched from I to R or E to R, record the day. This is so we can censor
people for survival analysis

newRs <- infu numswitch + infv_numswitch + IVPrev

onestep Rdays <- rep(time,newRs)

# This is to record the lengths of incubation and infectious periods, both
# as a check and as a potentially interesting outcome
inc_lengths<-c(inculengths, incvlengths)

inf lengths<-c(infulengths,infvlengths)

# Vaccinate - this section will work only if vaccination is on a fixed day tvac for
everyone, and happens only once.
if (time==tvac){

# Include vaccine refusal/ineligibility
vacS<-rbinom(1l,x$SU,Vuptake)
X$SV<-c(vacS,rep(0,endfu-1))
xX$SU<-x$SU-vacsS
vacE<-rbinom(maxnE, x$EU,Vuptake)
xX$EV<-vacE

X$SEU<-xXS$EU-vacE
vacI<-rbinom(maxnI,x$IU,Vuptake)
x$IV<-vacl

x$IU<-x$IU-vacl
X$RV<-rbinom(1l,x$RU,Vuptake)
XSRU<-X$SRU-X$SRV

} else{}

# Infect
foi<-extfoitbeta*sum(x$IU)+betavrsum(x$IV)

incU<-rbinom(1l,x$SU,l-exp(-foi))
incvV<-rbinom(nSV,x$SV, (1l-exp(-foi))*(1-VES))
x$EU[1]<-incU

X$EV[1]<-sum(incV)

xX$SU<-x$SU-incU

X$SV<-x$SV-incV

#hospitalize - assume this ends their infectivity
tohosp<-rbinom(maxnI,x$IU,pdhosp)
x$IU<-x$IU-tohosp

tohospv<-rbinom(maxnI,x$IV,pdhosp)
x$IV<-x$IV-tohospv
x$H<-x$H+sum(tohosp)+sum(tohospv)

# Get info about day infected and hospitalized for those hospitalized
tohosptot<-tohosp+tohospv
daysinfhosp<-data.frame(dayinf=vector(),dayhosp=vector())
if (sum(tohosptot)>0) {

daysinfhosp<-hosptodayinf(daysinfhosp, tohosptot,time)

# Also want to record the length of the time they spent being infectious, to see what

the effect of
# hospitalization is on infectious duration
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# If they were hospitalized on the same day as they became infectious, that means that
their infectious

# period was 1 day, so add 1 to the difference between dayhosp and dayinf

inf lengths<-c(inf_ lengths,daysinfhosp$dayhosp-daysinfhosp$dayinf+1)

}
list(outl=x,out2=daysinfhosp,out3=inc_lengths,out4=inf lengths, out5=onestep Rdays)}

#Data extraction functions
#summary stats

detcases<-function(firstday,lastday)
#this counts only detected cases whose symptoms appear in the time window
{sum( (Zdays$dayinf>=firstday) & (Zdays$dayinf<=lastday))}

detplusprevcases<-function (firstday,lastday) #detected cases -- those that are hospitalized
(assume if you know about them you hospitalize them)
#plus those left over in the I group on the last day of monitoring
{Z$ht[min(84,lastday) ]-Z$ht[firstday]+Z$it[min(84,lastday)]-Z$it[firstday]}

detplusrecplusprevcases<-function (firstday,lastday) #the larger group those that were
hospitalized or recovered or prevalent(counted on the day of recovery)
{detplusprevcases(firstday,min(84,lastday))+Z$rt[min(84,lastday)]-z$Srt[firstday]}

checksum <-function(Z){(max(Z$nt)==min(zZ$nt)) & min(Z$nt)==m+1l}
# END CORE FUNCTIONS

botharm_totals<-vector()

botharm_allcases<-vector()

cat("Daily probability of case detection: ", pdhosp, "\n")
cat("Maximum VES: ",VEmax, "\n")

cat("Counting cases from day",startcount,"to day",endcount,"\n\n")

# Initialize dataset to record survival times, censoring status, and trial arm. We'll do a
Cox PH model

# with these data.

eventtimes<-data.frame(eventday=vector(),eventstatus=vector(),treated=vector())

initialI<-vector()
initialE<-vector()
IatVacc<-vector()
EatVacc<-vector ()
Is_imm<-vector()
Is_del<-vector()
Es_imm<-vector()
Es_del<-vector()

for(ivac in 1:2){

cat("\n")
tvac<-tvacs[ivac]#set day of ring vaccination for this condition
cat("tvac=",tvac,"\n")

totals<-vector()
firstmonth<-vector()
allcases<-vector()

incubation_periods<-vector()
infectious_periods<-vector()

numtrials<-0

numsims<-0

# Not every simulation will lead to a simulated trial, so only record those
# that do, and go until we've done nsim simulated trials

while (numtrials<nsim) {
numsims<-numsims+1
#initialize one ring simulation
stateinit<-list(SU=m,SV=rep(0,nSV),EU=c(rep(0,maxnE-
1),1),EV=rep(0,maxnE),IU=rep(0,maxnI),IV=rep(0,maxnI),RU=0,RV=0,H=0) #start with a single E
time=-1
dotrial<-0
#set it going until a case is detected or until the epidemic runs out
while (sum(stateinit$EU)+sum(stateinit$IU)>0) {
list[stateinit]<-update(stateinit,pdhosppre)
if (stateinit$H>0) {
# if a case is detected, go ahead with the trial
dotrial<-1
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numtrials<-numtrials+l1l
break
}
}

if (dotrial==1) {
if (ivac==1) {
initialI<-c(initialI,sum(stateinit$IU))
initialE<-c(initialE,sum(stateinit$EU))} else {}

if ((sum(stateinit$EU)+sum(stateinit$IU)==0) && (extfoi_numerator==0)) {

totals<-c(totals,0)
firstmonth<-c(firstmonth,0)

allcases<-c(allcases,0)

if (ivac==1) {
IatVacc<-c(IatVacc,0)
EatVacc<-c(EatVacc,0)
Is_imm<-rbind(Is_imm,rep(0,endfu))
Es_imm<-rbind(Es_imm,rep(0,endfu))

} else {
Is_del<-rbind(Is_del,rep(0,endfu))
Es_del<-rbind(Es_del,rep(0,endfu))

}
} else {

newsusceptibles=m+l-sum(stateinit$EU)-sum(stateinit$IU)

state<-
list(SU=newsusceptibles,SV=rep(0,nSV),EU=stateinit$EU,EV=rep(0,maxnE),IU=stateinit$IU, IV=rep(0
,maxnI),RU=0,RV=0,H=0) #start with a single E

time=1

st<-rep(0,endfu)

et<-rep(0,endfu)

it<-rep(0,endfu)

rt<-rep(0,endfu)

ht<-rep(0,endfu)

nt<-rep(0,endfu)

Z<-data.frame(st,et,it,rt,ht,nt)

Zdays<-data.frame(dayinf=vector(),dayhosp=vector()) #records day of start of
infectious period for all cases
Rdays<-c() # records day on which each subject who moved into R (if they did)

onesiminflength<-vector()
onesiminclength<-vector()
inclengths<-vector()
inflengths<-vector()
daysinfhosp<-vector()
onestep Rdays<-c()

for (time in l:endfu){ #CENTRAL LOOP IN ONE SIMULATION

Z$st[time]<-sum(state$SU)+sum(state$SV)

Z$et[time]<-sum(state$EU)+sum(state$EV)

Z$it[time]<-sum(state$IU)+sum(state$IV)

Z$ht[time]<-stateS$H

Z$rt[time]<-state$RU+state$RV

Z$nt[time]<-
sum(state$SU)+sum(state$SV)+sum(state$SEU)+sum(state$EV)+sum(state$IU)+sum(state$IV)+state$SRU+s
tate$SRV+stateS$SH

onesiminclength<-c(onesiminclength,inclengths)

onesiminflength<-c(onesiminflength,inflengths)

Zdays<-rbind(Zdays,daysinfhosp)

Rdays<-c(Rdays,onestep_Rdays)

list[state,daysinfhosp,inclengths,inflengths,onestep Rdays]<-update(state,pdhosp)

}

if (ivac==1) {
# Record how many I and E there were at vaccination
IatVacc<-c(IatVacc,zZ$it[tvac])
EatVacc<-c(EatVacc,ZS$et[tvac])

# Record the trajectory of Is and Es overall

Is_imm<-rbind(Is_imm,Zz$it)

Es_imm<-rbind(Es_imm,Z$et)} else {
Is_del<-rbind(Is_del,z$it)
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Es_del<-rbind(Es_del,Z$et)
}

# Add information to the survival data set for cases
# Specifically, survival times are hospitalization times from Zdays,
# event status is 1 if they occur in the time window,
# and treatment arm is 2-ivac (1 if immediate, 0 if delayed)
cases<-Zdays|[ (ZdaysS$dayinf>=startcount) & (Zdays$dayinf<=endcount), ]
num_cases<-length(cases$dayinf)
eventtimes_cases<-data.frame(eventday=cases$dayinf,
eventstatus=rep(1l,num_cases),
treated=rep(2-ivac,num cases))
recovered<-Rdays|[ (Rdays>=startcount) & (Rdays<=endcount)]
num_recovered<-length(recovered)
eventtimes_recovered<-data.frame(eventday=recovered,
eventstatus=rep(0,num_recovered),
treated=rep(2-ivac,num_recovered))
# The number in the risk set at t=startcount is all individuals (m+1l), minus those
have already
# been recovered or hospitalized at that stage. Those who are E or I are technically
not
# in the risk set, but we can't tell if they are E or I until we detect them.
Therefore,
# include them, and if we detect them later we can either class them as an event (if
symptoms
# developed in the window) or censored (if they developed before the window)
num_riskset<-mt+l-Z$rt[startcount]-Z$ht[startcount]
num_censored<-num_riskset-num cases-num_recovered
eventtimes_censored<-data.frame(eventday=rep(endcount,num censored),
eventstatus=rep(0,num_censored),
treated=rep(2-ivac,num_censored))
eventtimes<-
rbind(eventtimes,eventtimes_cases,eventtimes_recovered,eventtimes_censored)

incubation_periods<-c(incubation_periods,onesiminclength)
infectious_periods<-c(infectious_periods,onesiminflength)

totals<-c(totals,detcases(startcount,endcount))
firstmonth<-c(firstmonth,detcases(1l,31))

allcases<-c(allcases,detplusrecplusprevcases(startcount,endcount))

}

} else {}

}

botharm_ totals<-c(botharm_totals,totals)
botharm_allcases<-c(botharm_allcases,allcases)

SAR[ ivac]<-mean(totals)/m

trueSAR[ivac]<-mean(allcases)/m

cat("detected cases first month",mean(firstmonth)*100/m,"%\n") #detected SAR in first
month

cat("detected cases during followup",SAR[ivac]*100,"%\n") #detected SAR in followup

cat("all cases during followup",trueSAR[ivac]*100,"%\n") #actual SAR

}

# Sample size using a binomial test for proportions
ssu<-samplesize.bin(.025,.8,SAR[1],SAR[2])/m # Outputs total sample size
truessu<-samplesize.bin(.025,.8,trueSAR[1],trueSAR[2])/m

# Sample size using a Cox's proportional hazards model. See code updates document for
assumptions

survmodel<-coxph(Surv(eventday,eventstatus)~treated,eventtimes)

# Make a new data set with one treated and one untreated

newdata<-data.frame(eventdays=c(0,0),eventstatus=c(0,0),treated=c(0,1))

# Get predicted values for each

predicted<-predict (survmodel,newdata)

# Calculate the hazard ratio from these predicted values

HR<-exp(predicted[2]-predicted[1])

# Sample size calculation (formula is from Hsieh and Lavori 2000)

surv_deaths<-4%*(1.96 + 0.84)"2 / (log(HR)"2)

surv_ssu<-surv_deaths/(mean(SAR)*50)

# ICC calculation with covariance adjustment is from Shoukri et al
botharm_ totals_sg<-botharm totals”2
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K<-2*nsim

# Covariance-adjusted ANOVA estimator of ICC

MSB<-1/(K-1) * (sum(botharm totals_sq)/m - sum(botharm totals)”2/(m*K))
MSW<-1/(K*(m-1)-1) * (sum(botharm totals) - sum(botharm totals_sq)/m)
ICC_detected<-(MSB-MSW)/(MSB+(m* (K-2)/(K-1)-1)*MSW)

deff detected<-1+(m-1)*ICC_detected

# ICC calculation for true cases
botharm_allcases_sg<-botharm allcases”2

# Covariance-adjusted ANOVA estimator of ICC for true cases

MSB<-1/(K-1) * (sum(botharm allcases_sq)/m - sum(botharm_allcases)”2/(m*K))
MSW<-1/(K*(m-1)-1) * (sum(botharm allcases) - sum(botharm allcases_sq)/m)
ICC_true<-(MSB-MSW)/(MSB+(m* (K-2)/(K-1)-1)*MSW)

deff true<-1+(m-1)*ICC_true

# Make the confidence interval for the SAR difference
SARdiff<-SAR[1]-SAR[2]

SARbar<-(SAR[1]+SAR[2])/2
varSARdiff<-SARbar*(1-SARbar)*(2/(nsim*m))*deff detected
SARdiff ci_ lower<-SARdiff-1.96*sqrt(varSARdiff)

SARdiff ci_ upper<-SARdiff+1.96*sqrt(varSARdiff)

VEest<-(1-SAR[1]/SAR[2])*100

sd_ve<-sqgrt((1l/(SAR[1]*m*nsim) + 1/(SAR[2]*m*nsim) - 2/(nsim*m))*deff detected)
ci_lower<-1-(1-VEest/100)*exp(1l.96*sd_ve)

ci upper<-1-(1-VEest/100)*exp(-1.96*sd_ve)

trueVEest<-(l-trueSAR[1l]/trueSAR[2])*100

truesd_ve<-sqrt((1l/(trueSAR[1l]*m*nsim) + 1/(trueSAR[2]*m*nsim) - 2/(nsim*m))*deff true)
trueci_lower<-1l-(l-trueVEest/100)*exp(l.96*truesd_ve)
trueci_upper<-1-(l-trueVEest/100)*exp(-1.96*truesd_ve)

cat("\n Estimated efficacy based on SAR: ",VEest,"%\n")

cat ("Total sample size uncorrected for clustering: ",ssu," rings of ",m," persons\n")
cat("sample size corrected (approximately)",deff detected*ssu,"\n")

cat("Approximate CI for VE: (",ci_lower,",",ci_upper,")\n")

cat("Approximate CI for SAR difference: (",SARdiff ci lower,",",SARdiff ci_ upper,")\n")

list(outl=VEest,out2=ci_lower,out3=ci_upper,out4=ssu,out5=deff detected,out6=SAR,out7=ICC_dete
cted,
out8=trueVEest,out9=trueci_ lower,outlO=trueci_ upper,outll=truessu,outl2=deff true,

outl3=trueSAR,outl4=ICC_true,outl5=surv_deaths,outl6é=initialE,outl7=initialI,outl8=Es_imm,outl
9=Is_imm,out20=Es_del,out21=Is_del)

}
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