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Abstract

Although microbial communities are ubiquitous in nature, relatively little is known
about the structural and functional roles of their constituent organisms’ underlying
interactions. A common approach to study such questions begins with extracting a
network of statistically significant pairwise co-occurrences from a matrix of observed
operational taxonomic unit (OTU) abundances across sites. The structure of this
network is assumed to encode information about ecological interactions and processes,
resistance to perturbation, and the identity of keystone species. However, common
methods for identifying these pairwise interactions can contaminate the network with
spurious patterns that obscure true ecological signals. Here, we describe this problem
in detail and develop a solution that incorporates null models to distinguish ecological
signals from statistical noise. We apply these methods to the initial OTU abundance
matrix and to the extracted network. We demonstrate this approach by applying it to a
large soil microbiome data set and show that many previously reported patterns for
these data are statistical artifacts. In contrast, we find the frequency of three-way

interactions among microbial OTUs to be highly statistically significant. These results
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2
demonstrate the importance of using appropriate null models when studying
observational microbiome data, and suggest that extracting and characterizing three-
way interactions among OTUs is a promising direction for unraveling the structure and

function of microbial ecosystems.

Author Summary

Microbes are ubiquitous in the environment. We know that microbial communities -
the groups of microbes that live together, interact, and depend on one another - vary
across environments. Multiple processes, ranging from competition between microbes
to environmental stress, are believed to alter microbial community composition. Here,
we describe a set of statistical techniques that can more accurately identify the
underlying taxa relationships that structure the observed abundances of microbes
across habitats. Using a large data set of soil samples collected across North and South
America, we both illustrate the statistical artifacts that incorrect methods can introduce
and describe proper techniques based on appropriate null models for studying how the
abundances of taxa vary across soil samples. These tools improve our ability to
distinguish ecologically meaningful interactions from simple statistical noise in such
observational data. Our application of these tools suggests some previous claims about
the network structure of microbial communities may be statistical artifacts.
Furthermore, we find that three-way interactions among microbial taxa are
significantly more common than we would expect at random, and thus may provide a

novel means for identifying ecologically meaningful interactions.
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Introduction

Microbes play essential roles in many, if not most, ecosystems. They play particularly
important roles in regulating agricultural systems (e.g. Navarrete et al. 2015), human
health (for a review, see Cho & Blaser 2012), and may even have an effect on mental
health and behavior (Yano et al. 2015). Yet despite the importance of microbes and the
recent technological advances in the field, essential questions remain about the
composition and ecological structure of these microbial communities. For instance, how
do communities change in response to internal dynamics and external perturbations,
and how could we design communities with novel functionality? Deeper insights into
the variables that shape the structure and function of microbial communities would

have wide-ranging significance, both practical and theoretical.

One difficulty in scientifically addressing questions about microbial communities comes
from the inability to culture the vast majority of microbes in a laboratory environment
(Rappe & Giovannoni 2003). Instead, microbial community composition must be
inferred from sequence data obtained by environmental DNA sampling. This limitation
restricts our ability to test for causal mechanisms that drive a microbial community’s
structure and composition. Instead, observational data is often drawn from multiple
samples across time or habitats (Barberan et al. 2015, Faust & Raes 2012, Peura et al.
2015, Steele et al. 2011, Kara et al. 2013). Complicating these efforts is a lack of robust
statistical methods for analyzing these observational data in a way that reliably controls

for plausible sources of variability and the spurious co-occurrence network patterns
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they can produce. Here, we present and test methods for extracting statistically
significant co-occurrence patterns among microbes and for interpreting the induced

network structure.

A common design for a microbial community observational study has the following
form. Using high-throughput sequencing technologies, genetic data is extracted from a
set of locations, such as soil, water, or host-associated habitats including fecal samples
or cheek swabs. The observed DNA sequences are then binned into operational
taxonomic units (OTUs), which are taxonomic categories for microbes and are based on
a DNA sequence similarity threshold (usually 97% for 16S rRNA gene). This step is
necessary due to the difficulty in objectively defining microbial species, since these taxa
reproduce asexually and many have the ability to transfer genes horizontally. The OTUs
are placed into an abundance matrix 4, where each element A4;; gives the number of
sequences representing a particular OTU i observed in a particular sample or location j.
This matrix is then used to identify pairwise interactions, under the assumption that
OTUs whose abundances correlate across samples are likely to be ecologically related,
either symbiotically or through similar environmental preferences. To obtain
correlation values, a similarity measure is computed for each pair of vectors of OTU
abundances across locations (Faust & Raes 2012), and statistically significant
similarities are interpreted as potential ecological interactions. The set of such pairwise
interactions among the sampled OTUs can be transformed into a network of microbial

interactions, where nodes are OTUs and significant pairwise correlations are
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90 represented as edges in the network. This network’s structure can then be used to
91 understand the community’s organization and function.
92
93 Such microbial interaction networks have many uses, not the least of which is making
94 complex data visually interpretable. They also facilitate the investigation of underlying
95 ecological processes that shape microbial communities. Past work on microbial
96 networks has examined many of their structural properties, including an OTU’s degree
97 (number of connections), an OTU’s betweenness centrality (a geometric measure of its
98 network position), the network’s frequency of three-way interactions (the clustering
99 coefficient), and the network’s average path length (a measure of system compactness).
100 These properties have been measured for networks derived from a variety of habitats,
101 including soil (Barberan et al. 2012), marine (Steele et al. 2011), and freshwater
102 communities (Kara et al. 2013). For instance, nodes in a network that have high degree
103 or high centrality may be interpreted as keystone taxa (Steele et al. 2011, Berry &
104 Widder 2014, Williams et al. 2014). Recent work has shown that these keystone taxa
105 play important roles in structuring microbial communities in plant-microbe
106 interactions (Agler et al. 2016). A group of OTUs that tend to co-occur may correspond
107 to taxa that share an ecological niche due to habitat filtering, or that participate in a
108 symbiotic interaction (Faust & Raes 2012). Similarly, groups of OTUs that tend to
109 mutually exclude each other may represent competitive interactions within a given
110 niche. We may also compare the structure of these microbial communities with that of
111 other biological networks (Williams et al. 2014), e.g., in order to understand whether

112 principles from macroecology also hold for microbial communities.
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113
114 Network structure can also shed light on how a microbial community may respond to
115 environmental perturbations. A right-skewed degree distribution among OTUs may be
116 evidence for robustness to high levels of random removal of species, or sensitivity to
117 the targeted removal of the keystone taxa (Faust & Raes 2012, Peura et al. 2015). This
118 network property may be related, for instance, to predicting whether a person’s gut
119 microbiome will recover after a course of antibiotics. Similarly, network structure can
120 facilitate the identification of community assembly processes, for instance, by
121 comparing the structural signatures of neutral processes where all taxa are
122 demographically equivalent, versus those produced by niche-structured processes like
123 niche partitioning and competitive exclusion (O'Dwyer et al. 2012, Levy & Borenstein
124 2013, Pholchan et al. 2013, Tucker et al. 2015). Greater insight into assembly dynamics
125 may facilitate predictions of community response to natural or artificial perturbations
126 (Faust & Raes 2012).
127
128 The broad importance of microbial interaction networks makes it essential that they be
129 reliably and accurately extracted from OTU abundance matrices, and that patterns in
130 the resulting network structure be properly interpreted. However, within the standard
131 approach to extracting these networks from co-abundance matrices are underlying
132 statistical assumptions that can contaminate the network with spurious or misleading
133 patterns. Specifically, spurious patterns in microbial co-occurrence networks may arise
134 from matrix sparsity, the choice of correlation function, and the use of thresholds.

135 Separate problems may arise when abundance data is normalized, making it
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136 compositional. Addressing the issues of compositional data is beyond the scope of this
137 paper; however, in our conclusions we offer a brief discussion of their relationship to
138 the methods described here. In the following sections we examine the consequences of
139 spurious patterns in the data and leverage the ensuing errors as a motivation for the
140 use of null models as the foundation for the statistical methods we introduce. Our
141 methods are statistically principled methods, being based on standard null models, and
142 allow us to more accurately distinguish ecological signals from statistical noise, both in
143 the abundance matrix itself and in the distribution of edges in the derived network.
144
145 We demonstrate these techniques using a previously studied soil microbiome data set
146 from North and South America (Barberan et al. 2012). We find that some measures of
147 network structure are barely distinguishable from random noise, while others are more
148 plausibly the result of ecological interactions. A notable example of the latter category is
149 the network’s clustering coefficient, the density of three-way OTU interactions, which
150 remains statistically significant when compared to each of our null models. We close
151 with a brief discussion of the utility of null models in studying observational data and
152 the ecological significance of triangles and modularity in microbial co-occurrence
153 networks.
154

155  Results

156

157 Two classes of null models
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158 Null models are a standard statistical approach for reliably identifying data patterns
159 that cannot be attributed to simple sources of random variation. Data distributions that
160 differ from a null model are thus potentially derived from complex processes. In our
161 case, large deviations may be interpreted as potentially caused by ecological processes.
162 One example of a null model is the common test of statistical significance, wherein we
163 measure the likelihood of observing, under the null model, a particular statistical value
164 or one more extreme. This probability is quantified by a standard p-value which has a
165 uniform distribution when the true data generating process is the null model. Common
166 choices for null models focus on a set of independent draws from a simple parametric
167 distribution, e.g., flipping coins or rolling dice. Null models can be substantially more
168 complicated, and in this case, numerical methods are typically required to calculate the
169 null distribution of the test statistic. If a null model is chosen well, meaning that it
170 incorporates plausible sources of random variation in the data, and the computed p-
171 value still low (typically below the conventional but nevertheless arbitrary threshold of
172 0.05), then a deviation between the model and the data can indicate the presence of
173 scientifically meaningful processes.
174
175 Here, we describe and study two classes of null models for inferring ecological
176 interactions from a matrix of OTU abundances. The first class facilitates the extraction
177 of significant pairwise interactions from the matrix in order to obtain a network. The
178 second class facilitates the detection of significant patterns in the distribution of edges
179 within the derived network.

180
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181 In the rest of this section, we will introduce the first class of null models, in which we
182 will incorporate existing variability in the observed data to identify pairwise
183 interactions among OTUs. First, we correct the behavior of the Spearman rank
184 correlation coefficient when the OTU matrix is sparse by breaking ties randomly.
185 Second, in order to choose a threshold for significant interactions, we use matrix
186 permutations to generate artificial matrices with the same naturally high variance as
187 the data but which lack the correlations that are generated by ecological processes.
188 Applying the tie-breaking step to these artificial matrices yields a null distribution of
189 correlation scores, which provides a simple means for selecting a threshold for
190 statistically significant interactions. If any pair of OTUs in the tie-breaking model has a
191 correlation score above this threshold, we call this interaction statistically significant
192 and include it in the interaction network; any correlation below the threshold is
193 discarded.
194
195 In the second class of null models, we ask whether particular statistical patterns in the
196 distribution of these interactions across the network are likely the result of random
197 connectivity, and thus unlikely to be caused by ecological processes. Our approach here
198 builds on standard random graph models from network science, which control for the
199 average degree or the distribution of these degrees in order to construct an appropriate
200 null distribution for other network properties. Characteristics that are independent of
201 size and connectivity indicate co-existence of taxa, which may plausibly be attributed to
202 ecological interactions or functions.

203
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204 The fact that some properties can be explained by the size, degree, or connectivity of
205 the network does not make them ecologically unimportant. In fact, the ecological impact
206 of overall biodiversity as well as co-occurrence patterns (i.e., functional redundancy) is
207 well established (Van Der Heijden et al. 2008, Philippot et al. 2013). In practice, these
208 null models can be used to identify more complicated statistically interesting patterns,
209 such as heterogeneous interactions among groups of microbes, that may relate to other
210 ecological processes, either known or unknown.
211
212 The abundance matrix of microbial soil communities
213 To illustrate the importance of examining microbial abundance data with respect to the
214 two null model classes, we apply these methods to previously collected data on soil
215 microbes sampled from 151 sites in North and South America (Lauber et al. 2009).
216 From soil samples, Barberan et al. extracted 16S rRNA sequences and binned them into
217 OTUs at a 90% rRNA sequence similarity threshold. They assigned taxonomy to OTUs
218 using RDP Classifier (Wang et al. 2007) against the Greengenes database (DeSantis et al.
219 2006). To obtain the abundance matrix, they computed the number of sequences that
220 mapped to each OTU at every sample site. To control for sample contamination and
221 potential sequencing errors, they discarded OTUs with fewer than 5 sequences across
222 all locations, which reduced the number of OTUs from 4,087 to 1,577.
223
224 Like many environmental DNA surveys, the resulting soil microbiome abundance
225 matrix is very sparse. Abundance values of zero comprise fully 85% of the matrix. Most

226 sites contained 150-300 OTUs, but only 1% of matrix entries have more than 10
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227 sequences for a given OTU at a given site. In other words, although there were on the
228 order of 1000 sequences from each location, most OTUs at a site were phylogenetically
229 distinct.
230
231 In order to calculate the correlation of abundance patterns between a pair of OTUs, we
232 must choose a similarity score function. The most common choices in past studies are
233 Pearson and Spearman correlations, which exhibit good statistical sensitivity and
234 specificity under standard conditions (Berry & Widder 2014). However, the Pearson
235 correlation assumes that variables are normally distributed and linearly correlated, and
236 it behaves poorly when relationships are nonlinear, as may be the case in complex
237 microbial systems. Spearman’s rank correlation, which measures the degree to which
238 two variables monotonically co-vary, does not suffer from this problem and is the more
239 common choice in microbiome studies (Lozupone et al. 2012; see also Weiss et al. 2016
240 for a review of correlation methods).
241
242 A correction for matrix sparsity in Spearman ranks
243 In this setting, Spearman will overestimate correlations when nearly all abundances are
244 either zero or some integer close to zero. As an intermediate step, Spearman assigns a
245 rank value to each location, and locations with equal abundance receive the same rank.
246 Thus, both matrix sparsity and a heavy-tailed distribution of abundances will induce a
247 very large number of multi-way ties, which will then have identical ranks. The result is
248 an inflated pairwise correlation score under Spearman. (Standard implementations of

249 Spearman’s in Matlab, R, and Python all rely on the user to correct for ties in the data.)
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250
251 This behavior can be corrected through breaking ties at random by adding a small
252 amount of real-valued noise to each entry in the abundance matrix. After adding these
253 minor perturbations, the set of all pairwise Spearman rank correlation coefficients (p)
254 form a smooth distribution (Figure 1A), as desired, rather than a perverse disjoint
255 distribution when ties are not broken (Figure 1B).
256
257 Crucially, the noise added to each observed value must not disturb the partial ordering
258 obtained without the noise. In practice, this is easily accomplished by using Monte Carlo
259 to sample from the many total orderings that are consistent with the original partial
260 ordering. Under a particular choice of significance threshold, this procedure will
261 generate a set of equally plausible networks, which are free from the statistical artifacts
262 of tied ranks.
263
264
A B

g g

e S

g g

(I8 (TN

-1 0.5 0 0.5 1 - 0.5 0 0.5 1

265 Ano ho
266 Fig 1: Null distributions of Spearman rank correlation coefficients across sites for the Barberan
267 et al. soil microbiome data. (A) Coefficients under Monte Carlo sampling, using noise to break ties

268 randomly. (B) Coefficients without correcting for tied ranks between locations.
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269
270 This correction prevents the spurious conclusion that two taxa are ecologically related
271 because they are both absent from many of the same locations. There are many reasons
272 why a taxon could have zero abundance at a given location, including habitat filtering,
273 local extinction due to ecological drift, dispersal limitation, or competitive exclusion. Or,
274 it may indicate that the taxon’s DNA failed to bind to the 16S primer during
275 amplification, was undetected due to sequencing depth, or was absent by chance from
276 the soil sample. In short, an abundance of zero is highly ambiguous, and a conservative
277 approach is to avoid inferring the presence of an interaction based primarily on shared
278 absences.
279
280 Converting the sparsity-corrected data into a network
281 To convert the abundance matrix into a network, we must apply a threshold to the
282 similarity scores. In this way, only OTU pairs for which the absolute value of their score
283 is above the threshold are connected in the network. It follows that a node with no
284 scores above the threshold will have a degree of zero in the network, and by convention
285 we omit such singletons from subsequent analysis (Barberan et al. 2012). As a result,
286 the number of nodes n in the inferred network will typically be less than the number of
287 OTUs N in the abundance matrix.
288
289 Picking a threshold for significance
290 Choosing an appropriate threshold of significance for similarity scores is an open

291 question, particularly for sparse data sets like OTU abundance matrices (Thomas &
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292 Blitzstein, 2011). The goal of this choice is to eliminate pairwise interactions that are
293 likely due to statistical fluctuations or sampling noise, without excluding interactions
294 due to biological processes. Furthermore, we would like the scientific conclusions that
295 we draw from the resulting data to be robust to reasonable variations in threshold
296 choice (Thomas & Blitzstein, 2011). Currently, however, there is no generally reliable
297 method for balancing these two conflicting goals in OTU abundance matrices. Some
298 studies have used random permutations of the abundance matrix to compute a null
299 distribution of similarity scores, and then selected as a threshold the similarity value
300 corresponding to a conventional p-value choice of 0.01 or 0.05 (Faust & Raes 2012).
301 However, this procedure tends to select very low thresholds, and this may potentially
302 result in a high false positive rate for interactions. Other studies have used arbitrarily
303 chosen thresholds (Friedman & Alm 2012, Qin 2010).
304
305 Here, we use a repeated element-wise random permutation of the noise-added
306 abundance matrix to first compute a null distribution of similarity scores. We then
307 compute the size of the largest component -- the largest set of nodes for which any pair
308 is connected by some sequence of edges -- in the induced network for a wide range of
309 threshold values. Because the permutations break any ecologically-driven correlations
310 in the abundance matrix, this curve has a characteristic sigmoidal shape (Figure 2). The
311 location of the curve’s transition to less than 1% of OTUs in the largest component
312 serves as a reasonable choice for the lower bound on the threshold. Networks derived
313 from this permuted data treatment are composed of all spurious links, so a threshold

314 below that transition, which would include these links, is overly inclusive. In practice, a
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315 conservative choice of threshold will be a value slightly above this transition point.
316 Including the sparsity correction from above within this procedure serves to correct the
317 substantial distributional bias in similarity scores that would otherwise occur (see
318 Figure 1) as a result of multiple tied ranks and the heavy-tailed distribution of
319 abundance values.
320
321 We subject the OTU abundance data to three different treatments and systematically
322 vary the threshold to illustrate its impact on each. The three treatments are (i) the
323 original data, (ii) the original data with the Spearman correction, and (iii) the original
324 data with both Spearman correction and permutation null distribution. To illustrate the
325 effect of threshold choice on each treatment, we measure the fraction of OTUs N
326 contained in the largest component of the network across similarity thresholds (Figure
327 2). The size of this component provides a simple quantitative measure of overall graph
328 connectivity, and is a monotonically decreasing function of the threshold. That is, higher
329 thresholds will tend to produce smaller, less connected graphs, and lower thresholds
330 will tend to produce larger, more densely connected graphs.
331
332 Section 2: Nonlinear effects of the threshold choice
333 Figure 2 shows the percentage of nodes in the largest component as a function of the
334 choice of threshold, for each of the three treatments. To facilitate comparison with past
335 work on this data set (Barberan et al. 2012), we include a dashed vertical line at a
336 threshold of 0.36. This yields a network from the noise-added data of comparable size

337 to this past work (n=300). The location of the noise transition in the green line (A), near
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338 a threshold of 0.30 represents a lower bound on reasonable choices of a threshold.
339 Across thresholds, the original data shows a relatively slow decline in the size of this
340 largest component. Compared to the other treatments, which better eliminate spurious
341 connections, this slow decline is clearly an artifact of the presence of many false
342 positives in the network. By applying the Spearman correction or that correction and
343 the null distribution from permutations, the largest component shrinks much more
344 quickly. The difference between the treated lines and the original data illustrates the
345 dramatic extent to which not controlling for these statistical artifacts can alter the
346 extracted structure of the species interaction network. A further observation is that the
347 smooth variation of the noise-added data treatment indicates that there is no obviously
348 best choice for a threshold, except somewhere close to but slightly above the noise
349 transition.
350
351 This finding illustrates the complexities that arise when using a threshold to extract a
352 network from a correlation matrix, and suggests that a particular choice requires some
353 justification or at least a robustness analysis to demonstrate that scientific conclusions
354 do not depend sensitively on that choice. From a data analysis perspective, we would
355 preserve the most ecological signal by not applying a threshold and instead using the
356 correlation scores as weights for edges in a fully connected or complete graph (Thomas
357 & Blitzstein 2011). However, many common network analysis techniques do not
358 generalize to weighted complete networks, or such methods have not yet been
359 developed. As a result, thresholding may be necessary to address certain classes of

360 ecological questions.
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Fig 2: Fraction of all OTUs in the largest component, as a function of correlation threshold.
When the pairwise correlation threshold is 0, all edges are included and thus all nodes are in the largest
component. When the threshold is 1, all edges are excluded and all singletons are discarded, so all of the
OTUs are excluded from the analysis. The inset networks result from applying a threshold of 0.36, shown
by the bold dashed line, to each of the treatments. The 0.36 threshold corresponds to 86% of OTUs in the
largest component for the unaltered data, but just 18% of the OTUs in the noise-added treatment. For
the permuted treatment, with noise added, the threshold intersects after the phase transition, yielding

<1% of OTUs in the largest component.

To further illustrate the impact of threshold choice on the structure of the induced
network, we measured five standard network summary statistics as a function of
threshold choice. These summary statistics are (i) the average degree, (ii) the average

path length, (iii) the diameter, which is the maximal-length shortest path among any
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376 pair of nodes, (iv) the modularity, which quantifies the extent to which nodes cluster
377 into groups, with more edges occurring inside groups than expected at random, and (v)
378 the clustering coefficient.
379
380 If the functional relationship between threshold and network statistic were constant or
381 linear, the particular choice of threshold is less likely to impact scientific conclusions
382 that depend on its particular value. For all five of these measures, however, we find a
383 nonlinear relationship between the measure and the choice of threshold. That is, the
384 structure of the network does not change smoothly, and different threshold choices can
385 lead to very different patterns of connectivity within the network (Figure 3).
386
387 For instance, even the average degree of this network exhibits a surprisingly nonlinear
388 pattern across thresholds (Figure 3A). The non-monotonicity, illustrated by the bump
389 around a threshold of 0.35, results from the convention of discarding nodes with no
390 connections. Thus, as the threshold increases, more of these nodes are created and then
391 excluded, which allows the average degree to increase again as the giant component
392 shrinks but the connectivity of its nodes stays relatively steady. (The average degree
393 touches the x-axis at a threshold of 0.75; when singletons are included, this transition
394 occurs around a threshold of 0.40 (Supp. Fig.1).)

395
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Fig 3: Network properties vary as a function of threshold. This figure shows the change of network
properties as the similarity score threshold varies between 0 and 1. The red lines represent the
unaltered abundance data; the blue lines represent the noise-added data to correct rank ties. The
vertical line at 0.36 is the same threshold used in Figure 2. Panels correspond to the following
properties: (A) average degree, (B) diameter, (C) average path length, (D) maximum modularity, and

(E) clustering coefficient.

Similar patterns appear for the average and maximal path length (Figs. 3B and 3C). At
lower thresholds, the network is relatively dense, making short paths among nodes
plentiful. As the threshold increases, edges are removed, which makes the largest

component sparser and increases path lengths. Finally, both measures decline above a
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408 threshold of 0.25 as the size of the largest component itself begins to shrink, which
409 shortens path lengths again.
410
411 As the threshold increases, the largest component becomes sparser and the estimated
412 maximum modularity score also increases (Figure 3D), implying the existence groups of
413 nodes with relatively high internal connectivity (Clauset et al. 2004). This property
414 deviates from a simple linear increase between threshold values of 0.25 and 0.38. At
415 higher values of the threshold, the largest component breaks up into small but fully
416 connected subgraphs, which have the highest possible marginal contributions to
417 modularity. However, for very high threshold values, the average degree falls below 1
418 and the network is composed primarily of disconnected edges, which yields a
419 modularity score of 0.
420
421 Because very low thresholds produce very dense networks, the clustering coefficient
422 (Figure 3E) is initially very high, but decreases quickly. Interestingly, and unlike the
423 other network statistics on this data set, the clustering coefficient stabilizes across
424 intermediate choices of thresholds, even as other network statistics are still changing.
425 As with the behavior of modularity, the clustering coefficient rises quickly and then falls
426 to 0 as the network crosses from being composed primarily of disconnected triangles
427 and edges to being composed entirely of disconnected edges.
428
429 The nonlinear dependence of the structure of the extracted network on the threshold

430 applied to the correlation matrix demonstrates the importance of performing
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431 robustness analyses in this setting. Higher thresholds tend to naturally produce
432 networks with many small components, high modularity and shorter path lengths.
433 Lower thresholds tend to produce a large component, often with lower modularity
434 scores. The threshold at which the transition between these two regimes occurs is
435 likely to be data dependent, and thus should be quantified in order to clarify the
436 confounding role that network size and density have on other network measures.
437
438 Choosing a threshold for significant interactions
439 If there existed a labeled data set, such as fully-defined microbial communities where
440 every individual microbial cell had fully sequenced 16S ribosomal RNA, we could train a
441 machine learning model to choose the threshold that best balances false positive
442 (spurious) links against false negative (missing) links, when those communities are
443 sampled. However, it is typically impractical to fully characterize the taxa that make up
444 an in vivo microbial community. Thus, in practice, choosing an intermediate value for
445 the threshold is a reasonable strategy. The threshold should be large enough to be
446 above the noise transition (Figure 2, green line), but small enough that the network is
447 not mostly disconnected. However, because of the nonlinear relationships between
448 network structure and threshold choice, a robustness analysis should always be
449 performed in order to determine whether a particular conclusion depends sensitively
450 on which intermediate threshold is chosen.
451
452 Section 3: Measuring non-random network structure

453


https://doi.org/10.1101/070789
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/070789; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

22
454 Given a choice of threshold and the corresponding network derived from corrected
455 Spearman correlation scores, we can now ask whether the distribution of the network’s
456 links represents non-random patterns. We use a second class of null models to find
457 statistically significant properties of the derived network by controlling for
458 connectivity. The two models in this class will allow us to distinguish whether a
459 particular pattern in the distribution of edges across the network is likely due to
460 chance.
461
462 The first null model is the Erd6s-Rényi random graph, which preserves the average
463 degree of the derived network while removing any taxonomic information from the
464 nodes (Erdés & Rényi 1960, Kara et al. 2013). This model is sometimes denoted G(n,p),
465 where n is the number of nodes and p = <k>/(n-1), where the mean degree <k> =2m/n
466 is the probability that any pair of vertices is connected and where m is the number of
467 edges in the derived network. Drawing a large number random graphs from this model
468 (e.g., 2000 graphs) allows us to numerically estimate a null distribution for any network
469 property, while controlling only for the average degree of a node.
470
471 The second null model in this class is a Chung-Lu random graph model (Chung & Lu
472 2002) where we prohibit self-loops (an edge (i,i) for some node 7). Like the Erdés-
473 Rényi model, a Chung-Lu model starts with the same number of nodes as the derived
474 network. Rather than giving each edge equal probability, this model preserves the
475 expected degree sequence by making the probability of an edge between two nodes

476 proportional to the product of their expected degrees. Specifically, the probability of an
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477 edge between nodes i andjis P;; = (ki *k;j ) / 2m -1, where k;is the degree of node i in the
478 derived network. This model is similar to the popular configuration model (Molloy &
479 Reed 1995), but like the Erd6s-Rényi model, it only produces simple networks, i.e.,
480 those without self-loops or multiple connections between the same pair of nodes. As
481 before, drawing a large number of random graphs from this model allows us to
482 numerically estimate a null distribution for the same network properties of interest, but
483 now controlling for the average degree of a node and the degree distribution across
484 nodes.
485
486 To illustrate how these models can be used to distinguish plausible structural patterns
487 from those generated by chance, we apply them to the soil microbe network extracted
488 in the previous section from the corrected Spearman scores. The derived network has
489 about n = 268 nodes and m = 1730 edges; the precise numbers vary depending on the
490 noise addition step. We then compare the null vs. the derived network’s distributions
491 for (i) mean path length, (ii) modularity, (iii) diameter, and (iv) clustering coefficient.
492 Both null models are parameterized to match the mean degree and thus the random
493 graphs match the derived network on that measure by design.
494
495 Both path length and diameter are slightly elevated in the networks derived from the
496 corrected Spearman data compared to the null models (Figures 4A-B). The average path
497 length is 2.935 £ 0.052 for the corrected data, compared with 2.611 + 0.019 for Erdds-
498 Rényi and 2.604 + 0.040 for Chung-Lu. Similarly, the average diameter for the corrected

499 data is 7.411 + 0.874, compared with 4.114 + 0.318 in the Erdés-Rényi and 5.582 +
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500 0.544 for the Chung-Lu models. These differences are statistically significant, although
501 the effect size is small. That is, the extracted microbial interaction networks are only
502 less compact than we would expect if edges were distributed at random.
503
504 Similarly, the modularity scores (Figure 4C) are higher in the derived network
505 compared to those of the null models. The modularity is 0.415 + 0.014 for the derived
506 network, while itis 0.217 £ 0.005 for the Erdés-Rényi model, and 0.280 £+ 0.012 for the
507 Chung-Lu model. For these null models, the observed modularity scores are highly
508 statistically significant, and thus may represent a true ecological signal. However, as we
509 observed in the previous section, the modularity score is highly dependent on the
510 choice of threshold. For instance, under a threshold of 0.25 instead of 0.36, the
511 difference in modularity scores between the Chung-Lu null model and the derived
512 network vanishes (both are approximately 0.299). As such, the significance of the
513 modularity score should be interpreted cautiously.
514
515
516
517
518
519
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Fig 4: Network properties compared with null network models with fixed connectivity.
Distributions of network properties across observed data and null models from the second class of
models: Erdés-Rényi and Chung-Lu. The observed data is graphed as blue in each plot. Panels show the
following properties: (A) average path length, (B) diameter, (C) modularity, and (D) clustering

coefficient.

Compared to both null models, the derived network has a substantially higher
clustering coefficient (Figure 4D), which is similar to the scores observed in social
networks (Newman 2012; page 237). The clustering coefficient for the derived
network is 0.380 + 0.009, while it is 0.038 £ 0.002 for Erd6s-Rényi random graphs and
0.230 £ 0.010 for Chung-Lu random graphs. The difference in null distributions
indicates that about half of the value of the observed clustering coefficient can be
explained as an artifact of heterogeneous degree structure, which the Chung-Lu model

captures but the Erdés-Rényi model does not. This suggests that microbial
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536 communities are enriched in three-way interactions (triangles) and these represent
537 potentially ecologically meaningful functional relationships among triplets of OTUs.
538
50

© Proteobacteria o Gemmatimonadetes

@ Acidobacteria @ Verrucomicrobia

@ Actinobacteria @ Crenarchaeota

@ Bacteroidetes @ Firmicutes

@ Planctomycetes @ Other bacteria
539
540
541 Fig 5: Consensus network of edges, organized by phylum. Edges in this figure are present in 90% of
542 Monte Carlo simulations of noise addition.
543
544 The consensus network
545 Because the network properties of the derived network appear statistically significant
546 relative to our random graph null models, we can now construct and interpret a
547 “consensus network,” which contains every pairwise interaction that is present in at

548 least 90% of the Monte Carlo samples. This consensus network is composed of 158
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549 nodes and 787 edges. A simple but scientifically interesting question we may address
550 with this network is whether microbes tend to co-occur with others in the same
551 phylum. A positive signal of this assortative mixing pattern (Newman 2003) would
552 suggest a phylogenetic structuring for niche preferences or potential synergistic
553 relationships within phyla (Barberan et al. 2012).
554
555 However, we see little evidence for this hypothesis, finding instead that soil microbes
556 are not more likely to co-occur with taxa within phyla rather than across phyla (Figure
557 5). Specifically, the number of edges between two phyla appears roughly proportional
558 to the number of taxa in both phyla, exactly as we would expect if such co-occurrences
559 were largely due to chance. As an additional check, we calculate the fraction of edges
560 that connect each phylum (Table 1). This enables us to investigate the potential
561 heterogeneous mixing of phyla. We observe that Acidobacteria and Proteobacteria have
562 the highest proportions of within-phylum edges, so these phyla are most likely to co-
563 occur with species within their respective phyla, when we enforce that clusters must
564 correspond to phyla. But the modularity of this network, which provides a quantitative
565 measure of assortativity among categorical labels on nodes (in this case, phyla), we find
566 a score of 0.0745 - much lower than the estimated maximal modularity when nodes are
567 allowed to mix independently of their phyla label (Fig. 4C). That is, non-phylogenetic
568 factors dominate the structure of OTUs interactions in this data set.
569
570

571
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Table 1: Fraction of edges connecting clusters based on phylum identity.

Acido Actino Other  Bacteroid Crenarch Firmicutes Gemma Plancto Proteo Verruco All
Acido 0.172 0.010 0.014 0.029 0.010 0.004 0.004 0.019 0.098 0.027 0.388
Actino 0.010 0.017 0.000 0.000 0.002 0.000 0.000 0.000 0.010 0.003 0.041
Other 0.014 0.000 0.004 0.002 0.002 0.001 0.001 0.001 0.011 0.008 0.043
Bacteroid 0.029 0.000 0.002 0.014 0.005 0.000 0.002 0.000 0.021 0.006 0.078
Crenarch 0.010 0.002 0.002 0.005 0.000 0.000 0.001 0.001 0.005 0.001 0.027
Firmicutes 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.006
Gemma 0.004 0.000 0.001 0.002 0.001 0.000 0.001 0.000 0.002 0.001 0.013
Plancto 0.019 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.014 0.001 0.036
Proteo 0.098 0.010 0.011 0.021 0.005 0.001 0.002 0.014 0.110 0.010 0.281
Verruco 0.027 0.003 0.008 0.006 0.001 0.000 0.001 0.001 0.010 0.031 0.087

All 0.388 0.041 0.043 0.078 0.027 0.006 0.013 0.036 0.281 0.087

Table 1: Fraction of edges connecting pairs of O0TUs across nine phyla (or “other”, for OTUs that don’t map to
a known phylum). Edges connecting OTUs from the same phylum are highlighted. Note that this table is

symmetric because edges are undirected.

Discussion

A key step in better understanding the complex structure and function of microbial
ecosystems is identifying the ecologically meaningful interactions among microbes.
Distinguishing spurious interactions from real interactions is a key step in this process.
However, common approaches in this setting can contaminate the extracted network
with statistical artifacts that may confound ecological interpretation. Here, we have
developed and demonstrated simple and appropriate null models for addressing this
question at both the network extraction and the analysis steps, and we used them to

reanalyze a previously studied large soil microbiome data set.
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590 After adding noise to the sparse OTU abundance data, we examined in detail the
591 difficulty of choosing a similarity threshold. Since network analysis depends on this
592 initial network derivation step, a conservative approach would test whether
593 conclusions about the network hold (or the same pattern appears) across a range of
594 reasonable threshold choices. In practice, we suggest choosing a threshold slightly
595 above the noise transition produced by the permutation test, and well below the point
596 where the network breaks up into small, disconnected components. An interesting line
597 of future work would examine the efficacy of supervised learning techniques from
598 machine learning to automatically choose a threshold that optimizes some downstream
599 performance measure (De Choudhury et al. 2010), e.g., likelihood of the extracted
600 network under a probabilistic generative model like the stochastic block model (Karrer
601 & Newman 2011).
602
603 Next, we used null models that preserve network connectivity to investigate the
604 variation in network measures. We did find slight but statistically significant elevation
605 of average path lengths and diameters in the derived network. One interpretation is
606 that microbial communities in soil are robust to environmental perturbations and have
607 evolved to recover or maintain structural stability amidst disturbances. Combining
608 future research on different microbial communities, such as the human gut microbiome,
609 with this type of network analysis would help clarify the role of average path length and
610 diameter (if any) in community robustness, e.g. after the administration of antibiotics.

611
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612 We discovered that the clustering coefficient was higher in the derived network
613 compared to the network null models and that the score remained consistent across a
614 range of intermediate threshold values. The elevated clustering coefficient may imply
615 that habitat filtering is playing an important role in the distribution and abundance of
616 OTUs in the soil. However, more research is needed to incorporate metabolic data or
617 other functional predictors into the model. Levy and Borenstein (2012) have shown
618 that in the human microbiome, co-occurrence is more often found in metabolically
619 competitive species than in metabolically complementary species -- evidence that
620 community assembly is best explained by habitat filtering in the human gut. Similarly,
621 Goberna et al. (2014) also found that phylogenetic clustering was stronger in habitats
622 where competitive traits prevailed (i.e., in areas with high resource availability). Future
623 analysis of soil microbes should focus on metabolic competition and complementarity,
624 especially within OTU triads, to determine whether the elevated triad occurrence
625 corresponds to a specific community assembly mechanism (e.g., Pholchan et al. 2013,
626 Coyte et al. 2015). Future inquiry should focus on whether elevated clustering
627 coefficients are also present in networks derived from freshwater, marine, and human
628 microbiome samples.
629
630 We also discovered elevated maximum modularity scores in the derived network
631 compared to the null models. Higher modularity has been interpreted as corresponding
632 to greater niche partitioning (Faust & Raes 2012, Montoya et al. 2015). Further analysis
633 of metabolic functions of OTUs should investigate whether the highest-scoring

634 modularity partitions indicate true functional niches, wherein OTUs are more likely to
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635 co-occur with OTUs in their own group than with OTUs in outside groups. For example,
636 gene expression data can be compared within and across the proposed functional
637 niches to identify shared or related metabolic functions (Levy & Borenstein 2013).
638 Future work may glean more from co-occurrence networks that focus on the level of
639 genes, rather than OTUs, which will become increasingly informative as more microbial
640 genomes are fully sequenced.
641
642 The consensus network was composed of 50% generalist OTUs and 50% OTUs that
643 were neither generalists nor specialists. The 79 generalist OTUs were identified based
644 on appearing in more than 80 locations. The other half of the OTUs were neither
645 generalists, nor specialists which appear in fewer than 10 sites with more than 18
646 sequences on average (Barberan et al. 2012). While no specialists appeared in the
647 consensus network, only 17 OTUs out of the 1577 total OTUS were identified as
648 specialists; given that about 10% of OTUs appeared in the consensus network, the
649 expected number of specialists in the consensus network would be 1.7. It is not possible
650 from this study to distinguish whether consensus networks are inherently biased
651 against specialists or whether there was simply not enough data in this sample to
652 distinguish specialists from noise. We do observe, however, that 76% of generalists (79
653 out of 104) are included in the consensus network.
654
655 The consensus network’s strong modularity score may be due to the relative
656 concentration of generalists (Barberan et al. 2014). This might also explain why the

657 optimal partitioning of the consensus network did not correspond with phylogeny,
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658 which was unexpected. The consensus network partitioning contrasts with basic
659 assumptions that ecological functions and niches are phylogenetically conserved
660 (Philippot et al. 2010). However, other recent work (Langille et al. 2013, Martiny et al.
661 2013) shows that while complex traits and housekeeping genes are generally deeply
662 conserved, other functional traits like assimilation of carbon sources are broadly
663 dispersed with respect to phylogeny. More work is required to identify the degree and
664 manner in which functional diversity structures real co-occurrence in the soil
665 microbiome.
666
667 The consensus network incorporates taxonomic information into the microbial
668 interaction networks, allowing us to use 16S rRNA sequence similarity to evaluate the
669 network structure. How best to incorporate that phylogenetic information is another
670 area of active research (Agler et al. 2016). Previous research has shown that using
671 lower binning thresholds for OTU identification does not reveal more about microbial
672 interactions, suggesting that even relatively broad binning strategies can be useful for
673 gaining ecological insight (Knights et al. 2011, Faust & Raes 2012). However, other
674 authors recommend using the highest possible similarity threshold (Berry & Widder
675 2014). Future research should continue to address the phylogenetic information we
676 have about OTUs and how that data can be incorporated into identifying real ecologial
677 interactions (O’'Dwyer et al. 2012).
678
679 Many recent microbial association studies have focused on problems with analyzing

680 compositional data. For instance, several studies point out that compositional effects
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681 are a concern when there are big differences in component sizes (Yang et al. 2016) or
682 when there are relatively few components (Ban et al. 2015). These problems are more
683 prevalent in marine metagenomics samples or host-associated microbes, but less for
684 the soil microbiome. We argue that using a relatively simple and nonparametric
685 similarity measure such as Spearman correlation coefficient can prevent the imposition
686 of preexisting notions about how taxa are distributed and how they interact. Compared
687 to other techniques, Spearman correlation coefficients are also efficient to calculate, a
688 problem acknowledged in the mLDM algorithm by its authors (Yang et al. 2016). For
689 data not derived from the soil microbiome, the suggested approaches for compositional
690 data could be used in conjunction with the network derivation methods described here.
691
692 In general, analyses of OTU-location matrices have uncertain scientific value as long as
693 we lack large sets of empirically validated OTU-OTU interactions by which to evaluate
694 network extraction methods. One possible remedy for this would be to remove some
695 fraction of observed edges from the inferred network and use predictive modeling to
696 identify the most probable missing edges. This type of link prediction has been used in
697 other contexts where the observation of the network is incomplete or error-prone
698 (Goldberg & Roth 2003), or where the network is changing, as in evolving social
699 networks (Liben-Nowell & Kleinberg 2007). A generative link-prediction model allows
700 us to test the degree to which our assumptions about the underlying structure of the
701 system are correct (Clauset et al. 2008, Guimera & Sales-Pardo 2009).

702
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703 Future research should apply different models to recover community structure. The
704 bipartite stochastic block model (Larremore et al. 2014) offers a compelling alternative
705 to clustering OTUs based on their similarities across locations. That is, instead of
706 converting the abundance matrix into a similarity matrix and applying an arbitrary
707 threshold, this model operates directly on the OTU-location matrix, obtaining both a
708 clustering of OTUs, a clustering of locations, and a mixing matrix that describes how
709 OTU groups interact with location groups. By operating on the original OTU-location
710 data, this approach would reduce the number and strength of assumptions used in the
711 analysis of such data. This model would be useful for finding OTUs that co-occur and
712 thus may be ecologically interacting, though it is defined only for occurrence data rather
713 than abundance data. To include sequence abundances, the weighted stochastic block
714 model (Aicher et al. 2015) could be used to directly analyze the OTU abundance values,
715 without having to choose a threshold. For the task of clustering OTUs, these community
716 detection methods are a promising set of tools.
717
718 While the approach we have outlined for testing different network derivation
719 thresholds and evaluating null model connectivity has been applied to microbial
720 abundance data, it can also be applied across other biological network analyses. Sparse
721 data sets appear in a wide variety of biological settings, from eukaryotic environmental
722 DNA surveys (e.g., Stoeck et al. 2010) and gene co-expression networks. The issues of
723 threshold choice and appropriate null model selection are relevant across all disciplines

724 which use network science. Utilizing the appropriate statistical approaches will allow
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researchers to draw stronger conclusions about correlation data, while leveraging the

quantitative tools from network science accurately.

Materials and Methods

Figure 6 illustrates the data analysis procedure used in this research.

Erdos-Renyi
Avg. degree N
{— . . ’f | "(“
Locations < L £
. Add Apply , ’ d:;?ee Chung-Lu
g Noise threshold “=£{ ™ distribution :
' ) 4 Ch
A L onoose, Null Models: Class 2
Permute w
_
OTU Abundance > ‘ 1
Matri Null Models: Class 1 ‘ e
atrix Analysis

Fig 6: Data analysis procedure for OTU abundance matrices. We start with the OTU abundance
matrix of N OTUs at L different locations. In the first class of null models, noise is added to every entry of
the matrix. Additionally, the noise-added matrix is permuted; the distribution of similarity scores in the
permuted matrix is used to set the lower bound for the threshold. Next, the threshold is applied to
derive the observed network. This network is used to construct the second class of null models, Erdds-
Rényi, based on the average degree, and the Chung-Lu model, based on the average degree distribution.
Finally, the null network properties are compared to the observed network properties in the analysis

step.
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744 Soil data
745 The data set used in this experiment was acquired from previous work. Lauber et al.
746 (2009) acquired the bacteria and archaea data by pyrosequencing soil samples from
747 locations across North and South America. Their data set covers 151 sampling sites and
748 4088 unique OTUs, binned at 90% similarity (for explanation of the choice of 90%
749 similarity for binning, see Barberan et al. 2012). The data excludes OTUs with fewer
750 than 5 sequences across all sampling sites, decreasing the number of OTUs to 1577.
751 We use Spearman rank correlation coefficients to evaluate similarities between pairs of
752 OTUs based on their abundance patterns. For each OTU, Spearman converts a vector of
753 abundances into a vector of ranks, from largest to smallest. When there are identical
754 abundance values in several locations for a given OTU, the corresponding locations in
755 the rank vector are assigned the average rank for all tied entries. Given a pair of such
756 rank vectors x and y, the Spearman rank correlation coefficient is given by:
757 po ST

L(L?2-1)

758 where ri=x;- y; is the difference between ranks between OTU x and OTU y in location i,
759 and where L is the number of locations.
760
761 Random noise addition
762 Rather than allowing for ties among Spearman ranks, we correct for sparsity in the OTU
763 abundance matrix 4 by adding noise to every OTU x location entry. We draw N x L
764 entries from a uniform distribution, U([0,1]), creating an N x L matrix rand(N,L). To

765 ensure that we are breaking ties without reversing any true orderings, we adjust the
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random values to be several orders of magnitude smaller than the minimum difference
between entries in A4:

A =arg min(Ai,j — Ay

A

b= To00

E= —b+[2b Xrand(N,L) |

A'= A+E

To ensure that the configurations of equally likely location ranks were well sampled, we
repeated the noise addition steps 2000 times to generate a distribution of plausible

interaction networks.

Random matrix permutations

The most basic null model is the element-wise permutation of the OTU abundance
matrix. We chose a uniformly random permutation of the entries in the OTU abundance
matrix while maintaining the background distribution of abundances from which the
values were sampled. The permuted data quickly transitions to having <1% of the
OTUs in the largest component; this is where we set the lower bound for the similarity

score threshold.
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789 Thresholding
790 The threshold that we use, 0.36, produces a network of approximately 300 nodes from
791 the sparsity-corrected Spearman score data. This threshold was chosen to improve
792 comparability between our results and those of past studies on the same data
793 (Barberan et al. 2012). It is also similar to the threshold used by Friedman and Alm
794 (2012) of 0.30. We did not identify any additional quantitative guidelines for threshold
795 choice in other studies.
796
797 Network derivation
798 The network was derived by defining edges as connections between pairs of 0TUs with
799 a p value greater than the absolute value of the chosen threshold. Nodes with no edges
800 (also known as singletons) were omitted from the network, which is conventional in
801 defining the network. Average degree, average path length, and diameter were
802 calculated following the definitions in Newman (2010). Average degree is given by:
803
804 (k) = 27"1
805
806 where m is the number of edges and n is the number of nodes. The average path length
807 is given by:
808 =1 z d .

nn—1) L4

i#j

809
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810 where d;;is the shortest path between nodes i and j (this is different from the d; values
811 used for the Spearman rank calculation). Diameter is the maximum value of d;j across
812 all pairs of nodes in the network (i.e., the longest shortest path).
813
814 The clustering coefficient is defined as the global proportion of open triangles that are
815 closed by a third edge. We find all open triangles (i.e., paths of length 2) by taking the
816 dot product of the derived network’s adjacency matrix Q with itself. Since this is an
817 undirected graph, we analyze the upper triangle of the matrix only, not including the
818 diagonal. Next, to find the proportion of length-two paths traversing three nodes that
819 are also closed triangles, we multiply the upper triangle by the original matrix Q,
820 element-wise. The clustering coefficient c is the fraction of open triangles that contain a
821 third edge to close the triad:
822
823 R=Q-Q
824
R;;, ifi<j
825 U= { O,l’] otherwise]
826
827 o2V
T (UXxXQ
828
829
830 The maximum modularity was calculated using the using the popular greedy

831 agglomerative algorithm of Clauset, Newman and Moore (2004). This algorithm begins
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832 with all nodes in their own group and then repeatedly merges the pair of groups that
833 maximizes the marginal improvement in the modularity score until only one group
834 remains. It then reports the maximum modularity value Q and the corresponding
835 grouping of nodes D that it traversed in this sequence. We used the implementation of
836 the algorithm in the igraph package in R (Csardi & Nepusz 2006).
837
838 Class 2: Null network models
839 Erdés-Rényi random graphs were created based on the average degree of the derived
840 network. Given an average degree of 11.64 and 300 nodes:
841
842 11.64 = zm

n
843
844 n = 300
845
246 _— 11.642>< 300 — 1746
847
848
849 Once we had calculated the number of edges that we wanted in order to produce
850 similar average degrees to the real data, we used the 300 x 300 adjacency matrix T to
851 determine the correct threshold p:
852

853 |T| =300 x 300 = 90,000
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854
855 90,000 x p = 1746 x 2
856
857 p= 1746 x 2 = 0.0388

90,000

858
859 To derive the Erdds-Rényi random graphs, we generated a 300 x 300 uniform random
860 matrix. We thresholded the upper triangle of the matrixat 1 - 0.0388 = 0.9612 and
861 reflected it across the diagonal. All entries on the diagonal were set to 0. This approach
862 is consistent with the mathematical definition of Erd6s-Rényi random graphs, where
863 edges are randomly chosen for all pairs. Thus, the Erd6s-Rényi graph has no self-loops
864 or multi-edges, as each pair is handled once.
865
866 For the second null model on the derived network, we used a modified Chung-Lu model
867 to produce edges between nodes while preserving the expected degree distribution.
868 The probability that an edge exists between OTU i and OTU j is given by,
869
870 pij = l;:;
871
872 where ki is the degree of node i in the derived network. To generate a single Chung-Lu
873 network we set n equal to the number of nodes in the observed network. Then, for each
874 pair of nodes (i, j), we picked a uniform random number between 0 and 1. If the random

875 number was between 0 and p;; -- which is proportional to the product of their degrees -
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876 we created an edge connecting nodes i and j in the Chung-Lu network. We repeated this
877 method 2000 times to generate a distribution of Chung-Lu random graphs.
878
879 Consensus network
880 To derive the consensus network, we applied 2000 Monte Carlo runs to the corrected
881 Spearman data at the 0.36 threshold. We included edges that appeared in 90% of the
882 trials to produce the consensus network. We visualized networks using the software
883 Gephi (Bastian et al. 2009). Nodes were color-coded by phylum.
884 Code
885 All code for processing the data, applying null models, deriving networks, and
886 measuring network properties are publically available on GitHub. The repository is
887 saved under nkinboulder/MicrobeCommunities. The code for this project was written
888 in Matlab and it is extensively commented for clarity.
889
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