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Abstract 

Quantitative genetics predicts, that traits subjected to strong selection should show low heritability and 

may yield biased estimates of genetic correlations (rg). Similar pattern may also appear if genetic 

sources of variation are confounded with non-genetic sources. Thus, a positive relationship between 

genetic correlations and heritabilities (h2) of underlying traits might be observed. Here we test this 

prediction using a large dataset of published estimates of genetic correlations and employing a 

powerful meta-analytical approach. We considered both between-traits and cross-sex genetic 

correlations. We failed to find support for the prediction about a positive rg - h2 relationship: our 

analysis based on nearly 1000 published estimates of genetic parameters indicates that the predicted 

relationship is weak and statistically non-significant. Thus, low heritability does not preclude the 

possibility of detecting substantial genetic correlations. Our meta-analysis indicates that published 

estimates of genetic parameters coming from various experimental designs and obtained using 

different statistical techniques are not significantly biased in case of weakly-heritable traits. 
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Introduction 

Estimation of genetic parameters such as heritability or evolvability became a standard procedure in 

most ecological and evolutionary studies (Steppan et al. 2002; L. E. B. Kruuk and JD Hadfield 2007; 

Hansen et al. 2011). With the advent of modern statistical and computational tools, large, sparse and 

unbalanced datasets typical for studies performed in wild populations became readily available in 

quantitative genetics. However, phenotypic traits are not separate entities and usually it is desired to 

analyze them together with other traits, seeking for multivariate genetic patterns (e.g. Steppan et al. 

2002; Jensen et al. 2003; Colautti et al. 2010; King et al. 2011). In this sense, genetic correlations lie in 

the very core of quantitative evolutionary genetics. Recently studies reporting genetic correlations in 

natural populations became numerous. However, field estimates of genetic parameters obtained from 

unplanned breeding events, using limited sample sizes available in the field might be not very accurate 

(Kruuk 2004). 

Genetic correlation describes the degree to which two traits share their genetic background, 

i.e. the extent to which the two traits are influenced by the same set of genes (Lynch and Walsh 1998). 

Mathematically it can be defined as ρg = σA1,2
2/(σA1

2σA2
2)-2, where indexes A1 and A2 indicate 

respective additive genetic variances, whereas A1,2 describes additive genetic covariance. 

Importantly, genetic correlation may be defined not only between different traits but also for the same 

trait between different classes of individuals (Lynch and Walsh 1998). In that sense one may consider 

cross-sex rg, genotype-by-environment rg or longitudinal rg (genotype-by-age interaction). Within-trait 

measures of genetic association are of key interest as they serve as measures of various genotypic 

interactions. Patterns of within-trait genetic correlations appear to be more complex than expected 

earlier and may be present as general, intrinsic properties of evolving biological systems (see 

Hoffmann and Merilä 1999; Brommer et al. 2007; Poissant et al. 2010 for reviews and examples of 

within-trait rg studies). 

The true evolutionary significance of genetic correlations is summed up in the breeders’ 

equation (Roff 2006): 
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R = Gβ = GP-1S, 

where R denotes change in the trait value due to selection, G is the genetic variance-covariance 

matrix, β is the vector of direct (univariate) selection gradients, P is the phenotypic (co)variance 

matrix and S stands for selection differentials. Calculating evolutionary change in, say, the first trait 

yields R1 = β1h1
2 + β2h1h2rg, where hi stands for the square-root of the respective heritability (denoted 

as hi
2) (Roff 2006). Constraint imposed by this equation means, that in the presence of strong genetic 

correlation between the two traits, any selective change in the second trait will be reflected in the first 

trait leading to correlated evolutionary change (Lynch and Walsh 1998; Roff 2006). On the other 

hand, opposing fitness optima for the two traits will lead to zero or little net evolutionary change, a 

process called inter-locus genetic conflict (Andres and Morrow 2003). Studies exploring patterns of 

correlated evolution of quantitative traits are numerous. Less understood, however, are mechanisms 

that actually maintain bonds of genetic correlations. We still lack answers to problems such as the 

origin of genetic correlations or their relationship to other genetic parameters. The latter should be of 

particular interest as it would not only provide interesting insights into evolutionary genetic processes 

but also offer and efficient tool for validating reliability and robustness of quantitative genetic studies. 

 The prediction that genetic correlations should be related (either in the sense of the magnitude 

of the effect or it’s detectability) to heritability/additive genetic variance has no mathematical ground. 

Although correlation is directly derived using respective variances (i.e. the components of 

heritability), covariance is the main source of correlation and, mathematically, covariance does not 

depend on the variance (and hence on heritability; Lynch and Walsh 1998; Quinn and Keough 2002). 

However, several statistical and genetic phenomena might be regarded as possible generators of such 

relationship. Firstly, as proposed by (Ronald A. Fisher 1930) and Price and Schluter (1991), traits 

more closely related to fitness (such as direct proxies of fitness and life-history traits) should have 

lower heritability than e.g. morphological or physiological traits. In fact, such patterns has been 

reported in a number of studies (e.g. Gustafsson 1986; Merilä and Sheldon 1999; Kruuk et al. 2000; 

Teplitsky et al. 2009). Fisher (1930) argued that low heritabilities of such traits should result from lack 

of genetic variability in fitness in populations at evolutionary equilibrium. These findings were further 
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developed by Price and Schluter (1991) who concluded, that low heritability of life-history traits might 

result from environmental variability added to their variance by other metric (e.g. morphological) traits 

closely related to life-history traits. Importantly, not only genetic variance but also genetic covariance 

between life-history traits could be biased due to environmental sources of variability, yielding low 

levels of genetic correlations between life-history characters. Therefore it is possible, that such 

patterns present in life-history traits could be responsible for putative rg - h2 correlations. 

Another possible source of spurious correlations between h2 and rg could arise due to statistical 

sampling issues. Estimation of genetic correlations is demanding both in terms of sample sizes and 

statistical methodology (Lynch and Walsh 1998). Although sampling distribution of genetic 

correlations is approximately normal (Fisher 1928), lower sample sizes result in much higher variance 

levels and wider confidence intervals (Brown 1969). Also, for some statistical procedures such as 

parent-offspring regression, lower sample sizes may be associated with biased estimates of standard 

errors of rg (Lynch and Walsh 1998), making such genetic correlations more difficult to detect. As 

standard errors for heritabilities should suffer similarly from low sample sizes used in their estimation 

(Lynch and Walsh 1998), this might be the source for the presumed rg – h2 correlation. The problem 

complicates if one considers additional, non-genetic sources of variation in phenotypic traits. If 

statistical procedures fail to separate strong common environmental or parental effects from genetic 

sources of variation, one may end up estimating genetic correlations with genetic and non-genetic 

sources of variation confounded. Patterns of genetic covariation may become blurred in such 

situations, leading to biased estimates of genetic correlations. Lower heritabilities would suffer more 

as they would be obscured by additional variance to a greater extent – hence generating assumed 

relationship between h2 and rg. 

Finally, expected values of rg may depend on the heritabilities of traits under strong directional 

selection (Lande and Price 1989). As simulation studies indicate, strong selection operating on one 

trait may severely bias rg and the degree of bias depends on the heritability of the trait under selection. 

In particular it was proved that covariance between trait 1 in parents and trait 2 in offspring Covs, after 

selection acting on parents with respect to the trait 1, equals: 
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Covs = σA1,2/2 [1 – (kρzh1)/(ρAh2)], 

where σA1,2 – additive genetic covariance, k – strength of selection, ρz – phenotypic correlation 

before selection, hi – square-root of heritability, ρA – genetic correlation (Lande and Price 1989). It can 

be seen from this equation that selection may generate spurious relationships between estimated 

covariance (and hence correlation) and heritability. 

The abovementioned considerations are probably partially responsible for a widespread 

opinion that weakly heritable traits should exhibit lower levels of genetic correlations. Surprisingly, 

we did not find any published evidence for such relationship. Thus, the validity and prevalence of such 

predictions remains to be discovered. In this study we explicitly explore the relationship between 

genetic correlations and heritabilities, both theoretically and using meta-analytical approach on 

empirical published data. We test the prediction that genetic correlations are positively associated with 

heritabilities of underlying traits. 
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Materials and methods 

Data collection and preparation 

We searched publicly available databases using the following keywords: “genetic correlation”, 

“genetic covariance”, “heritability”. All papers returned by our queries were classified into two 

groups: the first set contained papers analyzing genetic correlations between different traits (dataset 

X), the second one considered only cross-sex genetic correlations (dataset S). We decided to subdivide 

our analysis into two sets of data taken different features of cross-traits and cross-sex genetic 

correlations, both from the point of view of their biological relevance and statistical properties (i.e. 

different null hypotheses tested in each of these two categories; see Discussion). All papers were 

scanned for the estimates of genetic correlations and heritabilities. Papers were retained for further 

analyses only if they provided estimates of both heritabilities for traits underlying rg and standard 

errors or confidence intervals for the estimates of genetic correlations. Studies of cross-sex genetic 

correlations were verified with the recent meta-analysis on sexual dimorphism (Poissant et al. 2009) 

and hence our study contains a similar set of papers, updated with respect to papers published after 

2009. As for the cross-trait genetic correlations we decided include only studies dated back to 2009. 

Our motivation for that was a huge number of published estimates of genetic correlations, most of 

them from agricultural studies, which quickly outnumbered the number of estimates in the first dataset 

(S). In our opinion it did not bias our estimates since with the increasing number of studies the mean 

effect size asymptotically approaches a single value (Fig. 1). 

 Our dataset contained the following variables: genetic correlation, heritability of the first and 

second trait, standard error for genetic correlation, significance of the rg at the 95% level (binary 

variable: significant/non-significant; variable obtained using provided standard errors/confidence 

intervals), trait type of the first and second trait (categorical variable: morphology, physiology, 

behavior, developmental, life-history, fitness), type of the study (agricultural, laboratory, field), type 

of the statistical procedure applied (full-sib design, half-sib design, animal model, parent-offspring 

regression, ANOVA). To account for the lack of independence of different genetic correlations we 

included additional categorical variables: species (and if possible breed), study id (equal to the 
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bibliographical record for the study), trait 1 and 2 id (relevant for cross-trait genetic correlations where 

different traits might appear several times in different combinations). 

 

Fig. 1. Estimates of the regression coefficient for the rg – h2 relationship after including subsequent rows of 

data, beginning with the newest studies. Iteration number represents the number of included studies. 

  

 Wherever possible, original standard errors where used. However, if only confidence intervals 

were provided, we calculated approximate standard errors of the estimates dividing half of the 

confidence interval by the value of the appropriate quantile of the standard normal distribution (which 

equals 1.96 for the 95% confidence interval). 

 Effect size in our meta-analysis was expressed as the square-root of the modulus of Fisher’s Z-

transformed correlation coefficient (√|Z|), where Z=ln[(1+rg)/(1-rg)]. The choice of Fisher’s Z is 

natural when analyzing correlations (Borenstein et al. 2009). However, as we were mainly interested 

in the overall magnitude of genetic correlation and not in its sign, we decided to use the modulus (or 

absolute value) of Z. Z is approximately normally distributed and thus our |Z| variable would have a 

half-normal asymmetrical distribution. To overcome this we applied a normalizing transformation and 

hence our effect size took the form of √|Z|. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 10, 2016. ; https://doi.org/10.1101/039388doi: bioRxiv preprint 

https://doi.org/10.1101/039388


Heritabilities of specific traits were assigned arbitrarily to the first and the second independent 

variable as they appear in the analysed paper. Thus, to avoid any possible bias related to arbitrary 

allocation of the heritabilities to respective independent variables and to reduce complexity of the 

model we decided to use average heritability (arithmetic mean) as the independent variable. 

Additionally, the absolute difference between respective heritabilities was included in all models to 

account for possible differences in h2 between traits. To ensure that averaging heritabilities did not 

introduce any bias into our estimates we generated 1000 estimates of regression coefficients for the rg 

- h2 relationship using both heritabilities instead of the average h2, each time randomly changing the 

assignment of both heritabilities to the first and the second independent variable. Distributions of such 

regression coefficients largely overlapped the distributions of coefficients expected under the null 

hypothesis of no correlation, hence confirming that arbitrary order of heritabilities wouldn’t introduce 

any bias (Fig. 2). 

 

Fig. 2. In red: distribution of the regression coefficients for the relationship between effect size and 

average h2 for models with randomized order of traits (i.e. heritabilities of trait 1 and trait 2 were 

swapped, N=1000). In blue: distributions of the estimates of regression coeffcients obtained by ordinary 

randomization test, without re-ordering trait’s heritabilities. 

 

 In total 60 studies reporting 691 values of rg were included in the dataset X and 50 studies 

reporting 219 estimates of rg were included in the dataset S. The full set of analyzed data plus 

references to all analyzed studies is provided in the electronic supplementary materials. 

 

FIRST	TRAIT	 SECOND	TRAIT	
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Statistical analyses 

As explained above, cross-sex (dataset S) and cross-trait (dataset X) genetic correlations were 

analyzed separately and thus two sets of models are considered below, differing with the respect of the 

type of correlation. The square-root of |Z| was treated as the response in both models and the following 

independent fixed variables were defined: average h2, difference between respective h2’s, trait type, 

statistical methodology and study type (see explanations above). Additionally, species, study ID and 

traits ID’s (the latter only for the cross-trait analyses) were included as random effects. We considered 

all possible interactions of the categorical variables with both covariates (average h2 and of h2’s 

difference). However, all interactions and all categorical variables appeared non-significant (P>0.3 in 

all cases) indicating that both the magnitude of rg and the slope of the rg - h2 relationship were uniform 

across different trait types, statistical procedures and study types. Hence, we decided to remove these 

interactions and categorical variables from our models. 

 Additionally, a generalized linear mixed model with binomial error structure and logit link 

function was used to analyze whether h2 affects the probability of obtaining significant estimates of rg . 

This model contained similar fixed and random effects. Because for cross-sex genetic correlations an 

appropriate null hypothesis (H0: ρg = 1) is equal to the boundary of the space of possible values, 

standard errors should not be used to test this hypothesis (the use of likelihood ratio tests or 

information theory is preferred here; see Fox and Wolf 2006). Thus, we did not analyze significance of 

cross-sex rg’s in that way but only significance of cross-trait genetic correlations (where the 

appropriate null hypothesis is of the form H0: ρg = 0). 

 All models were run as meta-analytical linear models and thus they accounted for the 

sampling error of published estimates of genetic correlations. The typical linear mixed model has the 

following form: y = Xβ + Zu + e, where X and Z are incidence matrices for fixed and random effects, 

β is the vector of fixed effects coefficients, u ~ N(0, G) is the vector of random effects, e ~ N(0, R) is 

the vector of error terms. In a random-effects meta-analysis another term comes in: y = Xβ + Zu + m 

+ e, where m is the vector of error measurements (e.g. standard errors as in our case). 
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 In order to determine possible sources of bias in meta-analyses, we employed funnel graphs by 

plotting residual effect size (residuals from models fitted to Fisher’s Z effect size) against the 

reciprocals of standard errors (precision of estimates). Egger’s regression was applied to funnel plots 

(Egger et al. 1997). This method estimates possible asymmetry of funnel plots by testing the 

significance of the linear slope fitted to the funnel plot; a slope significantly different from zero 

indicates possible publication bias. We used Egger’s regression on residual effect sizes rather than raw 

effect sizes in order to account for non-independence of data points due to complex random effects 

structure (Horváthová et al. 2012). 

 Analyses were performed in R (2.14.2; R Development Core Team 2011). Meta-analytical 

linear and generalized linear mixed models were fit using MCMCglmm package (Hadfield 2010). All 

models were run for 2×106 iterations, first 50000 iterations were discarded and samples were drawn 

from posterior every 100th  iteration. Priors for all random effects were set as weak half-Cauchy 

distributions (with parameters V=1, nu=0.002, alpha.mu=0, alpha.V=1000). Priors for residual 

variance were set as inverse-Wishart distributed (with parameters V=1, nu=0.002). All models were 

checked for autocorrelation issues by visual inspection of time-series plots, however no problems were 

detected. 

Analysis of simulated correlations 

To search for possible sources of the rg - h2 relationship we sampled toy data from bivariate normal 

distributions (BVN), diversifying parameters used in each sampling. Our aim was to determine the 

influence of both additive genetic variance VA (and hence heritability) and the presence of additional 

non-genetic variance (confounded with VA) on the estimates of rg. All data were sampled from BVN 

using the rmvnorm procedure from mvtnorm library. All samplings were made using distributions 

with zero mean μ = [0, 0] with the population value of genetic correlation being ρG = 0.8. We used 13 

decreasing values of additive genetic variance (ranging from 0.05 to 2.0) and fro each of these values 

set the additive genetic (co)variance matrix in order to maintain constant genetic correlation of 0.8. We 

performed six series of samplings for all values of VA’s, each time increasing the value of additional, 
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non-genetic values with variance σX
2 (sampled from a univariate normal distribution with mean zero 

and variance σX
2 and thus introducing no additional correlation; σX

2 ranged from 0.05 to 0.5). Thus, 78 

samplings were performed for each combination of VA and σX
2. For each combination, the estimated 

value of rg was obtained using the cor.test function. Estimated genetic correlations for all six 

series of samplings (according to values of σX
2) were then plotted against VA values used to sample 

from BVN. We assumed that the additional variance (σX
2) is not distinguishable from the true 

population value of VA and hence values used generating the abovementioned plot were VA + σX
2. 
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Results 

The collected data provide a wide range of rg and h2 values. In general, cross-sex genetic correlations 

were mostly positive and close to unity, which could be expected taken their biological properties. On 

the other hand, between-traits genetic correlations were represented mainly by low, close-to-zero 

values (Fig. 3). Interestingly, the distributions of cross-sex and cross-trait heritabilities were different: 

the former was symmetrical with the mode around 0.5, the latter was clearly bimodal, indicating that 

high and moderate to low heritabilities were the most common (Fig. 3). 

 

Fig. 3. Left: distributions of cross-trait (blue) and cross-sex (red) genetic correlations. Right: distributions 

of of heritabilities for cross-sex (red) and cross-trait (blue) datasets. 

 

Analysis of the absolute Fisher’s Z values (√|Z|) indicated that the magnitude of genetic 

correlation is not significantly correlated with the average heritability of underlying traits (Fig. 4 and 

5). A relationship between √|Z| and mean heritability was stronger in case of cross-sex genetic 

correlations compared to cross-trait rg’s, however it remained marginally non-significant (Table 1). 

The size of the effect (i.e. the regression coefficient for the relationship between genetic correlation 

and average h2) was low for both datasets (Table 1, Fig. 4 and 5). In case of cross-sex genetic 

correlations taxon explained significant proportion of variance in effect sizes (Table 1), whereas in 

between-trait genetic correlations, most variance was explained by the trait ID. Nevertheless, posterior 

credibility intervals associated with all variance components were wide for all random effects (Table 

1). 
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Fig 4. A relationship between absolute effect size (square-root of |Fisher Z|) and heritability averaged 

between-traits for cross-traits rg. 
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Fig 5. A relationship between absolute effect size (square-root of |Fisher Z|) and heritability averaged 

between-traits for cross-sex rg. 

 

Table 1. Meta-analytical linear mixed models for the absolute effect size. Estimates are provided with 

their 95% credibility intervals. Upper parts of respective models contain fixed-effects estimates, lower 

parts provide variance components. 

Model term Estimate 95% CI P 

Cross-sex rg    

Intercept 0.908 (0.756; 1.062) <0.0001 

Average h2 0.253 (-0.026; 0.518) 0.08 

Difference of h2’s -0.055 (-4.932; 0.405) 0.79 

Taxon ID 0.012 (0; 0.037) - 

Study ID 0.032 (0.006; 0.064) - 

Residual 0.034 (0.021; 0.050) - 

Between-trait rg    

Intercept 0.762 (0.621; 0.907) <0.0001 

Average h2 0.159 (-0.197; 0.521) 0.39 

Difference of h2’s -0.465 (-0.830; -0.092) 0.02 

Taxon ID 0.032 (0; 0.072) - 

Study ID 0.016 (0; 0.053) - 

Trait 1 ID 0.022 (0.009; 0.036) - 

Trait 2 ID 0.039 (0.021; 0.056) - 

Residual 0.015 (0.0002; 0.037) - 

 

 Covariate expressing the difference between heritabilities appeared significant in case of 

between-trait rg meta-analysis: traits with larger differences between respective h2 tended to have 

lower absolute Fisher’s Z (Table 1). 

 Analysis of the probability of obtaining rg significantly different from zero indicated, that it is 

positively associated with the average h2 of underlying traits (GLMM, logistic regression coefficient 

4.55, P=0.003; Fig. 6). However, even for the lowest average heritabilities predicted probability of 

obtaining significant rg estimate was 0.59 (Fig. 6). 
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Fig. 6. Relationship between obtaining significant estimate of rg (1 means significant) and average 

heritability. Dashed line depicts fitted logistic regression. Random noise along the y axis was introduced to 

data points to make reading of the plot easier. 

 Diagnostic funnel plots for both meta-analyses are presented in Fig. 7. In case of between-trait 

correlations, residual effect sizes form a symmetrical funnel indicating lack of publication bias 

(Egger’s regression slope: b = 0.003, P = 0.45). In case of cross-sex genetic correlations the funnel 

plot is less symmetrical, however Egger’s regression does not indicate any publication bias ( b = 0.02, 

P = 0.24). Inspection of residual variance from meta-analytical models indicates that inclusion of 

measurement error variance significantly lowered estimated residual variance, with the smallest 

change in residual variance observed in case of cross-sex rg meta-analysis (ordinary LMM: VR = 0.65 

(0.53; 0.78); meta-analysis LMM: VR = 0.15 (0.02; 0.30)). It justifies the notion that measurement 

error variance in this case provides important extra information on the variance underlying examined 

relationship. 
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Fig. 7. Funnel plots for between-traits (left) and cross-sex (right) genetic correlation analyses. Plots depict 

residual absolute effect sizes relative to the inverse of the standard error (depicted on logged scale for 

clearer presentation). 

 

 Simulated data indicate that in typical situations, i.e. when the separation of genetic effects is 

satisfactory and additive genetic variance actually estimates true genetic variance with little or no 

added variance, genetic correlations should not be associated with underlying heritabilities (Fig. 8, 

upper lines). However, strong positive relationship between rg and h2 appears if additional variation is 

present in a substantial quantity compared to the magnitude of the true additive genetic variance. If 

such additional variation cannot be not separated from the genetic effect, strong bias arises in 

estimates of rg, generating strong rg - h2
 relationship. Depiction of estimated covariance ellipses (Fig. 

9) clearly shows that with large amounts of non-genetic variance correlations between traits become 

blurred and more difficult to estimate. 
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Fig. 10. Results of simulation study of the dependence of estimated rg on the additive genetic variance 

values (VA directly translates into heritabilities once residual variance is included). Numbers above lines 

provide amounts of additional, non-genetic variance used in each series of samplings. 

 

Fig. 11. Covariance ellipses resulting from performed simulations, arranged on the grid of additive genetic 

variance values (horizontal axis) and non-genetic additional variance values (vertical axis) used to 

generate the data. 
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Discussion 

Here we show that the relationship between genetic correlations and heritabilities of underlying traits 

estimated using robust and powerful meta-analytical approach, employing large sample of published 

estimates, are weak and statistically non-significant, both for cross-traits and cross-sex genetic 

correlations. Approximately only 0.001% of the total variation in observed genetic correlations could 

be attributed to the direct relationship with heritability. Thus, our findings challenge widely accepted 

belief that low heritabilities are associated with low and non-significant or less detectable genetic 

correlations. 

 The theory of quantitative genetics offers several possible mechanisms that could generate 

such relationship. The most important candidate explanations include (i) higher environmental 

variability in life-history and fitness traits (associated with lower heritabilities) (Price and Schluter 

1991; Merilä and Sheldon 1999), (ii) biased estimates of rg due to selection acting on one of the traits 

(Brown 1969; Lynch and Walsh 1998) and (iii) statistical issues leading to the incomplete separation 

of genetic effects from other sources of phenotypic variation (most importantly, common environment 

and parental effects). Our meta-analysis does not support the first two explanations. In both analyzed 

datasets the type of the trait had no influence on the strength and direction of rg - h2 relationship, as 

indicated by non-significant trait type vs. linear slope interactions. Similarly, lack of any significant 

interactions between  the linear slope and type of the study (agricultural, laboratory and field) provides 

an indirect evidence against the selection-related bias: one could expect that agricultural studies focus 

on individuals strongly selected with respect to valuable productivity traits and hence lack of 

heterogeneity in slopes across study types excludes selective explanation. It is more difficult to relate 

our results to statistical problems with decompositions of different sources of phenotypic variance. 

Linear models theory developed a range of methods capable of separating different sources of 

variation in phenotypic traits (Kruuk and Hadfield 2007). Precision and robustness of these methods 

differs considerably, especially with respect to genetic correlations (as they require larger sample 

sizes): most accurate and robust are methods using available pedigree information (“animal model”) 

(Kruuk 2004; Kruuk and Hadfield 2007), followed by half-sib and full-sib approaches. However, lack 
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of significant interactions between slopes of analyzed relationships and statistical methodology 

applied does not provide support for this explanation. Simulation study performed along with this 

meta-analysis confirmed that in the presence of large additional variance, not separated from additive 

genetic effects, decreasing genetic variance (and hence – heritability) may lead to a downward bias in 

the estimates of rg. In this context it appears that the degree to which published data violate the 

assumption of complete separation of genetic effects seems to be negligible. 

 Statistical sampling issues may have profound effects not only on the value but also 

detectability of rg. By detectability we understand the likelihood that under certain heritability values 

the method employed is able to yield statistical significance at the assumed confidence level (here we 

assumed confidence equal to 95%). As shown above, genetic correlations are not significantly related 

to heritabilities and hence detectability of rg should not be lower for low values of h2. Surprisingly, we 

have shown that detectability of rg is weakly positively related to heritability. However, even for the 

lowest heritabilities, the predicted probability of obtaining significant estimates of rg is not lower than 

50%. Hence, we conclude that detectability is not substantially compromised by low values of 

heritabilities. 

Apart from sampling issues, our results have other profound statistical consequences. Genetic 

correlations in our meta-analysis were subdivided onto two distinct groups: between-traits and cross-

sex genetic correlations. Cross-trait genetic correlations are usually studied when looking for genetic 

trade-offs and constraints between phenotypic traits (e.g. Norry et al. 2000). Such studies usually 

assume that the null hypothesis is in the form H0: ρg = 0, which is reasonable taken that under random 

mating two traits should not share any genetic background (excluding cases of pleiotropy) and hence, 

should not be genetically correlated (Lynch and Walsh 1998). In other words, any studies analyzing 

low-heritability traits would only risk elevated levels of type II error (false negatives) if the positive rg 

– h2 correlation was actually true. However, testing the cross-sex genetic correlations usually assumes 

the null hypothesis of the form H0: ρg = 1, which is logical as we expect full genetic correlation of 

individuals carrying identical sets of genes and differing only with their sex (Robertson 1959; Eisen 

and Legates 1966; once again we exclude special cases of sex-linked traits). In this case, analyses of 
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low-heritability traits would be associated with elevated type I error rates (falsely significant results) in 

the presence of the significant positive rg – h2 correlation. In this context our results do not justify the 

fact that cross-sex genetic correlations of weakly heritable traits are associated with higher levels of 

statistical error. 

 An important feature of the presented relationships between rg and average h2 is that it might 

be influenced by publication bias present in the data. Such bias could be expected as strong genetic 

correlations are more attractive in case of cross-trait studies, the opposite being true in the case of 

cross-sex rg’s where low correlations are considered more interesting. However, diagnostic plots 

indicate no publication bias in both analyzed datasets. 

 The only significant correlation found in our meta-analysis was detected for the relationship 

between rg and the difference between heritabilities in case of between-traits genetic correlations. It 

appears that lower genetic correlations are associated with more extreme values of heritabilities. 

Explaining this pattern is difficult. As over 95% of all data-points had these differences lower than 0.3, 

it is possible that this result is a statistical artifact arising due to strongly asymmetrical distribution of 

differences. Clearly, further exploration of this pattern is required. 

 To conclude, our review and meta-analysis of published estimates of genetic correlations and 

heritabilities does not support the prediction that genetic correlations are strongly positively associated 

with heritabilities of underlying traits. Thus, we think that the criterion of low heritability should not 

be treated lightly and too confidently when evaluating the quality and reliability of published estimates 

of genetic correlations. 
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