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Abstract

The growing burden of antimicrobial resistance is one of the most challenging problems facing
public health today, and understanding how our approaches for using antimicrobial drugs shapes future
levels of resistance is crucial. Recently there has been debate over whether an aggressive (i.e. high
dose) or more moderate (i.e. lower dose) treatment of individuals will most limit the emergence
and spread of resistant bacteria. Here we demonstrate how one can understand and resolve these
apparently contradictory conclusions. We show that a key determinant of which treatment strategy will
perform best at the individual level is the extent of effective competition between resistant and sensitive
pathogens within a host. We extend our analysis to the community level, exploring the spectrum
between strict inter-strain competition and strain independence. From this perspective as well, we find
that the magnitude of effective competition between resistant and sensitive strains determines whether
an aggressive approach or moderate approach minimizes the burden of resistance in the population.

1 Introduction

The growing crisis of resistance to antimicrobial drugs has captured the attention of the global public
health community as the harrowing reality of the loss of previously effective medicines combined with
slow discovery of new agents threatens a post-antibiotic era of untreatable infectious diseases. Although
the quality and completeness of surveillance is variable, current data are consistent with rising levels of
resistance; this worrisome trend is not restricted to particular pathogens or specific geographic settings.*3
While an accurate assessment of the current health and economic losses attributable to antibiotic resistance
is elusive, the estimated numbers, ranging up to 2 million serious infections, 23,000 deaths, and 35 billion
dollars in the United States alone, are staggering.’® Similar numbers of deaths have been attributed to
antibiotic resistant infections in Europe.3> Most recently, a projection of 10 million deaths and 100 trillion
dollars in economic losses attributable to antimicrobial resistant infections by 2050 has been circulated.?3

Given that antimicrobial treatment cures infections while simultaneously selecting for antimicrobial
resistance, it is crucial to understand how alternative treatment strategies affect the probability of re-
sistance. The conventional wisdom guiding the rapidity and dosing of drugs, often attributed to Paul
Ehrlich,' is that early and aggressive use of antimicrobial agents is most effective for optimizing cure
and minimizing the risk of resistance.?® Recently, there has been some debate as to the universality of
the claim that these aggressive approaches are optimal for minimizing the risk of resistance, with some
researchers suggesting that more moderate approaches may perform better36and others defending the
standard approach.!

A central rationale for an aggressive approach is that early high dose treatment will most rapidly reduce
the size of the microbial population from which drug resistant isolates appear and thus minimize the
probability of the emergence of resistance during treatment.410,24:25,39,40,44 Tp contrast, the rationale
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for a more moderate approach is that higher doses of antibiotics impose stronger selective pressure which
drives a more rapid emergence of resistance,26:36:37 and that rapid suppression of drug susceptible isolates
may allow for competitive release of existing drug resistant isolates.!? 21343542 Recently, Kouyos et
al?6 summarized the relevant, albeit limited, empirical evidence about dosing and risk of resistance,
and described a ”conceptual curve” relating the strength of selection to the expected rate of resistance
emergence, highlighting theoretical conditions under which aggressive and moderate approaches may be
preferred.

How one formulates the question about optimal antimicrobial dosing strategies to minimize resistance
will depend on one’s perspective. For example, a clinician will likely be most concerned with identifying
the dosing regimen that produces the best health outcome for the patient (i.e. highest probability of
cure accounting for toxicities and the risk of resistance). A public health practitioner will likely seek
to identify which treatment practices produce the greatest health gains while minimizing the long-term
levels of resistance in the community. The recent debate over aggressive and moderate approaches has
mainly been centered on identifying an optimal strategy for the treatment of individual hosts to minimize
the probability of resistance. However, the emergence and subsequent transmission of resistance in the
population may be of even greater concern. From a theoretical perspective, optimal dosing strategies
for the prevention of resistance in individuals are not necessarily optimal for limiting resistance at the
population level.31:32

Here we provide a modeling framework that unifies the individual-level and population-level perspec-
tives and provides additional insight into the debate about aggressive and moderate approaches for antimi-
crobial chemotherapy. We demonstrate that the extent of effective competition between drug susceptible
and drug resistant isolates is a key determinant of whether an aggressive approach is better (in terms of
resistance prevention) than a moderate approach for hosts being treated for disease. Most importantly,
we find that even within a model that allows for very strong competition, different realistic combinations
of parameter values can support the aggressive or moderate approach as optimal. We illustrate how it
is possible that models can support two such different conclusions by carefully considering the dominant
interactions between the strains. We extend our analysis to the population level, exploring a spectrum
of inter-strain interactions ranging from strict competition to independence. We find that the same
framework explains why either aggressive or moderate treatment approaches can minimize resistance.

2 Methods
2.1 Within-host model

We describe two populations of bacteria within a single host using a model based on Ankomah et al. The
model includes both wild-type (drug-sensitive; DS) bacteria and drug-resistant (DR) bacteria which arise
by some presumably rare mechanism from the drug-sensitive type. This mechanism could be single-point
mutation, acquisition of resistance genes through horizontal gene transfer, or another mechanism.345
While we do not explictly model these differences, we note that the mechanisms of resistance and their
relative probabilities affect the relative importance of de novo resistance compared to pre-existing resis-
tance circulating in a population.3! In our model, each strain initiates an immune response which follows
density dependent kinetics. Bacteria grow in a resource-dependent manner, and have a death rate which
increases under higher antibiotic concentrations. Antibiotics enter the system and degrade at a constant
rate. The DR strain, by definition, has a higher minimum inhibitory concentration (MIC) than the DS
strain, and is assumed to have a slower growth rate reflecting fitness costs associated with mutation or
acquisition of resistance genes. The strain interactions in the model are complex: strains compete for
resources, and each strain can suppress the other by triggering a host immune response. Thus we expect
the strains to be under fairly strong competition. However, the DS strain also benefits the DR strain as
DR is generated from the DS population through acquired resistance.
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The variables are DS and DR bacteria (Bs, B,), the innate and adaptive immune cells (I, P), the
resource R and the antibiotic A. Bacterial growth is resource-dependent! with growth rate \; = ASHLR
and similarly for A., where A and A, are the maximum growth rates of the two strains when the resource
is not limiting. The resource is replenished at rate wCr and depleted at rate wR. To incorporate the
possibility of stochastic die-off of the DR population when its level is small, the growth rate is 0 when
the population is less than 30. Antibiotic concentration A speeds the death of bacteria according to
a saturating mechanism d5(A) = )\s%, and similarly for R, where My and M, are the minimum
inhibiting concentrations of antibiotic for the DS and DR strains respectively. A is introduced through
dosage A;, and is removed at rate d + w.!

To explore these complex interactions we drew 60,000 sets of parameters from ranges containing the
values used previously! (see Table S1), spanning a range of strengths of the immune system (k;, kp, m,
«), relative overall fitness of the DR strain (A,, M, ), pre-existing DR bacilli, the growth rate of the DS
strain (A;) and the mutation parameter p. For each set of parameters, we varied the dosage of antibiotic.
We captured the relationship between increasing Aj, and the maximum and total (integrated over time
in the simulations) DR.

We determined whether “aggressive” or “moderate” therapy was the best approach according to which
one minimized the the overall (maximum and total) levels of resistance. Mathematically, if treatment
is negatively correlated with resistance, then more treatment results in less resistance and an aggressive
approach is best. Conversely, if the correlation is positive, then treatment drives increases resistance,
and a moderate approach is best (from a resistance standopint). Accordingly, parameter sets in which
resistance levels were negatively (S < —0.7) or positively (S > 0.7) correlated with antibiotic dosage as
determined by the Spearman correlation S were classed as ”aggressive is best” or "moderate is best”;
other results were classed as neutral. We removed parameter sets in which treatment does not succeed
(with success defined as causing a > 80% reduction in the maximum DS population), so that long-term
selective pressure from unsuccessful treatment does not drive resistance in our results.

2.2 Between-host model

To explore a wide range of inter-strain interactions at the population level, we developed a model with four
host compartments: susceptible, infected with DS (X), infected with DR (Y') and dually infected (D).
We envision a continuum of inter-strain interactions that in principle describe co-circulating pathogens.
At one of the continuum we posit that distinct pathogens may be entirely independent of each other, not
interacting directly or indirectly (e.g. through immune modulation or resource competition). In this case,
infection with one strain does not affect infection or recovery with the other strain. At the other end of
the continuum, very similar strains of the same pathogen are likely to be competing for hosts. We have
previously described “neutral null” models,® in which biologically indistinguishable strains have sensible
dynamics in models (i.e. outcomes do not depend on which strain a host has). Our model spans this
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continuum, which is parameterized by a “similarity coefficient” ¢. When ¢ = 1 the strains are highly
similar and neutral in the sense of Lipsitch et al?? if they are identical. When ¢ = 0 the two strains act
independently; infection with one does not affect the spread of the other. See the Appendix for more
details and a proof of these statements.

The model equations are:

dX
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In this model, hosts may become infected with both strains; in models where dual infection cannot
occur, there is an implicit assumption of very strong competition between strains. Dually-infected indi-
viduals may also be again re-infected with a single strain.? Clearance terms (with recovery u, and uy) are
modulated with the similarity coefficient, ¢, to ensure that the model has independent interactions when
¢ = 0 and neutral null dynamics when ¢ = 1 (see Appendix). Transmission rates are 3, and (3, recovery
rates are u, and u,, and we assume that over the time frame of the simulation the population does not
change; we scale it to 1 so that S = 1-X —Y —D. The forces of infection 7, and 7, contain a contribution
from both singly and dually-infected hosts such that when the strains are different, dually-infected hosts
contribute as much as singly-infected ones, and when they are very similar, each strain contributes half
what a singly-infected host would.>* Treatment T ranges from 0 to 1 (where the DS strain is eliminated),
and has several effects. Primarily, it cures the sensitive strain by reducing its duration of infection 1/u,.
To capture the risk of releasing small sub-populations of resistant bacilli within such hosts, we include
a parameter r which is a small rate at which resistance is uncovered by treatment. Individuals with a
resistant strain (Y') who are given treatment are partially protected (k;) from re-infection with the sensi-
tive strain. Dually-infected individuals given treatment have the drug-sensitive portion of their infection
cured at an increased rate u, due to treatment, but their resistant infection is not cured.

We use a range of parameters such that the basic reproductive numbers (5/u) of the strains, Ro;
(DS) and Ro2 (DR), are greater than 1, with Rpa < Rp; (Table S1). We draw parameters randomly,
and increase the treatment 7'. We explore the relationship between the strength of treatment and the
long-term and maximum level of resistance. We classify the resulting optimal strategy as aggressive if the
Spearman correlation is less than —0.7 and moderate if it is larger than 0.7.

2.3 Post-processing of the results

We took two approaches to understanding how the parameters of each model relate to whether aggressive
or moderate chemotherapy minimizes resistance. The most direct approach is simply to look, over all
simulations, at how the outcome depends on each parameter. Using heat maps or scatter plots, it is
also possible to explore how pairs of parameters determine an outcome. However, we cannot expect any
one or two parameters to entirely determine which approach minimizes resistance. We used discriminant
analysis of principal components (DAPC, in the adegenet package in R) to systematically identify which
parameters contribute to which outcome.??23> DAPC is related to principal component analysis (PCA) but
instead of finding combinations of parameters to account for the variability in data (as PCA does), DAPC
finds combinations of parameters that best account for variability between groups. Here, we used whether
aggressive or moderate chemotherapy minimizes resistance to define the groups (aggressive, neutral or
moderate as above) and used DAPC to find combinations of parameters that separate these groups from
each other.
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3 Results

The best policy for reducing the amount of resistance in both models can be either aggressive or moderate
despite the fact that both models capture potentially strong competition and the acquisition of de novo
resistance. The choice of best approach depends on the combined effect of the complex set of inter-strain
interactions, and typically, one of these approaches is the clear winner (see Figure : Appendix 1 - figure

1).
Within-host model

count
1

count
1

0.00 =

BestPolicy .Aggressive. Neutral. Moderate

Figure 1: Frequency of best policies over key parameters. An aggressive policy (dark blue) is deemed best if the
Spearman correlation S between treatment and resistance is S < —0.7, moderate (light blue) is deemed best if
S > 0.7 and the classification is neutral (medium blue) otherwise. When the DR strain has a lower growth rate
(LamR) an aggressive policy is more likely best because more of the DR strain’s population arises through resistance
acquisition from the DS population. In this case, reducing the DS strain also reduces DR. Conversely when Ag
(LamR) is high the DR strain is a more robust competitor and a moderate policy is more frequently best. Similarly
when the DR strain has a low MIC (mR) it is a less robust competitor. In this case an aggressive policy is more
frequently best than when mR is high (second panel). The third panel shows that when the immune system is
strong (high k,), an aggressive policy is more frequently best, because again more of the DR population increases
are driven by acquisition from DS, due to immune suppression of DR growth. A plot with 1 on the horizontal axis
is very similar to this one. Finally, the right plot shows that when the DS growth rate (LamS) is low, an aggressive
strategy is more often best to minimize resistance; this depends on the ability of therapy to prevent the emergence
of resistance.

Using DAPC analysis, we find that parameter combinations supporting aggressive vs moderate
chemotherapy can best be separated using a linear combination of the parameters. The ”loadings” (eg
coefficients) of the parameters in this function correspond to the relative importance of the parameter in
determining whether aggressive or moderate chemotherapy minimizes resistance. The biggest determi-
nant, not surprisingly, is the number of pre-existing resistant cells (coefficient 0.7). After that, parameters
which lead to a "moderate” policy to be best include a higher MIC of the DR strain (mR; 0.55), lower
immune parameters k, and 7 (-0.47; -0.46), higher growth rate the DR and DS strains (LamR or Ag;
0.44 and Lam§ or Ag; 0.32). Other parameters had loadings less than 0.02 and did not contribute much
to the classification. Figure : Appendix 1 - figure 2 illustrates the projection of the parameters in the
DAPC space.

In other words, we find that an aggressive approach is preferred when the immune system is relatively
strong (higher values of immune parameters &, ), and when the DR strain has a relatively low growth
rate (Ag) and low MIC (m,). Conversely, if there is pre-existing resistance, the immune system is weaker,
and/or the growth rate or MIC higher, a moderate approach minimizes resistance. Pre-existing popu-
lations of DR pathogens (i.e. resistance that appears prior to exposure to treatment) favor a moderate
approach, since there is no possibility that a hard-and-fast approach will clear the infection before resis-
tance can arise. Directly examining the parameters and their pairwise correlations, stratified by which
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approach minimizes resistance, is a useful way to visualize these relationships (Figure : Appendix 1 -
figure 4).

Figure 1 illustrates how the best policy relates to individual model parameters. No single parameter
determines which policy is best; rather, the outcome depends on the combined effects of a set of complex
interactions. This means that from a location in parameter space where aggressive therapy minimizes
resistance, a relatively small change in several parameters (for example a slight decrease in k&, increase in
mp and increase in A, ) can result in a moderate policy being best. Figure 2 shows the best policies for key
pairs of parameters whose values combine to influence whether an aggressive or moderate policy minimizes
resistance. These figures reveal a few intuitive trade-offs: a higher DR growth rate (Ar) generally leads
to a moderate policy being best (light blue; positive correlation between treatment and DR), but this
can be offset with a strong immune system keeping both strains in check (high 1 or high k,). A higher
DR growth rate or a higher MIC (mp) make the DR strain a robust competitor, and also consequently
favors a moderate policy. Interestingly, while the mutation rate determines the overall numbers of DR
bacilli (particularly in cases when they are not present initially), it does not have a strong effect on the
relationship between treatment and total resistance. Figure : Appendix 1 - figure 4 shows all of the
parameters and their pairwise relationships in the two key regimes.

If resistant cells are present initially, then they do not need to emerge by (rare) mutation or acquisition
mechanisms from the sensitive strain. This simple observation has consequences for our analysis; a ”mod-
erate is best”, or neutral conclusion is much more likely with pre-existing resistance, keeping everything
else the same. When there is no pre-existing resistance, the DR strain must have a higher MIC, higher
growth rate and face a weaker immune system in order to be a robust competitor than it does when it
is present initially. Figure : Appendix 1 - figure 3 shows the heat maps as in Figure 2 but stratified
according to whether there is pre-existing resistance.

To understand which policy minimizes resistance one must be able to characterize the net effect that
the presence of one strain has on the other strain. There is strong opportunity for competition between
strains encoded in the model; competition plays out through shared resources which may be limiting as
well as through the triggering of an immune response that suppresses both strains equally. Both of these
effects occur when bacterial populations are large. However, the initial appearance of resistance also
depends critically on the presence of drug-sensitive organisms. Altering both the strength of competition
and the dependence of the DR strain on the DS progenitor population determines whether or not such
competition is effective. In particular, effective competition naturally requires a DR strain that has the
capacity to be a robust competitor to the DS progenitor. This can be achieved in two ways: it can
maintain a strong growth capacity in the presence of antibiotic or immune pressure, or it can face an
immune system that is not particularly strong. Our exploration of the parameter space uncovered both
of these mechanisms. These findings are not an artifact of the model structure, and indeed they will
likely occur in any model that includes de novo appearance of resistant strains by mutation or acquisition
of resistance determinants by drug-sensitive organisms, which can then compete for resources with their
drug-sensitive cousins.

Between-host model

Figures 3 and 4 illustrate how the best policy depends on the fitness of the DR strain and the other
parameters. We again find that the parameter groups where aggressive therapy minimizes resistance are
well-separated by those where moderate therapy is best, by a single DAPC function (Figure : Appendix
1 - figure 2). Here, the strongest driver of a moderate policy being best is a high similarity coefficient (c,
coefficient 0.83). High Ro2 and Ry; (0.81,0.41) contribute, as does a low acquistion rate (coefficient -0.43).
Somewhat surprisingly, the rate of competitive release does not contribute to the DAPC weighting, and
does not affect which policy minimizes resistance.

These results mean that when the DR strain is relatively unfit, with an Rgpe very near 1, an aggressive
strategy is more likely to minimize resistance. The aggressive strategy is also favored when the rate of
acquisition of resistance during treatment is high. A lower Rgpe and higher acquisition rate increase the
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Figure 2: Heatmaps illustrating how best policies depend on key combinations of parameters. Color
indicates the policy that minimizes resistance. Yellow: aggressive; green: neutral; blue: moderate. When
the growth rate Ar (LamR) is high, a moderate policy is more frequently best, but a strong immune
system (high k,) can compensate by reducing DR growth. When the DR strain is a strong competitor,
a moderate policy is frequently best; this can be achieved by either a high Ag or a high DR MIC (mR)
(top left). Either a high k, or a high 1 can compensate (bottom right), reducing the growth potential of
the DR strain and leading to either a neutral outcome or an aggressive policy being best.

importance of acquisition over transmission in driving the DR population. Furthermore, an aggressive
strategy is likely to be best when the strains are more independent (a low similarity coefficient). Indepen-
dence means that even a relatively unfit strain can be transmitted in the population, despite the presence
of a more fit strain, because when strains are independent they can each super-infect hosts already infected
with the other strain, and they can be transmitted from those with dual infection (if these cannot happen
then the strains cannot be independent; rather, they would compete for hosts and/or for infectivity). We
noted previously” that such co-infection can, but does not always, allow DR strains to persist in the long
term where they would not be able to do so otherwise; similar results were recently reported by Hansen
and Day.'® Our current results clarify that these effects are a result of the level of competition and are
not a consequence of co-infection. Co-infection can be present under high, low or intermediate levels of
competition.

The factors that favor an aggressive policy — lower Rgo, higher rates of resistance acquisition and
increased independence between strains — have the net impact of reducing inter-strain competition. A
low Ry; is also makes an aggressive approach more likely to be preferred (see Figure : Appendix 1 -
figure 5); competition for hosts is low when there are plenty of susceptible hosts, whether the model has
strict competition mechanisms or not. This occurs when both Ry values are low. Low Rgpe means the
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DR strain is not a fit competitor, a high independence (1 — ¢) explicitly reduces competition through
protection from re-infection and through independent recovery, and a higher mutation rate increases the
benefit the DR strain enjoys from DS. Conversely, when the DR strain has a higher Ry, when there is
a lower rate of resistance acquisition, and when inter-strain competition is more pronounced, the more
moderate approach tends to minimize resistance.
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Figure 3: Best policy over parameters in the population-level model. Light blue corresponds to Spearman
correlation greater than 0.7, dark to less than —0.7 and mid-range blue all values in between. An aggressive
policy is best when the DR strain is relatively unfit (low Ry value; left panel). When the acquisition rate
is high, treatment-driven reductions in DS decrease the DR prevalence (second panel). When the two
strains are more independent (low similarity coefficient), competition is reduced, so that reductions in
the DS strain do not much benefit the DR strain, leading to the aggressive policy being preferred (third
panel). When Ry is high, a moderate outcome results, because inter-strain competition is more effective.
Vertical axes ("count”) are the fraction of simulations in each category.

4 Discussion

We find that an aggressive policy for antibiotic dosing is preferred when the appearance and persistence
of DR is driven by the existence of a sufficiently large DS population. In these settings, the benefits to the
DR population which accrue from the acquisition of resistance from DS outweigh the costs of competition
from a larger DS population. In contrast, a moderate dosing policy is preferred when the DR strain is a
fit enough competitor that acquisition of resistance plays a sufficiently small role in the DR, population
dynamics. Here, the cost of competition from the DS population outweighs the benefit of additional
DR bacteria appearing through acquired resistance. Understanding why previous models and theory
have differed in support of aggressivel:10:14:24,25:40,44 914 moderate!? 18:20,35:36,42 ghroaches requires
evaluating both structural assumptions and parameter choices®® as these together affect the strength of
effective competition between DR and DS strains.

Previous contradictory results on the question of whether aggressive or moderate treatment fit neatly
into the framework we have presented. In Ankomah et al,’ the model structure incorporates complex
interactions between strains, allowing for many facets of competition to be explored. At their chosen
parameter values, however, there is little effective competition between DR and DS strains and they
found an aggressive policy to be best. In recent work by Kim et al,?* DR strains had two alleles with no
onward fitness evolution, little in-host competition, and with low DR fitness; consequently they also found
that an aggressive approach would be best. Another recent model'” assumed that there was competition
for resources at high bacterial populations, and concluded that this competition could play a role in
suppression of resistant strains. Work by Geli et al'® explored different ecological dynamics and found
that strong immunity supports an aggressive policy, but that selection was most intensive at intermediate
strengths of treatment in chronic infections.'%26 Gullberg et al'® found that even low concentrations of
antibiotic (where the DR and DS fitness may not differ) can rapidly enrich DR sub-populations. Huijben
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Figure 4: Best policy over parameter combinations in the population-level model. A moderate-is-best
(blue) outcome occurs when Ry and the similarity coefficient are high, because the strains are competing
(left panel). When the DR strain is relatively unfit (low Rg2) an aggressive policy is likely best (second
and third panels); we restricted Rpa to be lower for the DR strain than the DS one. A high rate of
acquisition can counter-balance a low Ry (second panel). When the strains are more independent (low
similarity coefficient), an aggressive policy is more often best even over a much wider range of Rpy (third
panel).

et al?? found experimentally that competitive release of (pre-existing and relatively fit) resistant strains
increased with increasing drug pressure.

We conclude that both of these perspectives are reasonable. We find that even in a system where
aggressive approaches are most frequently best (our within-host model, based on Ankomah!), a moderate
approach can be preferred if the DR strain is slightly more fit and the environment is slightly more
permissive; in this case, inter-strain competition mechanisms, which are always present, are more effective.
Likewise, at the between-host level where we might expect herd-level competition effects to play out, we
find that even where competition mechanisms are strong, an aggressive approach may be best of one or
both strains have a low basic reproduction number or if the rate of acquisition of resistance is high. Both
of these factors limit the effective competition.

In most circumstances, we expect that DR and DS variants of a single pathogen compete quite strongly:
they will be closely related, and so are likely to share antigenic properties and induce a similar host im-
mune response. They are are also likely to consume or be reliant on similar host resources'® and occupy
similar biological niches within hosts.'27 The extent to which these aspects dominate the fact that resis-
tance is also driven by de novo acquisition and hence benefits from high DS population levels will depend
on the acquisition rate and mechanism3! as well as on the degree of effective competition. Furthermore,
models have typically reflected competition for host resources or via a carrying capacity,’» 1617 such that
competition takes place at high bacterial populations. If direct antagonistic®® or cooperative'3 interac-
tions occur, they are likely to substantially alter the extent and timing of competition, with profound
onward consequences for optimal treatment.

We do want to emphasize some key differences between the problem of minimizing resistance among
each individual receiving treatment, and minimizing resistance of circulating pathogens in a commu-
nity.” 16:2931,32,45 - Consider, for example, an immune-competent individual initially harboring a drug-
susceptible infection free of any (or many) sporadically resistant isolates. An aggressive approach may
well be preferred for this individual. However, if there is a fit resistant strain circulating in the commu-
nity, then this policy can drive substantial resistance at the population level (for example by selectively
suppressing the DS strain, making hosts susceptible to re-infections only with the DR strain), even it it
does not increase the risk of acquiring resistance in any individual given treatment. Consequently, an
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aggressive approach might well be best at the individual level while still driving resistance over longer
time frames. An aggressive approach may also diminish in utility over time if DR strains become fitter
through selection, if they begin to circulate widely and compete with DS strains.*?

Co-infection of individual hosts by multiple strains or isolates has been observed for most pathogens
in which it has been investigated,? and we have incorporated it in both models. At the population level,
model that fail to include co-infection assume that co-infections do not occur; this equates to a very
strong assumption about competition for hosts, regardless of whether there is sufficient data to inform co-
infection parameters. The consequences of omitting co-infection or including it in a way that introduces
strong assumptions about competition are likely to be that questions involving competition, and indeed
relying on inter-strain interactions, cannot be answered meaningfully.

We have previously argued that diversity-promoting mechanisms in models should be explicit3 and
that “neutral” models are a useful framework for understanding implicit assumptions in multi-strain
models. Here we note that such neutrality s competition. The “no coexistence for free” directive can
be reframed: we expect identical strains to compete. The extent of competition is a key driver of how
the balance between multiple strains changes in response to interventions; if we are to use models to
understand these responses, we must be clear about the mechanisms and the extent of effective competition
between strains.

These results highlight the importance of identifying empirical data that reveal whether effective com-
petition between DS and DR strains is present. Experimental approaches in which mixed bacterial
populations are studied in vitro or in vivo may reveal mechanisms by which these sub-populations may
exhibit interference competition through direct interaction® or exploitative competition through shared
dependence on a common resource.'® These types of controlled experiments have been valuable for identi-
fying conditions under which such direct competition effects are likely to manifest within individual hosts.
Identifying data that would reveal the conditions under which we would expect competition between DS
and DR strains at the community level is clearly more challenging. The scale and the timing at which
we would expect to observe the effects of intraspecific competition will likely differ by pathogen type.
Similar to studies of vaccines or other interventions in which indirect effects are important to consider,
community-randomized trials are the most promising design, but the expense and logistics of such trials
for considering different antibiotic dosing strategies may be prohibitive.

In the absence of such trials, relating population-level antibiotic use data to surveillance data describing
trends in resistance in the community may help to identify signals of such competition. Detailed analysis
of the numbers and ages of treated cases, the population density, “drug-bug” interactions and the time
since resistance first emerged*! could improve our ability to do this. Meanwhile, careful consideration of
the level of effective competition is essential when using models to understand the relationship between
antimicrobial use and resistance.
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Appendix 1

Between-host model: two ends of a continuum

Here we compare a model with two very different, independent pathogens circulating in a a community,
and the 2-strain neutral null model.>* Previously,®3? we argued that neutrality is required in order for
a model of multiple strains to make biological sense when the strains are identical: in this case it should
not matter which strain an individual or sub-group is infected with. The dynamics of the total prevalence
should depend only on the numbers of hosts infected. Furthermore, each strain should have the same
ability to cause new infections and should not be comparatively advantaged or disadvantaged by being
rare. Otherwise, an arbitrary re-labeling of some cases (all of whom have identical strains by assumption)
alters which of these cases seed new infections.

These two conditions constrain the equations of any multi-strain model. First, if dual infection can
result from re-infection, then re-infection must also be able to out-compete one of the strains in a dually
infected host, leading back to single infection. Otherwise, dual infection can protect a rare strain,®3° as
was also noted recently in Hansen and Day.'® Second, in the limit in which the infections are identical,
recovery from one and not the other is not logical; dually-infected hosts recover back to susceptible.
Finally, dually-infected hosts contribute the same total infectiousness to the force of infection, divided
equally between the strains'. We found®?3° that models that reduce to this neutral interaction when
strains are identical also do not promote coexistence of diverse strains.

Here, we have developed a model that incorporates this neutral null limit when the strains are very
similar, but which also allows the possibility that strains are very different, to the point of not interacting
with each other at all. Different strains might inhabit very different niches within hosts, trigger different

!This assumption can be relaxed while preserving neutrality, but doing so requires also modelling hosts with multiple
single infections®°
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immune responses, act over different time periods, be transmitted through different routes, and so on.
When strains are independent, new infection events do not displace existing strains, but add to them.
Hosts clear strains independently, so that when a dually infected host recovers from one strain, they remain
(singly) infected with the other. Finally, dually-infected hosts are equally infectious with each strain as
they would be if they didn’t have the other strain. These requirements also constrain the equations of a
model representing the two strains.
We have developed a model that captures these very different limiting interactions and allows us to
explore the continuum between them.
A (SIS, or susceptible-infected-susceptible) model with two entirely independent strains must look
something like this:
dsS
i B — By S — BymyS — uS + up X + uY
Cii—)t( = BymS — Bymy X +uyD — u, X
(A1)

dY
7dt = /Byﬂ'yS — 5$7TJ?Y -+ 'U,xD - UyY
dD
o= BymyX + BemzY — upD — uyD

with 7, = X + D, my =Y + D and B a birth term.

For independence, we require that the total prevalence of each strain evolves as it would without the
other strain. For example, the total prevalence of X is T, = X + D and the number susceptible to strain
Xis S, =Y +S5=1-T,. Adding the second and fourth equations of Eq. A1, we have

d
which is T
dt = 105z — ug Ty,

namely exactly the single-strain SIS model. We have the analogous expression for Y. Solving these
de-coupled equations for T, and T} is equivalent to solving Eq. Al, so Eq. Al describes independent
dynamics. Furthermore, Eq. 2 reduces to Eq. A1 when the similarity coefficient ¢ is 0 (and 7' = 0).

When the strains are very similar (¢ = 1), Eq. 2 in the main text reduces to Eq. (14) of Lipsitch et
al,?0 with (their) ¢ = ¢ = 1/2. That model was shown to be neutral through its equivalence with Eq. (1)
in the same work. This is the origin of the terms in Eq. 2 with %c in them; when our similarity coefficient
is 1, these terms become the relevant terms in Lipsitch’s model (14) for (their) ¢ = 1/2.

The models differ in their re-infection from the dual class (0 where the similarity coefficient is 0) and
in the clearance terms from the dually infected hosts. To obtain those clearance terms in Eq. 2, we
interpolate: We have three potential clearance terms: (1) dual to X, (2) dual to Y and (3) dual to S (not
shown in Eq. 2 because S =1 - X —Y — D). When ¢ = 0, these terms need to be u,D, u,D and 0,
respectively. When ¢ = 1, they need to be 0, 0 and %(um + uy)D, where the latter means that when the
strains are identical the clearance is correct. Interpolating (with terms (1), (2), (3) in vector notation),
we have these three terms as (1 — ¢) x (uzD,uyD,0) + ¢ x (0,0, 3(uy + uy)D). This yields the model in
Eq. 2.

We note that the result of this interpolation is related to recent work on coinfection,' in which they
ask how co-infection may drive increases in resistance (through an increased ability R, of the DR strain
to invade a DS-strain’s equilibrium, in the dynamical sense). They find that co-infection can increase
R, more when the DR strain is more productive within co-infections (has a higher contribution to the
force of infection), and when it has a higher ability to co-infect the DS strain. Our results are consistent
with this, but our framing points out that these effects occur because of how these aspects of co-infection
modify the net competition between the strains.
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Figure : Appendix 1 - figure 1: Spearman correlations between treatment level and maximum resistance
in both models. (a) In-host model (parameters for which treatment did not succeed have been removed).
(b) Population-level model

We verified numerically that the model has independent SIS dynamics for each strain when ¢ = 0. We
also verified that when ¢ = 1, T' = 0 and the parameters for the two strains are identical, the model is
neutral in the sense of Lipsitch.3? When the parameters are not identical but ¢ = 1, the model exhibits
competitive exclusion.

Implementation

Models were implemented in Matlab and solved with odelbs, which is a built-in ODE solver in Matlab
capable of handling stiff systems. Stiffness was an issue in the within-host model because of the wide
range of orders of magnitude of both the variables (with cell numbers reaching 10'°) and the parameters,
together with the sharp threshold on the DR growth at B, = 30. This was used to model the possibility
of stochastic die-off of low populations of DR, and incidentally also prevents growth from only a fraction
of a cell, which would otherwise be possible when using a continuous model to approximate a discrete
variable. Parameters were generated uniformly over the ranges shown, except for p in the within-host
model. There, logl0(x) was uniformly distributed, to explore lower mutation rates more deeply than
higher ones. The parameter ranges for the within-host model all surround the values used in Ankomah
and Levin.! Plots in the main text were created in ggplot2 in R and Figures : Appendix 1 - figure 4 and :
Appendix 1 - figure 5 were created in R using the function pairs. The smoothing and density estimation
analysis for Figures 2, 4 and : Appendix 1 - figure 3 was done with the stat_density2d function in ggplot2
in R.

DAPC and further parameter exploration

DAPC results indicated that almost all of the difference between the groups can be accounted for using a
single discriminant function, both in the within-host model and the between-host one. Figure : Appendix
1 - figure 2 shows the groups plotted on the first two discriminant axes, illustrating the separation of the
groups. The horizontal axis is the first discriminant function whose higher coefficients are given in the
main text.

In the in-host model, whether a DR strain needs to emerge only after treatment begins, during a rise in
bacterial burden in the DS strain, affects the inter-strain dynamics, because pre-existing resistance reduces
the positive impact of the DS strain on the DR strain. We repeated the analysis underlying Figure 2, using
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Figure : Appendix 1 - figure 2: DAPC scatterplot for the within-host model. The x-axis is a linear
combination of parameters corresponding to the primary DAPC discriminant function, and the y-axis
corresponds to the second. Accordingly, the groups are plotted by their positions on the first two DAPC
axes. The relative portions of the variance that these axes capture is illustrated in the DACP eigenvalue
plot (bottom right corner). Almost all of the difference between the groups is captured by the x-axis (high
grey bar in the bottom left plot, compared to a low grey bar for the variation captured by the second
axis). The PCA eigenvalues plot in the bottom right shows the portion of variance retained when keeping
k PCA axes. In both models, the neutral group, in which treatment was not strongly correlated with the
level of resistance in either direction, lies directly between the aggressive and moderate groups.

only the subset with pre-existing resistance, and then only those results without pre-existing resistance.
Other parameters ranged over the same intervals.

Figure : Appendix 1 - figure 4 shows the parameters of the in-host model, selected according to whether
an aggressive or a moderate treatment approach is best to minimize resistance. Analogously, Figure :
Appendix 1 - figure 5 shows scatterplots and histograms of the parameters in the between-host model.
The results are the same as those in the main text but here, all parameters that were varied are shown
and we can observe the differences according to which policy is preferred. In Figure : Appendix 1 - figure
4(a) the aggressive policy is preferred; we see a lower MIC of the DR strain (labelled mR), a stronger
immune system (higher k, and 7 (eta)), a lower A, and also lower A;. The lower Ay results in fewer DS
bacilli, so fewer DR bacilli are created through mutation, allowing a aggressive policy to prevent their
emergence. The converse of these is seen in panel (b).

Figure : Appendix 1 - figure 5 shows the histograms and scatter plots for the between host model.
These illustrate the same points made in the main text but again show the relationships between the
parameters that were varied. An aggressive policy is most likely best when the DR strain has a relatively
lower basic reproductive number Rz, and when the similarity coefficient is low. A low similarity coefficient
means that competition is reduced, because the extent to which the strains are interacting is lower than
when strains are very similar.
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Best policy heatmaps for pre-existing DRO
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Figure : Appendix 1 - figure 3: Heatmaps illustrating whether aggressive therapy (yellow), moderate
therapy (blue) or neither, conclusively (neutral; green) minimize resistance. (a) Pre-existing resistance
means that the "moderate is best” conclusion is spread out more widely over the parameter space; the
DR strain does not benefit as much from DS growth. (b) Without pre-existing resistance there is more
clear separation between the parameter regimes. Overall, the results are the same as in the main text: a
moderate outcome is driven by high effective competition between strains, meaning a higher LamR, MIC
and lower values of immune parameters k, and n (eta).
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Parameters: Aggressive policy minimizes DR
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Figure : Appendix 1 - figure 4: Parameters from the two regimes. Plots on the diagonal are histograms
of the parameters where the correlation between dosage and treatment was < —0.8 (a) and > 0.8 (b).
Plots on the lower off-diagonal are scatterplots of the parameters in the corresponding row and column.
Numbers on the upper off-diagonal are Spearman correlations.
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Parameters: Aggressive policy minimizes DR
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(a) Parameters and their relationships where an aggressive
policy minimizes resistance

Parameters: Moderate policy minimizes DR

10 15 20 25 3.0 000 004 008
L L o

RO1

=057 =012 r=0.051 r=-0.12 F S

R02

H‘”M =015 r=0.051 =-0.26

mu

mw”_”ﬂm =0.022 1=0.085

=004

LI e

000 004 008

L1

000 004 008

pa o
T T T T T LIS e s A=}
1.0 2.0 3.0 000 004 008 00 04 08

(b) Parameters and their relationships where a moderate
policy works best

Figure : Appendix 1 - figure 5: Parameters where the two contrasting policies work best in the population
level model. Plots on the diagonal are histograms of the parameters where the correlation between dosage
and treatment was < —0.8 (a) and > 0.8. (b). Plots on the lower off-diagonal are scatterplots of the
parameters in the corresponding row and column. Numbers on the upper off-diagonal are Spearman
correlations.
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Within-host model

Symbol Description Range Unit

Ag Max growth rate (DS) 0.4-0.8 hr—!

A, Max growth rate (DR) (0.6-1) xAs hr—1

k Hill coeffient in bacterial growth 0.5-50.5 cells/mL

Ug, Uy Death rates DS, DR 0.2 hr—!

mg MIC (DS) 1 pg/mL

mp MIC (DR) 1-8 pg/mL

k, Rate of innate immune clearance 1077 —107° hr—!

k; Rate of adaptive immune clearance 1075 —1073 hr—!

W Rate of DR mutation 5x1079 - 5x1077 # /division

« Recruitment of adaptive immunity 0.002-0.02 hr—!

0i, Op Hill parameter in I, P dynamics 1000, 10000 cells/mL

U, Y Loss rate of I, P 1x107% 1x1073 hr—1

n Recruitment of innate immunity 107° -9 x 1074 hr—!

w Washout rate 0.2 hr—!

Cr Resource reservoir concentration 300-700 pg/mL

e Use of resource per unit growth 5x1077 ug/cell

Ain Antibiotic treatment 0-2.5 pg/(mLx24 hrs)

d Loss rate of antibiotic 0.1 hr—!
Between-host model

Symbol Description Range Unit

Bz Transmission parameter (DS) 1-4 months !

By Transmission parameter (DR) 1 — 3. months ™!

K Partial immunity coefficient 1 none

Kt Treatment protection from DS 1-0.3T none

c Similarity coefficient 0-1 none

U DS clearance without treatment %ﬂz—% Bz months ™!

Uy DR clearance By/ Ro1-By months ™

T Intensity of treatment 0-1 none

r Release of DS through treatment 0-0.1 months ™!

Umax Max clearance DS under treatment 1.055, months !

Table Appendix 1 - tablel: Parameters and ranges. Ranges are indicated with a — separating lower
and upper values. Where a single value is given the parameter was fixed. Within-host parameter ranges
contain the values used in Ankomah and Levin.! In the between-host model the value of u was chosen
such that the DS strain has a basic reproductive number in [1,4]. Similarly, u, was chosen so that R
ranges from 1 to Ry, to ensure that the DR strain has a smaller maximum growth rate than the DS
strain.
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