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Abstract

Cells respond to their environment by modulating protein levels through mRNA transcription and post-
transcriptional control. Modest observed correlations between global steady-state mRNA and protein
measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the vari-
ation in protein levels, indicating dominant post-transcriptional effects. However, the techniques un-
derlying these conclusions, such as correlation and regression, yield biased results when data are noisy,
missing systematically, and collinear—properties of mRNA and protein measurements—which motivated
us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels
explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional
to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear
effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional sig-
nals. These results substantially revise widely credited models of protein-level regulation, and introduce
multiple noise-aware approaches essential for proper analysis of many biological phenomena.

Author Summary

Cells respond to their environment by making proteins using transcription and translation of mRNA.
Modest observed correlations between global steady-state mRNA and protein measurements have been
interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels,
indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions,
such as correlation and regression, yield biased results when data are noisy and contain missing values.
Here we show that when methods that account for noise are used to analyze much of the same data,
mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are
not proportional to mRNA levels as commonly assumed, but rise much more rapidly. Regulation of
translation achieves amplification of, rather than competition with, transcriptional signals. Our results
suggest that for this set of conditions, mRNA sets protein-level regulation, and introduce multiple noise-
aware approaches essential for proper analysis of many biological phenomena.

Introduction

Cellular protein levels reflect the balance of mRNA levels, protein production by translation initiation
and completion, and protein removal by degradation, secretion and dilution [1,2](Figure 1A). A standard
quantitative model for protein-level regulation [3,4] is
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where P; is the cellular protein level (molecules per cell) of gene i, M; is the mRNA level, and 7; and
0; are the mRNA translation and net protein removal rates, respectively. According to this model, at
steady-state, protein levels will be proportional to mRNA levels with proportionality constants of 7;/;:
P= 2 (2)
di
such that if rates of translation and removal did not vary by gene, and in the absence of experimental noise
or other variation, steady-state mRNA and protein levels would correlate perfectly [1]. Consequently,
the mRNA-protein correlation observed in global measurements of mRNA and protein levels has been
intensely studied, and deviations from perfect correlation used to quantify the contribution of post-
transcriptional processes to cellular protein levels [1,2,5-8].

The consensus across these studies holds that, in a wide array of organisms, transcriptional regula-
tion explains 30-50% of the variation in steady-state protein levels, leaving half or more to be explained
by post-transcriptional regulatory processes [2,6,8-15]. Higher correlations are observed, generally for
subsets of less than half the genome [1,8,16]. Low observed mRNA—protein correlations have motivated
the search for alternate forms of regulation capable of accounting for the majority of protein-level vari-
ability [2,8,12]. In one proposal, mRNA levels serve mainly as an on-off switch for protein expression,
imposing coarse control over protein levels which is then tuned by post-transcriptional mechanisms [8].
Recent studies have indeed uncovered wide between-gene variation in post-transcriptional features such
as inferred translation rates [17] and protein degradation rates [2].

However, as frequently noted [1,6,8,9,18-20], noise in measurements can cause many of the observa-
tions attributed to post-transcriptional regulation. Here, noise encompasses variability due to cell-to-cell
variation, growth conditions, sample preparation and other effects due to experimental design [21], and
measurement biases and error [9,20]. Uncorrelated noise between mRNA and protein measurements will
reduce the observed mRNA-protein correlation relative to the true value [22], while inflating the variation
in measurements of translational efficiency and other post-transcriptional processes.

Most studies, particularly of protein levels, cover only a subset of known genes, due to factors such
as signal-to-noise limitations, method biases, and continual revision of the coding-sequence annotations
used to design and analyze assays. Limited and variable transcriptome and proteome coverage complicate
analyses further, making it difficult to compare studies and to synthesize a holistic view of regulatory
contributions. Missing data tends to reduce the precision of estimates, if data are missing at random
(MAR). However, most quantification methods are biased toward detection of more abundant mRNAs
and proteins [8]. Data which are not missing at random (NMAR) in this way have reduced variance
or restricted range. Range restriction, in turn, tends to systematically attenuate (reduce in absolute
magnitude toward zero) the observed correlations and regression coefficients relative to complete data
[23,24]. That is, biased detection produces biased estimates of the mRNA-protein correlation, leading
to incorrect conclusions about regulatory contributions [25].

In many comparisons of the roles of transcriptional and post-transcriptional regulation, protein levels
are correlated with or regressed on various predictors (mRNA level and half-life, codon usage, amino-acid
usage, etc.) to determine relative contributions to protein-level variation [1-3,13,17,20]. If mRNA levels
are found to explain a certain percentage, say X, in protein levels, then the other predictors are asserted
to explain no more than 100 — X percent of the variance [2,8,20,26]. A basic assumption of such analyses
is that transcriptional and post-transcriptional regulation vary independently between genes. Several
of the same studies report that high-expression genes show signs of more efficient translation [2,3,17]
(reviewed in [1]), raising concerns about the validity of this assumption.

A related assumption of these analyses, one encoded in the standard functional model above, is that
mRNA and protein levels are proportionally or linearly related [1,4]; the slope of this line is the mean
number of proteins per mRNA. More often, the data are plotted on a log-log scale, where linearity appears
as a slope of 1. Consistent with this, ordinary least-squares linear regression shows that the slope is quite
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close to 1 for E. coli (0.96) and budding yeast (1.08) [16], and estimates of proteins per mRNA have been
reported roughly constant across mRNA expression levels in a prominent study [27].

However, like correlations, slopes estimated by standard linear regression are biased downward by noise
in mRNA level measurements, an effect called regression dilution bias [28] which affects any regression
where the independent variable is measured with error. A frequently encountered case is that, given two
measurements X and Y, the slope from regressing Y on X is not the inverse of the slope of regressing X
on Y [29-31]; this is regression dilution bias at work. Consequently, linear regression cannot be used to
estimate the functional relationship between mRNA and protein levels, raising the question of what the
true functional relationship is. Use of nonparametric methods avoids assumptions of linearity [1], at the
cost of destroying genuine information about the dynamic range of gene expression and its determinants.

Analytical solutions to many of these problems exist—mnotably, Spearman introduced a correction for
noise-induced attenuation of correlation estimates more than a century ago [22]—yet have largely failed
to find their way into the hands of groups carrying out gene-regulation experiments and analyses (with
a few exceptions [14]). Some problems remain almost entirely unaddressed, such as providing accurate
estimates of the functional relationship between variables measured many times with correlated noise
yielding variably and systematically missing values.

Here, we develop and integrate approaches to address all of these challenges, with the aim of providing
more comprehensive and rigorous estimates of the relationship between mRNA and protein levels than
have previously been possible. To do so, we take advantage of the rapid, continual progress made in global
measurement of mMRNA and protein levels by multiple methods [5,16,27,32—-38]. All of these methods were
first employed at the genome scale in studies profiling gene expression during log-phase growth of budding
yeast in rich medium, a de facto standard. These studies often compare results against previous studies,
evaluating agreement, precision, coverage, and dynamic range while pointing out relative advantages of
each approach (e.g. [16,17,27,34,35,37]).

Our efforts to synthesize these data into a coherent whole are grounded in the stance that all these
works constitute measurements of the same underlying quantities—average mRNA and protein levels in
a large cell population prepared under narrowly defined conditions—whether or not such measurements
were the study goal. Systematic differences between approaches due to experimental choices will intro-
duce variation which may not be distinguishable from simple inaccuracy in measurement. We treat this
variation as experimental noise without prejudice. Distinctions between biological variability, measure-
ment error, method bias, and other sources of noise are of course important, particularly in deciding
how to control or manage noise. These distinctions may also depend on one’s perspective. For exam-
ple, unintentional differences in growth conditions may lead two groups following the same protocol to
make measurements on samples which inevitably are, in truth, biologically different, such that error-free
measurement would reveal differences in mRNA and protein levels. In one sense, these differences reflect
biological variability; in an equally valid sense, they represent experimental noise. Similarly, intentional
protocol differences that are not meant to alter measurement accuracy (such as use of new methods
intended to make measurements more precise), yet carry known and unknown biases, may also introduce
noise. Here, we take an empirical approach to noise which does not involve divining intent. Versions of
this approach are taken, often implicitly, by the many previous analyses that integrate experiments from
multiple groups [7,8,16,17,27].

Our results reveal that, once noise is accounted for, mRNA and protein levels correlate much more
strongly under these experimental conditions than previously appreciated, with a correlation coefficient of
r = 0.93. We find that protein levels are not proportional to mRNA levels, but instead are more steeply
related, an effect we show is consistent with measurements of translational activity. Transcriptional
and post-transcriptional regulation act in a concerted, non-independent manner to set protein levels,
inconsistent with common attempts to divvy up and assign protein-level variance to each mechanism.
As a byproduct, we generate what by several measures is the most complete and accurate quantitative
transcriptome and proteome available, in average molecules per haploid cell, for this widely studied
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organism under these well-studied conditions. Finally, we highlight and introduce methods for analyzing
correlations and functional relationships between measured data which may be used broadly.

Results

Correlations and coverage range widely across datasets

We collected 38 measurements of mRNA levels and 20 measurements of protein levels from 13 and 11
separate studies respectively, each of haploid S. cerevisiae growing exponentially in shaken liquid rich
medium with 2% glucose between 22°C and 30°C (Table 1). As described in the Introduction, we assume,
for modeling purposes, that each replicate in each experiment constitutes a measurement of the true per-
gene mean mRNA and protein levels under these narrowly defined conditions. These data cover varying
amounts of the genome and display a wide range of correlations between studies (Figure 1B, Pearson
correlations on log-transformed values with zeros and missing values omitted).

Although correlations of replicates within studies are quite high [8], with median r = 0.97 for mRNA
and 0.93 for protein levels, between-study correlations are far more modest, » = 0.62 for mRNA mea-
surements and 0.57 for protein measurements (Figure 1C). That is, data from a typical mRNA study
explains 39% of the variance in another study (r? = 0.39) and a typical protein study’s results explain
only 32% in another study’s variance, consistent with previous studies reporting wide variation between
studies [15]. Strong outliers indicate high reproducibility for a two pairs of studies (Figure 1C), but each
such outlier is a correlation between separate studies done by the same research group, suggesting the
presence of additional variability sources between groups. Coverage of the 5,887 verified protein-coding
genes in yeast [39] also varies widely across pairs of studies (Figure 1C).

Coupled with high within-study reproducibility, the low between-study reproducibility indicates the
presence of large systematic errors between studies. In a single study [35], mRNA levels in a commercially
prepared sample were measured using two methods, a commercial microarray and single-molecule RNA
sequencing. These measurements correlate with r = 0.86 (73% of the variance explained in one measure-
ment by the other), quite similar to the » = 0.84 correlation of the single-molecule measurement with an
independent RNA-Seq dataset on RNA from a different study [40]. These data hint, coupled with similar
observations in other biological systems [41], that high within-study reproducibility is likely to reflect
reproducible biases associated with use of a single measurement technique in addition to reproducible
features of the biological sample.

Correlations are modest even between studies using similar methods (e.g., 7 = 0.81 between two
RNA-Seq datasets using Illumina instruments [17,40]). Comparing mRNA studies performed using
similar or different methods on a shared set of 4,595 genes revealed a consistent bias toward higher
median correlations between studies using similar methods, but these differences were not statistically
distinguishable (Figure 1D, no t-test P < 0.05 for differences in correlation when comparing studies
employing shared methods versus independent methods after false discovery rate correction).

Between-study correlations quantify the studies’ mean ratio of true variance to total variance, termed
the reliability [14,42,43] (see Methods). In turn, setting aside sampling error, the maximum observable
correlation between any two datasets is equal to the geometric mean of their reliabilities. Because virtually
all reported global mRNA—protein correlations involve mRNA and protein levels measured in separate
studies, between-study reliabilities are the relevant quantity. The modest reliability values—setting aside
those of the same group reporting two studies, which we exclude from this analysis—sharply limit the
maximum observable mRNA-protein correlations. This limit has startling consequences: if steady-state
mRNA and protein levels actually correlated perfectly (true » = 1.0), then given the median observed
between-study correlations in Figure 1C, we would expect to observe mRNA—protein correlations of only

7 =+/0.57 x 0.62 = 0.60.

The data reveal a wide range of modest mRNA-protein correlations with a median of » = 0.54
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(Figure 2A) quantified either by the Pearson correlation between log-transformed measurements or the
nonparametric Spearman rank correlation (Figure S1; both measures produce similar results and we
employ the former throughout). The largest pair of datasets covers 4,367 genes and shows an mRNA-
protein correlation of r = 0.618 (r? = 0.38, 38% of protein-level variance explained by mRNA levels),
close to consensus values [8]. The largest dataset containing replicated measurements of mRNA and
protein in at least two studies yields similar correlation values; notably, averaging paired measurements
together and correlating the averages increases the apparent correlation (Figure 2B).

This averaging effect has a simple explanation: if experimental noise drives down the mRNA—protein
correlation, and noise is to some extent random between studies, then averaging together measurements
from different studies will increase the correlation as random noise dilutes out and signal titrates in.
However, exploiting averaging comes with hidden dangers when using these data. Averaging requires
multiple measurements. Few protein datasets cover even half the genome, and incomplete data tend to
be biased toward abundant proteins, as revealed by examining levels in a large dataset when restricted to
proteins detected in smaller datasets (Figure 2C); it is plausible that higher-expression proteins correlate
more strongly with mRNA levels. We therefore checked for an averaging effect using a subset of the data
with a minimum level of reproducibility, at least eight mRNA and eight protein measurements, which
includes 549 genes. This high-coverage gene subset does encode more highly abundant proteins relative
to the rest of the genome as assessed by western blotting (Figure 2D). As a benefit, however, changes
in correlation due to averaging within this subset do not merely reflect underlying systematic changes in
the expression levels of the analyzed genes. In this subset, the observed mRNA— protein correlation rises
markedly as more measurements are averaged together (Figure 2E), more than doubling in the apparent
protein-level variance explained by mRNA level (from 33% to 72%) simply by averaging together more
measurements of the same genes. These data strongly indicate that experimental noise substantially
reduces the apparent correlation between mRNA and protein levels.

Corrections for noise yield sharply higher correlation estimates

The foregoing analyses involve estimates uncorrected for noise, which as described in the Introduction do
not properly estimate the true correlation between the variables being measured. We will first incorporate
noise-aware estimates of the true correlation, and then address the more challenging problem of accounting
for missing data to arrive at a true genome-scale estimate of the mRNA-protein correlation.

Reduction of correlations by noise can be corrected using information from repeated measurements,
assuming the noise is uncorrelated across measurements [22,43]. Quantitative corrections for correlation
attenuation were first introduced more than a century ago by Spearman [22], are widely used in the social
sciences [43-45], and have found recent applications in biology [14,42,46-49]. Given two measurements
each of variables X and Y, each with uncorrelated errors, the true correlation can be estimated using
only correlations between the four measurements X, Xo, Y1, Y5 (see Methods):

rue . VTXViITXYeTX, YT XY
XY —
VIX1XTY Y,

The correction reflects a simple intuition: the denominator quantifies the reliabilities of the measure-
ments, which determine the maximum observable correlation, and the numerator quantifies the observed
correlation using a geometric mean of four estimates and is divided by this maximum value to yield an
estimate for the true value. The estimate is not itself a correlation coefficient, and may take values out-
side (—1,1) due to sampling error [43]. Also note that there is no P-value associated with this estimate;
statistical testing for significant association using uncorrected correlation measures remains valid.

To demonstrate and test Spearman’s correction, we applied it to simulated data generated to mimic
key features of mRNA and protein data, but with a known underlying correlation and known measurement
reliability. We generated data for 5,000 simulated genes with a range of correlations and fixed reliability;

(3)
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a fixed correlation and a range of reliabilities; and a fixed correlation and reliability with a range of
data missing at random, or non-randomly, with a detection bias against low-expression genes. We then
measured the observed correlation, uncorrected for noise, and used Spearman’s correction to estimate
the true correlation. At each set of parameters, we generated 50 transcriptome/proteome pairs to assess
reproducibility.

As shown in Figure 3A—C, noise reduces correlations in a non-negligible way. Given an actual correla-
tion of 0.9, and a reliability of 0.7, higher than the mean values for real data (cf. Figure 1C), the observed
correlation has a mean of 0.631 £0.009 (standard deviation), whereas Spearman’s correction yields a me-
dian value of 0.901 £ 0.007, closely matching the true value. Spearman’s correction performs well over
a wide range of reliabilities (Figure 3B) and when data are missing at random (Figure 3C), cases where
observed correlations provide a wide range of estimates that are all systematically incorrect. Smaller
datasets lead to increased variability of the Spearman estimate due to sampling error (Figure 3C). When
faced with data biased toward detection of high-abundance mRNAs and proteins, Spearman’s correction
systematically underestimates the true correlation (Figure 3D), as expected due to restriction of range
effects.

Using Spearman’s correction on real data, we estimated mRNA-protein correlations for pairs of
mRNA- and protein-level studies, obtaining a median corrected correlation of 0.92. Variability due
to sampling error was large for small datasets as expected (cf. Figure 3C & D), and decreased as
dataset size increased, with estimates stabilizing for large datasets (> 3000 genes) at a mean of r =
0.884+0.02 (Figure 2A). This value is echoed by consideration of the largest dataset with two mRNA [35,40]
and two protein [27,37] measurements each (Figure 2B). For these data, the four observed mRNA-
protein correlations are r = 0.60, 0.63, 0.62 and 0.64, and the correlation between mRNA and protein

measurements are rprNA = 0.86 and rprotein = 0.57 respectively, yielding the corrected estimate pirue —

V0.60x0.63x0.62x0.64 __ 0.89
1/0.85%0.57 e
As demonstrated, Spearman’s correction, while useful, does not address biases due to data that

are systematically missing. Spearman’s correction also assumes uncorrelated errors, and thus has no
mechanism for handling correlated errors arising due to, for example, protocol similarities within a study
or use of similar measurement techniques between studies. Actual datasets show evidence for all of these
effects (Figure 1).

A structured covariance model yields estimates of underlying correlation and
of mRNA and protein levels

Extending estimates to the full genome, accounting for structured noise and non-randomly missing data,
requires a more sophisticated approach. Even seemingly simple approaches to reduce noise, such as
averaging measurements normalized to the same scale, are unworkable as strategies for estimating genome-
scale mRNA—protein relationships: only 16 proteins are detected by all 11 protein quantification studies,
and these proteins are all highly abundant. Throwing out smaller datasets discards potentially valuable
measurements, and it is unclear when to stop, since all datasets are incomplete to some degree.

To address these challenges, we adapted structural equation modeling to admit nonrandomly miss-
ing data (see Methods). We introduce a structured covariance model (SCM), adapted with important
modifications from recent work [25], that explicitly accounts for structured noise arising from replicates
and use of shared measurement techniques, explicitly estimates noise at multiple levels and the nonlinear
scaling factors linking underlying variables, and allows inferences of latent covariance relationships with
imputation of missing data (Figure 4).

The SCM accurately estimates true correlations in simulated data when substantial data are missing
nonrandomly, a case on which Spearman’s correction produces severely biased estimates (Figure 3D).
Fitting the SCM to real data yields estimates of whole-genome steady-state mRNA—protein correlation
of r = 0.926 £ 0.004 across all 5,854 genes for which an mRNA has been detected in at least one of the 38
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mRNA quantitation experiments (Figure 2A). That is, mRNA levels explain 86% of variation in protein
levels at the whole-genome scale. We emphasize that the SCM does not involve any attempt to maximize
the mRNA—protein correlation or any assumptions about the strength of the correlation.

To examine the influence of low-coverage datasets on the correlation estimate, we re-fit the SCM
on data restricted to studies with no more than 60% or 80% missing values (cf. Table 1), resulting in
essentially unchanged correlation estimates of » = 0.919 and r = 0.933, respectively. Including these
smaller datasets does not alter these estimates significantly.

Comparisons indicate accurate estimates and plausible imputations of mRNA
and protein levels

The SCM integrates all data to produces mean and variability estimates of mRNA and protein levels,
yielding a dataset in which mRNA levels have been quantified for 5,854 genes and protein levels have
been quantified for 4,990 genes in at least one study.

To evaluate the accuracy of these estimates, we linearly scaled them to molecules per haploid cell
using high-quality published values for mRNA per cell and protein per cell. Estimates of the number of
mRNA molecules per cell range from 15,000 to 60,000 molecules per cell [33,50]. A more recent study
argued that the earlier, lower estimate resulted from misestimation of mRNA mass per cell and average
mRNA length, with 36,000 molecules per cell as a revised estimate also supported by independent
measurements [51]. The higher estimate resulted from rescaling the lower estimate to match expression
of five genes measured by single-molecule fluorescence in situ hybridization (FISH) [50]. We adopted the
36,169 mRNA molecules per cell estimate [51], and 4ug of protein in 1.5 x 108 cells (2.7pg protein per
yeast cell) [52]. Scaled to the latter estimate, SCM protein levels sum to just over 35 million protein
molecules per haploid cell, similar to the 50 million molecules per cell estimated previously [19] within the
variation in total protein extraction from haploid yeast cells (cf. [53], which estimates 4.95pg per cell).

Scaled SCM per-gene means provide the best point-estimates of molecules per cell (Figure 5A), al-
though the correlation between estimates of means is necessarily higher than the estimated true corre-
lation, since each estimate contains error. For a more representative global view of mRNA and protein
levels, we draw a sample from the SCM estimates according to each gene’s mean and variance in levels
(Figure 5B). Correlations between sampled mRNA and sampled protein levels (r = 0.923) are consistent
with the inferred underlying correlation.

We then compared scaled SCM estimates to small-scale gold-standard, independent measurements
of absolute mRNA and protein levels not used in our analysis. (No genome-scale gold-standard mea-
surements of mRNA or protein levels exist for yeast or any other organism.) SCM estimates of absolute
mRNA levels matched FISH measurements well [50] (average difference of 1.2-fold between estimated and
measured levels [Figure 5B], with one outlier estimate overshooting the FISH value by 1.7-fold). Notably,
these results demonstrate that the FISH estimates are compatible with roughly 36,000 mRNA molecules
per cell during exponential growth as reported [51], and do not require the almost two-fold higher number
of cellular mRNAs extrapolated in the FISH study.

Absolute protein levels for a set of 21 proteins differing up to 25,000-fold in cellular abundance have
been measured using single-reaction monitoring (SRM) spiked with stable-isotope standards [54]. SCM
estimates correlate better with these absolute levels (r = 0.94 between log-transformed values) than does
any individual dataset. This includes the only study, which used western blotting [27], which reports
levels for all 21 proteins (r = 0.90) (Figure 5C, average difference of 1.4-fold between SCM estimates and
SRM measurements, compared to 1.8-fold using western blotting). Relative protein levels estimated by
integrating multiple datasets using an alternative approach in which noise is not modeled [15] correlate
with absolute levels less well (r = 0.88) than do the SCM estimates. The structured covariance modeling
approach thus estimates steady-state cellular mRNA and protein levels with an unmatched combination
of completeness and accuracy.
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To evaluate imputation of missing data, we focused on the 864 genes with a detected mRNA but
no protein detected in any of the 11 studies. Some of these genes encode well-studied proteins such as
the proteasomal regulator Rpndp and the cyclin Cln3p, indicating clear false negatives. For a system-
atic evaluation, we turned to ribosome profiling studies [17], which quantify ribosome-protected mRNA
(ribosome footprints), providing an estimate of the mRNAs being actively translated in vivo. At least
one of three studies under compatible experimental conditions [17,55,56] detects ribosomes in the coding
sequence of 594 of these 864 genes, suggesting active translation. Normalized ribosome footprint counts
for this restricted set of genes correlates with the imputed protein levels (Figure 5E, r = 0.51), despite
the attenuating effect of range restriction. The most recent study [56] raised concerns about the use
of translational inhibitors during sample preparation for ribosome profiling, and we show data collected
without inhibitors in Figure 5E. Because the missing protein data correspond to genes at the detection
limit of these ribosome-profiling studies, we predict that many of the remaining genes will be found to
produce proteins at low levels during exponential growth. The SCM estimates serve as predictions for
the levels of these as-yet undetected proteins.

Translational regulation widens the dynamic range of protein ex-
pression

Our results indicate that the true correlation between steady-state mRNA and protein levels in expo-
nentially growing budding yeast is far higher than previously recognized, explaining the vast majority
of variation in protein levels on a log scale. In many previous analyses, this would be equivalent to
demonstrating a minor role for other forms of regulation: if the variation in protein levels were a pie, and
mRNA levels took a slice, other forms of variation would get only the leftovers. As we will show, such
competition is largely illusory.

Positive evidence exists for strong post-transcriptional contributions to protein levels. The dynamic
range of protein abundance is much wider than mRNA abundance, which must reflect dynamic-range am-
plification by post- transcriptional regulation [8]. Indeed, wide per-gene variation exists in measurements
of translational efficiency [17,55, 56].

The report that translational activity, estimated by ribosome profiling, explained more than twice
the protein-level variation than did measured mRNA levels [17] prompted us to more closely examine
these results. We reproduced these comparisons, and found that subsequent ribosome-profiling studies
confirmed the strong predictive power of ribosome footprints for originally employed proteins levels from a
single study [37] (Figure 6A). We wondered whether these findings might reflect experimental noise that
differed between the mRNA and ribosome-footprint measurements in the original study. Correlations
using SCM-integrated protein levels are substantially higher for both SCM-estimated mRNA levels and
ribosome footprints measured in all studies, consistent with reduction of noise in the SCM estimates
(Figure 6A). SCM-estimated mRNA levels predict protein levels better than any of the ribosome profiling
studies (Figure 6A), though this may simply reflect remaining noise and systematic bias in the profiling
studies. These results suggest that, contrary to previous reports, there is no evidence that measures of
translation have higher predictive power for protein levels than do mRNA levels.

However, major contributions to protein levels from mechanisms other than mRNA level become
obvious upon inspection of the data. The dynamic range of protein expression (from fewer than 50 to
more than 1,000,000 molecules per cell [27,54]) is much wider than that of mRNA levels (e.g. from 0.1
to 89 molecules per cell in a landmark early study [33]). In the SCM estimates, the range of mRNA
expression is roughly 10,000-fold (0.02 to 253 molecules per cell on average), whereas the range of protein
expression is more than 1,000,000-fold (an average of 0.4 molecules to 1.3 million molecules per cell). Since
both mRNA and protein are roughly lognormally distributed, the ratio of log-transformed ranges, 1.6,
yields a rough measure of relative variation. We address more representative estimates of relative dynamic
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range below. As previously noted [8], this dynamic-range amplification must involve post-transcriptional
regulation.

The standard use of a logarithmic scale raises some questions about the interpretation of dynamic
range. What does a ten-fold difference mean, if it is between 0.01 to 0.1 molecules per cell rather than
between 1 and 10 molecules per cell? Fractional molecules per cell in a population average may indicate
mRNAs or proteins present in only a fraction of cells in the population, which can arise in many ways,
from conditional expression (e.g. during a segment of the cell cycle) to incomplete repression (leakiness).
Here, estimates of levels reflect the measurements but confer no particular interpretation. We note that
no obvious break or cutoff exists in the data or the SCM estimates to suggest a gene-expression threshold
below which the biology changes qualitatively.

Translational regulation multiplies transcriptional signals with
high fidelity

A consequence of two facts—the much higher dynamic range of protein levels than mRNA levels, and
the strong log-log linear correlation between the two—is that steady-state protein levels cannot be (even
noisily) proportional to steady-state mRNA levels at the genome scale. In the standard model (P; = E—ZMZ
with protein P and mRNA M for gene i, cf. Equation 2), steady-state protein levels will be roughly
proportional to steady-state mRNA levels on a log-log scale assuming translation rates and degradation
rates are uncorrelated with mRNA levels. This is most easily seen considering the case of constant
translation and degradation rates (7; = 7 and &; = §, respectively) across all genes, such that P; = %M}
where we have made explicit the exponent of 1. In this case, In P; = 1 x In M; +In (5). Deviations from
proportionality can be captured by deviations from a log-log slope of 1.

As described in the Introduction, several studies have estimated slopes very near 1, but have not
accounted for error-induced systematic underestimation of slopes due to regression-dilution bias [28]. We
therefore used a noise-tolerant regression technique closely related to principal component analysis known
as ranged major-axis (RMA) regression [30], which yielded a range of slopes systematically higher than
the ordinary least-squares regression slopes (Figure 6B,C) and have a median of 1.54. RMA regression
is symmetric, such that regression of ¥ on X produces the same slope as regression of X on Y. Other
widely used techniques with the same symmetry property but different technical assumptions each yield
slopes substantially larger than 1 (Figure S2). The estimated slopes for individual pairs of datasets
span a wide range, even using RMA and limiting attention to large datasets (Figure 6B), suggesting
the existence of systematic biases, toward increased and decreased variance, separating these studies.
The presence of such biases in protein-quantitation studies, though not their precise source, has been
previously noted [57].

The SCM approach, which accounts for both noise and missing data, yields an estimated slope of
1.69, compatible with the range of estimates from noise-aware methods on individual pairs of datasets
(Figure 6B,C) and also similar to the expectation (1.6) derived from examination of the relative dynamic
ranges above. Steady-state protein levels therefore reflect a dramatic multiplication of the transcriptional
signal: rather than competing with transcriptional regulation as often assumed, post-transcriptional
regulation cooperates.

If translational activity drives much of this cooperative amplification, it must rise nonlinearly with
mRNA level, which we assessed by plotting a proxy, ribosome occupancy on mRNA measured by ri-
bosome profiling, against SCM-estimated mRNA levels. A steeper-than-linear relationship is visually
clear from examination of the linear fit (slope = 1) compared to the RMA regression line (slope = 1.69,
Figure 6D). Data from a separate ribosome-profiling study carried out without the translational inhibitor
cycloheximide (CHX) show similar nonlinear behavior (slope = 1.79) (Figure 6E). The results of four
studies by two groups yield log-log slopes close to, or above, the SCM estimate, even after restricting


https://doi.org/10.1101/009472
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/009472; this version posted December 26, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

10

slope estimation to ribosome footprint values > 1 to reduce biases possibly introduced by low-count genes
(Figure 6E). In summary, measured variation in translational activity correlates strongly with mRNA
level and is sufficient to quantitatively account for the nonlinear relationship between mRNA levels and
protein levels.

A toy model illustrates non-independent contributions from tran-
scription and translation

The analysis above illustrates a fundamental asymmetry: although absence of post-transcriptional regu-
latory processes would produce a perfect mRNA-protein correlation [1], a perfect mRNA-protein corre-
lation need not indicate a negligible post-transcriptional contribution to relative protein levels.

Contrary to the conclusions of many analyses, it is possible for mRNA levels and (for example) transla-
tion rates to each explain more than 50% of protein-level variation. Both processes could each contribute
100% of protein-level variation. All that is required is that their contributions not be independent.

To see this, consider the following toy model for regulation of protein levels which does not involve
assuming that translation rates are independent of mRNA levels:

OF;
81&1 =7 M; — 6;P; standard model, cf. Eq. 1
with
0; =9 constant degradation rate
7 = a(M;e;)? translation rate rises nonlinearly with mRNA level
Ine; ~ N(0,0) noisy evolved correlation between mRNA levels and translation rates

Despite appearances, the functional relationship between translation rates and mRNA levels does
not imply or depend on mechanistic properties of transcription and translation. All variance in this
model (as in all analyses in the present work) derives from differences between genes, so the functional
relationship merely describes an empirical correlation. As described in more detail in the Discussion,
such a correlation can arise if genes have evolved differential translational efficiencies tuned to multiply
transcriptional signals.

In this toy model, with ¢, = 1 (or more generally o = 0), translation rates and mRNA levels reinforce
each other perfectly albeit nonlinearly. Under these conditions, steady-state mRNA levels explain 100%
of the steady-state protein-level variation on a log scale. Translational regulation also explains 100% of
the protein-level variation.

MY
P, = @ 3 L M; = % Mi1+7 steady-state protein levels
InP; = ln% + (1+v)InM; log protein levels are linearly related to log mRNA levels

1
—In (6a%) + (1 + ) In; log protein levels are linearly related to log translation rates
g

Adding variation to translation rates (¢ > 0) and fixing other parameters allows close reproduction
of the SCM estimates on several dimensions (Figure 7A,B; source code including parameters presented
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in Methods). Both datasets have similar mRNA-protein correlation (r = 0.923 vs. r = 0.932), similar
log-log slopes (1.68 for both), and similar dynamic ranges for mRNA and protein levels.

The critical difference between this model and the standard model for protein-level variation, Eq. 1,
is the evolved strong positive correlation between mRNA levels and translational activity per mRNA.
This, too, is evident in the data, when calculating translational activity per mRNA (frequently called the
translational efficiency [17,55]) by dividing ribosome-profiling footprint counts by SCM-estimated mRNA
levels (Figure 7C, RMA slope = 0.82, Pearson r = 0.53). The correlation is mirrored by the toy model,
where translation rate per mRNA and mRNA level can be directly compared (Figure 7D; RMA slope =
0.87, Pearson r = 0.68).

Discussion

Our results demonstrate that the frequently reported result that steady-state mRNA levels explain less
than half (30-50%) of the variation in protein levels constitutes a significant underestimate. In expo-
nentially growing budding yeast, the best-studied system and source of many of these claims, we find
that the true value at the whole-genome scale, taking into account the reductions in correlation due to
experimental noise and missing data, is closer to 85%.

Many thoughtful studies have tackled this problem before, arriving at results that match ours on cer-
tain dimensions, but via quite different approaches. Previous work has employed versions of Spearman’s
correction [14], contended with differences in dynamic range by adopting nonparametric approaches [1,16],
and integrated multiple datasets [7,10,15,16]. All of these works have reached conclusions which differ
from the portrait assembled here.

Our analysis transcends these studies on several fronts. The present study incorporates more measure-
ments than any previous work. We distinguish between correlations between measurements and estimates
of underlying correlations accounting for between-study reliability, a critical difference that has largely
eluded previous work. The structured covariance model natively handles nonrandomly missing data to
provide more complete and accurate molecules-per-cell estimates than previous studies. Most impor-
tantly, we have not relied on the common but mistaken assumption that different modes of regulation
act independently.

A consistent approach in the literature has been to pit transcriptional and post-transcriptional vari-
ation against each other, both analytically and rhetorically (e.g., “transcriptional regulation is only half
the story” [26]). As we have shown, the data do not fit this competitive paradigm, and even invalidate
some of its analytical assumptions, such as independence and non-collinearity. The competitive versus
cooperative aspects of post-transcriptional regulation come to the fore when considering the dynamic
ranges of gene expression. A wider range of protein than mRNA levels is well-established in a range of
organisms [2,14,58], and our results further cement this observation. However, dynamic-range variation
could be achieved in different ways, captured by two extremes. At one extreme, post-transcriptional
regulatory variation is uncorrelated with transcriptional regulation, reducing the contribution of mRNA
levels to protein levels. At the other extreme, post-transcriptional variation correlates strongly with
transcriptional regulation, multiplying the transcriptional signal with little interference. In both cases,
post-transcriptional regulation amplifies the dynamic range of gene expression, but only in the latter case
does it also faithfully amplify the mRNA signal itself. Our data clearly and convergently indicate that
the biology, at least for this organism under these conditions, lies toward the latter, cooperative extreme.

Coordinated transcriptional and translational signal amplification may explain a range of other ob-
servations, particularly regarding proteins-per-mRNA (PPM) ratios, which are frequently used to isolate
signs of post-transcriptional regulation. Because post-transcriptional amplification correlates strongly
with mRNA levels, PPM will remain correlated with mRNA, and as a consequence, any sequence features
correlated with mRNA will tend to correlate with PPM as well. As an example, amino-acid composition
correlates with PPM in yeast [16], with valine/alanine/glycine frequencies higher in high-PPM sequences
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and leucine/asparagine/serine frequencies lower in high-PPM sequences. These are precisely the same
amino acids previously shown to vary most strongly in frequency, in the same directions, with increasing
mRNA abundance [59]. Similarly, many other correlates of PPM are also correlates of mRNA levels
(codon bias, tRNA adaptation), including mRNA level itself [1,10]. For features such as codon bias,
which arises in response to selection for translational efficiency [60], association with increased PPM
might seem an obvious causal link, but because codon bias strongly associates with mRNA level, the
null expectation is that it will correlate with PPM even if codon bias had no effect on translational
activity at all. Analyses of the determinants of protein levels must contend with the collinearity and
non-independence of contributing processes.

The strong correlation between steady-state mRNA and protein levels may seem to validate the
use of mRNA levels as relatively faithful proxies of protein levels. We urge caution, as a tempting
conclusion—that mRNA changes serve as faithful proxies for protein changes—does not follow. Attempts
to infer the correlation between mRNA and protein changes from steady-state mRNA—protein correlations
confuse two distinct and complex phenomena. The genome-scale relationship between mRNA levels and
protein levels is an evolved property of the organism, reflecting tuning by natural selection of each gene’s
transcriptional and post-transcriptional controls, rather than a mechanistic input-output relationship
between mRNA and protein mediated by the translational apparatus. Two genes with steady-state
mRNA levels differing by 10-fold may have 500-fold differences in protein levels due to evolved differences
in their post-transcriptional regulation. These evolved steady-state differences do not predict how the
protein levels for these genes will change if both mRNAs are induced 10-fold, because evolution does not
occur on this timescale; the changes in protein levels are instead dictated by the cellular mechanisms of
translation.

An important intermediate case between the evolutionary and mechanistic cases is variation in mRNA
and protein levels in individuals across a genetically diverse population. The potential for correlations
between mRNA and protein relies upon substantial true variance in mRNA levels. In population-variation
studies, one expects relatively few variants and resulting variation far lower than the orders of magnitude
considered here. Correspondingly, in such studies mRNA-change—protein-change correlations may be low
even given a strong underlying link between mRNA and protein levels.

If the nonlinear multiplication of mRNA levels into protein levels is an evolved property, what mech-
anism(s) has evolution exploited? The present work supports a particular class: the increased density
of ribosomes on high-expression mRNAs, with variation sufficient to account for the nonlinearity, sug-
gests increased rates of translation initiation as the major contributor. Correspondingly, recent work has
shown that in yeast and a wide range of other organisms, the stability of mRNA structures in the 5’
region weakens as expression level increases, favoring more efficient translation initiation [61], and wide
variation in heterologous protein levels can be achieved by varying mRNA stability near the initiation
site [62,63].

Several limitations still attend our approach. By assuming single multiplicative errors per exper-
iment, we ignore variation in per-gene error which may be systematically different between low- and
high-expression genes and/or systematically affect particular measurement techniques [57]. For exam-
ple, limitations in the dynamic range of a measurement technique will tend to compress the resulting
measurements, causing such systematic errors. Our model does not contend with distortions possibly
imposed by alterations to 3’ regulatory signals (e.g. tagging with affinity epitopes [27] or fluorescent
proteins [36] to enable protein detection), or with variability in quantification due to propensities of par-
ticular mRNAs to be more efficiently sequenced or for their protein products to be unusually amenable to
mass-spectrometric detection. The lack of any gold-standard genome-scale measurements hinders detec-
tion of such biases. Our results underscore the urgent need for such standard measurements of absolute
mRNA and protein levels to enable identification and correction of systematic errors in established and
emerging gene-expression measurement techniques. More sophisticated models for experimental error at
many levels, which would be informed by but need not wait for such gold-standard measurements, also
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promise to provide higher-fidelity biological estimates from existing data.

We infer a higher mRNA-protein correlation (r = 0.93) here than when using an earlier, related
model [25] (r = 0.82), a difference we attribute to two factors. First, the present analysis stratifies by
measurement technology using all data, whereas the previous estimate did not, although in that study,
stratifying by technology on a reduced dataset yielded r = 0.86 [25]. Here, using all data and treating
technology-related experimental noise separately from other sources of noise, we are able to average out
more systematic technology biases, likely producing superior estimates of the associated measurement
variability and reducing noise-induced attenuation of the mRNA-protein correlation. Second, in the
present analysis, population-averaged protein levels and mRNA levels are constrained to each have a sin-
gle underlying variance, whereas in the earlier study each experimental replicate had a separate variance.
Inference of artificial experiment-specific variances spread variability across experiments (overfitting),
where in the present analysis, we adopt the more biologically plausible stance that the true underlying
mRNA and protein population-average distributions each have a characteristic variance which is mea-
sured by each experimental replicate. The present model, deprived of extra parameters, infers higher
correlations.

Our study considers a single well-studied growth condition for a single well- studied organism, raising
questions about how to generalize this work. The principles of accounting for noise, but not precise results,
can and should be extrapolated to regulatory contributions in other settings and other organisms. An
influential study on mouse fibroblasts measured mRNA and protein levels and degradation rates for
thousands of genes [2], concluding that mRNA levels explained 41% of the variation in protein levels,
with most variation instead explained by translational regulation. Our results indicate many ways in
which the results of this study could be profitably revisited. Indeed, a recent follow-up study concluded
that, once effects of error and missing data were accounted for, mRNA levels explain 75% or more of the
protein-level variation in these data [20].

The protein regulatory environment of rapidly dividing cells differs from that of many other cellular
states. The faster cells divide, the more rapidly protein molecules partition into daughter cells, adding
an approximately constant amount to all protein removal rates and consequently reducing between-gene
variation in these rates. This will tend to increase the dependence of protein levels on mRNA levels, and
decrease the dependence on degradation rates, during proliferation.

In addition to cellular state, regulatory contributions depend on timescale. Post-transcriptional pro-
cesses must dominate protein-level changes within seconds to a few minutes of a stimulus or signal;
transcriptional responses, particularly in eukaryotes, where transcription and translation are uncoupled,
are all but powerless at this timescale. As such, the notion of general determinants of protein levels with-
out regard to timescale has questionable utility. A final theme emerging from our study is that careful
empirical studies, coupled with noise-aware analyses, are needed to determine regulatory contributions
for any cellular condition of interest at any timescale.

Methods

Reliability

Let us assume we wish to measure latent variables ¢ and 1 but, due to noise, actually observe variables
X =¢+ex and Y = ¥ + ey where the random noise variables ex and ey are uncorrelated and mean

zero. The reliability
_ Var(¢) Var(¢) (4)
~ Var(X)  Var(¢) + Var(ex)

quantifies the ratio of signal variance to total (signal plus noise) variance in X. Given two random
variables X7 and X5 representing replicate measurements of ¢, the latent (true) variance is Cov(X, Xo) =

ax
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Cov(¢+ex,,d+ex,) = Cov(ep, ¢) = Var(¢), where the error terms vanish because they are uncorrelated
by assumption. Thus, the Pearson correlation between replicates is

Cov (X1, X5) _ Cov(¢, @)
V/Var(X7) Var(Xy)  +/Var(X;) Var(Xz)

| Var(¢) Var(¢)
- \/ Var(X,) Var(Xp) VXX (5)

PX1,X

which is the geometric mean of the reliabilities of the two measurements.

Spearman’s correction

Cov(,9) but

We wish to infer the Pearson correlation coefficient between latent variables pg 4 = N
ar ar

due to noise, we observe random variables

Cov(X,Y)

Var(X) Var(Y)
Cov(¢, )
v/ (Var(¢) + Var(ex))(Var(y) + Var(ey))
< Poyp- (6)

with equality only when Var(ex) = Var(ey) = 0 (i.e. there is no noise).

Uncorrelated noise has no average effect on the numerator because errors cancel (see above), but
the error terms in the denominator do not cancel. This effect additively inflates the variances in the

denominator, biasing the observed correlations downward relative to the truth. Given the reliabilities ax
and ay, Spearman’s correction is given by

pPXY =

po = XY (7)
AV OX Oy
To estimate pgy, we need estimates of pxy, ax and ay. A natural estimator replaces these population
quantities with the sample correlation coefficients, r.,, &, and &, with
Qpy = Tgy,azq

Qy = Tyy

where x1, x5 are realizations of X and y;,y- are realizations of Y. These replicates are used to estimate
reliabilities.
The true correlation, pg .5, can then be estimated using only correlations between measurements:

_ Ti’lyl rﬁf2y2
Ty =
T$1I2Tylyz
_ [Tz Tzays
Gy

_ é/rmlylrxzy2rfly2r$2yl
Ty = =
/Oy
which has the further desirable properties of exploiting all pairwise correlations and being independent
of the choice of indices.

We extend this estimate to
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Data collection

We gathered 38 measurements from 13 studies measuring mRNA expression, and 20 measurements from
11 studies measuring protein concentrations, yielding a total of 58 high-throughput measurements of
mRNA and protein levels from a maximum of 5,854 genes in budding yeast. The measurements were
taken using different technologies including custom and commercial microarrays, competitive PCR, high-
throughput RNA sequencing, flow cytometry, western blotting, scintillation counting of 3°S-labeled pro-
tein on 2D gels, and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using
a range of labeling and quantification techniques. All yeast cultures were haploid S.cerevisiae growing
in shaken liquid rich medium with glucose between 22°C and 30°C and sampled during the exponential
growth phase. Details of the datasets are summarized in Tablenon 1.

For analytical purposes, we treat data from one study [35] which performed two independent measure-
ments using different methods as two studies (RNA-Seq and microarray), one per method. This study’s
RNA-Seq employed a single-molecule sequencing method, smsDGE; we treat this as an RNA-Seq dataset.

Raw data (with missing values), data normalized and imputed using the SCM, and merged molecules-
per-cell estimates are archived in Dryad (http://datadryad.org) with DOI doi:10.5061/dryad.d644f.

We downloaded ribosome-profiling data from the primary sources [17,55,56].

Statistical analysis

All analyses were carried out using R [64] using custom scripts which may be downloaded from GitHub
(http://github.com/dad/mrna-prot). Regression analyses using major-axis (MA), scaled major-axis
(SMA), and ranged major-axis (RMA) regression were performed using the package lmodel2. RMA was
performed using interval ranges.

The structured covariance model (SCM)

The model has two components: an observation model p(I; ;|X; ;), which provides the probability of
observing a value for mRNA /protein 4 in replicate j, given the underlying mRNA /protein level, and a
hierarchical model p(X; ;|...) for the underlying mRNA /protein levels themselves. The full model is
specified as

Xij = Liapj)Gugy + Ti )

+ Ei7k[j] +R;; +v ()

L; ~ N>(0,®) 9)

Tie ~ Nnp(0,7¢) (10)

By ~ N(0,&) (11)

R; ; ~ N(0,65) (12)

Pl = 01Xi; = 1) 1 (13)

1+ eXp(—ﬂ,?[j] - né[j]Xi,j) .

Random variables L;; correspond to the true denoised protein (I = 1) and mRNA (I = 2) levels, for
mRNAs and proteins ¢ = 1,...,N, and L; = [L; 1, L; 2]’. The random variables T;; and E;j capture
common technological variation and batch effects, respectively, t = 1,...,N;, K = 1,...,Ng. R;; are
experimental noise for replicate j = 1,..., Ng.

Both technology effects and batch effects between experiments are assumed to be independent,
Cov(Tiy 415 Tig 1) = 0 if 1 # to, and Cov(Ey, gy, Fiy k) = 0 if k1 # ke. Measurement noise is inde-
pendent between replicates, Cov(R;, j,, Riy.j,) = 0 if j1 # jo.
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The parameters v; corresponds to the normalizing constants of the mRNAs/proteins within a replicate
(on the log-scale, normalizing constants become offsets). The coeflicient G; represents the log-variance of
the denoised true mRNA or protein. The ratio A = g“’”‘”j represents the amount of post-transcriptional

abun

amplification of mRNA to protein. At steady state we expect

P~ M}

for protein P; and mRNA M;.

This model falls into the class of models that were extensively studied in an earlier work [25]. The
results are largely insensitive to deviations from parametric modeling assumptions and to several details
of prior specifications.

Missing data model

Equation 13 models the probability that measurement X; ; is missing, p(I; ; = 0|X; ; = ), as a logistic
function of the value of the measurement. This data is not missing at random (NMAR) since the
probability of missingness is a function of the (possibly missing) value. Such a missingness model is said
to be non-ignorable. The parameters of the missing data mechanism, 17,2 and ni7 and value, X; ;, uniquely
determine the probability that the measurement is observed. For instance, when X;; = %, then the
missingness probability p(f; ; = 0|.X; ; = x) = 0.5.

Prior specifications

To complete the model specifications we place priors on ¥, 7, &, 0;, nY and ni. We use either flat
or weakly informative priors on all parameters so as to bias the inference as little as possible. For the
parameters 772 and n,i of the logistic observation model we use a Cauchy prior with mean zero and scale
2.5 as suggested by [65]. The role of this prior is to regularize the slope of the logistic regression in cases
that have a very sharp cutoff. We assume flat priors on the scaling factors, G, and the measurement
bias parameters v;. For the replicate and experiment variances 6; and &, we use independent conjugate
Inv-Gamma(3/2, 3/10) prior. Finally, for the estimand of interest, we assume W is a priori drawn from
the set of correlation matrices with marginally uniform correlations [66]. The priors for the variances are
standard Inverse-Gamma priors, and they are very weak. They correspond to three degrees of freedom,
i.e. three data points, and a scale of 1/5. Essentially their role is avoid extreme values at the beginning
of the MCMC chain. The prior on the correlation W is critical, since this the main quantity of interest.
The standard prior for normal covariance matrices is an Inverse-Wishart distribution. For this prior the
variances (fixed to 1 in our case) are associated with the correlations. To avoid a strong prior influence
on the correlation, we used a prior that is uniform, as suggested by [66].

Algorithm

MCMC inference in the SCM is done using a Gibbs sampler. The exact conditional draws performed in
each time step are:
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repeat
1. Draw multivariate responses:
foriel,...,N,tel,....,.Nr,kel,...,Ng do
L Draw L; 1, L2, T+, E; j from a conditional multivariate normal.

2. Draw correlation matrix ¥, conditional on L.
3. Draw scales, (G;, via Bayesian weighted linear regression 4. Draw technology
level random variables:
fortel,...,Nr do
| Draw 7; and normal and Inv-x2? draws.
5. Draw experiment level random variables:
forkel,...,Ng do
| Draw &, via normal and Inv-y? draws.
6. Draw replicate level random variables:
for j€1,...,Ng do
| Draw v;, 6; using normal and Inv-y? draws.
7. Impute missing data, see text.
8. Draw observation model parameters:
for kel,...,Ng do
| Draw 1} and 79 via Bayesian logistic regression and normal draws.

until desired number of samples

The draws are consistent with standard Bayesian linear regression or logistic (step 8) regression with
conjugate variance draws (steps 4-6). [67, Sec. 14.2]. Step 1 is a simple multivariate normal draw, and
the imputation in step 7 is done using a Metropolis-Hastings independence sampler. Step 2 is also a
Metropolis-Hastings sampler using a random walk proposal, see [66] for the complete method.

Sensitivity analysis

Our model belongs to a class of models extensively studied by [25], and in the following we summarize
the properties and results from these models here.

In simulation studies with data sets generated from the model, the model has good frequentist coverage
properties, especially for the 1); o mRNA-protein correlation parameter.

The model is robust to departures from normality, and the inferred correlation has a very small bias
for data sets that are generated from skewed and/or heavy-tailed distributions.

In our model we assume independent observations for different genes and proteins. Genes may have
correlated fluctuations, for example if cultures are grown in ways which systematically induce or repress
particular pathways. Simulations show that even if a large number of genes are strongly correlated, the
inferred correlations are only slightly biased.

The logistic observation model is also robust to mis-specification. In particular, the inferred correlation
shows no bias for data generated from a two-stage observation model, with an additional stage in which
proteins are missing uniformly with a 0.2 probability.

The model is also minimal, in the sense that the major assumptions of correlated noise and non-
ignorable missingness are required to recover the correct mRNA—protein correlation in simulation studies.

Toy model

Below is R code to reproduce the toy model in Fig. 7.

# Random number seed
set.seed(115)
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# Number of genes

n <- 5854

# Exponent of empirical (evolved) relationship between steady-state

# mRNA levels and translation rates

gamma <- 0.56

# Scaling factor, 1/time

alpha <- 0.1

# Degradation rate, 1/time

delta <- 0.001

# Standard deviation of mean-zero variation added to log mRNA levels to yield
# unscaled log translation rates

extra.variation <- 1.3

# Steady-state mRNA levels in molecules/cell (log-normal)

# Mean and variance are equal to those of the SCM mean estimates

log.m <- rnorm(n, mean=1.09, sd=1.19)

m <- exp(log.m)

# Translation rate -- add log-normal variation to, and scale, mRNA levels
tau <- alpha*exp(log.m + rnorm(n,mean=0,sd=extra.variation)) gamma

# Steady-state protein levels in molecules/cell (log-normal)

p < (tau/delta)*m

# Plot protein vs. mRNA

plot(m, p, log=’xy’, pch=16, las=1,

xlab="mRNA level (mol./cell)’, ylab=’Protein level (mol./cell)’)
# Plot translation rate vs. mRNA

plot(m, tau, log=’xy’, pch=16, las=1,

xlab="mRNA level (mol./cell)’,

ylab=’Translation rate per mRNA (proteins/sec)’)
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Figure 1. Measurements of steady-state mRNA and protein levels in budding yeast reveal wide
variation in reproducibility and coverage. A, Steady-state protein levels reflect the balance of mRNA
translation and protein removal. B, Raw correlations between measurements of mRNA and protein
arranged by study (denoted by the first author) with the quantification method indicated. C,
Measurements vary widely in reproducibility and coverage. Each point represents a pair of studies.
Dots show between-study correlations (median shown by dashed line), a measure of reliability. Dotted
line, median of within-study correlations. Blue dots show pairs of studies from the same research group.
D, Correlations between studies sharing the same quantification method or different methods (dark and
light gray bars, respectively), using mRNA datasets with > 5000 genes (4,595 genes quantified by all
datasets). For example, the second column from the left shows the 18 correlations between each of three
commercial microarray studies and six studies using custom microarrays or RNA-Seq.
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Figure 2. Correlations between mRNA and protein levels vary widely and are systematically reduced
by experimental noise. A, Datasets vary widely in coverage of 5,887 yeast coding sequences and in
resulting estimates of the mRNA—protein correlation. Shown are all pairwise correlations between 14
mRNA and 11 protein datasets, with within-study replicates averaged if present. Correlations are
shown between mRNA and protein levels reported without correction (dots); using Spearman’s
correction on pairs of datasets (binned, boxes show mean and bars indicate standard deviation); using
Spearman’s correction on the largest set of paired measurements (red box); and as estimated by
structured covariance modeling for 5,854 genes with a detected mRNA or protein (red diamond). B,
Correlations obtained for the largest set of paired measurements, two of mRNA and two of protein
levels (N=3,418), individually, averaged, and corrected for noise using Spearman’s correction. C, Data
are missing non-randomly. The distribution of protein levels, in molecules per cell, detected by western
blotting [27] are shown, along with the subsets of these data corresponding to proteins detected by
GFP-tagging and flow cytometry [36], LC MS/MS [68], and 2D gel [5]. D, Distribution of protein-level
measurements, assessed by western blotting [27], with at least one protein-level measurement (dark
gray, number of genes N;=3840) and in the subset of genes with at least 8 mRNA and 8 protein
measurements (light gray, number of genes Ng=549). E, mRNA-protein correlations between averaged
mRNA and protein levels over subsets of at most 1, 2, 3, ..., 8 measurements each of mRNA and
protein levels drawn at random from the Ng set. Error bars show the standard deviation of correlations
from 50 random samples of the indicated number of measurements.
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correlation of 0.8. C, Varying the number of detected genes from 100 (2%) to 5000 (100%) with a fixed
reliability of 0.7 and fixed correlation of 0.9, with genes missing at random. D, As in C, but with genes
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Figure 5. Integrated estimates of mRNA and protein levels using a structured covariance modeling
(SCM). A, Integrated estimates of mean steady-state protein and mRNA levels across 58 global
measurements reveal a strong genome-wide dependence between (r = 0.93). Estimates are produced for
any gene with a detected mRNA (gray marginal densities), and other densities characterize subsets by
mRNA and protein detection. B, A single sample from the SCM estimates provides a representative
view of mRNA and protein levels. Colors and marginal densities are the same as in A. C, Absolute
mRNA level estimates versus single-molecule fluorescence in situ hybridization counts [50]. D, Absolute
protein level estimates versus stable-isotope-standardized single reaction monitoring measurements [54].
Dotted lines in B and C show perfect agreement. E, Evidence for active translation of undetected
proteins inferred from ribosome profiling without translational inhibitors [56]. Dashed line shows ranged
major-axis regression best fit. Marginal densities show ribosome density for all detected mRNAs (light
gray), all mRNAs with a detected mRNA and protein (dark gray), and transcripts with no detected
protein (blue). rpkm, reads per kilobase per million reads.
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Figure 6. Transcriptional and translational regulation act coherently to set protein levels. A, Left, the
correlation of mMRNA (blue) and ribosome footprints (green) reported in the original ribosome-profiling
study [17] with protein levels used for comparison in that study [37]. Subsequent ribosome footprint
datasets ( [55], gold; [56], purple and red for measurements with and without cycloheximide,
respectively), are shown for comparison. Right, the same comparisons employing SCM-estimated
mRNA and protein levels. White diamond shows whole-proteome SCM estimate. Error bars show
standard error on the correlation estimate. B, The exponent relating protein and mRNA levels, or
equivalently the slope relating log-transformed values, estimated by noise-blind (ordinary least squares,
OLS) and noise-aware (ranged major-axis, RMA) regression analyses. Gray points, all pairs of datasets;
black points, pairs of datasets covering at least half the detected transcriptome (> 2927 genes). Dotted
line shows perfect agreement; dashed line marks integrated SCM estimate (1.69). C, Cumulative
distributions of slopes computed by OLS and RMA regression (solid lines), with medians indicated by
dotted lines and the SCM slope estimate indicated by a dashed line, cf. Fig. S2. D, Normalized
ribosome footprint counts (rpkm, reads per kilobase per million reads, a measure of translational
activity) correlates strongly and nonlinearly with mRNA level. Dotted blue line shows linear (slope =
1) fit. Solid magenta line shows RMA regression fit. All regression fits were carried out on the subset of
genes with > 1 rpkm. E, Same as D, using ribosome footprints generated without cycloheximide [56].
F, mRNA-ribosome-footprint slopes estimated from independent studies [17,55,56] with and without
cycloheximide (CHX).
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Figure 7. A simplified model captures major features of the steady-state mRNA-protein relationship.
A, mRNA and protein levels drawn from the SCM estimates (cf. Figure 5B). B, mRNA and protein
levels generated according to a toy model (see text and Methods). C, Normalized ribosome footprint
counts (rpkm), averaged across six datasets, per mRNA, compared to steady-state mRNA levels. D,
Translation rate per mRNA versus mRNA level in the toy model.
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Study identifier [reference] Technology (replicates) % missing
CAUSTON [69] Commercial microarray (5) 19-22
DUDLEY [70] Custom microarray (4) 5
GARCIA [71] Custom microarray (1) 1
HOLSTEGE [33] Commercial microarray (1) 12
INGOLIA [17,72] RNA-Seq (6) 4-10
LIPSON [35] RNA-Seq (6) 1
LIPSON.MA [35] Commercial microarray (1) 4
MACKAY [73] Custom microarray (1) 28
MIURA [51] Competitive PCR (4) 2629
NAGALAKSHMI [34] RNA-Seq (1) 22
PELECHANO [74] Custom microarray (1) 14
ROTH [75] Commercial microarray (2) 59-70
VELCULESCU [32] SAGE (1) 58
YASSOUR [40] RNA-Seq (4) 5
FUTCHER [19] 2D gel (1) 99
GHAEMMAGHAMI [27] Western blot (1) 34
DEGODOY [37] LC MS/MS (1) 25
GYCI [5] 2D gel (1) 98
LEE [38] LC MS/MS (3) 67-76
LU [16] LC MS/MS (1) 83
NAGARAJ [76] LC MS/MS (6) 31
NEWMAN [36] GFP /flow cytometry (1) 60
PENG [68] LC MS/MS (1) 74
THAKUR [77] LC MS/MS (3) 84-85
WASHBURN 78] LC MS/MS (1) 7

Table 1. Measurements of mRNA (above the midline) and protein (below the midline) analyzed using
structured covariance modeling.

Supplementary Figures
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Figure S1. Use of the nonparametric Spearman rank correlation yields similar results to use of the
Pearson correlation on log-transformed values (labels as in Fig. 2A). The results of Spearman’s
correction on the largest set of paired datasets (red square) and structured covariance model (SCM)
fitting (red diamond) are provided for reference.
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Figure S2. Three methods for slope estimation in the presence of noise yield substantially higher

estimates than ordinary least-squares (OLS) regression. Shown are the results of major-axis (MA),

scaled major-axis (SMA), and ranged major-axis (RMA) regression of protein levels on log mRNA

levels, all values log-transformed but otherwise raw, with slopes extracted and shown as cumulative
distributions. The SCM fit value is provided for reference (black dashed line).
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