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ABSTRACT  10 

 11 
In animal societies, individuals may take on different roles to fulfil their own needs 12 

and the needs of their groups. Ant colonies display high levels of organisational 13 

complexity, with ants fulfilling different roles at different timescales (what is known as task 14 

allocation). Factors affecting task allocation can be at the individual level (e.g., 15 

physiology), or at the group level (e.g., interaction histories). In this work, we focus on 16 

group level processes by exploring the impact of the history of interaction networks on 17 

task allocation and task switching using a previously published dataset (Mersch et al., 18 

2013) tracking the behaviour of six Camponotus fellah colonies over 41 days. First, we 19 

investigated the architecture of interaction networks using node (individual) level  network 20 

measures and their relation to the individual’s task – foraging, cleaning or nursing – and 21 

whether or not the ant switched tasks. We then explored how noisy information 22 

propagation is among ants, as a function of the colony composition (how many ants are 23 
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carrying out which tasks), through the information-theoretic metric of effective information. 24 

Our results show that interaction history affected task allocation, with ants more likely to 25 

switch to a task if they had interacted with other ants carrying out that task. The degree 26 

to which interaction history affected task allocation, as well as the noise in their 27 

interactions,  depended on which groups of ants are interacting. Overall, we showed that 28 

colony cohesion is stable even as ant-level network measures vary more for ants when 29 

they switched functional groups; thus ant colonies maintain a high level of information 30 

flow as determined by network analysis and ant functional groups play different roles in 31 

maintaining colony cohesion. 32 

 33 

Keywords: Ant behaviour, effective information, emergent behaviour, insect social 34 

networks, task allocation, information flow 35 

 36 

Highlights  37 

• We analysed the interaction networks of six Camponotus fellah colonies 38 

• We tested how centrality and information flow affected task switching  39 

• Node-level network metrics and the information theoretic measure of effective 40 

information explain differences among functional groups 41 

• Interaction histories predicted task switching, but the strength of the effect 42 

differed across functional groups 43 

 44 

  45 
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INTRODUCTION 46 

In animal societies, individuals may carry out different tasks to fulfil their own needs 47 

and the needs of their group (Sumpter, 2006; Clutton-Brock, 2009; Jeanson & 48 

Weidenmuller, 2014). Larger and more complex societies can self-organise to fulfil tasks 49 

beyond basic sustenance and reproduction (Boomsma and Frank, 2006; Sumpter, 2010). 50 

Local exchange of information, between individuals of a group and between individuals 51 

and their environment, is key to self-organisation (Sumpter, 2006; Boomsma and Frank, 52 

2006; Couzin, 2009; Cavagna et al., 2010; Swain and Fagan, 2019). Social insect 53 

colonies display high levels of organisational complexity (Lukas & Clutton-Brock, 2018), 54 

where individual tasks may include foraging, nest construction and caring for the young 55 

(Gordon, 2002). The assignment of tasks, also referred to as task allocation, is the result 56 

of patterns of factors that vary across different scales (Gordon, 2015). These tasks can 57 

be fixed throughout each individual’s lifetime due to physiological reasons, for example 58 

when only a fertile subset of the population is responsible for reproduction, or when a 59 

subset is responsible for providing food (Sumpter, 2010; Clutton-Brock et al., 2001).   60 

Task allocation can also result in individuals changing their main task over time. 61 

Factors affecting task changes can occur at the individual level or at the group level. 62 

Individual-level factors include age, corpulence or physiology (Anderson and Shea, 2001; 63 

Tripet and Nonacs, 2004; Robinson et al., 2009). Studying individual-level factors 64 

associated with task change is often simpler than studying group-level ones. For example, 65 

individual-level changes can be easier to track because their rate of change is slower and 66 

often follows a consistent and predictable pattern, as in the case of ageing. Individual-67 

level factors can also be directly quantified, e.g., by measuring age, corpulence, or 68 
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physiological features, and traditional statistical approaches can be used to predict task 69 

changes.  70 

Changes in task allocation affected by group-level factors are currently not well 71 

understood. Structural features or macro-level social properties of groups can affect 72 

micro-level individual actions if the social system is affected by feedbacks (Flack, 2017; 73 

Hobson et al., 2019). However, quantifying relevant macro-to-micro feedbacks can be 74 

challenging and can require large amounts of data. The development of automated 75 

tracking systems has made this level of data collection possible. While these systems 76 

have improved researchers’ ability to track detailed social behaviour (Robinson et al., 77 

2009; Smith and Pinter-Wollman, 2021), assigning quantitative metrics to group dynamics 78 

is still a non-trivial task. In the case of interaction patterns, tracking physical interactions 79 

among individuals does not necessarily map onto the amount of meaningful (predictive) 80 

information exchanged with each interaction (Valentini et al., 2020). Although tracking 81 

technologies can tell us how many times individuals in a social group interact with one 82 

another, they cannot explain to what extent these interactions drive task allocation.  83 

Task allocation in ants has been the subject of much previous work (Anderson and 84 

Shea, 2001; Gordon, 2015). Across ant species, studies have shown that, depending on 85 

the tasks and on the colony, ants may display varying degrees of task flexibility, from 86 

small colonies of totipotent ants to larger ones with a structured division of labour 87 

(Anderson and Shea, 2001). Individual-level factors include physiology (Anderson and 88 

Shea, 2001), age (Tripet and Nonacs, 2004), corpulence (Robinson et al., 2009) and past 89 

experience (Ravary et al., 2007), whereas group-level factors involve  colony size (Ravary 90 

et al., 2007) and short-term interactions (Gordon and Mehdiabadi, 1999). However, we 91 
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do not possess a good understanding of how the nature of past interactions and topology 92 

of the social interaction network structure affect an ant’s propensity to switch to a new 93 

task. 94 

In this paper, we leverage social network methods to gain new insight into task 95 

allocation changes in an existing dataset of ant interactions (published by Mersch et al. 96 

2013). Mersch et al. studied task switching in Camponotus fellah by tracking and 97 

analyzing the movements and interactions of individually-identified ants. Worker ants 98 

were categorized into three functional groups (nurse, cleaner or forager). Analyses 99 

showed that the ants had more interactions with others in their same functional group. 100 

Communities defining the functional groups exhibited distinct behavioural signatures and 101 

were highly spatially divided. Nurses spent most of their time with the brood, while 102 

foragers spent time at the nest entrance and cleaners were located between the other 103 

two groups and the rubbish pile (Mersch et al. 2013). Mersch et al. also explored the 104 

questions of task switching cost, i.e., a time and energy investment associated with 105 

learning new tasks (Goldsby et al., 2012), and of age polytheism, i.e., the correlation 106 

between the age of an ant and which task they perform. The original study identified 107 

spatial fidelity as a key regulator of ant social organization and interaction frequency 108 

(Mersch et  al. 2013). They also found that task switches were present but uncommon 109 

and that when a shift in functional group occurred, ants showed a preferred direction of 110 

task transition, from nurses to cleaners to foragers, mostly based on age (Mersch et al., 111 

2013). Task changes were thus hypothezied to be driven by age polyethism, but the 112 

patterns were fairly noisy. 113 
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In this new analysis we focus specifically on this noisy process of task switching. 114 

A question not addressed in the previous study is whether the history of an ant’s 115 

interactions with others and the resulting information flow within the colony could be one 116 

of the elements explaining task switching. In other species, information flow patterns have 117 

been shown to affect task allocation, interactions, and overall colony behavior, such as in 118 

the case of midden workers in red harvester ants (Pogonomyrmex barbatus; Gordon and 119 

Mehdiabadi, 1999, Pinter-Wollman et al., 2018), tandem running recruitment (Franklin 120 

and Franks, 2012) and consensus-forming in rock ants (Temnothorax albipennis; Sasaki 121 

& Pratt, 2018). To test whether the history of interactions or information flow could explain 122 

the noise seen in task switching dynamics that was not explained by age polyethism 123 

alone, we evaluate several potential macro-scale predictors of task switching not 124 

addressed in the original paper.  125 

First, we described the architecture of the interaction networks by focusing on 126 

information flow (which in our case refers to the possible information exchange due to 127 

interactions among ants). We tested whether the role played by individual ants in 128 

regulating information flow in the colony and the functional group that they belong to were 129 

correlated. To do this, we quantified three network measures that are tied to the 130 

architecture of information flows at the local level for ant-ant interactions, strength, 131 

betweenness centrality, bridge betweenness centrality; and a new measure, effective 132 

information (EI) at the global level for the whole colony. While strength, betweenness 133 

centrality and bridge betweenness centrality are common node-level measures in network 134 

science and have been applied to animal social networks in the past (Holme et al., 2002; 135 

Lusseau and Newman, 2004; Krause et al., 2009; Farine and Whitehead, 2015), EI is 136 
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central to our analysis and is a novel information theoretic metric reflecting how noisy a 137 

mechanism connecting nodes (ants, in our case) is within a system. It is calculated by 138 

perturbing a system through its repertoire of possible states and evaluating the effects of 139 

the perturbation on the system’s mechanisms (Hoel, Albantakis, & Tononi, 2013; Klein 140 

and Hoel 2020). In interaction networks, EI reflects the noisiness of the interactions 141 

among individuals (Hoel et al., 2020): a higher EI means that a system is more 142 

deterministic, with information spreading in a more effective way throughout the network.  143 

Second, we tested whether these four measures of information flow in the 144 

interaction network were correlated with task switching to better understand the noise in 145 

task allocation not explained by age polyethism as determined by Mersch et al. (2013). 146 

We hypothesized that an ant’s previous interactions with other ants affect switching 147 

behaviour and tested whether interacting with a certain functional group increased the 148 

probability of an ant then switching to that group. The relationship between the 149 

architecture of information flows and the different functional groups, as described by 150 

network measures, inform our understanding of the varying correlations between 151 

interaction history and switching behaviour during task allocation. Our use of network 152 

metrics, including the novel effective information metric, allowed us to determine the 153 

influence of interaction history on task allocation and information flow among functional 154 

groups in Camponotus fellah colonies.   155 

 156 

METHODS 157 

Data, network construction, and functional group assignment 158 
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     The published Mersch et al. (2013) dataset contains summaries of interactions 159 

among a total of 985 individually-marked ants in six Camponotus fellah colonies. The 160 

authors collected interaction data for every pair of ants at a daily resolution over the 41-161 

day monitoring period, and the published dataset contains data pooled at the number of 162 

interactions per dyad per day per colony. We matched this published dataset with the 163 

colony metadata to inform our analyses (Supplementary material 1).  164 

Consistent with Mersch et al. (2013), we used the pairwise daily number of 165 

interactions to construct separate weighted, undirected, unipartite networks for each 166 

colony per day. Each ant in a colony was represented by an individual node. An edge 167 

between two nodes represents an interaction between those two ants on a given day. 168 

The edge weight is proportional to the number of pairwise interactions between them on 169 

that particular day. We used the available published dataset to recreate the 246 networks 170 

for the 6 colonies over 41 days used by Mersch et al. (2013) as well as the general pattern 171 

of task switching across the length of the experiments.  172 

 Mersch et al. (2013) assessed each ant’s functional group every 10 days to 173 

categorize them as a nurse, cleaner, or forager, representing their main task in the colony. 174 

They assigned functional groups based on what community an ant spent at least 70% of 175 

their time in, using the ‘infomap’ community detection algorithm. They split the ants into 176 

the functional groups foragers (F), cleaners (C), nurses (N), queen (Q), and NA for ants 177 

who were counted as missing at a time point (e.g., if they were dead or had lost their 178 

tags). In our analyses, we used a similar method to assess functional groups and split the 179 

ants into the same five groups used in the original study via community detection. 180 

However, unlike the Mersch et al. approach, we assigned community membership using 181 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437501doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437501
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

a Louvain community detection algorithm (Csardi and Nepusz, 2006). This algorithm was 182 

used as it performs better than the infomap algorithm on multiple metric tests (Emmons 183 

et al., 2016). This approach resulted in very high agreement with previous task 184 

assignments, as we will show in the Results.  185 

Mersch et al. (2013) reported that their ants mostly did not change their task affiliation 186 

within the 10-day observation period between task assessment points. We used the same 187 

10-day snapshot window in our analyses which resulted in three time points at which a 188 

switch in task to a new category could be detected. We assess whether ants switched 189 

tasks by comparing the functional group assignments for each ant in one time period to 190 

its assigntment in the next time period. For our analyses, we categorized each ant as 191 

“switched” or “consistent”, depending on whether they remained within the same 192 

functional group, or were categorized as part of a different functional group.  193 

 194 

Quantifying individual network metrics for each ant 195 

     Node metrics and centralities define various types of influence that individual nodes 196 

exert on network connectivity and dynamics. For each network, we used R (v 3.6.2) and 197 

the packages igraph (Csardi and Nepusz, 2006) and networktools (Jones, 2020) to 198 

calculate three node-level, local metrics: strength, betweenness centrality, and bridge 199 

betweenness. These local measures were calculated for every ant on each day of the 200 

experiment for all six colonies.  201 

     Node strength was calculated as the sum of the weights of a node’s edges. Thus, in 202 

our context, it is a measure of not only how many interactions (edges) an ant (node) had 203 

to other ants, but also of how frequently those interactions occurred during a day. While 204 
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degree is an index of potential communication activity (Freeman, 1979), strength 205 

improves upon this index by weighting degrees according to frequency of communication 206 

to better inform total interaction and information flow potential. 207 

     Node betweenness, also known as betweenness centrality, is a measure of 208 

importance in a network based on shortest paths between pairs of nodes. For a given 209 

pair of nodes in a weighted network, there exists at least one path between them such 210 

that the sum of the link weights is minimized, thus forming a shortest path. The 211 

betweenness of a node is therefore defined as the number of shortest paths that pass 212 

through it. Freeman (1979) identified high betweenness centrality as a key indicator of 213 

whether a node occupies a central location in the network for information transmission. 214 

An ant with a high betweenness is an ant that is centrally located in the network, serving 215 

as a key connection for seemingly disparate ants. Individuals with high betweenness are 216 

responsible for maintenance of communication, group coordination, and network stability 217 

(Lusseau and Newman, 2004; Farine and Whitehead, 2015). 218 

     Bridge betweenness extends the betweenness centrality metric to the level of 219 

communities and is defined as the number of times a node lies on the shortest path 220 

between two nodes from different communities. In network science, a community is 221 

defined as a group of nodes that have a higher likelihood of connecting to each other than 222 

to nodes from other communities. Ants with a high bridge betweenness serve as key 223 

connectors for different groups in the network. This means that they are more integral to 224 

network cohesion and information flow across groups, thus they may play an important 225 

role in driving switching dynamics. We calculated bridge betweenness for ants using the 226 
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community structure determined when assigning functional groups via the Louvain 227 

community detection algorithm.  228 

 We generated randomized networks to serve as null models for the daily interaction 229 

networks of the six colonies. In order to preserve the underlying structure of the networks, 230 

a degree-based randomization was used (through the R package VertexSort; Abd-Rabbo, 231 

2017) to randomize the ant-to-ant interactions. We created 500 seeded null networks for 232 

each colony’s daily interaction network, for a total of 123,000 null networks. All metrics 233 

calculated for the empirical ant-to-ant interaction networks were then calculated for this 234 

new ensemble of null networks. Daily node-level metrics were compared to the 235 

distribution of values determined by the null networks. Values were then Z transformed 236 

to be compared across groups and measures. 237 

 238 

Quantifying global network measures for each colony 239 

 240 
     We used Effective Information (EI) and its normalized measure of effectiveness to 241 

measure colony-level noisiness in the system, with respect to its underlying mechanisms 242 

(Hoel et al., 2020). Since we are considering the mechanism of communication and 243 

information flow among ants, EI measures the level of noisiness in ant-to-ant interactions. 244 

To calculate effectiveness, we first characterized the weight of the edges connected to a 245 

node. We defined this weight as a vector 𝑊! 	of the same length as the total number of 246 

nodes, and referred to each element as 𝜔!", signifying the normalized value of edge 247 

weight between nodes i and j, such that for any index i, ∑ 𝜔!" =" 1. Here, each term 𝜔!" 248 

can be seen as the probability of moving from i to j, if a random walker is on the node i. 249 

Next, we characterized the uncertainty associated with each node i, calculated using 250 
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Shannon’s entropy measure 𝐻(𝑊!). The average of this value across all the nodes in the 251 

network is < 𝐻(𝑊!) >. This means that, if < 𝐻(𝑊!) > is equal to 0, the network is 252 

deterministic. We then assessed the certainty of the network by calculating the term 253 

𝐻(< 𝑊! >), which is Shannon’s entropy of the average out-weights from nodes. If this 254 

expression is equal to 0, the network is degenerate, with all edges leading to the same 255 

node. Finally, we calculated EI using the following equation:  256 

𝐸𝐼 = 𝐻(< 𝑊! >)−< 𝐻(𝑊!) >                                                     (1) 257 

As the value of EI can depend on the size of the network (Klein and Hoel, 2020), we 258 

calculated effectiveness, the normalized EI with respect to network size, where N is the 259 

number of nodes in the network: 260 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	 = #$
%&'!	)

                                                         (2) 261 

Effectiveness was calculated for each constructed network (i.e., for each day, for every 262 

colony), using the R package einet (Byrum et al., 2020). Linear models were fit to the 263 

effectiveness for each constructed network as a function of the proportion of each 264 

functional group in the network to determine significant relationships between 265 

effectiveness and a colony’s functional group composition. 266 

 267 

Task interaction matrix and task switching 268 

 269 
 To investigate patterns of ants switching between functional groups and taking on 270 

new colony tasks, we first tested whether we could replicate Mersch et al.’s (2013) results 271 

of age polyethism using our task assignment method, i.e., the Louvain community 272 

detection algorithm. We determined the probability that an ant would switch tasks once, 273 

twice, or three times, against the age of the ant (Supplementary material 2, Figure S1A). 274 
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We further explored the possibility of a switching cost by determining the likelihood that 275 

an ant would stay in the same task throughout the experimental time versus performing 276 

two or three tasks (Supplementary material 2, Figure S1B).  277 

    If  functional group identity of ants affected how individuals contributed to information 278 

flow within a colony, then the number of times an ant switched to a new functional group 279 

also affected the flow of information. Here we asked a question not addressed in the 280 

original paper: if the number of interactions per ant were kept constant, and the 281 

interactions were redistributed among everyone, did the proportion of interactions with 282 

different functional groups significantly affect an ant’s final functional group, as opposed 283 

to what we saw in the original network? To test this, we quantified the average proportion 284 

of an ant’s interactions with each functional group before switching from its original 285 

functional group to another in both the observed dataset and in the ensemble of random 286 

networks described above. We compared the distribution of values computed from the 287 

actual networks against those given by the null network distribution using a chi-square 288 

distribution for all possible types of transition (including non-transitions), and calculated 289 

differences significant at the alpha level of 0.05.  290 

 291 

RESULTS 292 

Functional group assignment comparison 293 

Comparisons of our functional group assignments (via the Louvain community 294 

detection algorithm) with groups assigned by Mersh et al. (2013; via infomap) showed 295 

high levels of overall agreement. Community membership assignments from infomap and 296 

Louvain, compared at an individual node level for a given network, resulted in an average 297 
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90.13 ± 7.25% similarity between the two methods across all the networks in the dataset. 298 

Figure 1 shows a summary of the tasks of ants within all six colonies and how those tasks 299 

changed over time (Figure 1; for details, see Supplementary material 2, Table S1).   300 

 

Figure 1: Dynamics of task allocation across the experimental time for all ants in all six 
colonies, with functional group assigned via Louvain community detection algorithm (~90% 
assignments consistent with Mersch et al. 2013). The alluvial diagram shows the number of 
ants per functional group and number of ants staying in the same group or transitioning to a 
new functional group between time periods as proportional to box and flow sizes, respectively.  

 301 

Individual network centrality measures and task switching 302 

      We compared network measures (and the variance in the measures) across each of 303 

the functional groups for three categories: overall across all ants, for just switching ants, 304 

and for just ants that remained consistent in their tasks during the assessment periods 305 

(summarized in Figure 2; all values listed in Supplementary material 2 Table S2).  306 

 When we compared strength across ants in each of the tasks, we found that foragers 307 

had the highest mean strength of any of the groups across all three of the categories, 308 
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showing that they had the most frequent interactions over a day regardless of whether 309 

they remained foragers or switched task at some point. When considering the overall 310 

mean strength, foragers had the strongest interaction potential (2.96). The strength of 311 

cleaners (2.35) and nurses (2.25) were not significantly different from each other but were 312 

still significantly greater than the null networks’ strength (Figure 2A1). Overall strength 313 

variance did not significantly differ across functional groups or from the null networks 314 

(Figure 2A2), indicating that strength values remained fairly stable through time at the 315 

colony level. When we looked at strength just for switching ants, we found that the mean 316 

strength differed significantly across functional groups and was significantly greater than 317 

for the null networks (Figure 2A3). Out of these, foragers that switched had the highest 318 

strength (3.17), while cleaners that switched had a higher strength (2.92) than nurses that 319 

switched (2.35). Strength variance of switching ants did not vary significantly among 320 

functional groups or from the null networks (Figure 2A4). When we looked at strength just 321 

for ants that were consistent, we found that the mean strength and strength variance 322 

followed the same pattern seen for ants that switch (Figure 2A5 and 2A6).  323 

     When we compared betweeness across ants in each of the tasks, we found that 324 

cleaners (2.73) had significantly higher betweenness than nurses (2.25) who also had 325 

significantly higher betweenness than foragers (2.01, no different from null) and the null 326 

networks (Figure 2B1). Overall, variance of betweenness did not differ among functional 327 

groups or from the null networks (Figure 2B2). At the colony level, the betweenness metric 328 

was stable and the cleaners played the most important role in connecting individual ants 329 

for flow of information. When we looked at betweenness just for ants that switched, we 330 

found that mean betweenness centrality measures were significantly greater than those 331 
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for the null networks (Figure 2B3). Cleaners (2.33) and nurses (2.29) that switched had 332 

higher betweenness than foragers that switched (1.83). Variance of betweenness was 333 

greater for foragers (2.67) and cleaners (3.01), however the variance of nurses was still 334 

greater than that of the null networks (2.14, Figure 2B4). Betweenness of foragers and 335 

cleaners was more unstable before these ants switched tasks. When we looked at 336 

betweenness just for ants that were consistent, we found that they had the same patterns 337 

of mean betweenness centrality (Figure 2B5). However, the variance of betweenness 338 

was no longer significantly different than the null networks, thus consistent ants 339 

maintained a stable betweenness position through time (Figure 2B6).  340 

     Since the communities we detected mapped primarily onto the previously determined 341 

functional groups, a high bridge betweenness indicated a high potential for connecting 342 

functional groups in a colony. When we compared bridge betweenness across each of 343 

the tasks at the colony level, we found that the overall mean bridge betweenness values 344 

did not vary among the functional groups or from the null networks (Figure 2C1). 345 

Additionally, the overall variance remained similar across the functional groups and did 346 

not vary significantly from the null networks (Figure 2C2). When we looked at bridge 347 

betweenness for ants that switched compared to those that were consistent, we found 348 

that mean bridge betweenness was higher for the switching ants for all functional groups, 349 

though only significantly higher for foragers (Figure 2C 1,3,5). All ants that switched had 350 

significantly higher mean bridge betweenness than the overall colony values per 351 

functional group, suggesting that ants that switched played an important role in 352 

connecting communities for information flow in the colony. Within the ants that switched, 353 

foragers had the highest mean bridge betweenness (2.97), though they were not 354 
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significantly different from cleaners (2.63). Both foragers and cleaners had higher mean 355 

bridge betweenness than nurses (2.22). All mean bridge betweenness values of ants that 356 

switched were higher than the null networks. The variances of foragers (2.59) and 357 

cleaners (2.41) that switched were greater than nurses (1.99) that switched (Figure 2C4). 358 

Only the variance of foragers was significantly greater than that of nurses, which did not 359 

differ from the null networks. The mean bridge betweenness of consistent ants did not 360 

vary significantly among the functional groups or from the null network distribution (Figure 361 

2C5). The variances of consistent cleaners (2.91) and foragers (2.75) were significantly 362 

higher than nurses (2.11) and the null networks (Figure 2C6). Although the variance of 363 

cleaners and foragers for both ants that switched and consistent ants did vary, the overall 364 

colony values remained stable; these results may indicate that these stuctures could be 365 

important for colony cohesion at the community level. 366 

  367 
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 368 

Figure 2:  Z transformed values of the mean and variances of the strength, betweenness 369 
and bridge betweenness (columns A, B and C respectively) determined for all ants across 370 
the six colonies. The first two rows (rows 1 and 2; A1-C2) are values for all the ants in the 371 
experiment (overall colony values). The next two rows (rows 3 and 4; A3-C4) show values 372 
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for ants that switched during the experiment, and the last two rows (rows 5 and 6; A5-C6) 373 
show values for for consistent ants (no switching) during the experiment. Line colors 374 
correspond to ant functional group type: nurses (red), cleaners (blue), and foragers 375 
(green). Shaded areas are the 95% confidence intervals based on seeded random 376 
networks. The null distribution created from the null network simulations is shown in black 377 
with a marked confidence interval (dashed lines).  378 
 379 

Global information flow and task switching 380 

     We measured effectiveness as a function of the proportion of nurses, cleaners or 381 

foragers in each colony for each day (resulting in 246 effectiveness measures, Figure 3). 382 

We found that the colony networks with high proportions of nurses and cleaners had lower 383 

effectiveness, but that the dependencies based on the linear model were weak and non-384 

significant (adj. R2=0.12, P = 0.063, Figure 3A for nurses; and adj. R2=0.11, P = 0.052, 385 

Figure 3B for cleaners). Effectiveness significantly decreased with increasing proportions 386 

of foragers in a colony (adj. R2=0.22, P = 0.037, Figure 3C). This negative relationship 387 

between increased numbers of foragers and decreased colony-level effectiveness shows 388 

that the interactions mediated by foragers were noisier than those of nurses or cleaners.    389 

 390 

 391 
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 392 

Figure 3: Effectiveness (normalized EI) of the interaction networks constructed for each 393 
colony and every day of the experiment as a function of the proportion of different 394 
functional groups in the networks. Data are stacked because the available granularity for 395 
task allocation was at a 10-day interval. Linear models fit to effectiveness as a function of 396 
the proportions of nurses (A) and cleaners (B) separately return a nominally positive 397 
dependence (adj. R2=0.12, P = 0.063 for nurses; and adj. R2=0.11, P = 0.052 for 398 
cleaners). Effectiveness as a function of the proportion of foragers (C) returns a strong 399 
negative dependence (R2 =0.22, p-value = 0.037).  400 

 401 

Task interaction matrix and task switching 402 

     We tested whether previous interaction patterns affected switching behaviour using a 403 

task interaction matrix. We found that ants that remained consistent in their tasks usually 404 

interacted most with other ants occupying their same task (Table 1, Consistent ants). For 405 

example, consistent nurses were significantly more likely to only have interacted with 406 

other nurses (90% of nurse interactions, P=0.0326). Although cleaners and foragers who 407 

stayed within their functional group also more commonly interacted with other cleaners or 408 
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foragers, this difference in interaction proportions was not significantly higher than 409 

expected by chance. 410 

 

Original 
task 

Final 
task 

Proportion interactions 
with other ants by role 

 

p-value (Original 
task vs final task) Nurse Cleaner Forager  

Consistent 
ants 

Nurse Nurse 0.9 0.09 0.01  0.0326* 

Cleaner Cleaner 0.23 0.4 0.37  0.2105 

Forager Forager 0.2 0.4 0.4  0.6744 

Switching 
ants 

Nurse Cleaner 0.22 0.71 0.07  0.0489* 

Cleaner Forager 0.04 0.41 0.55  0.0310* 

Forager Nurse 0.05 0.65 0.3  0.0446* 

Nurse Forager 0.27 0.35 0.38  0.3671 

Cleaner Nurse 0.71 0.24 0.05  0.0229* 

Forager Cleaner 0.02 0.64 0.34  0.0019** 
 

Table 1: The task interaction matrix, showing the proportion of an ants’ interactions with 
a specified functional group before switching from its original to final group. P-values 
were calculated using a chi-square test contrasting the observed interaction proportions 
with the null model results for each type of task transition; values significantly differing 
from random expectations are indicated with asterisks. Bold type indicates the task and 
proportion of interactions with ants of that task that were significantly higher than 
expected. 
 

 411 

However, most ants that switched to a new task interacted with ants currently 412 

occupying a different task prior to switching (Table 1, Switching ants). For example, 413 

nurses who switched to cleaning had interacted more frequently with cleaners (71% of 414 

nurse interactions) and this was significantly more likely to occur based on interaction 415 
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history than by random chance (P = 0.0489). The result that an ant would transition to a 416 

group that it previously interacted with the most was significant for the following other 417 

transitions: cleaner to nurse, cleaner to forager, and forager to cleaner. Interestingly, 418 

foragers who switched to nursing were significantly more likely to have interacted more 419 

with ants of a different functional group, the cleaners (65% of forager interactions).  420 

 421 

DISCUSSION 422 

     We explored task allocation in ant colonies to determine whether we could explain 423 

how ants switched tasks based on information flow among functional groups and the 424 

interaction history of the individuals. Mersch et al. (2013) attributed the pattern of ants 425 

switching tasks to in this dataset to age polyethism based on the spatial division of 426 

workers mediating the structure of the interaction network. The original authors 427 

determined that task switching was a noisy process with a lot of individual variation, but 428 

that at least some of the task switching could be explained by age polyethism based on 429 

the spatial division of workers mediating the structure of the interaction network. Through 430 

our reanalysis, we focused specifically on this noisy process of task switching. Our 431 

approach allowed us to determine that previous interaction history can explain much more 432 

of the noise behind task switching in Camponotus fellah colonies.  433 

Our results suggest that ants in different functional groups had varying levels of 434 

importance for information flow between individuals and groups in a colony. Additionaly, 435 

ants that switched tasks often occupied positions in the interaction network that had high 436 

potential for supporting information flow. Network analyses, combined with the task 437 
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interaction matrix, allowed us to describe how the architecture of interactions influences 438 

the distribution of and switching among tasks in an ant colony.  439 

     At the scale of ant-to-ant interactions, we found that ants classified into the three main 440 

tasks (forager, cleaner, nurse) differed in how they interacted with each other. This 441 

affected their role in information flow for the colony as described by network measures. 442 

Foragers had the highest interaction strength – they interacted longer and more frequently 443 

than cleaners and nurses. Cleaners, however, had higher betweenness and thus were 444 

key connections between ants interacting in the colony.  445 

Ants that switched tasks functioned as key connectors for information flow in the 446 

colony, supporting colony cohesion. In general, betweenness was higher for ants that 447 

switched than for ants that remained consistent in their task. This suggests that ants who 448 

switched tasks throughout the course of the experiment, and particularly cleaners, played 449 

an important role in connecting other ants through information flows. Their high 450 

betweenness means that they occupied a key network position for receiving and 451 

transmitting information before they switched. If learning is required when ants switch 452 

tasks, this increased access to information may have allowed them to be able to learn 453 

new behaviours more quickly, helping them transition to a new task. Bridge betweenness 454 

indicates how ants connected different communities within the colony. Ants who switched 455 

tasks had higher bridge betweenness than those who remained consistent in their task. 456 

In particular, foragers and cleaners had higher bridge betweenness than nurses, showing 457 

that they were key connectors among the different functional groups. Cleaners especially 458 

were less likely to interact within their functional group (consistent with Mersch et al.’s 459 

2013 results). The low group cohesion of cleaners may strengthen colony-wide cohesion. 460 
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 The instability of the centrality metrics may be related to cleaners’ and foragers’ ability 461 

to transition tasks. Cleaners and foragers who switched functional groups had 462 

significantly higher variances of betweenness and bridge betweenness, showing that 463 

these individual measures of social network connectivity changed more over time. 464 

However, when all ants in a colony were grouped for calculating the node-level network 465 

metrics, pooled variances were not higher than those for the null networks. So while these 466 

metrics varied significantly among functional groups and when ants switched tasks, 467 

overall information flow in a colony remained fairly stable and colony cohesion was 468 

maintained.  469 

     At the group level, the operationalization of effective information as a measure of the 470 

noisiness of network mechanisms is relatively new and under-explored. Our effectiveness 471 

results for the six Camponotus fellah colonies show a correlation between variations in 472 

effectiveness and the functional group composition of each colony. We found that a higher 473 

proportion of foragers lead to noisier communication among ants. Paired with the results 474 

on interaction strength, this means that foragers interacted more than ants in other tasks 475 

and that their interactions were noisier than interaction patterns of ants performing 476 

different tasks. Results on centrality measures and effectiveness can be linked with task 477 

allocation through our task interaction matrix. The matrix shows how previous interactions 478 

with ants in a given task lead to a higher probability of the ant switching to that task. These 479 

results are consistent with previous work in another species: Gordon and Mehdiabadi 480 

(1999) found that, in red harvester ants, ants switching from other tasks to midden work 481 

were more likely to have interacted with midden workers, and that switching was more 482 

likely to occur the more frequent those interactions. In our results, interactions with 483 
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foragers appeared to drive switches to foraging: both cleaners and nurses who switched 484 

to foraging had a higher probability of having interacted with foragers. Switches from 485 

foragers to other tasks, however, showed different dynamics. Both foragers who switched 486 

to nursing and foragers who switched to cleaning had a higher probability of having 487 

interacted with cleaners, although the experimental data only showed two cases of the 488 

former switch. This is in line with betweenness results, showing that cleaners are central 489 

in driving switching patterns. These patterns suggest that, while previous interaction 490 

patterns do affect switching behaviour, they do so to varying degrees depending on the 491 

role played by the interacting ants and on the overall information flow of the system.  492 

     In future research, it would be interesting to further explore task switching in systems 493 

with a higher granularity of data collection across both behaviours and interactions. One 494 

limitation to the Mersch et al. (2013) dataset and to the original and current analyses is 495 

that the task each ant was assigned to is assessed based on the interaction patterns, not 496 

the types of actions or tasks the ant completes in the colony. Assessing not just who an 497 

ant interacts with, but what actions that ant is actually completing, would provide useful 498 

additional insight into the timing of behavioral and social change. This kind of data would 499 

allow researchers to determine whether an ant alters its behaviors first (for example, 500 

decreasing cleaning behaviors and increasing nursing behaviors) which then results in a 501 

change in the social interaction patterns or whether an ant first begins to change its social 502 

interaction patterns (for example, interacting less with other cleaners and more with 503 

nurses) and then altering its behavior from cleaning actions to nursing actions. Another 504 

open question is how the content of information flows, paired with the architecture of 505 

interaction netowrks, affects individual and group behaviour (e.g., under conditions of 506 
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emergency). Future targeted data collection, involving both social and behavioral 507 

observations, paired with statistically robust network methods, could be used to further 508 

explore the relationships between patterns of interactions, individual-level behaviour, and 509 

group-level behaviour. 510 
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