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Summary

Variability is a hallmark of animal behavior. It endows individuals and populations with the1

capacity to adapt to ever-changing conditions. How variability is internally regulated and2

modulated by external cues remains elusive. Here we address this question by focusing on3

the exploratory behavior of zebrafish larvae as they freely swim at different, yet ethologically4

relevant, water temperatures. We show that, for this simple animal model, five short-term5

kinematic parameters together control the long-term exploratory dynamics. We establish6

that the bath temperature consistently impacts the means and variances of these parameters,7

but leave their pairwise covariance unchanged. These results indicate that the temperature8

merely controls the sampling statistics within a well-defined accessible locomotor repertoire.9

At a given temperature, the exploration of the behavioral space is found to take place over10

tens of minutes, suggestive of a slow internal state modulation that could be externally biased11

through the bath temperature. By combining these various observations into a minimal12

stochastic model of navigation, we show that this thermal modulation of locomotor kinematics13

results in a thermophobic behavior, complementing direct gradient-sensing mechanisms.14
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1 Introduction16

Variability, both inter- and intra-individual, is an ubiquitous trait of animal behavior [1]. Intra-individual17

variability may participate in efficient strategies, as best exemplified by the alternation of exploration and18

exploitation phases during foraging [2, 3]. It can also endow the animal, or the population, with robustness,19

i.e. the ability to rapidly and efficiently cope with changing environmental conditions [4, 5]. The idea, known20

as bet-hedging, is that a modest loss in fitness associated with phenotypic variability could be balanced by21

the gain in leniency when facing unexpected and possibly hostile conditions. The origin of inter-individual22

variability may be attributed to genetic, epigenetic or developmental differences. Intra-individual variability23

may in turn reflects spontaneous transitions between distinct brain states, i.e. patterns of persistent neural24

activity [6, 7]. It may also be the signature of endogenous modulations in the production of neuromodulators25

[8].26

Although the functional significance of variability in animal behavior is now largely recognized [9], the way it27

is regulated and modulated by external cues, as well as its neuronal substrate remain elusive. To address28

this question, one not only needs to quantify variability, but also manipulate it in a physiologically relevant29

manner, in an animal that is accessible to both behavioral and neuronal circuit interrogation. Here we used30

the zebrafish larva as a model vertebrate as it is uniquely amenable to in vivo whole brain functional imaging31

[10–12] and to high-throughput behavioral studies [13, 14].32

As an ectothermic animal, zebrafish must actively navigate towards regions of its environment that are33

thermally optimal for its thriving [15], while potentially being exposed to a wide range of temperatures [16].34

How fish swim in thermal gradients has been extensively studied [17], and the neuronal circuits underlying35

this thermotactic process have been identified [18]. Zebrafish larvae integrate thermal signals (change in36

temperature) over a sub-second time window, and adapt their forthcoming movement accordingly in order to37

eventually move towards optimal zones.38

Here we focus on the exploratory dynamics at various but spatially uniform temperatures. We use a reductive39

approach, as previously introduced [19], to quantify its spontaneous locomotion using a finite number of40

short-term kinematic parameters. We then quantify how the bath temperature not only impacts the mean41

of these parameters, but also their statistical distribution (variability) and pairwise covariance. We further42

assess the time-scale over which this behavioral variability unfolds at the level of individual animals. From43

this detailed analysis, we build a numerical model of zebrafish larvae navigation at all temperatures over44

the physiologically relevant range. Finally, we use this model to demonstrate how this thermal adaptation45

of spontaneous swimming pattern may complement the thermotactic mechanism, based on direct gradient46

sensing, in order for the animal to limit its presence in potentially harmful environments.47

2 Results48

A behavioral assay to record spontaneous navigation at different temperatures.49

Batches of 10 zebrafish larvae aged 5-7 days were video-monitored at 25 frames/second for periods of 3050

minutes as they freely swam in a rectangular 100×45×4.5mm3 pool at a constant and uniform temperature51
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(figure 1A, see Methods). For each batch, we successively imposed up to 5 values of temperature (18, 22, 26,52

30 and 33°C) in a random order. This thermal range spans the non-lethal conditions for larval zebrafish, and53

has been shown to be effectively encountered by the animal in its natural habitat [20]. Each 30 min-long54

recording session was preceded by a 14 min-long period of habituation to allow the animals to reach their55

steady-state exploratory regime. A total of 10 batches per temperature involving 170 different fish were used.56

Larval zebrafish swim in discrete bouts lasting for about 100ms, interspersed with ∼ 1− 2s periods of rest.57

As we aim to probe how the bath temperature impacts the long-term exploratory process, we focus on the58

characterization of a few kinematic parameters associated with each bout. We thus ignore the fine structure59

of the swimming events, such as the amplitude of the tail deflection or beating frequency [21, 22], but examine60

their resulting heading reorientation and linear displacements. The center of mass coordinates and orientation61

of each larva in every frame were extracted using FastTrack [23] (see Methods). For each identified swim bout,62

we computed three scalar parameters (Figure 2A) whose statistics control the fish spatio-temporal exploration63

[19]: (i) the interbout interval (IBI), δtn, is the idle time following the bout event, (ii) the displacement, dn,64

is the travelled distance associated with the bout, and (iii) the reorientation angle, δθn, denotes the change65

in heading direction.66

Tracking was performed within the innermost region of the arena, at a minimum distance of 5 mm from the67

walls, as the latter would inevitably bias the exploration dynamics. As a result, individual fish were not68

tracked continuously over the entire recording periods, but along trajectories (from one wall to another). In the69

analysis, we ignored trajectories that last less than 25 seconds. Example trajectories for three temperatures70

are shown in figure 1C, where each dot indicates the location of a swim bout, while its size reflects the71

interbout interval. This comparison provides a first qualitative illustration of the effect of temperature on the72

fish exploration. At low temperatures (18°C), the trajectories are relatively straight, comprising a majority of73

small discrete forward bouts executed at relatively low frequency. At high temperatures, the trajectories74

appear much more meandering, with more frequent and ample reorienting maneuvers with longer travelled75

distances. In the following, we quantify these differences by systematically comparing the statistics of the76

per-bout kinematic parameters at different temperatures.77

The bath temperature controls the statistical distributions of the kinematic parameters.78

For each batch and temperature, a probability density function (pdf) was computed for interbout intervals,79

displacements and turn angles by pooling all bout events. We then computed an average distribution across80

batches (figure 2B-D, respectively) for the 3 parameters, as well as the temperature-dependence of their mean81

values (figure 2F-H).82

A decrease in the bath temperature from 26°C to 18°C is associated with an increase of the mean IBI (〈δt〉)83

from 1 to 1.4s, while the bout frequency remains essentially unchanged at higher temperatures (2B, F). This84

increase in the mean values is accompanied by a systematic broadening of the statistical distribution. The85

per-bout displacement exhibits a similar trend (figure 2C). This quantity increases in the range 18-26°C from86

1 to 1.5mm, and remains unchanged at higher temperatures (figure 2G).87

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435787
http://creativecommons.org/licenses/by-nc/4.0/


March 17, 2021

The turn angle distributions shown in figure 2D reveal the existence of two main bout categories [13, 19,88

24]. The central narrow peak corresponds to forward bouts while the wide tail is associated with turning89

events. We adjusted this distribution as a sum of two empirically chosen functional forms in order to extract90

the fraction of turning bouts pturn (see Methods). This quantity steadily increases with the temperature,91

from 0.3 to 0.8 (figure 2E). This increase in the fraction of turning bouts comes with an increase in their92

associated reorientation angles δθturn as shown in figure 2H.93

The bath temperature controls the persistence time of the orientational state.94

In a recent study [19], we showed that the orientational dynamics of zebrafish larvae can be described by95

two independent Markov chains (figure 3A). The first one controls the bout type selection, between forward96

scoots or turn bouts. This process is essentially memoryless, such that the transition rates are simply set97

by the ratio between either categories, namely pturn and 1− pturn. The second Markov chain controls the98

orientations of the turning bouts. When a turn bout is executed and if this chain is in the left (right) state,99

then the animal turns left (right, respectively). This second selection process has been shown to display a100

persistence over a few bouts: the fish tends to chain turn bouts that are similarly orientated [19, 24–26].101

Here we examined how this motor-persistence mechanism is impacted by the bath temperature. We estimated102

the flipping rate pflip - the probability to switch orientation at each bout - by first binning the turning103

angles into three categories (denoted ∆) and assigning a discrete value to each of them: right turn (∆ = −1),104

forward bout (∆ = 0) and left turn (∆ = +1). We then computed the mean discretized angle value 〈∆n+1〉 at105

bout n+ 1 for the three possible values of the previous bout ∆n, as shown in figure 3B. The slope of the linear106

fit provides a measurement of pflip (see Methods and equation 1). This flipping probability increases with107

temperature from 0.22 at 18°C to 0.45 at 33°C (figure 3C), approaching 0.5. Hence, at high temperatures,108

the orientational persistence essentially vanishes, i.e. the probability to trigger a left vs a right turn becomes109

independent of the orientation of the previous bout.110

This approach yields a typical number of bouts 1/pflip over which the turning orientation is maintained. A111

complementary approach consists in characterizing the actual time-persistence (in seconds) of the orientational112

state [19]. To do so, we assume that the orientation selection is driven by a hidden two-state continuous signal,113

of which the turn bouts provide a stochastic sampling. We hypothesize that a forward bout is “transparent”,114

i.e. it does not interfere with the persistence process, and that the orientational state remains unchanged115

until a bout in the opposite direction is executed. The procedure for reconstructing the orientational signal is116

illustrated in figure 3D.117

For all trajectories, we computed the autocorrelation function (ACF, R∆∆) of the reconstructed orientational118

signals, and averaged them for each temperature (figure 3E). The ACF shows a faster decay for higher119

temperatures, i.e. the time period over which the animal can maintain its orientational state is larger in120

colder water. The ACFs could be correctly adjusted with an exponential decay, a functional form that is121

expected for a simple telegraph process [27]. This suggests that the left/right transition over a time interval dt122

is simply given by kflipdt, where kflip is the transition rate from one state to another. From the exponential123

fit of the ACFs, we extracted kflip, which we found to increase quasi-linearly with the temperature, as shown124

in figure 3F (purple line). The rate kflip is the temporal counterpart of the per-bout flipping rate pflip, the125
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two quantities being linked through the interbout interval. Consistently, we found that pflip/ 〈δt〉 provides a126

good approximation of kflip for all temperatures (figure 3F, red line).127

Navigational kinematic parameters are statistically coupled.128

In the preceding sections, we showed that the bath temperature impacts in a systematic way the statistical129

distributions of the five kinematic parameters that control the fish spontaneous navigation, namely the130

interbout interval (IBI), turn amplitude, travelled distance, turn probability and orientational flipping rate.131

When examining trajectories recorded at a given temperature, we noticed that they tend to fall in stereotypical132

categories reminiscent of those most often observed at various temperatures. Some trajectories are tortuous133

with short IBI, akin to typical hot water trajectories, while other appear to be straighter with less frequent134

bouts as generally observed in cold water (figure 4A and 1C). This is suggestive of the existence of a finite135

kinematic repertoire accessible to the animals whose relative occurrence may be controlled by the bath136

temperature.137

To test this intuition, we first aimed at establishing the statistical constraints that could set this accessible138

repertoire. We thus examined the pairwise covariance of the aforementioned kinematic parameters. At139

short time scale (over one bout), we did not observe any significant correlation between the 3 parameters140

that can be evaluated on a per-bout basis (IBI, reorientation angle and travelled distance, see figure S1A).141

However, when performing the same analysis on per-trajectory averages, we observed a robust covariance of142

the parameters. This is illustrated in figure 4B which shows the covariance matrices computed for all data143

and for each temperature. The IBI appears to be strongly anti-correlated with the forward displacement144

and the flipping rate. In contrast, besides IBI, all pairs of parameter tend to exhibit positive correlations.145

Importantly, these statistical features are conserved across the entire temperature range.146

Temperature controls the distribution probability within a well-defined locomotor repertoire.147

We thought to evaluate how this intra-temperature covariance of the navigational parameters aligned148

with the inter-temperature covariance. To do so, we used the temperature-averaged parameters to build a 5149

temperatures by 5 parameters matrix from which we computed an inter-temperature Pearson correlation150

matrix (figure S1B). The latter displays a comparable structure as the mean intra-temperature correlation151

matrix 4B: as we have shown in the previous sections, all parameters increase with temperature, and are thus152

positively correlated, except for the interbout interval which decreases with the temperature and is therefore153

anti-correlated with the 4 other parameters.154

Hence, intrinsic variability and temperature-induced behavioral changes both reflect a concerted modulation155

of the kinematic parameters along a similar axis. This can be illustrated by representing individual trajectories156

as points in a four dimensional parameter space (figure 4C). This representation shows that the accessible157

locomotor space is a continuum organized along a major axis, and that the bath temperature favors a158

particular region of this manyfold. To confirm this claim, we performed a principal component analysis on159

both the inter-temperature and intra-temperature data. For all temperatures, the first principal component160

(PC) explains 28 to 45% of the intra-temperature variance (figure 4D), i.e. significantly more than expected161

for independent parameters (20%). Due to the small size of the inter-temperature matrix (5 samples), the162
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first PC explains more than 90% of the inter-temperature variance (figure S1C). The first PC is conserved163

across the temperature range (figure 4E, colored bars) and essentially aligned with the inter-temperature PC164

(black squares). The second PC is similarly conserved across temperatures (figure 4F) yet less clearly aligned165

with its inter-temperature counterpart.166

In order to represent data from various temperatures within the same low-dimensional space, we performed a167

PCA analysis on the pooled covariance matrix, combining all intra-temperature arrays after standardization168

(figure 4D-F, solid gray line). Based on the Guttman-Kaiser criterion, we only retained the first two principal169

components [28] (figure S1D). Figure 4G shows the entire dataset projected in this unique 2D PCA space,170

where the temperature is color-coded. As the temperature is increased, the accessible locomotor space is171

shifted towards higher values of both marginal projections, with a concurrent widening of the distribution172

for the first PC. These observations are thus in line with the view that the trajectories are confined to a173

manifold defined by the correlation between the various parameters. Each temperature delimits a specific174

accessible region of this subspace as defined by the PCs projection values.175

Single-fish recordings reveal a slow diffusive-like modulation of the locomotor behavior.176

The experiments on which these analysis were performed are based on simultaneous recordings of 10 fish177

for each batch. As we can not track individual fish over the entire session, we can not evaluate to what extent178

individual animals’ navigational pattern may vary during the course of the assay. To address this specific179

question, we performed a second series of experiments in which single animals (N = 18) were continuously180

monitored for 2h at an intermediate bath temperature of 26°C. The same analysis pipeline was implemented.181

In particular, the recordings were split into successive “trajectories” corresponding to wall-to-wall sequences.182

We observed that over the course of the assay, the trajectories tended to exhibit strongly distinct features as183

illustrated in figure 5A, reflecting a significant intra-individual behavioral variability.184

For each individual, we similarly computed a feature matrix containing, for all successive trajectories, the185

mean interbout interval, reorientation angle of turn events, displacement, turning probability and flipping186

rate. We then performed a PCA on each array. Both the explained variance (figure S2A) and the PCA187

coefficients (figure 5B-C) were unchanged with respect to the multi-fish analysis (5B-C, gray line). This188

indicates that the covariance structure in the locomotion pattern is similar at the intra and inter-individual189

level.190

We thus used the multi-fish PC space defined in the preceding section to represent the single-fish data. The191

result for an example fish is shown in figure 5D where the successive trajectories are indicated as dots in192

this two-dimensional PC space. This representation reveals a slow diffusive-like exploration of the locomotor193

space over the course of the experiment, with a progressive transition from one type of trajectory (e.g. long194

displacements, frequent bouts, frequent turns) to another (e.g. short displacements, longer inter-bout intervals195

and fewer turns).196

To quantify the time-scale of this itinerant exploration within the locomotor space, we computed the197

autocorrelation function (ACF) of the projections on the two first PCA components (5E-F, black line). These198

curves could be captured by an Ornstein–Uhlenbeck (O.U.) process, which describes the dynamics of a199
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random walker within a quadratic energy basin [29, 30], see Methods). The latter allows one to bound the200

stochastic exploration within a finite region of the locomotor space. From the fit, we extracted the times201

needed for the dynamical system to reach its stationary regime: τ = 2585± 58 s for PC1, τ = 1980± 14 s for202

PC2 (mean ± s.e.m.). These values clearly demonstrate that the modulation of the exploratory behavior203

in individual animals takes place over time scales that are orders of magnitude longer than the interbout204

interval.205

This series of experiments allowed us to further assess the relative contribution of the intra- and inter-individual206

components in the observed behavioral variability. As the assay is longer (2h) than the time needed to reach207

the stationary regime (∼ 2000s), each recording provides an estimate of the intra-individual variability. The208

latter was quantified in the PC space as the variance of the PC projections across the entire duration of209

the assay, averaged over the the various individuals. We then separately computed the variance of the PC210

projections, pooling the data of all animals (figure S2D, green). The latter quantity thus encompasses both211

inter- and intra-individual variability. This analysis led to the conclusion that a dominant fraction of the212

variance (68% on PC1, 53% on PC2) can be explained by the intra-individual variability.213

Simulations of spontaneous navigation at various temperatures reveal basic thermophobic be-214

havior without direct gradient-sensing mechanism.215

Having thoroughly characterized the statistical structure of the kinematic parameters and their thermal216

modulation, we sought to build a minimal stochastic model of the fish navigation in order to generate synthetic217

trajectories at different temperatures. Each kinematic parameter defines a random variable whose mean is set218

by the temperature and whose statistical distribution accounts for both the inter-trajectory variability and219

the per-bout stochasticity. The dual nature of the variability was mathematically recapitulated by expressing220

each of the 5 kinematic variables as a product of two stochastic, temperature-independent variables: one221

accounting for the trajectory-to-trajectory modulation (within a range controlled by the bath temperature,222

figure S3B-E, Y column), and the other reflecting the remaining short-term variability (bout-to-bout, figure223

S3B-E, ε column, see Methods). For the former, we used the copula method to reproduce the observed224

covariance of the per-trajectory means of the various parameters.225

This approach allowed us to generate various trajectories at different temperatures, as illustrated in figure226

6A. These trajectories are qualitatively similar to those typically observed at the corresponding temperatures227

(see figure 1C for a comparison). To quantify how this stochastic model captures the exploratory behavior,228

we computed the mean square displacement (MSD, figure 6B) and the mean square reorientation (MSR,229

figure 6C) on both the real (dots) and numerical data (solid lines). Overall, the exploratory dynamics appear230

to be correctly reproduced by the numerical model. Importantly, the inter-trajectory variability is also, by231

construction, correctly reproduced by this minimal model.232

This model was used to probe how the temperature dependence of the navigational kinematics may participate233

in driving the animal along thermal gradients. We first experimentally quantified how zebrafish larvae234

responded to a linear thermal gradient spanning our temperature range (18°C-33°C), by focusing on the235

steady-state occupation distribution. We found that the larvae favor regions where the temperature is236

comprised between 23°C and 29°C (figure S4), i.e. they tend to avoid both extreme (hot and cold) regions.237
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The underlying sensory-motor mechanism is bound to involve both the effect of the temperature on the fish238

navigation pattern (thermokinesis) and a direct (immediate) response to perceived temperature changes239

(thermotaxis) [15, 17]. Our model allows us to assess the relative contribution of the kinesis process. In order240

to do so, we implemented a simulation in which a virtual fish navigates in a rectangular pool (L× 45mm) in241

which we imposed a linear thermal gradient along the horizontal x-axis spanning the 18°C-33°C range. We242

simulated trajectories of numerical swimmers by continuously updating their exploratory statistics according243

to the local bath temperature. These changes are entirely controlled by the temperature-dependence of the 5244

kinematic parameters, which we linearly interpolated across the thermal gradient. Four gradient strengths245

were emulated by changing the length L of the pool (L = 0.1, 0.3, 0.5, 1m).246

The time evolution of the position distribution along the gradient are shown as heatmaps in figure 6D. They247

reveal a global drift of the population towards the low temperature region for all values of the thermal248

gradient (figure 6E). In all conditions, the distributions were found to converge towards a unique steady-state249

profile after a finite time. The probability of presence in the steady-state regime displays a quasi-linear decay250

from 18 to 26°C, and remains uniform at higher temperature. The thermokinesis process thus endows the251

animal with a basic thermophobic behavior, even for minute gradients - orders of magnitude smaller than252

those imposed in thermotactic assays. In contrast, the avoidance of cold regions seen in experiments (figure253

S4, see Methods) is absent in our simulations, and must therefore reflect a direct gradient-sensing mechanism.254

The dynamic of this thermophobic behavior in the simulations appears to depend on the imposed gradient, as255

illustrated in figure 6F, which shows the mean experienced temperature across the population as a function256

of time for the three gradients. All the curves display a similar decay associated with a global drift towards257

the cold region, until a similar plateau value is reached, albeit with different time-scales. Due to the diffusive258

nature of the fish spatial exploration, the settling time is expected to scale with the square of the pool length.259

Consistently, the four dynamic evolution are found to fall on a unique curve when plotted as a function of260

t/L2 (figure 6G). The associated settling times range from 10 minutes for the largest gradient up to ∼ 14261

hours for the smallest one.262

3 Discussion263

Animal behaviors unfold as trajectories in a high dimensional space of motor actions. To make behavior264

mathematically tractable, one needs to unveil statistical rules that couple the different components of the265

behavior and organize them across time-scales. This dimensionality reduction approach is a pre-requisite to266

further distinguish between deterministic and stochastic components of the behavior and concurrently discover267

the underlying neural mechanisms [31, 32]. Leveraging novel techniques for high-throughput behavioral268

monitoring and automatic classifications has allowed to elucidate the statistical structure organizing self-269

generated behaviors in numerous species, such as C. elegans [33], Drosophila [34, 35], zebrafish [3, 22], or270

mice [36].271

With its bout-based navigation, zebrafish larva offers a relatively simple model for such an endeavour. It272

has been shown that as few as 13 different swim bout types are sufficient to capture the entirety of its273

behavioral repertoire [22]. Here we focus on spontaneous exploration in the absence of time-varying sensory274
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cues. Within this limited scope, we were able to show that the knowledge of only 5 kinematic variables suffices275

to characterize the long-term exploratory process. Indeed, synthetic trajectories generated by stochastic276

sampling from the statistical distributions extracted from the data accurately reproduce the experimentally277

observed angular and translational dynamics.278

Using this reductionist approach, we were able to demonstrate that the variability in the fish exploratory279

dynamics originates from two separate mechanisms, acting on distinct time-scales. Over a few bouts, the280

fish displacement is akin to a random walk in which multiple stochastic processes set the successive values281

of two discrete (bout type and turn bout orientation) and three continuous (Inter-bout-interval, linear and282

angular displacements) variables that together define its instantaneous in-plane velocity. These processes283

are statistically constrained by mean transition rates and amplitude probability distributions that can be284

considered invariant at the scale of individual trajectories (i.e. over tens of bouts). These parameters however285

vary significantly over long time scales: their time modulation takes place over hundreds to thousands of286

bouts, indicative of a clear time-separation between the two different processes. Importantly, although we did287

not observe any significant correlation in the instantaneous locomotor variables, the slow modulation of the288

kinematic parameters exhibits robust covariance, and is thus constrained within a well-defined kinematic289

manyfold.290

The present study allowed us to quantify how the water temperature modulates the locomotor statistics291

of zebrafish larvae. Rather than evoking distinct locomotor patterns, temperature controls the relative292

occupancy within this subspace: changing the temperature consistently impacts the mean value of the293

kinematic parameters but leaves their covariance structure unchanged. Temperature thus essentially sets the294

accessible range of exploratory trajectories within a well-defined continuum of possible locomotor behaviors.295

At the circuit level, it is tempting to interpret these observations by considering the brain as a dynamical296

system exhibiting multiple metastable patterns of activity (brain states) whose relative stability and transition297

rates define a particular energy landscape [37]. In this view, the short-time dynamics that select the successive298

bout properties correspond to a stochastic itinerant exploration of this neuronal landscape. The latter is299

essentially invariant over minutes but is slowly reshaped via endogenous processes or through temperature300

changes, leading to a gradual modification of the short-term statistics. In a concurrent study (unpublished),301

we directly tested this hypothesis by focusing on the selection of turn bout orientation, a process whose302

neuronal substrate is known. The ARTR (anterior rhombencephalic turning region), a small bilaterally303

distributed circuit, has indeed been shown to control the selection between left and right turns. This circuit304

displays an endogenous antiphasic alternation between the left and right subcircuits. Turn bout orientation is305

systematically ipsiversive to the active population at the time that they are executed [25, 26]. In this study,306

we report an increase in the frequency of the ARTR endogeneous oscillation with the temperature in line307

with our present behavioral observations. Using Ising models, inferred from the ARTR dynamics recorded308

at various temperatures, we were able to unveil how the ARTR energy landscape is indeed reshaped as the309

temperature is increased such as to favor more frequent transitions between the left and right states.310

Slow modulation of locomotor characteristics in zebrafish larvae have been reported in two recent studies311

[2, 3]. In [2], the authors identified two discrete states, associated with exploration and exploitation during312
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foraging, with typical persistent times of order of minutes. In [3], progressive changes in locomotor statistics313

were associated with decaying hunger state, as the initially starved animal progressively reached satiety. In314

contrast with these two studies, the modulation in locomotor kinematics that we observed is continuous and315

does not reflect spatial heterogeneities in the environment (e.g. local presence of preys) or explicit changes in316

internal states such as satiety. With respect to hunger state, the use of temperature may offer a practical way317

to externally drive the internal state to a stationary point in an ethologically relevant way.318

The neuronal basis of this internal state modulation process remains to be elucidated. The circuits regulating319

specific locomotor features, such as the bout frequency [38] or orientational persistence [25, 26] have been320

identified. However, the fact that the various kinematic parameters display concerted endogenous modulations321

points towards a global drive. Temperature is known to impact cellular and synaptic mechanisms [39] in322

such a way that an increase in temperature tends to speed up neuronal oscillatory processes [40, 41]. This323

may explain the concurrent decrease in the persistent times associated with the orientational persistence and324

interbout intervals. The thermal modulation of the angular and linear amplitude of the bouts may in turn325

reflect a temperature dependence of the muscular efficiency rather than neuronal processes [42]. Another326

possibility is that the temperature drives the activity level of neuromodulatory centers which may also exhibit327

slow endogeneous modulations. This neuromodulation release would then globally impact the spontaneous328

dynamics of various premotor centers yielding the observed change in locomotor patterns. The serotonergic329

neurons of the dorsal raphe constitute an attractive candidate for such a mechanism as their activation has330

been shown in numerous instances to drive a persistent change in behavior in zebrafish [2, 6, 43], as well as in331

mice [44].332

Our study yields a minimal numerical model of zebrafish locomotion at different temperatures. This model333

allowed us to probe in silico how the thermal modulation of the exploratory dynamics may contribute to the334

thermotaxis behavior, thus complementing direct gradient-sensing mechanisms [18]. Our simulations indicate335

that this thermokinesis process endows the animal with the capacity to efficiently avoid hotter regions, but336

cannot explain the observed avoidance of cold water. As thermal gradient sensing operates within a time337

window of 400ms [17], it may be ineffective in conditions where the lengthscale of thermal gradients is much338

larger than the typical distance travelled per bout. In such conditions, this complementary mechanism may339

be strategically relevant as it allows the animal to navigate away from potentially noxious regions.340

This study establishes the temperature as an effective and practical external parameter to explore behavior341

variability in vertebrates. Our analysis provides simple latent variables, namely the two first PCA projections,342

that can be used to efficiently track the animal’s behavioral state. Changes in behavioral states are generally343

induced through complex protocols, involving a perturbation of a sensorimotor loop, or through abrupt344

changes in sensory conditions [45]. In such approaches, the change is discrete and generally transient as the345

animal eventually adapts to the new conditions. In contrast, temperature offers a way to drive a robust,346

continuous and chronic shift in behavior that can be easily implemented while performing large-scale brain347

monitoring. Various behavioral states are thought to reflect different levels of attention or arousal, which348

in turn impact the responses to sensory stimulation. Beyond its utility for studying how a given neuronal349

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435787
http://creativecommons.org/licenses/by-nc/4.0/


March 17, 2021

circuit may give rise to distinct dynamics, as illustrated in [46], thermal perturbation could also be leveraged350

to investigate how internal states may enhance or inhibit sensory responses.351
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Figure 1: Behavioral assay for the video-monitoring of spontaneous navigation of zebrafish larvae at different

temperatures. A Sketch view of the setup: Larval zebrafish are freely swimming in a rectangular pool connected

to a pair of Peltier modules in a light-tight box. The setup is illuminated with a white electroluminescent

(EL) panel and a symmetrically positioned a mirror (not shown). The tank is covered with a transparent slide

to limit evaporation. A CMOS camera records images at 25 frames per second. B Blow-up of a raw image

around a larva. C Example trajectories extracted offline from movies recorded at different temperatures.

Each dot represents a bout event, with size encoding the time spent at this location.
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Figure 2: Effects of bath temperature on spontaneous navigation. A Sketch defining three kinematic

parameters. δtn is the time elapsed between bout n and bout n+ 1, known as the interbout interval. The

displacement dn is the distance travelled during bout n (in mm), while δθn represents the reorientation angle.

A small value around 0 corresponds essentially to a forward swim, while a large positive value (resp. negative)

corresponds to a left (resp. right) turn. B-D Per-batch averaged distributions of interbout intervals (B),

displacements (C) and turn angles (D) for each tested temperatures. Vertical dotted lines are the means of

the distributions, shaded areas are standard errors of the mean (sem). The gray area in D marks the forward

events versus the turn events. E-H Boxplots of selected parameters. Each dot corresponds to a batch of

10 fish, the box spans the 25th to the 75th percentiles, the horizontal line is the median, red crosses are

outliers. Significance given only for neighboring boxes (Kruskal-Wallis test, no star : p > 0.05, ? : p < 0.05,

?? : p < 0.01, ? ? ? : p < 0.001). E Fraction of turns, referred to as the turning probability, defined as the

ratio of turn bouts over the total number of bouts. F Means of the interbout intervals. G Means of the

displacements. H Means of the absolute reorientation amplitude of turning bouts.
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Figure 3: The orientational dynamics is temperature-dependent. A Two discrete and independent Markov

chains describe the reorientation dynamics. The first one (top) selects the bout type, either turn (T) or

forward (F), given the transition rate pturn, while the second one (bottom) determines if the fish is in the left

(L) or right (R) state with a transition rate denoted pflip. B Mean ternarized reorientation ∆ of the next bout,

given the current bout reorientation. Shaded area is the sem, solid line is the fit (equation 1). C Temperature

dependence of pflip. The dashed line at 0.5 indicates a memoryless process. D Schematic representing a

motion sequence generated by the two discrete Markov chains. The hidden underlying orientational signal

that sets the left/right state of the fish is exposed only when the fish performs a turning bout and can be

estimated (dashed line) for each trajectory. E Trajectory-averaged autocorrelation function of ∆ (R∆∆) and

associated fit (equation 2). F Temperature dependence of kflip, extracted from two methods: pflip divided

by the mean interbout interval associated with each temperature (red, shaded area is the s.e.m.) and from

the fit of the autocorrelation function (purple, error bar 95% confidence interval).
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Figure 4: Correlations between parameters are conserved across temperatures. A Two qualitatively different

trajectories recorded at the same temperature (30°C). B Pearson’s correlation matrices of the average

reorientation angle δθ, interbout interval δt and displacement d, along with the turning rate kturn and

flipping rate kflip defined for each trajectory, at different temperatures. Large panel: average over all

temperatures. C All per-trajectories values in the 4-dimensional parameter space of correlated variables. Dot

size encodes interbout intervals, large black-circled dots are temperature-averaged parameters with IBI not

encoded. D Variance explained by each principal component of a PCA performed on each intra-temperature

feature matrix. E-F Coefficients of the principal components for intra-temperature matrices (colors), for the

inter-temperature averaged matrix (black square) and for the pooled per-temperature array (solid line). E

First principal component (PC1), F second principal component (PC2). G All per-trajectory values projected

into the principal component space (first two PCs), and their associated marginal distributions for each

principal vector.
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Figure 5: Diffusive-like exploration of the behavioral manifold for individual fish. A Two qualitatively

different trajectories from the same fish at the same temperature (26°C), recorded at 1h interval. B-C

Coefficients of the two first principal components for 18 different fish (one color corresponds to one fish).

The solid line is the PC coefficients computed from the multi-fish experiments as shown in figure 4E-F. D

Time-evolution of the projections in the 2D PCA space from an example fish. One dot corresponds to one

trajectory whose parameters are projected on the multi-fish PC space. Color encodes the time at which the

trajectory starts. E-F Autocorrelation function of the projections on (E) PC1 and (F) PC2, averaged across

fish. Gray area is the standard error of the mean. Red line is the autocorrelation function of a simulated

Ornstein–Uhlenbeck process whose bias parameter (1/τ) is fitted to the data.
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Figure 6: Simulations indicate that zebrafish does not need gradient information to perform negative

thermotaxis. A Example trajectories generated with a simulation based on rescaled multivariate distributions

(see Methods). B Mean square displacement, from data (dots) and simulation (line). C Mean square

reorientation, from data (dots) and simulation (line). D Distributions of presence of simulated fish through

time, for four strengths of temperature gradient. The white curve is the average position over time. The

expected value for a uniform distribution is highlighted on the colormap. E Steady-state distribution of

presence as a function of temperature. The dashed line is the expected value for an uniform distribution. F

Temporal evolution of the average position over time (only the first 75 bins are shown for readability). G

Distribution mean as a function of the time rescaled by the squared pool length.
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4 STAR Methods365

Animals maintenance Experiments were performed with wild type Danio rerio, aged 5 to 7 days post-366

fertilization (dpf). Larvae were reared in Petri dishes containing embryo medium (E3), at 28°C, with a 14/10367

hours cycle of light/dark and were fed with nursery powder GM75 everyday from 6dpf. Experiments were368

done during daytime, in E3. They were approved by Le Comité d’Éthique pour l’Expérimentation Animale369

Charles Darwin C2EA-05 (02601.01).370

Experimental setup A pool made of copper (100×45×2.5 mm3) painted in black (Rust-Oleum) is stuck371

on two 78W Peltier modules (Adaptive) with thermal tape (3M). A transparent, 2mm-thick PMMA cover is372

placed over the pool with 2mm spacers to minimize water evaporation, leaving a water thickness of 4.5mm.373

To check the harmlessness of this confined configuration, ten zebrafish larvae were left overnight inside374

the setup. All survived and were swimming actively. The temperature is measured at both ends of the375

pool with thermocouples type T (Omega). The two left/right error signals (Ttarget − Tmeasured) are used376

within two independent PID loops implemented on an Arduino Uno board (Arduino) whose coefficients377

have been optimized manually. Each PID regulates the PWM frequency sent to a H-bridge driving the378

power sent to the two Peltier modules. A graphical user interface (GUI) written in C++ using the Qt379

framework is used to monitor the measured temperatures and to impose the target temperatures on both380

ends. Due to its high thermal diffusivity, the copper piece quickly reaches a uniform temperature and acts as381

a thermostat for the water. After about 4 minutes, the temperature of the water in the center of the pool382

has reached the set temperature (±0.2°C), which then remains constant over time. The GUI monitors the383

bath temperatures while grabbing frames from a CMOS camera (FLIR Chameleon3 CM3-U3-13Y3M-CS)384

coupled wih a macrolens (Navitar) at 25 frames per second. The whole apparatus is placed in a light-tight385

box, illuminated with a homogeneous white light emitted by a LED panel (Moritex) placed on the side; a386

mirror placed at the other side limits significant phototactic bias in the small direction of the pool. All codes387

mentioned above are available on Github (https://github.com/LJPZebra/ThermoMaster) under a GNU388

GPLv3 licence. Blueprints of the box and pool as well as electronic designs are available upon request.389

Experimental protocols The pool is filled with E3. A temperature is randomly drawn from 18, 22, 26,390

30, 33°C and set with the GUI. After 10 minutes, a batch of 10 zebrafish larvae is introduced in the pool.391

After 10 minutes of habituation, the fish kinematics are monitored for 1800s (half an hour). We checked for392

steady-state by looking at mean presence distributions and mean bout frequency distributions during three393

time windows (beginning, middle and end of the 1800s). The distributions within each time-window are not394

significantly different (p > 0.1, two-sample Kolmogorov-Smirnov test). Fish remain in the pool while we395

randomly draw a new non-tested temperature. After 20 minutes (temperature regulation and habituation), a396

new recording of 1800s is performed. The five temperatures are not systematically tested on all batches, but397

for each temperature, 10 different batches of 10 fish are used. In total, the experiments involved 17 different398

batches. The sample size was not statistically determined beforehand.399

For single-fish experiments, the same protocol is used except that a single fish was placed in the pool. The400

recordings last for 2h and only T=26°C is tested.401
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For thermal gradient experiments (figure S4), 10 larvae are used during 45 minutes. The first 5 minutes are402

recorded with a uniform temperature of 22°C, then a linear gradient is imposed during 40 minutes, from 18°C403

to 33°C. The gradient direction (i.e. which side is set to either 18°C or 33°C) is chosen randomly. 10 different404

batches are tested. The distribution of presence along the gradient is computed over the last 2 minutes (5%405

of the gradient duration) such as to allow enough time for the animals to reach a steady-state.406

Tracking and basic analysis Larvae were tracked offline using the open-source FastTrack software [23],407

https://www.fasttrack.sh). It generates a text file containing the position of each fish’s center of mass408

and body angle across frames until they leave the defined ROI. Kinematic analyses were performed using409

MATLAB (R2020a, Mathworks). Bouts are detected when the instantaneous speed is greater than two times410

the overall variance of the speed. Putative bouts are then filtered on a distance criterion (bouts with a411

linear displacement - measured in a time window of ±0.5s centered on the bout onset - less than 0.3mm412

or greater than 18mm are rejected) and on a temporal criterion (bouts occurring within 0.4s after a bout413

are rejected). Bout timing is defined as 80ms before the velocity peak. Detection performance was checked414

manually on randomly selected sequences. From positions, time and body angles before and after a bout415

event, we computed displacements, interbout intervals, and turn angles associated with each bout. Data are416

split into trajectories, from one edge of the ROI (set at 5mm from the walls) to another. Only trajectories417

that last at least 25 seconds, with at least 10 bouts, with 3 bout types (left turn, right turn and forward scoot)418

are kept for further analysis. Trajectories last on average 67s (median 47s, 95th percentile 178s) and contain419

on average 60 bouts (median 44 bouts, 95th percentile 154 bouts). All MATLAB routines are available on420

Gitlab (https://gitlab.com/GuillaumeLeGoc/thermomasterlab) under the GNU GPLv3 licence.421

Bout classification To discriminate whether a bout falls in the forward or the turning categories, we422

fitted the one-sided (absolute value) reorientation angles distributions with the sum of a zero-mean Gaussian423

distribution and a gamma distribution. The Gaussian corresponds to the part of the distribution close to zero,424

while the gamma function aims at describing the distribution of high angles reorientations. We manually425

set the Gaussian width and the scale parameter of the gamma function based on the observed distributions.426

We fitted the shape parameter for each temperature, ensuring that the slope at high angles in logarithmic427

scale is well reproduced. Then, we defined a fixed threshold for the angles to be considered as a turn or a428

forward bout. This threshold is the angle at which the two distributions cross, invariably found around 10°429

(10.25± 0.23°,mean± sd). This value of 10° (0.17rad) was used to classify bouts throughout this work.430

Displacement correction We noticed that the displacement corresponding to a turn event was systemati-431

cally larger than the displacement associated to a forward event. This is due to the fine structure of a turning432

bout: first, the fish performs a small reorienting bout, then it scoots forward [21]. Since we do not look at433

this fine structure, the overall displacement during a turn bout is geometrically overestimated and would bias434

temperature-to-temperature comparison. We computed the ratio between displacements during turns and435

the ones during forward swims, and found a factor of 1.6 ±0.1, regardless of the temperature. Therefore, in436

all analyses presented in this work, all displacements corresponding to a turn event were corrected by a factor437

1/1.6 = 0.625.438
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Statistical methods Probability density functions (pdf) were computed with a kernel density estimation439

through the built-in Matlab function ksdensity, with a bandwidth of 0.1 for interbout intervals and440

displacements and 0.5 for turn angles. For the distributions of figure 2, a pdf was computed for each batch441

and the mean and standard error of the mean are computed. For rescaled curves (figure S3), data from all442

experiments were pooled to compute the temperature-average quantity XT and rescaled values. Boxplots443

were made with the built-in Matlab function boxchart, using as input data the means of the respective444

quantities for trial (one dot corresponds to a batch of 10 fish). For simulations of navigation, averages over445

temperature were computed by pooling all bout events from all experiments corresponding to this particular446

temperature. pturn and pflip values were estimated for each trajectory and then averaged. Error bars for447

those temperature averages and for the pdf shown in figure S3 were all computed using bootstrapping with448

1000 boots to get the 95% confidence interval through the built-in bootci function. Errors were propagated449

for the ratio of pflip and 〈δt〉T in figure 3F.450

Reorientation dynamics The two Markov chains model has been described in details in a previous study451

[19]. We first binned the reorientation angles δθ into a ternarized reorientation ∆, with values -1 (right452

turn R), 0 (forward bout F ) and +1 (left turn L). To extract pflip, we analytically derived the mean453

reorientation ∆n+1 given the previous reorientation ∆n. There are 9 combinations of bouts {n;n + 1}:454

{L;L}, {L;R}, {L;F}, {F ;L}, {F ;R}, {F ;F}, {R;L}, {R;R}, {R;F}. All combinations involving a forward455

bout yield 0. Remain combinations with two turns in the same direction and two turns in the opposite456

direction. For a turn in direction L (resp. R), the associated probability corresponds to the case where a flip457

occurred (i.e. the previous bout was in direction R, resp. L) and the case where no flip occurred (i.e. the458

previous bout was in direction L, resp. R). Noting ∆R
n and ∆L

n the turns in the right and left direction at459

bout n, the mean reorientation given the direction of the previous bout reads :460

〈∆n+1〉∆L
n

= pturn(pflip∆R
n + (1− pflip)∆L

n)

〈∆n+1〉∆R
n

= pturn(pflip∆L
n + (1− pflip)∆R

n )

These equations can be summed up as:461

〈∆n+1〉∆n
= pturn(1− 2pflip)∆n (1)

This is the fit used in figure 3B.462

A random telegraph signal is a binary stochastic process with constant transition probability per unit of time.463

In the case where both states are equiprobable, the two transition rates (here noted kflip) are equal. For464

such processes, the time spent in one or the other state (left or right) is exponentially distributed [27] and465

the autocorrelation function for a zero-mean signal reads :466

R∆∆(t) = e−2kflipt (2)

This is the fit used in figure 3E.467
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Mean square displacement (MSD)
〈
d2
〉

and mean square reorientation (MSR)
〈
δθ2

〉
were computed using468

the MATLAB package msdanalyzer [47]. All (x, y) and δθ sequences are pooled by temperature for both469

data and simulations, the MSD and MSR were computed for each sequence and we show in figure 6B-C the470

ensemble average for each temperature with the standard error of the mean.471

Principal components analysis The “features matrices” were built for each temperature. They include,472

for each trajectory, mean interbout intervals, turn probability, flip rate (estimated as pflip/ 〈δt〉, pflip being473

extracted as explained above, for each trajectory), mean reorientation angle of turning events and mean474

displacements. Each set was standardized (centered and normalized by its standard deviation) before being475

processed by the single value decomposition (SVD) algorithm through the built-in pca function. Those 5476

intra-temperature standardized arrays are then concatenated to form the so-called pooled matrix, that is in477

turn used to find a common space through PCA. For projection, each set was normalized by the standard478

deviation of all the pooled data (regardless of temperature) and not centered for comparison purposes. The479

aforementionned common space was also used to project data from single-fish experiments.480

Numerical Ornstein–Uhlenbeck process The single-fish experiments contains 48 ± 16 trajectories481

(mean ± s.d.). One trajectory translates to one point in the PC space, therefore we linearly interpolated the482

projections in order to have PC projections defined on the same time vector that corresponds to the experiment483

duration (7200s), sampled every second. For each fish, on both PC, we computed the autocorrelation function484

(figure S2B-C) and averaged them (figure 5E-F, black line is the mean, shade is the s.e.m.).485

Numerical simulations of the Ornstein–Uhlenbeck (O.U.) process were sequentially implemented using the

following equation [48] :

Xi+1 = Xi +
√

2DNi

√
δt+ k(µ−Xi)δt

where D is the diffusion coefficient (units [X]2.s−1), k = 1/τ the bias term (units s−1), µ the drift term486

(units [X]), δt the time interval chose for the simulation (units s) and N is a random number drawn from a487

normal distribution. In our case, the drift term was always 0.488

To determine τ , we generated 500 realisations of the O.U. process with D set to 1 and τ set to values in a489

given range. For each realisation, we computed the autocorrelation function (ACF) and averaged them across490

realisations. We then computed the residual sum of square (RSS) and chose the minimum one to select the491

best parameter τ . After manually narrowing down the best range for τ (PC1 : 2000s to 3000s, 1000 values;492

PC2 : 1900 to 2100s, 1000 values), we repeated the previous process 20 times to get 20 “best τ” and we493

report the mean ± s.e.m. in the text and figure.494

Numerical simulations of trajectories Trajectories were simulated using the framework described in495

figure S3, based on the hypothesis that (1) spatio-temporal dynamics can be reproduced solely from five496

parameters, (2) per-bout values of interbout intervals (δt), displacements (d) and turn angles (δθ) are drawn497

from a distribution that can be decomposed as X = XTY ε, (3) the per-trajectory values of turning probability498

(pturn) and flipping probability (pflip) are drawn from a distribution that can be decomposed as X = XTY499

and (4) the trajectory-averaged parameters are correlated. Note that for the simulations we use pflip rather500

than flipping rate for simplicity in the code implementation.501
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XT , the temperature average. All per-bout values of δt, d, reorientation angle of turn events (δθt) and502

reorientation angles of forward events (δθf ) are pooled by temperature and the mean is computed. A pturn503

and a pflip is estimated for each trajectory, pooled by temperature and averaged (figure S3B-E, left column).504

Y , the trajectory means variability. For each trajectory, a mean value is computed for δt, d and δθt/f505

while pturn and pflip are extracted. They are then rescaled by the corresponding temperature average value506

computed above. For each temperature, a cumulative density function (cdf) is computed. They are then507

averaged across temperatures to get a single Y cdf for each parameters (pdf shown in figure S3B-E, middle508

column).509

ε, the per-bout variability. Similarly, for each trajectory we rescale values of δt, d and δθt/f by their510

corresponding trajectory mean. Then, all events are pooled by temperature and a cdf is computed. Finally,511

we will use the mean cdf, resulting in a single ε cdf for per-bout parameters. pturn and pflip are defined for a512

trajectory, hence they do not have bout to bout variability (pdf shown in figure S3B-D, right column).513

Correlations of means. We compute the Pearson’s correlation matrix of the trajectories’ parameters (trajectory514

means and probabilities), for each temperature. The coefficients are then averaged to get a single correlations515

matrix 〈Rtraj〉T .516

Algorithm. After choosing a number n of fish (trajectories), we generate multivariate distributions (copulas)517

with the MATLAB built-in mvnrnd function, with the mean 〈Rtraj〉T correlations matrix as input. It produces518

5 marginal sets of n gaussian random numbers, correlated with one another. We then get the corresponding519

normal cdf, which is in turn used to sample the corresponding Y cdfs, inversing the latter. Finally, those520

samples are multiplied by the corresponding temperature average XT . A bout is generated by sampling521

a displacement and a turning angle, along with a interbout interval during which the virtual fish stands522

still, from the generic cdf of ε. Those values are multiplied by the trajectory means drawn earlier, and the523

new position (x, y) is computed. The next bout is generated, and so on. For the gradient simulations, the524

same strategy is used, at the notable difference that the temperature averages are determined dynamically525

given the position of the agent along the temperature gradient. We used reflective boundary conditions. We526

checked the consistency between parameters distributions from the data and from the simulations, as well as527

correlations between trajectory means.528

Supplementary materials529

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435787
http://creativecommons.org/licenses/by-nc/4.0/


March 17, 2021

0.5

0

-0.25

R
bo

ut
s

A B 1

-1

0

RT

C

PC1 PC2 PC3 PC4 PC5

100

50

0

E
xp

la
in

ed
 v

ar
ia

nc
e(

%
)

PC1 PC2 PC3 PC4 PC5

2

1

0

E
ig

en
va

lu
es

D

Figure S1: Correlations between parameters. A Pearson’s correlation coefficients between per-bout parameters,

reorientation angles of turn bouts, interbout interval and displacement. B Pearson’s correlation matrix

between temperature-averaged parameters. C Variance explained by the principal components of the inter-

temperature matrix. D Eigenvalues of the pooled intra-temperature matrix. The red line highlights the

Kaiser-Guttman criterion.
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Figure S2: PCA in single-fish experiments. A Variance explained by the five principal components for

each single-fish. B-C Autocorrelation function of the projection on PC1 (B) and PC2 (C) from each fish

in single-fish experiments. The color code is the same as in A, black line and shaded area is the mean

and s.e.m. across fish. D Mean variance of projections across time (intra, purple) and overall variance of

projections (green). Error bars for intra is the s.e.m. and error bars for overall is 95% confidence intervals

after bootstrapping (n=1000 boots).
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Figure S3: Temperature-independant rescaling of parameters. A Equation describing parameter X distribution.

B-E Left to right, temperature-averaged value, trajectory-averaged rescaled by temperature averaged-value

and per-bout value rescaled by the trajectory average, for B interbout intervals, C displacements, D

reorientation angle of turn events, E turning probability.
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Figure S4: Fish position distributions along a linear thermal gradient. Presence probability density function

of 10 batches of 10 larvae experiencing a thermal gradient from 18°C to 33°C. Solid line is the mean across

batches, shaded area is the s.e.m. Dashed line is the expected value for a uniform distribution.
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