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Abstract 

Resting state fMRI has been employed to identify alterations in functional connectivity within 

or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol 

(THC), the psychoactive component in cannabis. Most studies focused a priori on a limited 

number of local brain areas or circuits, without considering the impact of cannabis on whole-

brain network organization. The present study attempted to identify changes in the whole-

brain human functional connectome as assessed with ultra-high field (7T) resting state scans of 

occasional (N=12) and chronic cannabis users (N=14) during placebo and following vaporization 

of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and 

connICA, were used to identify changes in functional connectomes associated with acute 

cannabis intoxication and chronic cannabis use. Both methodologies revealed a broad state of 

hyperconnectivity within the entire range of major brain networks in chronic cannabis users 

compared to occasional cannabis users, which might be reflective of an adaptive network 

reorganization following prolonged cannabis exposure. The connICA methodology also 

extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal 

attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the 

default mode and ventral attention network, that was associated with the feeling of subjective 

high during THC intoxication across both user groups. Whole-brain network approaches 

identified spatial patterns in functional brain connectomes that distinguished acute from 

chronic cannabis use, and offer an important utility for probing the interplay between short and 

long-term alterations in functional brain dynamics when progressing from occasional to chronic 

use of cannabis. 
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Introduction 

The endocannabinoid system has been implicated to play a modulatory role in cognition and 

motor function, neuroprotection, nociception, synaptic plasticity and inflammation 
1
. 

Cannabinoid type 1 (CB1) receptors are widely expressed in the brain at presynaptic terminals 

that are activated by endocannabinoids, a group of retrograde neurotransmitters that include 

anandamide and 2-arachidonoylglycerol 
2
. Activation of CB1 receptors leads to suppression of 

glutamate and GABA release from the presynaptic terminal and modulates a wider range of 

neurotransmitter circuits of which they are part 
3,4

. CB1 receptor activation is also thought to be 

responsible for the disruptive effects on human brain function, cognition and psychomotor 

performance caused by exogenous cannabinoids such as Δ9-tetrahydrocannabinol (THC), the 

psychoactive ingredient of cannabis 
5-12

. A number of human studies have confirmed that 

psychoactive and physiological effects of cannabis can be successfully blocked or attenuated by 

the coadministration of a CB1 antagonist 
13-16

. 

In addition to the acute psychoactive effects of cannabis, studies have also 

demonstrated residual cognitive deficits in chronic cannabis users 
17-19

. Typically, such deficits 

decrease during abstinence and do not persist beyond 4-5 weeks 
17,20

. Likewise, studies have 

shown that cortical CB1 receptors become downregulated with years of cannabis use, but 

quickly start to recover within days and return to control levels within 4 weeks of abstinence 
21-

23
. These findings suggest that changes in CB1 receptor signaling contribute to the development 
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of cognitive deficits resulting from chronic exposure to cannabis and that recoveries of CB1 

receptors and cognitive deficits observed during cannabis abstinence are related 
24

. 

Recent advances in functional magnetic resonance imaging (fMRI) have allowed 

researchers to investigate neuronal-related temporal fluctuations in the activity of different 

areas in the brain. The study of the pairwise correlated/anti-correlated activity between 

different brain regions has become popularly known in the research community as “functional 

connectivity” 
25

. Functional connectivity measures have been employed to identify brain areas 

that underlie acute and chronic cannabis effects on cognitive function. Overall, these analyses 

have shown that acute THC intoxication causes reductions in functional connectivity within the 

mesocorticolimbic circuit and the salience network, and that these changes are associated with 

decrements in cognitive function or increments in psychotomimetic symptoms 
10,11,26-30

. Chronic 

use of cannabis has also been associated with a range of functional connectivity alterations that 

can be measured during abstinence. Hypoconnectivity in corticostriatal circuits was associated 

with anhedonia 
31,32

, whereas increased functional connectivity in the posterior cingulate cortex 

alongside reduced functional connectivity in the hippocampus was associated with memory 

impairment in chronic cannabis users as compared to controls 
33

. Chronic cannabis users also 

displayed increased functional connectivity between frontal brain areas and subcortical regions 

34,35
 that have been associated to impulsive behavior 

35
 and mood 

36
. Likewise subcortical 

hyperconnectivity has been reported in cannabis dependence 
37

. 

 Most functional connectivity studies in cannabis users focused a priori on a limited 

number of local brain areas to define acute and residual effects of THC on brain function. Only 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434333
http://creativecommons.org/licenses/by-nc-nd/4.0/


one study so far has attempted to define patterns of whole-brain functional connectivity within 

and between the entire range of available brain areas to characterize cannabis induced states 

38
. That study revealed an association between cannabis intoxication and a specific pattern of 

functional connectivity alterations within and between auditory and somato-motor cortices 

that were anti-correlated to alterations in subcortical structures and the cerebellum. The 

relevance of looking at the entire human functional connectome is that it might allow 

delineation of comprehensive patterns of functional connectivity in response to acute as well as 

chronic exposure to cannabis. Recent advances in functional neuroimaging have provided new 

tools to measure these connections in disease states, e.g. neurological disorders and alcohol 

abuse 
39-41

, by studying the brain as a functional network (also called “functional connectome” 

or “functional connectivity matrix”) and by extracting connectivity patterns relevant to the 

disease at hand 
42

. Here we hypothesized that such patterns of connectivity might fluctuate as a 

function of cannabis use history and transiently change during cannabis exposure. In turn, this 

might serve as important markers of brain function, particularly when their variability is 

associated with alterations in cognitive and behavioral variables that affect real-world functions 

of cannabis users.   

The present study therefore attempted to identify changes in the whole-brain human 

functional connectome of occasional and chronic cannabis users during a placebo treatment 

and following vaporization of cannabis. We used two distinct data-driven methodologies to 

identify changes in functional connectomes. The first, Network-Based Statistics (NBS), is a 

common procedure to make statistical inferences on functional connectomes 
43

. The second, 

connICA 
44

, uses independent component analysis in the connectivity domain to extract 
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patterns of connectivity that are associated with clinical characteristics such as, in the case of 

this work, cannabis use history and level of cannabis intoxication. We expected that this first 

functional connectome-based investigation would offer unique insights into the alterations of 

human brain networks’ connectivity following acute and chronic cannabis use. 

  

Methods 

Participants, design and procedures 

Participants were recruited through advertisements around Maastricht University. Inclusion 

criteria were: age, 18-40 years; occasional cannabis use for the occasional group, ranging 

between 1 time a month and 3 times a week for the past year; chronic cannabis use for the 

chronic group, using at least 4 times a week for the past year; body mass index between 18 and 

28 kg/m2; and written informed consent. Exclusion criteria were: history of drug abuse (other 

than the use of cannabis) or addiction; pregnancy or lactation; health issues including 

hypertension (diastolic >90 and systolic >140), cardiac dysfunction, and liver dysfunction; 

current or history of endocrine, neurological, psychiatric disorders; use of psychotropic 

medication; previous experience of serious side effects to cannabis; and MRI contraindications. 

Before inclusion, subjects were screened and examined by a study physician, who checked for 

general health, conducted a resting ECG, and took blood and urine samples in which 

hematology, clinical chemistry, urine, and virology analyses were conducted. Participant 
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demographic data can be found in Table S1. Overall, demographics did not differ between 

groups, except for their frequency of cannabis use. 

The study was conducted according to a double-blind, placebo-controlled, mixed 

cross-over design in occasional (N=14) and chronic cannabis users (N=12). Each participant 

received cannabis placebo and cannabis (300 μg/kg THC) on separate days, separated by a 

minimum wash-out period of 7 days. Medical cannabis (Bedrobinol; 13.5% THC) was obtained 

from Bedrocan, the Netherlands. Treatment orders were randomly assigned to participants. 

Cannabis and cannabis placebo were administered through a Volcano vaporizer (Storz & Bickel 

Volcano ®, Tuttlingen, Germany), with participants inhaling equal amounts of each while lying in 

the MRI scanner. The treatments were vaporized at 225°C and the vapor was stored in a 

polythene bag equipped with a mouthpiece.  Participants were instructed to place the 

mouthpiece to their lips, inhale deeply for 4 seconds, hold their breath for 10 seconds, and then 

exhale. Participants repeated this procedure until the balloon was empty.  Participants were 

instructed to inhale the entire volume of the balloon within 5 minutes. Participants received 

two resting state scans at 15 min and 36 min after inhalation. Resting state scans were 

preceded by a psychomotor vigilance task and the collection of a blood sample and were 

directly followed by a rating of subjective high. Outcome parameters were averaged across 

successive measurements to yield a single value per individual in each treatment condition to 

serve as input for the connectome analysis. The current study was registered in the Netherlands 

trial register (NTR4897). A previous analysis of THC effects on seed-based functional 

connectivity within the mesocorticolimbic circuit employing the same data set has been 

published elsewhere 
11

. 
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Participants received a training day prior to the treatment conditions to become 

familiarized with the study procedures.  Participants in the occasional users group were 

instructed to refrain from drug use, including cannabis, (≥7 days) and alcohol (≥24 hours) prior 

to their testing day; whereas participants in the chronic group were given the same 

instructions, however were allowed to use cannabis up until 24 hours prior to their testing day. 

Absence of drug and alcohol was assessed via a urine drug screen and a breath alcohol screen 

at the start of a test day. A pregnancy test was given if participants were female. If all tests 

were found to be negative (except for cannabis in the chronic group), participants were allowed 

to proceed.  

The study was conducted according to the code of ethics on human experimentation 

established by the declaration of Helsinki (1964) and amended in Fortaleza (Brazil, October 

2013) and was approved by the Academic Hospital and University's Medical Ethics committee. 

All participants gave their written informed consent. A permit for obtaining, storing, and 

administering cannabis was obtained from the Dutch Drug Enforcement Administration.   

  

Subjective and behavioral measures 

Sustained attention was assessed via the psychomotor vigilance task (PVT), a 5- minutes 

reaction-time task that measures the speed with which participants responds to a visual 

stimulus 
45

. The primary outcome measure of the task is the  number of attentional lapses 

(reaction time >500 ms). Participants also rated their subjective high on visual analog scales (10 
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cm) on two consecutive time points after treatment administration, on a scale between 0 (not 

high at all) and 10 (extremely high). Both measures were conducted by the participants while in 

the scanner. 

  

Pharmacokinetic measures 

Blood samples (8 mL) to determine cannabinoid concentrations (THC and metabolites OH-THC 

and THC-COOH) were taken at baseline and prior to resting state measures and analyzed 

according to a standardized procedure 
46

.. 

  

Resting state functional connectivity. 

All participants underwent a resting state functional MRI. Images were acquired on a 

MAGNETOM 7T MR scanner. A total of 258 whole-brain EPI volumes were acquired at rest (TR = 

1400 ms; TE = 21 ms; flip angle = 60°; oblique acquisition orientation; interleaved slice 

acquisition; 72 slices; slice thickness = 1.5 mm; voxel size = 1.5 × 1.5 × 1.5 mm). During 

scanning, participants were shown a black cross on a white background and were instructed to 

focus on the cross while attempting to clear their mind. 

fMRI data were processed with an in-house developed pipeline based on Matlab and 

FSL, using state-of-the-art guidelines 
39,47,48

. These steps included: BOLD volume unwarping (FSL 

apply topup), slice timing correction (FSL slicetimer), realignment (FSL mcflirt), normalization to 
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mode 1000, demeaning and linear detrending (Matlab detrend), regression (Matlab regress) of 

18 signals: 3 translations, 3 rotations, and 3 tissue-based regressors (mean signal of whole-

brain, white matter (WM) and cerebrospinal fluid (CSF)), as well as 9 corresponding derivatives 

(backwards difference; Matlab). We also kept track of the fMRI volumes that were highly 

influenced by head motion, by using three different metrics: 1) Frame Displacement (FD, in 

mm); 2) DVARS (D referring to temporal derivative of BOLD time courses, VARS referring to root 

mean square variance over voxels) (Power et al. 2014); 3) SD (standard deviation of the BOLD 

signal within brain voxels at every time-point). The FD and DVARS vectors (obtained with 

fsl_motion outliers) were used to detect outlier BOLD volumes with FD > 0.3 mm and 

standardized DVARS > 1.7. The SD vector obtained with Matlab was used to detect outlier BOLD 

volumes higher than 75 percentile + 1.5 of the interquartile range per FSL recommendation 
49

. 

A bandpass first-order Butterworth filter [0.009 Hz, 0.08 Hz] was applied to all BOLD time- 

series at the voxel level (Matlab butter and filtfilt). As a final denoising step, the first three 

principal components of the BOLD signal in the WM and CSF tissue were regressed out of the 

gray matter (GM) signal (Matlab, pca and regress) at the voxel level. 

A whole-brain data-driven functional parcellation based on 278 regions 
50

, was 

projected into each subject's T1 space (FSL flirt 6dof and FSL flirt 12dof) and then into native EPI 

space of each subject. The voxelwise BOLD signals were averaged into the corresponding Shen 

brain regions, and then functional connectomes were computed as Pearson’s correlation 

between time series of all region pairs. Finally, the resulting functional connectomes (278 

cortical and subcortical nodes) were ordered according to seven cortical resting state networks 

(RSNs) as proposed by Yeo et al. 
51

. These included the visual (VIS), somatomotor (SM), dorsal 
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attention (DA), ventral attention (VA), limbic (L), frontoparietal (FP) and the default mode 

network (DMN). For completeness, we added two more networks: one composed of the 

subcortical and one for the cerebellar regions. 

We explored functional connectome changes in a population of chronic and occasional 

cannabis users, using two different methodologies. The first, network-based statistics (NBS), is 

a  connectome-wide analysis where hypothesis testing at each and every element of the 

connectivity matrix is performed. The second, connectivity independent component analysis 

(connICA), extracts independent subsystems of connectivity from the individual functional 

connectomes. These subsystems can then be associated with behavioral and demographic 

scores or scores related to treatment and cannabis use history. 

  

Network based statistics on functional connectomes of occasional and chronic users 

The network-based statistic (NBS) is a popular network-specific approach to control the family-

wise error rate (FWER) when performing mass univariate testing on all connections in a 

functional or structural connectome 
43

, between two or more groups (e.g., in the case of this 

work, between occasional and chronic users). The NBS is used in settings where each 

connection is associated with a test statistic and corresponding p-value, and the goal is to 

identify groups of connections showing a significant effect while controlling the FWER. The 

approach is somewhat analogous to cluster-based approaches developed for performing 

inference on statistical parametric maps in human neuroimaging 
52,53

. Instead of identifying 
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clusters of voxels in physical space, the NBS identifies connected subnetworks in topological 

space. The size of a subnetwork is most typically measured by the number of edges that it 

comprises. A summary description of the NBS workflow is given in Figure 1A. 

Briefly, NBS independently computed a univariate test statistic (e.g. t-statistic) between 

the groups for each and every connection 
54

. The result is a matrix of test statistic values with 

the same dimensions as the connectome. We then threshold the test statistic matrix to keep 

only the significant edges. This thresholded matrix is then connected to components, that is 

subnetworks of edges showing a common statistical effect of interest (Fig. 1A2). The size of 

each component is stored. The size of a connected component can be measured as the number 

of edges it comprises. After the sizes of the observed components are computed, permutation 

testing is used to estimate a corrected p-value for the size of each observed component, by 

randomly shuffling the labels assigned to each network so that the “random” groups comprise a 

mixture of actual occasional and chronic cannabis users. The analysis is then repeated and the 

size of the largest component is stored. We repeat this procedure many times to generate an 

empirical null distribution of maximal component size. The corrected p-value for a component 

of size m is then given by the proportion of permutations for which the largest component is 

equal to or greater in size than m (Fig. 1A3). 

Here we used NBS to investigate whole-brain connectivity changes in functional 

connectomes of chronic and occasional users groups, during the placebo and the THC condition 

independently. In order to detect mean differences between functional connectome edges, we 
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used double-sided t-test (thresholded at p<0.01, i.e. T score = 3.1). The cutoff alpha for the 

giant component size was set to 0.05. 

  

Connectivity independent component analysis (connICA) on functional connectomes of 

occasional and chronic cannabis users 

ConnICA is a novel data-driven methodology that applies independent component analysis 
39

 to 

extract independent connectivity patterns from individual functional connectomes. Output of 

connICA includes: i) an “FC-component” representing an independent pattern of functional 

connectivity present across participants, and ii) each participant’s weight, quantifying the 

(signed) component strength or prominence in each individual FC matrix. A summary 

description of the connICA workflow is given in Figure 1B.    

After the initial NBS analysis where we aimed at looking into widespread changes in 

chronic and occasional users’ functional connectomes, we next applied connICA to zoom into 

the independent “components of interest” that significantly differentiated chronic and 

occasional users, as well as those that were associated with the acute intoxication effect of 

THC. Note that in this case we used all the functional connectomes from the two groups and 

the two conditions, to maintain the “blind data-driven” spirit of the connICA framework. 

Given the non-deterministic nature of the ICA decomposition into components 
55,56

, 

multiple ICA runs are required to select the most robust outcomes 
39,55

. As in previous work, we 

accounted for this by evaluating the robustness of the components (“FC-traits” in 
39

) over 100 
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FastICA runs. The FC-component was considered robust when it appeared in at least 75% of the 

runs, as defined by a correlation of 0.75 or higher across runs 
39

. Before running the connICA 

algorithm, we applied Principal Component Analysis 
57

 to perform noise filtering and 

dimensionality reduction, as recommended by work in machine learning 
58

 and neuroimaging 

communities 
59,60

. After this PCA-based preprocessing, we estimated the number of 

independent components 
39,61

. The two parameters of percent retained variance from PCA and 

number of independent components were broadly explored to find the optimal combination. 

For each block, we examined percent variance retained after PCA in the range [75%, 100%], in 

steps of 5%. Similarly, we evaluated the number of ICA components in the range [5, 25], in 

steps of 1. Considering our a-priori hypothesis, we aimed for the range of parameters where we 

had the greatest number of robust components, while preserving most of the information from 

the data (minimal PCA reduction). As depicted in Fig. S1, the optimal choice of these two 

parameters was 95% retained variance in PCA and 20 independent components. 

After connICA extraction of the most robust connectivity patterns from the dataset, we 

performed a multi-way analysis of variance model (MATLAB anovan), in order to account for 

the interactions between the different factors, including the repeated measures (i.e. 

participants' connectomes appearing repeatedly, in different conditions) effects. The predictors 

included in the ANOVA model were: Drug condition (THC or placebo); cannabis user group 

(occasional or chronic cannabis users), gender, age, rating of subjective high and number of 

lapses of attention as assessed in the psychomotor vigilance task. 
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Finally, we evaluated and reported the connICA components where the Anova model 

showed significant associations for the predictors of interest, after Bonferroni correction for 

multiple comparisons across the number of components tested (threshold was set to p<0.01, 

Bonferroni corrected). 

  

Statistics on subjective and behavioral measures 

A mixed-model analysis was performed consisting of the within-subject factors treatment (THC 

and placebo) and the between-subject factor of group (occasional or chronic) on mean 

subjective high ratings and number of attentional lapses averaged across two successive time 

points. The alpha criterion level of significance was set at p = 0.05. 

  

Results 

Subjective and behavioral data 

Mixed-model analyses of variance (ANOVA) yielded a significant main effect of Treatment on 

ratings of subjective high [F(1,23) = 40.26, p = <.001, ηp
 2

 = .641] and the number of lapses of 

attention [F(1,23) = 4.71, p = .041 ηp 
2
 = .169], indicating that subjective high and lapses of 

attention were higher in the THC condition as compared to the placebo condition. Separate 

contrasts revealed that THC increased lapses of attention primarily in occasional users [F(1,12) 

= 5.39, p = .039, ηp 
2
 = .310], but not in chronic users. The number of lapses of attention were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434333
http://creativecommons.org/licenses/by-nc-nd/4.0/


also significantly higher in occasional users as compared to chronic cannabis users [F(1,23) = 

9.21, p = .006, ηp 
2
 = .238].  Mean (SE) subjective ratings of high and lapses of attention are 

given in Table S2. 

  

THC concentrations in serum 

Mean (SE) concentrations of THC, 11-OH-THC, and THC-COOH in serum are given in Table S3.  

As expected from previous experience 
62

, THC [F(2,32) = 6.29, p = .023] and THC-COOH [F(2,34) 

= 6.29, p = .031] levels were higher in chronic users as compared to occasional users even 

though they received the same dose. 

  

Network based statistics 

We performed NBS T-statistic between the two cannabis user groups, when they were in the 

placebo condition and while they were under the influence of THC (Figure 2). Interestingly, NBS 

showed a significant broad difference in the functional connectome between the 2 users 

groups while under the influence of THC (T-matrix thresholded at T Score of 3.1, which equals 

p<0.01, Fig. 2A-D). The functional connectome revealed  (for T-test chronic>occasional) 

increments in functional connectivity within most Yeo-Networks (Figures 2B-D). T-tests 

comparing occasional>chronic mainly showed significant changes in network connectivity 

between DMN and dorsal and ventral attentional networks (Fig 2B-D). Group differences were 

less apparent during the placebo condition. Only the T-test chronic>occasional revealed a 
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significant difference in the sensory-motor network. NBS did not reveal any significant 

differences when comparing THC vs placebo conditions in each of the cannabis user groups (see 

Figure S2). 

  

ConnICA 

ConnICA allowed us to identify spatial functional connectome patterns that were related to 

chronic use of cannabis and to the acute state of THC intoxication. ConnICA extracted two 

components of interest. The first was associated with differences between the cannabis user 

groups across treatment conditions (Figure 3). The second was associated with differences in 

subjective high during cannabis and placebo, across the two cannabis user groups (Figure 4). 

The first component identified greater functional connectivity in chronic cannabis users as 

compared to occasional cannabis users in all networks (anova p < 0.01, Bonferroni corrected for 

multiple comparisons across connICA components). This finding appears broadly in line with the 

between cannabis user group differences that was obtained with NBS. The second component 

identified a functional connectivity pattern that was associated with the subjective state of 

cannabis intoxication as rated on visual analog scales of subjective high (anova p < 0.01, 

Bonferroni corrected for multiple comparisons across connICA components). The pattern 

consisted of an increase in functional connectivity between the default mode network and the 

ventral attentional network, and decreased functional connectivity between the subcortical 

network and the dorsal attentional network and between the cerebellum and the limbic 

network. Age and gender were not associated with a connICA pattern. A functional connectivity 
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pattern associated with attentional performance did not survive the correction for multiple 

comparisons. 

 

Discussion 

The present study aimed to determine the effects of acute and chronic cannabis use on the 

whole brain connectome using two previously established methodologies, i.e. NBS and 

connICA, which provided consistent and complementary results. Both NBS and connICA 

revealed strong increments in functional connectivity within the major brain networks in 

chronic cannabis users as compared to occasional users, suggesting a state of 

hyperconnectivity. Likewise, both methodologies showed that increments within network 

functional connectivity in chronic cannabis users were paralleled by decrements in connectivity 

between networks. The impact of cannabis use history on the human connectome appeared 

more prominent when using the connICA methodology that allows extraction of spatial 

patterns of connectivity associated with clinical characteristics. Apart from a state of 

hyperconnectivity in chronic cannabis users, the connICA methodology also extracted a distinct 

spatial connectivity pattern associated with the feeling of subjective high during cannabis 

intoxication across both users groups.  

Acute cannabis intoxication produced a select, spatial pattern in functional connectivity 

that was strongly associated with the feeling of subjective high in both user groups. Most 

prominent were decrements in functional connectivity between the subcortical and the dorsal 

attention network, and between the limbic and cerebellar networks that suggest a reduction of 
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top-down attention control 
63

 and motor coordination 
64

 during cannabis intoxication. These 

findings of reduced connectivity are largely in line with a series of studies that predominantly 

reported hypoconnectivity within brain circuits as a primary response during cannabis 

intoxication 
10,11,27

. A parallel increment in functional connectivity however was apparent 

between the default mode network and the ventral attention network. The ventral attention 

network is assumed to be involved in stimulus-driven shifts of attention 
63

 and its increased 

connectivity with the self-centered default mode network suggest an increased internalization 

of attention directed at monitoring of mind wandering or spontaneous cognition 
65

 during 

cannabis intoxication. As such, the spatial functional connectivity pattern identified by connICA 

reflects some of the core elements of cannabis intoxication including the feeling of subjective 

high and alterations in attentional and motor function 
66

. 

           NBS revealed hyperconnectivity within a number of brain networks of chronic cannabis 

users. ConnICA subsequently identified hyperconnectivity within all brain networks as a 

significant pattern that distinguished chronic cannabis users from occasional cannabis users. In 

addition, moderate increments in functional connectivity in chronic cannabis users were also 

observed between a select number of networks: i.e. between the limbic network and the DMN 

and subcortical brain areas, and between attentional networks and the somatomotor network. 

This broad pattern of hyperconnectivity was also paralleled by moderate reductions of 

functional connectivity between remaining network edges. The prime finding of 

hyperconnectivity across the whole brain connectome of chronic cannabis users adds to 

findings of previous imaging studies showing increased functional connectivity in subcortical 

and frontal regions 
33,37

 or between those regions  
34-36

. The present study, however, suggests 
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that functional hyperconnectivity in chronic cannabis users is not restricted to local brain 

circuits but can be observed across the entire whole brain connectome. 

           The widespread pattern of hyperconnectivity in the human connectome of chronic 

cannabis users can be interpreted in various ways. It may indicate  a general downregulation of 

CB1 receptors that are expressed across the entire central nervous system 
67

. A number of 

studies have shown a global reduction in CB1 receptor availability of 10-20% across the brain of 

chronic cannabis users 
21-23

 that might be expected to produce an operational disruption in 

neural signaling within the neurotransmitter circuits in which they are expressed 
3,4

. Previous 

studies have suggested that hyperconnectivity observed in resting state fMRI is a common 

response to neurological disruption that may be differentially observable across the entire 

brain 
68,69

. In the context of stimulant drug abuse, development of hyperconnectivity within 

brain circuits has also been related to countervailing resilience systems implicated in behavioral 

regulation and compensation 
70

. The finding that acute (i.e. hypoconnectivity) and chronic 

effects (hyperconnectivity) of cannabis on brain circuits are largely opposite may support the 

notion that chronic effects produced by cannabis might reflect a compensatory response of the 

brain to repeated cannabis use and thus stimulations of CB1 receptors. That also seems to be in 

line with the finding that chronic users of cannabis can develop (partial) tolerance to acutely 

impairing effects of cannabis,  presumably as a consequence of adaptive CB1 receptor 

downregulation 
12

. 

           Interestingly, none of the spatial patterns that were identified by connICA were 

associated with attentional performance differences between cannabis user groups or between 
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treatments even though these were evident from performance data. Effects sizes of differences 

in attentional performance however were relatively small and, in case of a treatment effect, 

limited to occasional users. This may have hindered a clear-cut attribution of attentional 

changes to a functional connectivity pattern across the cannabis user groups, particularly after 

corrections for multiple comparisons. Alternatively, changes in attentional performance may 

also be driven by local changes in a confined brain circuit that may go undetected in a spatial 

analysis of whole-brain network patterns. Previous analyses have indeed linked THC induced 

impairment of attention to a reduction in functional connectivity within (sub)cortical areas of 

the reward circuit of occasional cannabis users 
10

, but not in chronic cannabis users 
11

. In both 

cases, seed-based connectivity analyses were used to test the particular hypothesis that THC-

induced increment in dopamine release to the nucleus accumbens would alter its connectivity 

with neural structures in the reward circuit. Such lower-level, circuit-specific changes may be 

harder to identify with higher-level aggregation methods as employed in the present study. 

           Overall, the present study suggests an important utility for whole-brain network 

approaches in the identification and separation of acute and chronic effects of cannabis on the 

functional brain connectome. Incorporation of cross-network dynamics might identify 

neurobiological features or phenotype characteristics of impaired and adaptive behaviors that 

might arise during acute and chronic use of cannabis. Such models might provide unique 

insights into the emergence and maturation of distinct functional networks in users that 

progress from acute to chronic cannabis use, and into temporal alterations in network 

dynamics that underlie the development of pathological states 
71

, e.g. cannabis use disorder or 

cannabis-induced psychosis, in a subset of users. In general, approaches that focus on large-
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scale brain organization or distributed brain circuits are well equipped to capture the 

complexity of brain function 
72

 and subsequently may also be best suited to assess alteration in 

functional brain dynamics following cannabis use. 

In conclusion, we have shown with two separate methodologies that whole-brain 

functional connectomes can distinguish occasional from chronic cannabis users and identify 

acute cannabis intoxication, linking brain network dynamics with cannabis-induced long and 

short-term changes. This work is relevant for probing the neurobiological basis of behavioral 

function and dysfunction related to cannabis use, and its associated brain network dynamics, as 

well as to substance use in general.   
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Fig. 1. Workflows of NBS (upper panel) and connICA (lower panel).  A1) NBS starts from two groups 
of functional connectomes, in this case from occasional and chronic cannabis users. A2) A t-test is 
performed edgewise resulting in a matrix of T-statistic values. This matrix is then thresholded to yield a 
binarized T-statistic matrix. A3) The giant component (largest connected component) of the T-statistic 
matrix is computed and its size compared with the ones obtained by doing T-statistic by randomly 
shuffling occasional and chronic users’ functional connectivity. The red line indicates the cut-off for 
declaring a component size as statistically significant (α < 0:05). The blue line shows the observed size of 
the component for T-matrix in A2. A4) Brain render of the nodal strength of the regions most involved in 
the T-statistics. Bottom) connICA 

39 workflow. B1) The upper triangular elements of each individual 
functional connectivity matrix (from both occasional and chronic users) are added to B2) a matrix whose 
rows indicate subjects, and columns subjects’ vectorized whole-brain functional connectomes. B3) The 
ICA algorithm extracts M independent components (i.e., patterns) associated with the whole population 
and their relative weight in each subject. Functional connectivity, expressed as Pearson’s correlation 
coefficient values for individual FC matrices. The bar plots above the FC components indicate the 
individual prominence or amount (i.e. weights) of each extracted FC independent component in the 
original single-subject FC on the left side of the figure. They are color-coded according to the group 
membership (i.e. chronic or occasional weights). B4) Brain render of the nodal strength of the regions 
most involved in a specific connICA robust component.  
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Fig. 2. Network-based analysis of functional connectome changes between occasional and 
chronic cannabis users in each treatment condition. B-F) T-statistic matrix threshold at |T|>3.1 (which 
corresponds to double-sided p< 0.01) for edgewise group differences between chronic users (CU) and 
occasional users (OU), during THC (B) or Placebo (F) condition. The brain regions are ordered according 
to the resting-state network organization proposed by Yeo et al (REF). A-E) Giant component size 
extracted from the T-statistic matrix on the observed effect (Red for CU>OU; Teal for OU>CU) and the 
null distribution obtained by randomly shuffling chronic and occasional functional connectomes. C-G) 
Mapping of the significant edges into the 7 functional networks by Yeo (REF), with the addition of 
subcortical and cerebellar networks, for the THC (C) and Placebo condition (G). D-H) Brain renders 
reporting the sum of the significant edges where CU>0U and OU>CU, during THC (D) and Placebo (H) 
condition. 
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Fig. 3 The cannabis user group-differentiating connICA component. A1)  Group differences in the 
individual subject weights associated with the connICA component (anova test, p < 0.01 Bonferroni 
corrected across the 20 robust components, see Methods); A2)  The functional connectivity component 
extracted by connICA. Pairwise associations between brain regions are ordered by resting-state 
functional networks as proposed by Yeo et al. 51. A3) For clarity, the same component, depicted after 
averaging across functional networks, shows prominent connectivity within the main functional network 
areas. B1-B2) Nodal strength (sum over columns of A1, including only: B1) positive edges or B2) 
negative edges) of the top 25% regions involved in the identified group-differentiating component. 
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Fig. 4 THC induced feeling of subjective high connICA component. A1) Drug differences in the 
individual subject weights associated with the connICA component (anova test, p < 0.01 Bonferroni 
corrected across the 20 robust components, see Methods) in association to subjective high in each drug 
condition (circles, THC; squares, placebo). The connICA component and subjective high ratings 
are strongly correlated (see Methods for details). A2) The functional connectivity component extracted by 
connICA. Pairwise associations between brain regions are ordered by resting-state functional networks 
as proposed by Yeo et al. 51. A3) For clarity, the same component, depicted after averaging across 
functional networks, shows prominent connectivity within the DMN and attentional areas. B1-B2) Nodal 
strength (sum over columns of A1, including only: B1) positive edges or B2) negative edges) of the top 
25% regions involved in the identified THC-differentiating component. 
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Supplementary Information 
 

 
 
Fig. S1. Exploration of optimal connICA parameters. The two free parameters of the connICA 
methodology 39, i.e. the number of ICA components and the percentage of variance retained, were 
explored to maximize: 1) the number of robust components and, 2) the percentage of variance retained 
from the data. The optimal point at 95% retained variance in PCA and 20 independent components is 
indicated by an asterisk.  
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Fig. S2. NBS analysis of THC vs placebo effects in each cannabis user group.  Giant component 
size extracted from the T-statistic matrix obtained when comparing THC vs placebo conditions within the 
cannabis user groups. Note how the effect does not survive the cut-off threshold obtained by random 
shuffling the drug labels, in both groups 
 

 

Table S1. Mean subject characteristics (SD) and history of drug use for occasional and chronic 

cannabis users who completed the study (N=26). 
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Table S2 Mean (SE) subjective high, lapses of attention averaged over two time points in each treatment 

condition. OU=occasional users; CU=chronic users. 

Variable Occasional 

Users 

Chronic Users Value df P value 

Gender (male/female), n, total 7/7, 14 9/3, 12 χ2 = 1.71
‡
 1 0.19 

Age, years 22.14 (2.51) 21.83 (2.25) t=0.33
†
 24 0.74 

History of cannabis use, years 5.21 (2.61) 5.33 (1.78) t=.-0.13
†
 24 0.89 

Frequency of cannabis use, per 

week 

1.12 (0.78) 6.63 (1.40) t=-12.64
†
 24 0.00* 

Alcohol consumption, glasses per 

week 

6.68 (6.68) 3.17 (2.32) t=1.73
†
 24 0.10 

Caffeine consumption (per week) 8.07 (7.11) 8.88 (6.05) t=-0.31
†
 24 0.76 

Nicotine consumption, per week 14.00 (21.15) 19.29 (28.23) t=-1.58
†
 24 0.13 

Occasional use of other drugs, n 9 9 χ2 = 0.00
‡
 1 1.00 

*Significant P values 

†
Independent t test 

‡
χ2 test for frequency data 
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 Subjective High (cm) Lapses of attention (#) 

 Post-resting 

state 1  

(20 min) 

Post-resting 

state 2 

 (42 min) 

average Pre-resting 

state 1 

 (1 min) 

Pre-resting 

state 2 

 (22 min) 

Average 

OU       

Placebo 1.21 (.38) 0.92 (.37) 1.07 (.31) 3.50 (.81) 5.35 (1.51) 4.42 (1.08) 

THC 5.36 (.70) 3.92 (.61) 4.73 (.61) 5.0 (1.26) 8.07 (1.78) 6.15 (1.38) 

CU       

Placebo  2.50 (.62) 2.08 (.62) 2.29 (.57) 1.25 (.30) 1.08 (.31) 1.16 (.23) 

THC 4.83 (.75) 4.08 (.73) 4.45 (.71) 1.83 (.34) 1.91 (.62) 1.87 (.35) 

 

 

Table S3 Mean (SE) THC, THC-COOH and 11-OH-COOH concentrations at baseline and two time points 

prior to resting state fMRI in THC condition. OU=occasional users; CU=chronic users. 

 THC 

(ng/ml) 

THC-COOH 

(ng/ml) 

11-OH-THC 

(ng/ml) 

OU    

Baseline 0 1.54 (.61) 0 

6 min (pre-resting state 1) 8.61 (1.46) 8.31 (1.78) 1.61 (.31) 

28 min (pre-resting state 2) 2.88 ((0.50) 7.78 (1.58) .93 (.19) 

CU    

Baseline 3.48 (.89) 47.44 (14.33) 1.55 (.38) 

6 min (pre-resting state 1) 15.86 (3.48) 48.81 (14.19) 3.84 (1.13) 

28 min (pre-resting state 2) 6.66 (1.55) 45.53 (15.43) 2.10 (.62) 
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