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Abstract
Neural representations change, even in the absence of overt learning. To preserve stable behavior and memories,

the brain must track these changes. Here, we explore homeostatic mechanisms that could allow neural popula-

tions to track drift in continuous representations without external error feedback. We build on existing models of

Hebbian homeostasis, which have been shown to stabilize representations against synaptic turnover and allow

discrete neuronal assemblies to track representational drift. We show that a downstream readout can use its own

activity to detect and correct drift, and that such a self-healing code could be implemented by plausible synaptic

rules. Population response normalization and recurrent dynamics could stabilize codes further. Our model

reproduces aspects of drift observed in experiments, and posits neurally plausible mechanisms for long-term

stable readouts from drifting population codes.

1 Introduction

The cellular and molecular components of the brain change
over time. In addition to synaptic turnover [1–3], ongoing re-
con�guration of the tuning properties of single neurons has
been seen in hippocampus [4, 5] and neocortex, including pari-
etal [6], frontal [7], prefrontal [8], visual [9, 10], and olfac-
tory [11] cortices. Remarkably, the recon�guration observed
in these studies occurs in the absence of any obvious change
in behavior, task performance, or perception. How can we rec-
oncile this stability with widespread ongoing changes in how
the brain encodes experiences?

These recent and widespread observations seem to be at
odds with well established evidence of homeostasis in neural
circuit properties. Homeostasis is a feature of all biological
systems, and examples of homeostatic plasticity in the ner-
vous system are pervasive (e.g. [12–14]; and [15] for review).
Broadly speaking, homeostatic plasticity is a negative feed-
back process that maintains physiological properties such as
average �ring rates, and distributions of synaptic strengths.
This results in maintenance of collective properties, such as
the total synaptic drive to a neuron or an average �ring rate in
a population. Regulation of collective properties is consistent
with substantial variability in internal components ([16, 17]).
This suggests that known homeostatic mechanisms may be ca-
pable of maintaining a consistent readout from a continually
recon�guring code [18, 19].

In this paper, we show that two kinds of homeostatic plas-
ticity can stabilize a population code despite drift. We �rst
argue that single-cell processes can stabilize the information-
coding capacity of populations. We then describe a novel form
of homeostatic plasticity that allows consolidated representa-
tions to interoperate with unstable neural populations. The
implication of this �nding is that long term storage of memo-
ries and percepts is possible dynamically, with relatively sim-
ple, known mechanisms. This potentially reconciles stable
behavior with representational drift, as well as suggesting a

mechanism that allows continual learning of multiple tasks
without catastrophic interference.

Classical theories view homeostasis as processes within
neurons that stabilize electrophysiological properties ([16,
17]), �ring rates (e.g. [20–27]), variability [28–30], or synaptic
weights (e.g. [31–35]). Importantly, homeostasis counteracts
the destabilizing e�ects of Hebbian plasticity on both single-
neuron [36–39] and network activity statistics [40–44]. Recent
studies predict that single-cell homeostasis should also stabi-
lize second-order statistics, like pairwise correlations [44]. In
our model of representational drift, these processes maintain
selectivity and function in neural population codes, while al-
lowing individual neurons to recon�gure.

We also develop a second sense of homeostasis that allows
consolidated representations to maintain stable relationships
with unstable neural population codes. This form of home-
ostasis arises from the interaction between single-cell home-
ostatic processes, and Hebbian learning in a predictive coding
framework [45–49]. When combined with recurrent network
dynamics, such “Hebbian homeostasis" proves to be a power-
ful tool for stabilizing consolidated neural representations in
the presence of drift.

The mechanisms we propose here are theoretical, but they
are grounded in well-established principles of neuronal func-
tion. Our model therefore yields testable predictions about
how Hebbian plasticity and homeostasis should interact to sta-
bilize neural representations.

1.1 Background

We brie�y review representational drift and the broader con-
text of the ideas used in this manuscript. Representational drift
refers to seemingly random changes in neural responses dur-
ing a learned task that are not associated with learning [18].
Potential causes include ongoing learning of unrelated tasks
[50], noisy �uctuations (e.g. [2]), and time-stamping activity
for episodic memory [51].
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For example, in Driscoll et al. [6] mice navigated to one of
two endpoints in a T-shaped maze (Figure 1a), based on a vi-
sual cue. Population activity in Posterior Parietal Cortex (PPC)
was recorded over several weeks using �uorescence calcium
imaging. Neurons in PPC were tuned to the animal’s past,
current, and planned behavior. Gradually, the tuning of indi-
vidual cells changed: neurons that were initially selective to,
e.g., the beginning of the maze, could start to �re more toward
the end—or become disengaged from the task entirely (Figure
1b). The neural population code eventually recon�gured com-
pletely (Figure 1c). However, neural tunings continued to tile
the task, indicating stable task information at the population
level. These features of drift have been observed throughout
the brain [5, 9, 10].

Gradual drift would be relatively easy for a downstream
readout to track using external error feedback , e.g. from ongo-
ing rehearsal [19]. Indeed, recent simulation studies con�rm
that learning in the presence of noise can lead to a steady state,
in which drift is balanced by error feedback [52, 53]. Here, we
will show that it is possible to track drift without an external
learning objective.

Previous studies have shown how stable functional connec-
tivity can be maintained despite synaptic turnover [42, 54, 55].
However, we are precisely interested in the scenario where
functional connectivity itself is unstable, allowing the roles
of single neurons to change. Additionally, recent work has
shown that discrete representations can be stabilized despite
drift using neural assemblies [56–59]. Self-correcting assem-
blies provide a compelling model for the longevity of discrete
information, such as semantic knowledge. However, we ar-
gue that none of these models fully explain how the brain can
maintain stable sensorimotor representations despite drift.

Neural assemblies are populations of cells that can ex-
hibit self-excitatory, self-sustaining activity. Once learned
[60], assemblies can be maintained without external training
[58, 59, 61]. Since assembly activation is all-or-nothing, no �-
delity is lost if a few neurons enter or leave the assembly. A
readout can detect this, and update how it interprets neural
population activity [59]. This mechanism is essentially binary:
it combines a majority-sum error correcting code with plastic-
ity to adapt readouts to changing neural tuning.

However, the brain must contend with continuous sensori-
motor variables. Recent experiments suggest that neural rep-
resentations of these variables are also continuous [62]. Even
if internal representations are discrete [63–65], the external
world is not. Some states will always lie at ambiguous bound-
aries between di�erent assemblies. Here, small amounts of
drift can introduce large changes.

Despite this, neural representations of continuous tasks
are stable. Neural activity is typically con�ned to a low-
dimensional manifold that re�ects sensory, motor, and cogni-
tive variables (e.g. [66–69, 69–82]). The geometry of these low-
dimensional representations is consistent over time, although
the way it is re�ected in neuronal �ring changes [81, 83]. Engi-
neers have applied online recalibration and transfer learning
and to track drift in brain-machine interface decoders ([84–
87]; see [88] for review). Could neurons in the brain do some-
thing similar? We argue that neuronal homeostasis and Heb-
bian plasticity driven by internally-generated prediction er-
rors allows neural networks to, in e�ect, “self-heal".

2 Results
Here, we explore how neural networks could track drift in sen-
sorimotor representations. There are two important general
principles to keep in mind throughout. First, distributed neural
representations are massively redundant. To create ambigu-
ity at the macroscopic level, many smaller disruptive changes
must occur in a coordinated way. Neurons can exploit this to
improve their robustness to drift. Second, learning creates re-
current connections that allow neural populations to predict
their own inputs and activity. Even if learning has ceased,
these connections remain. This allows a downstream read-
out to repair inputs corrupted by drift, and use these error-
corrected readouts as a training signal.

In the �rst half of the manuscript, we discuss how home-
ostasis achieves stable population-level representations, de-
spite instability in single-neuron tunings. We then explore
how a single neuron might stabilize its own readout in the
presence of drift using homeostasis, and updating its synap-
tic weights. In the latter half of the manuscript, we show that
these rules imply a form of Hebbian learning that achieves
homeostasis. We extend these ideas to neural populations, and
show that recurrent dynamics can stabilize a readout of an un-
stable neural code.

2.1 A model for representational drift

To understand how neurons might cope with unstable popu-
lation codes, we must �rst build a model of representational
drift. We focus on continuous representations of task space,
like those studied in Ziv et al. [4] and Driscoll et al. [6], and
simplify our model as much as possible.

Figure 1b illustrates average neuronal �uorescence inten-
sities as a function of progress through the task, mapped to
a pseudo-location variable \∈[0, 1] (Methods: Data and anal-

ysis). Neurons �red preferentially in speci�c parts of the
maze. Preferred tunings were typically stable, but occasionally
changed abruptly. Figure 1c shows a population of forty neu-
rons tracked over thirty-nine days. Neurons could be sorted
according to their preferred location on the �rst day, and tiled
the task space. Preferred tunings gradually switched over time
to new locations, leaving little trace of the original code after
a month.

To model this, we consider a population of # neurons "X"
that encodes states \ . We assume that the encoded states \ lie
on a continuous low-dimensional manifold. We neglect noise,
and assume that \ is encoded in the vector of instantaneous
�ring rates in a neural population, with tuning curves x(\ ) =
{G1 (\ ), .., G# (\ )}>.

The population statistics [4, 6, 11], and low-dimensional ge-
ometry [81, 83] of drifting population codes remains stable.
The properties of single-neuron tuning curves are also pre-
served: place cells may change their preferred location, but al-
ways look like place cells [4]. We incorporate these constraints
by viewing tuning curves as random samples from the space
of possible tuning curves, constrained by the statistics of the
encoded variables.

To de�ne this random process, we assume that a task is as-
sociated with a set of  features, s(\ ) = {B1 (\ ), .., B (\ )}>.
These features have a �xed relationship to the external world,
for example visual input or the space of joint con�gurations,
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Figure 1: A model for representational drift. (a) Driscoll et al. [6] imaged population activity in PPC for several weeks,
after mice had learned to navigate a virtual T-maze. Neuronal responses continued to change even without overt learning. (b)
Tunings were often similar between days, but could change unexpectedly. Plots show average �ring rates as a function of task
pseudotime (0=beginning, 1=complete) for select cells from Driscoll et al. [6]. Tuning curves from subsequent days are stacked
vertically, from day 1 up to day 32. Missing days (light gray) are interpolated. Peaks indicate that a cell �red preferentially at a
speci�c location (Methods: Data and analysis). (c) Neuronal tunings tiled the task. Within a day, one can decode the mouse’s
behavior from population activity [6, 19]. Plots show normalized tuning curves for 40 random cells, stacked vertically. Cells are
sorted by their preferred location on day 1. By day 10, many cells have changed tuning. Day 39 shows little trace of the original
code. (d) We model drift in a simulated rate network (§2.1; Methods: Simulated drift). An encoding population x(\ ) receives
input s(\ ) with low-dimensional structure, in this case a circular track with location \ . The encoding weights U driving the
activations a(\ ) of this population drift, leading to unstable tuning. Homeostasis preserves bump-like tuning curves. (e) As in
the data (a-c), this model shows stable tuning punctuated by large changes. (f) The neural code reorganizes, while continuing
to tile the task. We will examine strategies that a downstream readout Y could use to update how it decodes x(\ ) to keep its
own representation y(\ ) stable. This readout is also modeled as linear-nonlinear rate neurons, with decoding weights W.
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and capture the statistics of the encoded variables \ . To model
this, we take B (\ ) to be �xed samples from a Gaussian process
on \ :

B (\ ) ∼ GP[0, Σ(\, \ ′)] (1)

These features are combined linearly through an encoding
weight matrixU = [u1, .., u# ], to yield the synaptic activations
a(\ )={01 (\ ), .., 0# (\ )}> of the encoding population. Each col-
umn u8 is the encoding weights for a single unit G8 . The �ring
rates x(\ ) are then given as a nonlinear function of these ac-
tivation functions:

a(\ ) = U>s(\ )
x(\ ) = q [a(\ )]

(2)

The nonlinearity q [·] can be any function that is rectifying
and monotonically increasing, although we use the exponen-
tial here.

If the encoding weights are taken as i.i.d. samples from a
standard normal distribution, u∼N(0, �# ), then the activation
functions will follow a zero-mean Gaussian process on \ with
covariance inherited from s(\ ). This converts the problem of
de�ning drift as a random walk through the space of possi-
ble activation curves a(\ ), to a simpler random walk in the
space of encoding weights, U. (See Methods: Simulated drift

for details of how these weights evolve, and why this preserves
information about \ in the population.)

At this point we should pause to address two caveats of
this model. First, the �xed features s(\ ) do not exist in a
literal sense. It is true that primary sensory and motor con-
nections are �xed, but these do not provide a su�ciently rich
basis to describe all possible sensorimotor transformations.
Richer representations are constructed through transforma-
tions within the brain (e.g. [89, 90]). The synapses involved
in these transformations are also subject to drift. The decom-
position we describe here, of �xed s(\ ), and drifting a(\ ), cap-
tures the abstract principles that (I) the brain has learned a
rich representation of \ with �xed statistics, (II) this repre-
sentation is tethered to the external world, and (III) drifting
synaptic weights cause neurons to wander through the space
of task-relevant tuning curves .

The second caveat we should address is that this model is
not, on its own, especially stable. We have assumed that in-
puts s(\ ) follow a �xed distribution, that the encoding weights
U follow a particular distribution, and that these coinciden-
tally lead to just the right synaptic activations a(\ ) to yield
sensible �ring rates when passed through nonlinearity q [·].
These constraints are easily enforced in a computer, but bio-
logical systems must achieve them through homeostatic tun-
ing or regulation of the network activity.

To model these homeostatic processes, we impose an addi-
tional constraint on the mean and the variance of the �ring
rate for each encoding neuron G= (\ ):

〈x=〉 = `0
var[x=] = f20

(3)

These moments are �xed by homeostatically adapting a bias V
and gain W of each neuron separately:

G (\ ) = q [Wa(\ ) + V] . (4)

The bias can be viewed as threshold adaptation, and the gain
can be interpreted as synaptic scaling. These processes control
the excitability and variability of the encoding neuron, respec-
tively. They occur over hours to days, through homeostatic
regulation in single neurons [28, 29]. For a �xed average �ring
rate, larger variability invariably corresponds to higher selec-
tivity. Homeostatic regulation of these statistics ensures that
(I) encoding neurons retain a reasonable range of �ring rates
and (II) the tuning curves of these encoding neurons remain
selective for a particular preferred stimulus \0 (or a set of pre-
ferred stimuli that are similar in some way).

For encoding neuron G (\ ), we adjust the gain and bias based
on the error between the neuron’s �ring rate statistics, and the
homeostatic targets (3).

ΔW ∝ Yf = (f20 − var[G])/f20
ΔV ∝ Y` = `0 − 〈G〉

(5)

In general, these multiple homeostatic processes acting in par-
allel interact, potentially leading to instability [28, 29, 40, 91].
One solution is to allow threshold adaptation to be much faster
than synaptic scaling. Another is for the synaptic scaling pro-
cess to also adapt the threshold, canceling out any in�uence
on excitability.

Figure 1 illustrates examples of tuning curve drift from
Driscoll et al. [6], compared to the Gaussian-process model of
drift described above. Figure 1d-f illustrates simulated tuning
curve drift in the model. We de�ne a circular environment,
with a periodic location coordinate \ ∈ [0, 2c). This location
drives �xed input features s(\ ), which then drive activity in
the encoding population x(\ ) via encoding weights U. Drift is
simulated as a random walk on these encoding weights, and
the encoding cells’ tuning curves are homeostatically main-
tained according to (3) and (4). Further details can be found
in the Methods: Simulated drift. Notably, the model mimics
changes in tuning curves seen in Driscoll et al. (2017). In Fig-
ure 1e, we see that individual encoding neurons show a punc-
tuated stability in their tuning, similar to Figure 1b. Likewise,
Figure 1f shows that the tuning curves of the encoding popula-
tion tile the state space, but gradually recon�gure over several
weeks, similarly to Figure 1c.

Overall, this illustrates that neural population codes dis-
playing drift similar to that seen in the brain arise under very
generic circumstances. The only constraints are (I) that in-
puts to the population re�ect the similarity space of the en-
coded variables \ , and (II) that some sort of homeostasis reg-
ulates neuronal excitability and selectivity on long timescales.
In a larger population, single-cell homeostasis is su�cient for
maintaining localized, bump-like tuning curves that tile the
task (Figure 1f). Other processes, such as response normal-
ization [92], could also provide this, and would be useful for
ensuring an even tiling of the space in smaller populations.

2.2 Hebbian homeostasis stabilizes readouts
without error feedback

Neural population codes are massively redundant. For exam-
ple, most of the neural variability in Driscoll et al. [6] is ex-
plained by progress through the maze, conditioned on the cur-
rent and planned turn direction. Nonlinear dimensionality re-
duction algorithms recover the latent T-shaped structure of the
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Figure 2: Homeostatic Hebbian plasticity enables stable readout from unstable populations. (a) Simulated linear-
nonlinear units that are driven by redundant population activity show a loss of excitability, not a change in tuning, when their
inputs drift. Since the cell is selective to a conjunction of features, it loses excitatory drive when some of its inputs change.
Since most drift is orthogonal to this readout, however, the preferred tuning \0 does not change. The right-most plot shows that
the excitability gradually diminishes as a larger fraction of inputs change. (b) Homeostatic adjustments to neuron sensitivity
stabilizes readouts for small amounts of drift. As more inputs recon�gure, the cell compensates for loss of excitatory drive by
increasing an e�ective gain parameterW . However, the readout changes to a new, random location once a substantial fraction of
inputs have recon�gured (right). This phenomenon is the same as the model for tuning curve drift in the encoding population
(c.f. Fig. 1e). (c) Hebbian homeostasis increases neuronal variability by potentiating synaptic inputs that are correlated with
post-synaptic activity, or depressing those same synapses when neuronal variability is too high. This results in the neuron re-
learning how to decode its own tuning curve from the shifting population code, supporting a stable readout despite complete
recon�guration (right).
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task [18]. Because of redundancy, there are many valid ways
to decode information from the population. We propose that,
in the absence of external error feedback or sensorimotor re-
hearsal, a readout could use this to generate a surrogate error
signal. The error signal supports a plasticity rule that could al-
low unstable neural codes to be continuously reconsolidated.

This self training re-encodes a learned readout function
y(\ ) in terms of the new neural code x(\ ), allowing the net-
work to track an unstable representation. Surprisingly, this
"self-healing" plasticity stabilizes the readout of unstable pop-
ulation codes even in single neurons. We �rst sketch an exam-
ple of this plasticity, and then explore why this works.

Using our drifting population code as input, we model a
readout population of " neurons with tuning curves y(\ ) =
{~1 (\ ), .., ~" (\ )}> (Figure 1d). If this readout is stable, then
the responses y(\ ) should remain �xed, even as the encoding
population x(\ ) recon�gures completely. We model this de-
coder as a linear-nonlinear function, using decoding weights
W and biases (thresholds) b:

y(\ ) = q [W>x(\ ) + b] . (6)

On each simulated day, we re-train the decoding weights us-
ing a Hebbian rule. This potentiates decoding weights whose
input x= (\ ) is correlated with the post-synaptic �ring rate
~< (\ ). We also adapt the threshold, b, to maintain the average
�ring rate, and include some weight decay:

ΔW ∝ Yf [〈x(\ )y(\ )>〉\ −W]
Δb ∝ Y` 〈x(\ )〉\ .

(7)

In some ways, (7) resembles the homeostatic rules explored
earlier. Firing rate statistics are controlled through negative
feedback, driven by measurements of the deviations from the
target set-points Y` and Yf (3). However, rather than scale
all weights uniformly, this rule adjusts the component of the
weights that is most correlated with the postsynaptic output,
~ (\ ).

Traditionally, “homeostatic Hebbian plasticity" refers to
processes that stabilize synaptic weights and responses un-
der ongoing rehearsal and learning [36–44, 54, 55]. The role
of “Hebbian homeostasis" here is more speci�c: the neurons
adjust their activity toward homeostatic set-points using Heb-
bian (or anti-Hebbian) learning.

Figure 2 illustrates the mechanisms and consequences of
Hebbian homeostasis (7). It simulates a single neuron driven
by the unstable population code. With �xed weights (Figure
2a), drift reduces the excitability without changing its tuning.
This is because the readout requires a conjunction of speci�c
inputs to �re. Drift gradually destroys this conjunction, and
is unlikely to spontaneously create a similar conjunction at a
di�erent part of the coding space. A similar phenomena may
underlie forms of drift that consist of changes in excitability,
but stable preferred tuning [7, 9, 93]. For small amounts of
drift, �ring-rate homeostasis (5) can temporarily stabilize the
readout (Figure 2b). Eventually, however, the encoding pop-
ulation x(\ ) recon�gures so drastically that no trace of the
original code remains, and the cell acquires a new preferred
stimulus.

In contrast, Figure 2c illustrates the consequences of Heb-
bian homeostasis. As the encoding population x(\ ) drifts, the
overall excitatory drive to the neuron decreases. This activates

homeostatic plasticity to restore neuronal excitability. How-
ever, instead of scaling up all synapses uniformly, the neuron
selectively potentiates the component of x(\ ) that correlates
with its own output. This leverages the fact that small amounts
of drift change neuronal excitability, but not tuning. The neu-
ron’s own output provides a teaching signal to re-learn decod-
ing weights for inputs that have changed.

If Hebbian homeostasis is applied continuously, a readout
can track drift despite complete recon�guration in the en-
coding population x(\ ). In e�ect, the readout’s initial tuning
curve is transported to a new set of weights that estimate the
same function from an entirely di�erent input. This home-
ostatic rule might seem like ad-hoc speculation. However,
we will show that such a rule arises naturally in networks
that learn through predictive coding, and is a plausible conse-
quence of the interaction between prevailing models of learn-
ing and homeostasis.

2.3 Predictive models track drift
Neural populations learn internal models that recapitulate the
statistics and dynamics of the external world [94, 95]. These
internal models give rise to neural population codes that at-
tempt to predict their own inputs [45, 46, 48, 49, 78]. Learning
procedures based on minimizing prediction error lead to ef-
�cient spiking codes [96–98] that can perform statistical and
dynamical computations [99, 100].

Predictive coding might also be how the brain maps be-
havioral errors to speci�c synaptic weight updates [47]. In
essence, neurons predict the expected outcome of an action,
and update their synaptic weights based on any error in this
prediction. The error on a task is minimized only when the
prediction errors between all brain areas involved in said task
are also minimized. As a result, the overall cost function
sampled during learning is gradually consolidated into a dis-
tributed representation throughout the brain, in the form of
these local predictive models.

We propose that these internal models provide the error
signals needed to integrate stable and volatile neural rep-
resentations. There are two way to view this process. In
one view, predictive models constrain neural activity, which
can be used to detect and correct drift. In another view,
the brain generates a teaching signal that trains neurons
how to re-interpret the meaning of neurons whose function
have changed, akin to the student-teacher framework in
machine learning [101]. By computing this teaching from
local recurrent dynamics, the brain continually re-trains itself,
akin self-distillation [102].

We propose that a general strategy for tracking drift in
a neural population should contain three components.

I The readout should leverage redundancy to minimize the
error caused by drift.

II The readout should use its own activity as a training sig-
nal to update its decoding weights.

III The correlation structure of the readout population
should be homeostatically preserved.

To show how these principles imply Hebbian homeostasis,
we unpack them in a linear network. We then illustrate that
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Figure 3: Self-healing codes in a linear model. (a) Network schema: An unstable population x(\ ) encodes variables \ (c.f.
Fig. 1). A linear readout y(\ ) seeks to preserve its representation via Hebbian homeostasis, and can use recurrent activity as
a training signal ŷ. (b-1) Drift changes the embedded low-dimensional structure in population activity. Most drift occurs in
non-coding directions, and readouts can detect when low-dimensional activity no longer aligns with their synaptic weights.
In linear models, this corresponds to reduced �ring-rate variability. (b-2) Hebbian homeostasis restores a target variability by
re-aligning the decoding weights with low-dimensional activity. This is the sum of a Hebbian and weight-decay term, scaled
by the homeostatic error W . (b-3) For small amounts of drift, this self-repair has low (but nonzero) error. Large amounts of
drift can be tracked if changes are gradual. (c) Stability of a readout y(\ ) with bump-like tuning curves tiling a circular space.
Encoding cells x(\ ) drift with time-constant g = 50 days (“one epoch"). We simulate ten epochs, applying continuous-time
Hebbian homeostatic learning rules (Eq. 13). Fixed weights degrade rapidly. Single-cell homeostasis provides some stability for
≈ 3 epochs, but preferred directions shift. Recurrent dynamics better preserve population correlation structure. (d) Hebbian
homeostasis reduces the drift of the readout, and recurrence stabilizes it further. The ability of the linear network to error-
correct is limited, so the readout still drifts in the long-term (but see Fig. 4). Shaded regions re�ect the interquartile range
over twenty random realizations. (e) Readout longevity scales linearly with the population code redundancy (red). Bayesian
�ltering alone decays rapidly in comparison (black; Eqs. 22-25, Methods: Weight �ltering in a linear model). Here, we de�ned
a  -dimensional neural code embedded randomly in an # = 200 dimensional population, with encoding weights undergoing
random drift with a time constant g = 20. The readout lifetime was de�ned as the number of simulated days required for
the readout Normalized Mean-Squared Error (NMSE; 1=chance) to reach 0.5. Error bars re�ect the interquartile range for ten
random network instances with �ve random realizations of drift for each network. (Methods: Linear simulations).
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these principles lead to long-term stability, despite drift, in a
nonlinear network.

2.4 A self-healing linear readout
In a linear network (Fig. 3a), the readouts y(\ ) can be viewed
as the output of ordinary least-squares linear regression. Al-
though this network is not particularly good at correcting er-
rors, it does provide useful intuition.

We incorporate the three components of self-healing codes
(robustness, self-training, and correlation homeostasis) as fol-
lows: (I) We regularize decoding weights to improve robust-
ness; (II) We use the readout’s own activity as a training signal;
(III) We use �ring-rate-variance homeostasis and recurrent dy-
namics to stabilize correlations.

We assume that the readout is initially trained from an ex-
ternal error signal, and consider a drifting population code
x3 (\ ) that evolves randomly over several days "3". Given a
training signal y0, the regularized least-squares solution for
the ideal decoding weights for the following day 3 + 1 is:

W3+1 = [Σ3 + ΣΔ]−1〈x3y>0 〉, (8)

where Σ3 = 〈x3x3>〉 is the covariance of the encoding pop-
ulation on day 3 , and ΣΔ is a regularizing term re�ecting the
expected covariance of day-to-day drift.

To incorporate self-training, we generate the training signal
for the weights on day 3 + 1 from the network’s own output
on day 3 . For a linear readout, the decoded ŷ is the linear
projection W>

3
x3 :

W3+1 = [Σ3 + ΣΔ]−1Σ3W3 (9)

This update applies recursive �ltering to the weights (see
Methods: Weight �ltering in a linear model). However, �ltering
alone is unhelpful (Fig. 3e), since it allows activity to decay as
predictions become uncertain. To stabilize the �ring-rate vari-
ability, we rescale the training signal to compensate for any
loss of variability f2~ , from its homeostatic target f20 . For a sin-
gle readout neuron with weights w, this gives the homeostatic
update:

w3+1 = [Σ3 + ΣΔ]−1Σ3w3
f0

f~
(10)

This update can be solved by online stochastic gradient de-
scent using a Hebbian learning rule (Methods: Synaptic learn-
ing rules).

ΔwC ∝ W xCy>C − ΣΔwC (11)

We can use loss of excitatory drive as an indicator of the cur-
rent drift rate, setting Σ̂Δ≈W� (Methods: Estimating the rate of

drift). This gives the Hebbian rule:

ΔwC ∝ W · [xCx>C − � ]wC (12)

This learning rule is the same as the Hebbian homeostasis
rule proposed earlier (7). Its acts as follows: In redundant, low-
dimensional codes, most drift occurs in directions that are not
used for coding (Fig. 3b-1). Drift does, however, reduce input
drive to a readout. Neurons can detect this, and apply Heb-
bian homeostasis to re-align their decoding weights with the
encoding subspace (Fig. 3b-2). This process allows synaptic
weight to track drift as it occurs. If drift is gradual, a stable

readout can survive multiple complete recon�gurations of the
input code (Fig. 3b-3).

This update resembles classic, linear approximations to
Hebbian learning [103, 104] with weight decay. Such learn-
ing rules extract the leading principle component(s) of their
input, x. Indeed, the self-healing weight update will cause the
readout to regress towards the leading eigenmode(s) of x. This
can destabilize population codes by causing many cells to track
similar features, but can be stabilized with response normal-
ization, which we will illustrate later in a nonlinear network.

Recurrence in a linear model Hebbian homeostasis im-
proves stability, but does not stabilize the population code in
the long-term, since the tuning of each neuron can di�use
slowly. Recurrent dynamics address this by deleting changes
in y(\ ) that are not consistent with the learned structure of
\ . We de�ne recurrent weights R that transform the feed-
forward activations y5 = W>x into an error-corrected train-
ing signal yA = R>y5 . This gives a new Hebbian learning term
that cancels the di�erence between feed-forward and recur-
rent activity:

ΔW ∝ W [〈xy>A 〉 −wC ] + d 〈x(yA − y5 )>〉, (13)

where d sets the in�uence of recurrent dynamics on the decod-
ing weights. The error signal yA−y5 can be computed using
recurrent negative feedback in a predictive coding framework
(Methods: Linear network with recurrence). The bene�ts of re-
currence in a linear network are limited (Fig. 3d). The bene�ts
of recurrence in nonlinear networks are more substantial, as
we shall see later (Fig. 4).

If drift is random, there is a small chance it will disrupt
the low-dimensional manifold that encodes \ . Downstream
neurons cannot detect this, and these small errors accumulate.
Noise in activity and learning rules would cause a similar ef-
fect. These errors scale inversely with the ratio of the popula-
tion size to the dimensionality of \ . Accordingly, code stability
grows linearly with network redundancy (Fig. 3e).

Overall, the linear model provides important intuition: Heb-
bian homeostasis is an inevitable consequence of the interac-
tion between Hebbian learning and homeostatic processes in
single cells. This stabilizes neural function in the presence of
drift; Recurrent dynamics can provide further stability (Fig.
3cd). As we discuss next, other constraints, such as nonlin-
ear recurrent dynamics and response normalization, can also
confer marked stability.

2.5 Nonlinearity and response normalization
Much of the intuition from the linear network extends to the
nonlinear case. We assume that neuronal responses are (ap-
proximately) locally linear, so the same Hebbian learning rules
apply. However, a nonlinear network has key advantages: It
is better at correcting errors, and it lets us examine the e�ect
of response normalization on readout stability.

Response normalization controls the average �ring rate in
a local population of neurons. It is supported experimentally,
and implicated in diverse sensory computations (for review,
see [92]). Importantly, response normalization causes neurons
in a local population to compete to remain active. Competition
can encourage neurons to acquire diverse tunings, forming a
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Figure 4: Self-healing readout in a nonlinear rate network. Each plot shows (left) the stability of a population readout
y(\ ) from a drifting code x(\ ) over time, (middle) a schematic of the readout dynamics, and (right) a plot of select readout
unit’s tuning to \ if 55 out of 60 (92%) of the encoding cells were to abruptly switch to a new, random tuning. (a) For �xed
readouts, representational drift in the encoding population gradually destroys the feature conjunctions used to de�ne selective
activity in the readout. (b) Homeostatic processes could stabilize the mean �ring rate and variability in readout cells. For small
amounts of drift, homeostasis can compensate for loss of drive. However, drift eventually disrupts the readout’s tuning curve.
(c) Hebbian homeostasis can preserve the statistics of tuning curves in single cells, by using a neuron’s own output as a training
signal to update decoding weights. However, this process is not lossless, and the population code in the readout degrades over
time. (d) Response normalization controls the population �ring rate, causing neurons to compete for activation. This stabilizes
the statistics of the population code, but readout neurons can still swap preferred tunings, degrading the readout. (e) Recurrent
activity, in which the network predicts its own activity, can enforce population correlations. This limits the structure of the
readout to the ring-like encoding in which it was �rst trained. Here, the only drift that is permitted is along the symmetry of
the circular state \ .
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population of localized receptive �elds that tile the encoded
latent variable space [105–107].

Indeed, without some additional mechanisms to retain di-
verse population tuning curves, the Hebbian homeostasis rules
derived so far will eventually cause the population readout to
collapse toward the subspace with the most variability. Recur-
rent connections and response normalization can prevent this.
For a thorough exploration of what this might look like in lin-
ear and recti�ed linear models, see Sengupta et al. [105], Pehle-
van et al. [108, 109, 110], Lipshutz et al. [111]. Brie�y, the idea
is this: neurons learn to explain the latent causes of their in-
puts. In linear models, this amounts to �nding the principle
components or principle subspace [110, 111]. However, neu-
rons must coordinate to ensure that they don’t all focus on the
same direction of maximum variability. Response normaliza-
tion, and other forms of competition, ensure full coverage of
the encoding space. In models with a rectifying nonlinearity,
this leads to the bump-like tuning curves that tile the encoding
space [105, 112].

Nonlinear, recurrent networks require speci�c architectural
details to avoid unstable dynamics. To avoid this complexity,
we model recurrent dynamics and response normalization as
discrete transformations. For response normalization, we di-
vide the rates by the average �ring rate across the population
〈y5 (\ )〉:

y3 (\ ) = y5 (\ )/〈y5 (\ )〉 · `? , (14)

where `? is the target average �ring rate across the population.
For recurrent connections, we train the readout to predict its
own activity using �xed set of recurrent weights R:

yA (\ ) = q [R>y3 (\ )] (15)

This signal yA (\ ) can be used as a training signal to continu-
ously update the forward encoding weights, as in (5).

Figure 4 summarizes the in�uence of response normaliza-
tion and recurrent dynamics in a nonlinear readout. As in the
linear case, �xed weights are unstable. Classical homeostasis
provides only short term stability. Hebbian homeostasis sta-
bilizes tuning curve statistics, but does not prevent eventual
collapse of the population code (Fig. 4a-c).

Perhaps surprisingly, response normalization alone im-
proves stability substantially (Fig. 4d). This is because it cre-
ates repulsive force between their preferred tunings under the
in�uence of Hebbian plasticity. For the one-dimensional man-
ifold \ explored here, this repulsion constrains the possible re-
arrangements. Drift must be large enough to cause two read-
out neurons to exchange their preferred tunings, to induce
any long-term changes. Note that tuning curves would be
much less constrained in higher dimensional spaces, and we
should expect the stabilizing e�ect of crowding to diminish
for higher-dimensional \ .

With recurrent dynamics, the nonlinear readout is excep-
tionally stable (Fig. 4d). The recurrent weights strongly con-
strain the correlated activity patterns in y(\ ), and suppressing
any activity that does not match the ring structure learned ini-
tially. Drift can only occur along directions of symmetry in the
underlying encoded space \ . In this case, \ is a circular vari-
able, so drift can rotate the readout, but no other changes are
permitted. This illustrates that internal predictive models can
strongly constrain network activity, and that these constraints

allow populations of neurons to tolerate complete recon�gu-
ration of the inputs that drive them.

3 Discussion

In this work, we outlined homeostatic principles that could al-
low stable and plastic representations to coexist in the brain.
We argue that self-healing codes should have of three compo-
nents: (I) Neurons codes should be robust to drift; (II) Neurons
should use their own output as a training signal to update their
decoding weights, and (III) Stable neural codes should homeo-
statically preserve internal models, which are re�ected in sta-
ble population statistics.

Here, we considered two populations, one stable and one
unstable. This could re�ect communication between stable
and plastic components of the brain, or the interaction be-
tween stable and plastic neurons within the same neural pop-
ulation. This is consistent with experiments that �nd consoli-
dated stable representations [113], and with the view that neu-
ral populations contain a mixture of stable and unstable cells
[114, 115].

However, there is no requirement that a neuron that is sta-
ble at present must remain so. Over time, neurons could enter
or leave this stable core. As long as some stable neurons re-
main, long-term representations could persist. This implies a
general principle that supports reallocation of the function of
single neurons, while preserving internal models. It also raises
the question of whether a stable population is even necessary:
could functional stability be achieved by several plastic popu-
lations tracking each-other? This points to a potentially pow-
erful generalization of homeostatic principles, which could ex-
plain the long-term robustness of distributed neural represen-
tations.

Here, we considered how networks might stabilize a pre-
existing trained structure. How are these stable representa-
tions learned? Once learned, can they be updated? A crucial
assumption in our work is that neurons generate their own
internal training signals. For single cells, this amounts to er-
ror correcting across the pool of its own synaptic inputs. For
networks, this corresponds to prediction errors coming from
recurrent or top-down dynamics. These error signals are pre-
cisely the same ones that would be used for learning from
external error feedback. During learning, recurrent and top-
down prediction errors propagate high-level reinforcement
signals back to local neural populations [47]. These prediction
errors are carried by the same mechanisms that we use here
to achieve homeostasis. Hebbian homeostasis, then, can be
viewed as a natural consequence of predictive learning mech-
anisms in the absence of external error feedback.

The brain supports both consolidated and volatile repre-
sentations, respectively associated with memory and learn-
ing [5, 114, 116–122]. Arti�cial neural networks have so far
failed to imitate this, and su�er from catastrophic forgetting
wherein new learning erases previously learned representa-
tion [123]. Many strategies have been proposed to mitigate
this (e.g. [124–127]). Broadly, all of these methods segregate
stable and unstable representations into distinct subspaces of
the possible synaptic weight changes. These learning rules
therefore amount to preventing disruptive drift in the �rst
place.
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The strategies we explore here are fundamentally di�erent.
We do not restrict changes in weights or activity: the encod-
ing population is free to recon�gure arbitrarily. However, any
change in a neural code leads to an equal and opposite change
in how that code is interpreted—The brain must publish new
translations of its changing internal language. This constraint
preserves the functional relationships between neural popula-
tions.

The approach developed here shares some similarities with
approaches to attenuate forgetting using replay during sleep,
or the equivalent in arti�cial networks (e.g. [128–131]). The
internal models must be occasionally re-activated through ei-
ther rehearsal or replay, in order to detect and correct inconsis-
tencies caused by drift. If this process occurs too infrequently,
drift becomes large, and the error correction will fail.

Here, we focused on homeostatic maintenance of func-
tion despite drifting population codes. It is worth explor-
ing whether a similar process can explain how the brain pre-
serves learned representations despite neuronal death. In de-
velopmental pruning, the brain removes synapses and neurons
without loss of function [132–134]. Existing models of pruning
require ongoing learning to prevent loss of learned representa-
tions [135–137]. Homeostatic preservation of predictive mod-
els may allow the brain to bene�t from large networks during
learning [138–140], and optimize these networks without ex-
tensive re-training. The processes we examine here may also
be similar to those that allow transfer of learned motor skills
despite gradual change in the readout of a brain-machine in-
terface [141–143].

To integrate stable and plastic representations, changes any-
where in the brain must be accompanied by compensatory
changes throughout the brain. The learning rules we explored
here placed a particular emphasis on Hebbian homeostasis,
and the role of predictive coding in generating robust repre-
sentations. In the long term, these processes could support
widespread reallocation or reconsolidation of neuronal func-
tion. Further exploration of these principles may clarify how
the brain can be simultaneously plastic and stable, and pro-
vide clues to how to build arti�cial networks that share these
properties.

4 Methods

4.1 Data and analysis

Data shown in Figure 1b,c were taken from Driscoll et al. [6],
and are available online at at Dryad [144]. Examples of tuning
curve drift were taken from mouse four, which tracked a sub-
population of cells for over a month. Normalized dF/F calcium
transients were band-pass �ltered between 0.3 and 3 Hz, and
individual trial runs through the T maze were extracted. Cal-
cium �uorescence traces from select cells were aligned based
on task pseudotime (0: start, 1: reward). The activity of each
cell was z-scored within each trial to yield a normalized log-
�uorescence signal. On each day, normalized log-�uorescence
was averaged over all trials and then exponentiated to gener-
ate the average tuning curves shown in Figure 1b. for Figure
1c, a sub-population of forty cells was selected at random, and
sorted based on their peak �ring location on the �rst day. For
further details, see [6, 19].

4.2 Simulated drift
We sample a random walk on encoding weights U as an Orn-
stein Uhlenbeck (OU) process with unit steady-state variance
and time constant g , measured in days. Given g , and the
constraint that the steady-state variance of an OU process is
1
2gf

2 = 1, we set the noise variance to f2 = 2/g . In discrete
time this is sampled with U = f2ΔC :

DC+18 9 = DC8 9

√
1 − U +

√
Ub, b∼N(0, 1) (16)

This yields an embedding of \ in the activity of the # -
dimensional encoding population X that changes gradually
and randomly over time. The structure of \ encoded in s(\ ) is
inherited by a(\ ) = U>s(\ ).

This model preserves the amount of population variability
in a(\ ) driven by \ , in expectation:〈
‖∇\a(\, C)‖2

〉
= # · tr[∇\Σ(\, \ ′)∇>\ ′] = # · ‖∇\ s(\ )

>‖2
(17)

In the special case of an exponential nonlinearity q= exp, the
trace of Fisher information of x(\ ) is proportional to the aver-
age variation in a(\ ) driven by \ :

tr[I(\ )] ∝
〈
‖∇\ ln[x(\, C)] ‖2

〉
=

〈
‖∇\a(\, C)‖2

〉
(18)

Formally, the Fisher information is in�nite when the noise in
x is zero, but (18) can be viewed as the zero-variance limit of
homogeneous and i.i.d. Gaussian noise with suitable normal-
ization.

In expectation then, this random walk in the encoding
weight space preserves the overall population code statistics:
It preserves the geometry of \ in the correlations of a(\ ), and
the average amount of information about \ encoded in the
population activations.

4.3 Weight �ltering in a linear model
We consider a linear version of our encoding-decoding model
(Eqns. 2-6), whose weights and activity change across days
("3")

x3 (\ ) = U>
3
s(\ )

y3 (\ ) = W>
3
x3 (\ )

(19)

Drift can be viewed as a slow-timescale component of noise,
and a readout that is robust to noise can also tolerate some
amount of drift. Denote the drift in the code between days as
Δx(\ ), and assume that it can be modeled as Gaussian:

Δx(\ ) ∼ N (0, ΣΔ) (20)

This Gaussian model captures di�usive drift like the OU pro-
cess (16) introduced earlier. For training signals (x0, y∗0), the
least-squares optimal weights for day 3+1 trained on activity
on day 3 is given by regularized linear regression:

W3+1 = [Σ3 + ΣΔ]−1Σ0,y∗0 (21)

where Σ3 is the covariance of x3 (\ ), and Σ0,y∗0 is the cross co-
variance between the encoding population activity and the tar-
get readout tuning curves y∗0.

We needn’t estimate these regularized weights from scratch.
If we have already weights W3 trained on day 3 , then we can
prepare regularized weights for the subsequent day W3+1 by
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updating these existing weights. This also realigns the decod-
ing weights with the correlation structure of the current en-
coding, Σ3=〈x3x3>〉:

W3+1 = [Σ3 + ΣΔ]−1Σ3W3 . (22)

(c.f. Eq. 9, Results.) This is equivalent to using the activity on
the current day, x3+1, to predict the corresponding activity on
the previous day x3 :

x̂3 = Σ3 [Σ3 + ΣΔ]−1x3+1 (23)

Applying (23) iteratively yields an estimate of the original code
x̂0, thereby translating the current representation x3 back in
time to when the readout was �rst learned:

ŷ(\ ) = W>0
{∏

3′∈0..3−1 Σ3′ [Σ3′ + ΣΔ]−1
}
x3 (\ ). (24)

Since the readout activity is driven by these decoding weights,
y3 = W>

3
x3 , this recursive �ltering can be interpreted by the

network re-training itself using its own output:

y∗ = W>
3
x3

W3+1 = [Σ3 + ΣΔ]−1Σ3,y∗
Σ3,y∗ = 〈x3y∗>〉 = 〈x3x3>W3〉 = Σ3W3

⇒W3+1 = [Σ3 + ΣΔ]−1Σ3W3 [c.f. Eqs. 9,22]

(25)

To summarize, tracking an unstable code involves �lter-
ing the current code-words x3 to recover the original code x0
against which the readout was �rst trained. In a linear, Gaus-
sian model, this can be computed by iteratively re-training the
decoding weights using the network’s own output.

The linear Bayesian model in Equations (19)-(25) incorpo-
rate the assumption that the encoding x changes, but not that
Pr(\ ) and the primary inputs s(\ ) are �xed. How might neu-
rons incorporate this? The readout population cannot access
s(\ ), but it could measure its own statistics:

Pr(y) =
∫
y(\ ) Pr(\ ) 3\ . (26)

For example, in the linear model (Section 2.4), y(\ ) is a zero-
mean Gaussian variable, so Pr(y) is encoded entirely in the
covariance Σy:

Σy = 〈yy>〉 =
∫
y(\ )y(\ )> Pr(\ )3\ (27)

Since Σy is inherited from Pr(s(\ )), stable readouts must ex-
hibit stable Σy. The converse is not true, but is a useful con-
straint that can improve stability. This covariance is readily
accessible: its diagonal is simply the �ring rate variability of
single neurons, and its o�-diagonal terms can be encoded in
recurrent connections that constrain population activity.

4.4 Synaptic learning rules
The homeostatic learning rule (10) is simple, but unrealistic: it
requires tracking the covariance of the encoding population,
and solving a linear system by matrix inversion. Neither of
these are things that single neurons could do. However, these
operations are equivalent to linear regression, which can be
computed in an online manner using stochastic gradient de-
scent.

Least Mean Squares (LMS; [145, 146]) is an online stochas-
tic gradient descent algorithm that solves the linear regres-
sion problem y=W>x, converging (with noise) to the solu-
tion W=Σx

−1Σxy, by minimizing the following objective via
stochastic gradient descent:

w = argmin
w

1
2
〈
‖w>x − y‖2

〉
(28)

Given a single observation (xC , yC ) at time C , LMS computes
the following online weight update:

ΔwC ∝ −∇wC

1
2
〈
‖w>C x − y‖2

〉
= Σx,y − ΣxwC

≈ xCyC> − xCxC>wC

= xC (yC −w>C xC )>.

(29)

Recall the formula for the �ltering weight update, with
homeostatic gain re-scaling of 6=f0/f~ .:

w3+1 = 6 · [Σ3 + ΣΔ]−1Σ3w3 (30)

This is a batched update, which uses activity on a given day
to update the weights for the following day. It minimizes the
following objective:

y = 6 ·w>x
w = argmin

w

1
2
{〈
‖w>x − y‖2

〉
+w>ΣΔw

}
= argmin

w

1
2 w
> {
(1 − 62)Σ3 + ΣΔ

}
w

(31)

In the online model, we treat drift as occurring gradually
and continuously, over small intervals ΔC . The incremental
drift is therefore ΔC ·ΣΔ, and the homeostatic gain adjustments
are small, 62≈1+WΔC . The weight update (30) for a self-healing
code is also a linear least-squares problem. In analogy to
LMS, an online stochastic gradient solution for the self-healing
weight update rule is:

ΔwC

ΔC ∝ −
1
ΔC

[
(1 − 62)Σ3 + ΔC · ΣΔ

]
wC

≈ [W xCx>C − ΣΔ]wC

= W xCy>C − ΣΔwC [c.f. Eq. (11)]
(32)

This reduces to the Hebbian homeostatic weight update, (7),
with W=Yf providing negative feedback to stabilize the neu-
ron’s �ring-rate variability. (32) also contains an extra term,
−ΣΔwC , which acts as regularizing weight decay. The drift ΣΔ

could be estimated in several ways. It might simply be initial-
ized heuristically as a constant weight decay ΣΔ ∝ � . It is also
possible to use changes in neuronal variability as a proxy for
drift.

4.5 Estimating the rate of drift
Empirically, we observe that the population statistics for the
tuning curves x(\ ) are stable despite drift [6]. The tuning
curve of each encoding cell G (\ ) can be viewed as a vector
in this space of possible tuning curves. For large populations,
the total amount of task-related variability is approximately
conserved. This implies that drift is, on average, mostly rota-
tional. If rotational drift rotates our code by amount q away
from the subspace spanned by our current decoding weights,
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it will lead to a loss of drive to the readout neurons, which is
approximately cos2 (q).

The homeostatic gain adjustment acts based on the ob-
served loss of drive. Assuming our target variance is one, f2C =1,
a variability decreases of cos2 (q) requires a gain adjustment of
6=1/cos(q). For small amounts of drift, a �rst-order Taylor ex-
pansion yields W ≈ q2. The current value W is therefore also an
estimate of the drift rate, and one may write:

Σ̂Δ ≈ W�
ΔwC

ΔC ≈ W · [xCx
>
C − � ]wC

(33)

Another way to arrive at (33) is to assume that drift (and
therefore any compensatory weight changes) should be tan-
gent to the current decoding weight vector (Figure 3a). This
has an intuitive interpretation: if we assume that the encod-
ing of \ is stable over time at the population level, then we
know that there is always some linear combination of decod-
ing weights that can read out a target tuning curve ~ (\ ) from
x(\ ). That is, the overall statistics of the weight vector should
also be stable. Drift causes these decoding weights to point in
a slightly di�erent direction. Tracking drift therefore amounts
to rotating the weight vector to point in this new direction.
Large recon�gurations of the encoding space can therefore be
tracked if drift is gradual (Figure 3b).

To ensure that gain homeostasis can converge in the ab-
sence of drift, one might use a faster learning rate [W>1 for
gain adjustment, which amounts to:

ΔwC

ΔC ≈ W · [[WxCx
>
C − � ]wC (34)

4.6 Linear network with recurrence
So far, we have explored self-healing codes in the case of a
single neuron, which uses a measurement of its own variabil-
ity to detect and correct for drift. One way to extend this to
populations is to assume that the activity in the readout, Y,
is constrained by local recurrent connections. This recurrent
activity provides additional error correction [65]. In this sce-
nario, the decoding weights and recurrent connections incor-
porate the prior knowledge that Σy should remain stable over
time.

A simple version of this mechanism might use feed-forward
activity y5 =W>x to generate regularized predictions yA . This
regularized estimate might be computed via local, recurrent
weights R that encode a �xed prior model of Σy:

y5 = W>x
yA = R>y5
R = [Σy + ^� ]−1Σy,

(35)

where ^ sets the strength of the regularization in the recurrent
dynamics.

This pools information across the readout population by lin-
early predicting the readout’s activity from itself, with regular-
ization strengthU . This can also be viewed as Gaussian process
(GP) smoothing, where Σy encodes the GP prior kernel using
the "true" tuning curves y(\ ) to support the function space.
(35) can be computed as a steady-state solution of a recurrent
network that computes a prediction error W>x − y using in-
hibitory feedback:

g ¤y = −~ + gΣy [W>x − y], (36)

where g = 1/^. If x varies slowly relative to the time constant
g , and if (36) converges, then it converges to (35), and tracks
yA (C). We stop short of specifying a speci�c biological real-
ization of (36), but this feedback-based solution is consistent
with the prevailing theory that the brain learns and computes
using prediction errors [96, 99, 147].

Recurrent feedback yields a new error signal, yA−y5 that
detects when the decoded activity strays outside of the low-
dimensional subspace of the initial code, y0 (\ ). This error can
be added to the weight update (34) to yield a combined update
that re�ects two constraints: Hebbian homeostasis, and local
recurrent dynamics (Results, Eq. 13).

In this form, it becomes clear that the recurrent dynamics
in y(\ ) truly are predictive dynamics. A Hebbian rule which
tracks drift is, essentially, minimizing the errors in the online
predictions that y makes about the activity x. In this paper,
we consider only the case where x changes so slowly that
this prediction should be the identity map. However, in a sce-
nario where x has nontrivial temporal dynamics, such recur-
rent computations and learning inherently learn an asymmet-
ric model that captures how \ evolves in time.

4.7 Linear simulations
We simulated a self-healing linear network encoding a circu-
lar latent variable \ ∈ [0, 2c), discretized into !=60 spatial
bins. We sampled  =200 randomly-drifting spatial features
x(\ ) from a Gaussian process on \ , with an exponentiated
quadratic (i.e. radial basis; Gaussian) covariance kernel with
a spatial standard deviation of f;=9 bins, scaled so that the
standard deviation of each feature was B=0.15. These features
underwent Ornstein Uhlenbeck drift over time, with a time-
constant of g=50 days (Eq. 16). "=50 readout units y(\ ) were
initialized with bump-like tuning curves, modeled as Gaus-
sians with f~=9 bins, evenly distributed over a range of pre-
ferred tunings \0. These readouts were given a homeostatic
target variance of fC=1.

We simulated 500 days of drift—ten times of the correlation
time for the drifting encoding features. This allowed mul-
tiple complete recon�gurations of the encoding population.
We simulated Hebbian homeostasis using a continuous-time
learning rule (Eq. 34) applied for 500 time-steps on each day,
with a learning rate of 1×10−5 per time-step. These updates
were batched, so that rather than sampling individual stimuli
and using xx>W to calculate updates in stochastic gradient
descent, we directly apply the expectation ΣxW.

We evaluated three scenarios: �xed weights, Hebbian
homeostasis, and Hebbian homeostasis with recurrent predic-
tion errors (Results, section 2.4, and Figure 3). We modeled
recurrence as an additional linear map yA=R>y5 as in Equa-
tion (35), and the resulting yA was used as a training signal
in a batched least-mean-squares continuous-time gradient up-
date (Eq. 29). To summarize the relative performance of these
three scenarios (Fig. 3d), we sampled 20 random realizations
of the aforementioned simulations.

The ability of the linear model to error-correct is limited
by the amount of drift that projects onto the low-dimensional
subspace in x(\ ) that encodes \ . While the total amount
of drift increases for larger populations, averaging predicts
that the disruptive e�ect of drift (in terms of squared error)
should scale inversely with population size. To verify this, we
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simulated a range of models with di�erent degrees of redun-
dancy. We simpli�ed the input features s(\ ) to re�ect a  -
dimensional Gaussian variable \ , encoded in an # >  popu-
lation. The readout y(\ ) was initialized to recover \ via linear
regression. As above, we simulated 500 days of random drift
as an O.U. process on the encoding weights, using Hebbian
homeostasis (without recurrence). For each network realiza-
tion, we sampled ten instances of the initial features and net-
work, and then �ve independent realizations of random drift
for each instance.

4.8 Nonlinear simulations
For the nonlinear readout, we simulated a circular variable
\∈[0, 2c) divided into !=60 discrete bins. We sampled  =60
features s(\ ) from a Gaussian process on \ , with zero mean
and an exponentiated quadratic covariance kernel with stan-
dard deviation f;=15. We allowed individual encoding units
G= (\ ) to change abruptly, rather than undergo a continuous
random walk. We did this by re-sampling features one-at-a-
time, and running Hebbian homeostasis each time 8% of the
encoding features changed. This approach emphasized that
the nonlinear readout can track drift through multiple com-
plete recon�gurations of the encoding population. Encoding
features were normalized to range from 0 to 1, then passed
through a nonlinearity x(\ )= exp[I (\ )− 1

2 ] to simulate sparse,
non-negative network inputs.

We initialized #=60 linear-nonlinear readout neurons
(y(\ ); Eq. 2) with Gaussian tuning curves y0 (\ ) with standard
deviation f~=5 bins, and with preferred tunings \0 evenly dis-
tributed on [0, 2c). Readout weights W were trained via gra-
dient descent to minimize a loss similar to a log-linear Poisson
model. This incorporates the constraint that tunings can be
matched less precisely at higher �ring rates:

W = argmin
W

〈
exp[W>x] − y0 ◦W>x

〉
+ ^‖W‖2, (37)

where ◦ denotes element-wise multiplication, the expectation
〈·〉 is taken over \ and the readout population, and the regu-
larization strength is ^=10−2.

The homeostatic set-points for the mean and the variance of
the �ring rate, `C andf2C , were taken from the statistics of these
initial tuning curves. We implemented Hebbian homeostasis
by de�ning slow variables W and V , which track the deviations
of the neuron’s �ring rate statistics from its homeostatic set
points. Weights were trained to restore these set-points via a
continuous-time Hebbian learning rule (Eq. 7). 50 iterations
of this learning rule were applied each time 8% (5 out of 60) of
the encoding population had recon�gured.

For nonlinear neurons, homeostasis of the mean-rate and
variability interact. Controlling the variability can change the
overall excitability of the neuron, and can lead to instability.
To address this, we used di�erent learning rates [V=0.9 and
[f=0.1 for the mean-rate and variability, respectively. The
more rapid control of mean-rate avoids instability related to
variability homeostasis.

To simulate response normalization, we divided the re-
sponse y(\ ) by the average population rate, scaled to preserve
the population rates seen in the initial network con�guration,
as in Equation (14). To model recurrent dynamics, we trained

another set of �xed recurrent weights R as in Equation (15),
with a gradient descent objective similar to the one used to
initialize the decoding weights (Eq. 37).

R = argmin
R

〈
exp[R>y0] − y0 ◦ R>y0

〉
, +^A ‖R‖2 (38)

with regularization strength of ^A=10−4.
These recurrent predictions were applied to generate a re-

vised prediction yA (\ ) after applying response normalization.
For both response normalization and the recurrent model,
“error-corrected" estimates ŷ=y3 or ŷ=yA were used to retrain
the decoding weights via Hebbian learning, with regularizing
weight decay rate of d3= 1

3×10
−3:

y5 = exp(U>x)
ΔU = [

〈
x[ŷ − y5 ]>

〉
− d3U,

(39)

with a learning rate of [=0.5. Note that the above (39) cor-
responds to online gradient descent of an objective similar to
those used to train the initial forward and recurrent weights
(Eqs. 37, 38).
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