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Microbial populations undergo multiple phases of growth, including a lag phase, an exponential
growth phase, and a stationary phase. Therefore mutations can improve the frequency of a genotype
not only by increasing its growth rate, but also by decreasing the lag time or adjusting the yield
(resource e�ciency). Furthermore, many mutations will be pleiotropic, a↵ecting multiple phases
simultaneously. The contribution of multiple life-history traits to selection is a critical question for
evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a simple
model of microbial growth to quantify how these multiple phases contribute to selection. We find
that there are two distinct components of selection corresponding to the growth and lag phases,
while the yield modulates their relative importance. Despite its simplicity, the model predicts non-
trivial population dynamics when mutations induce tradeo↵s between phases. Multiple strains can
coexist over long times due to frequency-dependent selection, and strains can engage in rock-paper-
scissors interactions due to non-transitive selection. We characterize the environmental conditions
and patterns of traits necessary to realize these phenomena, which we show to be readily accessible
to experiments. Our results provide a theoretical framework for analyzing high-throughput mea-
surements of microbial growth traits, especially interpreting the pleiotropy and correlations between
traits across mutants. This work also highlights the need for more comprehensive measurements
of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks
down.

Fitness is conceived as a single quantity that describes
how selection amplifies or diminishes the frequency of a
genotype in a population [1, 2]. However, the life his-
tory of most organisms is described by multiple traits,
such as fecundity, generation time, resource e�ciency,
and survival probability [2]. It is often not obvious how
selection acts on all these traits simultaneously. For ex-
ample, the fixation probability of a mutant may depend
on the specific traits a↵ected by the mutation [3–6]. In
these cases it is not even possible to combine multiple
traits into a single fitness objective. The Pareto front,
which is the set of trait combinations such that no single
trait can be improved without worsening another, is an
agnostic approach to this problem [7, 8]. However, since
it neglects the underlying biology of the traits in ques-
tion, there can be large di↵erences in fitness among states
within the Pareto front, especially if fitness depends non-
linearly on the traits [9].
Single-celled microbes o↵er a convenient system to ad-

dress these fundamental concepts of fitness and selection,
since they have comparatively simple life histories. Mi-
crobial populations typically undergo a lag phase while
adjusting to a new environment, followed by a phase of
exponential growth, and finally a saturation or station-
ary phase when resources are depleted. The relative im-
portance of growth rate versus yield (resource e�ciency)
has long been studied in the context of r/K selection [10–
17]. Lag times are also known to be targeted by mutation

⇤
To whom correspondence should be addressed. Email:

shakhnovich@chemistry.harvard.edu

and selection. For example, populations of E. coli signif-
icantly reduced their lag times over 2000 generations of
experimental evolution [18], and destabilizing mutations
in the enzyme adenylate kinase have been shown to a↵ect
lag times more than growth rates [19]. Lag times may
also evolve to help survive antibiotic stress [20] or due
to constraints from growth in variable environments [21].
Therefore the evolutionary fate of a genotype may de-
pend on its traits for all of these phases, but currently we
lack a quantitative understanding of how these di↵erent
traits contribute to selection and population dynamics of
mutations, particularly since mutations may a↵ect more
than one phase simultaneously [14, 19, 22].

To address this problem, we develop a model of popula-
tion genetics with selection on multiple microbial growth
traits. We derive an expression for the selection coe�-
cient that quantifies the relative selection pressures on
lag time, growth rate, and yield. We then determine
how these selection pressures shape population dynamics
over many cycles of growth, as occur in natural environ-
ments or laboratory evolution. We find that selection
is frequency-dependent, enabling coexistence of multi-
ple strains and swaying the fixation statistics of mutants
from the classical expectation. We also find that selec-
tion can be non-transitive across multiple strains, lead-
ing to rock-paper-scissors interactions. These results are
not only valuable for interpreting measurements of mi-
crobial selection and growth traits, but they also reveal
how simple properties of microbial growth lead to com-
plex population dynamics.
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FIG. 1. Dynamics of population growth. (A) Example
growth curve (orange points) and the minimal three-phase
model (solid violet line); each phase is labeled with its cor-
responding growth trait. (B) Two example growth curves in
the three-phase model. Solid lines show the growth curves
for each strain growing alone, while dashed lines show the
growth curves of the two strains mixed together and compet-
ing for the same amount of resources. The solid and dashed
growth curves are identical until saturation occurs. Inset:
Comparison of the approximate selection coe�cient formula
(Eq. 2) with the exact result obtained using the definition
in Eq. 1 and a numerical solution to the saturation equation
(Methods). Each green point corresponds to a di↵erent set
of randomly-generated mutant growth traits (g2, �2, Y2) and
initial frequencies x2. The black dashed line is the line of
identity.

RESULTS

Model of population growth and competition.

Consider a population of microbial cells competing for a
single limiting resource. The population size as a func-
tion of time N(t) (growth curve) typically follows a sig-
moidal shape on a logarithmic scale, with an initial lag
phase of sub-exponential growth, then a phase of expo-
nential growth, and finally a saturation phase as the en-
vironmental resources are exhausted (Fig. 1A). We con-
sider a minimal model of growth dynamics in which the
total growth curve is characterized by three quantitative
traits, one corresponding to each phase of growth [23, 24]:
a lag time �, an exponential growth rate g, and a satu-
ration population size N

sat

(Methods, Fig. 1A).
The saturation size N

sat

depends on both the total
amount of resources in the environment, as well as the
cells’ intrinsic e�ciency of using those resources. To sep-
arate these two components, we define R to be the to-
tal initial amount of the limiting resource and Y to be
the yield, or the number of cells supported per unit re-
source [18]. Therefore N(t)/Y is the amount of resources
consumed by time t, and saturation occurs at time t

sat

when N(t
sat

) = N
sat

= RY . It is straightforward to ex-
tend this model to multiple strains with distinct traits g

i

,
�
i

, and Y
i

, all competing for the same pool of resources
(Methods, Fig. 1B).

Distinct components of selection on growth and

lag phases. We focus on the case of two competing
strains, such as a mutant and a wild-type. We will denote

the wild-type growth traits by g
1

,�
1

, Y
1

and the mutant
traits by g

2

,�
2

, Y
2

. Assume the total initial population
size is N

0

and the initial fraction of mutants is x. We
define the selection coe�cient for this mutant, relative
to the wild-type, as [25]

s = log

✓
N

2

(t
sat

)/N
2

(0)

N
1

(t
sat

)/N
1

(0)

◆
. (1)

We can derive an approximate expression for the se-
lection coe�cient as a function of the underlying param-
eters in the three-phase growth model. We reduce the
parameter space by using the dimensionless quantities
� = (g

2

�g
1

)/g
1

and ! = (�
2

��
1

)g
1

, which describe the
relative di↵erences in growth rate and lag time between
the mutant and wild-type, as well as the relative yields
⌫
1

= RY
1

/N
0

and ⌫
2

= RY
2

/N
0

. In the limit of weak
selection (|s| ⌧ 1), we can show that the selection co-
e�cient consists of two components, one corresponding
to selection on growth rate and another corresponding to
selection on lag time (Methods):

s ⇡ s
growth

+ s
lag

, (2a)

where

s
growth

= A� log


1

2
H

✓
⌫
1

1� x
,
⌫
2

x

◆�
,

s
lag

= �A!(1 + �), (2b)

A =
(1� x)/⌫

1

+ x/⌫
2

(1� x)/⌫
1

+ (1 + �)x/⌫
2

,

and H(a, b) = 2/(a�1+b�1) denotes the harmonic mean.
Note that normalizing by the initial frequencies in the
definition (Eq. 1) does not make the selection coe�cient
independent of these frequencies. This approximation
is very close to the exact value (obtained by numerically
solving the growth model) over a wide range of parameter
values (Fig. 1B, inset). Furthermore, the expression is
exact in two special cases: when the mutant and the
wild-type are selectively neutral (s = 0; see SI Methods),
and when the mutant and wild-type have equal growth
rates (� = 0), since s = �(�

2

� �
1

)g
1

= �! according to
Eq. 1 (Methods).
Selection on growth is zero if the growth rates are

equal, while selection on lag is zero if the lag times are
equal. In the limit of small relative di↵erences in growth
rate � and lag time !, these components of selection are

s
growth

⇡ � log


1

2
H

✓
⌫
1

1� x
,
⌫
2

x

◆�
,

s
lag

⇡ �!.
(3)

As expected, s
growth

is proportional to the ordinary
growth rate selection coe�cient � = (g

2

� g
1

)/g
1

, while
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�! = �(�
2

� �
1

)g
1

is the approximate selection co-
e�cient for lag. This contrasts with previous studies
that used � ds/d� as a measure of selection on lag
time [18, 26], which assumes that selection acts on the
change in lag time relative to the absolute magnitude of
lag time, (�

2

� �
1

)/�
1

. But the absolute magnitude of
lag time cannot matter since the model is invariant un-
der translations in time, and hence our model correctly
shows that selection instead acts on the change in lag
time relative to the growth rate.
E↵ect of pleiotropy and tradeo↵s on selection.

In general, we expect mutations to a↵ect multiple growth
traits simultaneously, i.e., they are pleiotropic [14, 19,
22]. Therefore both s

growth

and s
lag

will be nonzero. The
ratio of these components indicates the relative selection
on growth versus lag traits:

s
growth

s
lag

= � �

!(1 + �)
log


1

2
H

✓
⌫
1

1� x
,
⌫
2

x

◆�
. (4)

We can use this to determine, for example, how much
faster a strain must grow to compensate for a longer lag
time. This also shows that we can increase relative se-
lection on growth versus lag by increasing the relative
yields ⌫

1

, ⌫
2

. Conceptually, this is because increasing the
yields increases the portion of the total competition time
occupied by the exponential growth phase compared to
the lag phase. Since each relative yield ⌫

i

is proportional
to the initial amount of resources per cell R/N

0

, we can
therefore tune the relative selection on growth versus lag
in a competition experiment by controlling R/N

0

.
The ratio s

growth

/s
lag

also indicates the type of
pleiotropy through its sign. If s

growth

/s
lag

> 0, then
the pleiotropy is synergistic: the mutation is either ben-
eficial to both growth and lag, or deleterious to both. If
s
growth

/s
lag

< 0, then the pleiotropy is antagonistic: the
mutant is better in one trait and worse in the other. An-
tagonistic pleiotropy means the mutant has a tradeo↵ be-
tween growth and lag. In this case, whether the mutation
is overall beneficial or deleterious depends on which trait
has stronger selection. Since relative selection strength is
controlled by the initial resources per cell R/N

0

through
the yields (Eq. 4), we can therefore qualitatively change
the outcome of a competition with a growth-lag tradeo↵
by tuning R/N

0

to be above or below a critical value:

Critical value of
R

N
0

=
2e!(1+1/�)

H
⇣

Y1
1�x

, Y2
x

⌘ . (5)

The right side of this equation depends only on intrinsic
properties of the strains (growth rates, lag times, yields)
and sets the critical value for R/N

0

, which we can con-
trol experimentally. When R/N

0

is below this threshold,
selection will favor the strain with the better lag time:
there are relatively few resources, and so it is more im-
portant to start growing first. On the other hand, when
R/N

0

is above the critical value, selection will favor the

strain with the better growth rate: there are relatively
abundant resources, and so it is more important to grow
faster.
Mutational e↵ects on growth traits may not only be

pleiotropic, but they may also be correlated. The sim-
plest case is a linear correlation between growth traits
across many mutations or strains:

� ⇡ a

g
+ constant, ⌫ ⇡ bg + constant. (6)

We take lag time to be linearly correlated with growth
time (reciprocal growth rate), rather than growth rate,
since then both traits have units of time and the pro-
portionality constant a is dimensionless. Various mod-
els predict linear correlations of this form [27–32], which
have been tested on measured distributions of traits [13–
17, 19, 31, 33] (see Discussion).
We can combine this model with the selection coe�-

cient in Eq. 2 to quantify how much selection is amplified
or diminished by correlated pleiotropy. That is, if a muta-
tion changes growth rate by a small amount�g = g

2

�g
1

,
then according to Eq. 6 it will also change lag time by
�� ⇡ �a�g/g2 and yield by �⌫ = b�g, and hence the
expected selection coe�cient will be (using � = �g/g)

s ⇡ �(log ⌫ + a). (7)

This shows that correlations between growth and yield
have no e↵ect on selection to leading order, since selec-
tion only depends logarithmically on yield. Correlations
between growth and lag, however, can have a significant
amplifying or diminishing e↵ect. Since log ⌫ > 0 al-
ways, synergistic pleiotropy (a > 0) will tend to increase
the magnitude of selection, while antagonistic pleiotropy
(a < 0) will tend to reduce the magnitude. The signif-
icance of this e↵ect depends on the relative value of a
compared to log ⌫; in general, the logarithm and the di-
mensionless nature of a suggest both should be order 1
and therefore comparable.

Neutral, beneficial, and deleterious regions of

mutant trait space. The selection coe�cient allows
us to precisely determine which regions of mutant trait
space are neutral, beneficial, or deleterious with respect
to the wild-type. In Fig. 2A we consider the trait space of
growth and lag. If the mutant and wild-type have equal
yields (⌫

1

= ⌫
2

= ⌫), then mutants whose growth traits
satisfy

e!(1+1/�) = ⌫ (8)

are neutral (s = 0). Note that the quantity !(1 + 1/�)
equals �(�

2

� �
1

)/(g�1

2

� g�1

1

), i.e., the negative ratio of
the di↵erence in lag times versus growth times (reciprocal
growth rates). Mutants satisfying this condition form a
one-dimensional boundary in the growth-lag trait space,
shown in blue (for low yields ⌫) and red (for high yields ⌫)
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FIG. 2. Selection in mutant trait space. (A) Selection as
a function of relative growth rate � = (g2 � g1)/g1 and rela-
tive lag time ! = (�2 � �1)g1. When the mutant and wild-
type have equal yields (⌫1 = ⌫2), there is a one-dimensional
boundary of neutral mutants for which s = 0 at all initial fre-
quencies x. Mutants below this boundary are beneficial, while
mutants above the boundary are deleterious. Blue is low yield
(⌫1 = ⌫2 = 102), and red is high yield (⌫1 = ⌫2 = 105). When
the mutant and wild-type have unequal yields (⌫1 6= ⌫2), there
is a quasi-neutral region (green, shaded) of trait space where
s = 0 only at a particular initial mutant frequency x. (B) Se-
lection as a function of relative growth rate � and mutant
yield ⌫2. The orange quasi-neutral region corresponds to a
mutant with ! = �0.1 (better lag), and the violet region cor-
responds to a mutant with ! = 0.1 (worse lag); the wild-type
yield is ⌫1 = 103 in both.

in Fig. 2A. The overall magnitude of the yield determines
the steepness of the boundary: increasing the yield makes
the boundary more vertical, since that increases relative
selection on growth (Eq. 4). Mutants below the neutral
boundary are beneficial (s > 0), while mutants above the
neutral boundary are deleterious (s < 0).
When the mutant and wild-type have unequal yields

(⌫
1

6= ⌫
2

), the neutrality condition s = 0 depends on the
initial frequency x. Thus, instead of a one-dimensional
curve forming the neutral boundary, there is a “quasi-
neutral” region (Fig. 2A, shaded green), consisting of all
mutants satisfying

min (⌫
1

, ⌫
2

) < e!(1+1/�) < max (⌫
1

, ⌫
2

) , (9)

which are neutral only for a particular initial frequency
x̃:

x̃ =
⌫
1

e�!(1+1/�) � 1

⌫
1

/⌫
2

� 1
. (10)

Mutants above or below the quasi-neutral region are ben-
eficial or deleterious at all frequencies.
We may also consider how selection acts on yield. As

Eq. 2a indicates, there is no distinct selection pressure
on yield — it merely modulates the relative selection
pressures on growth versus lag. Thus, whether it is ad-
vantageous for the mutant to have higher or lower yield
compared to the wild-type depends on the other traits.

In this sense there are no pure “K-strategists” in the
model [12]. Figure 2B shows the quasi-neutral regions
in the growth-yield trait space for both a mutant with
better lag (orange) and a mutant with worse lag (violet).
This shows that for a mutant with better lag but worse
growth (� < 0), it is advantageous to have a yield as
low as possible: since the mutant grows more slowly, it
will perform better if the competition ends as quickly as
possible, and hence it should hoard as many resources
as it can before the wild-type grows too much. Thus a
“cheater” mutant [31] will only be selected if it has an
advantage in lag time. In contrast, a mutant with worse
lag but better growth rate (� > 0) should have a yield
as high as possible, so it can e�ciently consume what-
ever resources are left once it begins its growth phase.
Figure 2B also shows that a mutant with worse growth
and lag can never outcompete the wild-type, no mat-
ter how e�cient it is. Note that increasing the mutant
yield much above the wild-type value changes the selec-
tion coe�cient very little, since s primarily depends on
the harmonic mean of the yields.

Selection is frequency-dependent. Equation 2
shows that the selection coe�cient s depends on the ini-
tial frequency x of the mutant. Selection s(x) can ei-
ther increase or decrease monotonically as a function of
frequency x, or it can be constant (SI Methods). Fig-
ure 3A shows this behavior for strains with equal yields
(⌫

1

= ⌫
2

) using the sign of ds/dx over growth-lag trait
space; Fig. 3B shows the case of unequal yields (⌫

1

6= ⌫
2

).
Note that for equal yields, s(x) is constant at zero along
the neutral boundary (Fig. 3A), whereas for unequal
yields there is a separate boundary, away from the quasi-
neutral region, where s(x) has a constant but nonzero
value (Fig. 3B).

Another way to measure the frequency-dependence of
selection is to consider how much it varies across all pos-
sible frequencies. We define the relative variation of se-
lection as |(s

max

� s
min

)/s(1/2)|, where s
max

and s
min

are the maximum and minimum values of s(x) across all
frequencies, and s(1/2) is selection at the intermediate
frequency x = 1/2 (SI Methods). For equal yields, the
relative variation depends only on �, and it is small over
a large range of the trait space (Fig. 3C). This indicates
that the frequency-dependence of selection is relatively
weak for equal yields. In contrast, when the yields are
unequal, the variation becomes very large near the quasi-
neutral region (Fig. 3D). This is because s(1/2) goes to
zero for some points in the quasi-neutral region, while
the total range |s

max

� s
min

| remains finite. Thus, the
frequency-dependence of selection is most significant for
mutants in the quasi-neutral region.

Population dynamics over serial competitions.

We now consider the dynamics of a mutant and a wild-
type over a series of competitions, as occur in both sea-
sonal natural environments as well as laboratory evo-
lution experiments where resources are periodically re-
newed (batch culture) [25]. We assume each round of
competition begins with the same initial population size
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FIG. 3. Frequency-dependence of the selection coe�cient
over growth-lag trait space. (A) For a mutant and wild-type
with equal yields (⌫1 = ⌫2 = 103), the gray and white re-
gions indicate where the selection coe�cient s(x) increases
as a function of mutant frequency (ds/dx > 0) or decreases
(ds/dx < 0). The neutral boundary is in blue. (B) Same
as (A) but for a mutant and wild-type with unequal yields
(⌫1 = 103, ⌫2 = 104). The quasi-neutral region is shown
in green. (C) Relative variation of the selection coe�cient
over mutant frequencies when the mutant and wild-type have
equal yields. Yield values and the neutral boundary are the
same as (A). (D) Same as (C) but for a mutant and wild-type
with unequal yields; yield values and the quasi-neutral region
are the same as (B). The relative variation diverges in the
quasi-neutral region since s(1/2) = 0 for some points.

N
0

and amount of resources R, and growth proceeds un-
til those resources are exhausted. The population is then
diluted down to N

0

again for the next round (Fig. 4A).
Therefore di↵erences in strain frequencies arising during
competition become amplified over multiple rounds, and
the selection coe�cient of Eq. 1 measures the rate at
which the frequencies grow or decay per round (Meth-

ods).

Multiple strains can coexist over long times.

Zero selection coe�cient means the frequency of the mu-
tant in the population remains unchanged after competi-
tion. If this occurs for nontrivial frequencies (0 < x < 1),
then the mutant can coexist with the wild-type over
many rounds of competition. If the mutant and wild-type
have equal yields (⌫

1

= ⌫
2

), then mutants on the neutral
boundary (Eq. 8, solid blue and red lines in Fig. 2A) will
coexist with the wild-type at any frequency, since in this
case s(x) = 0 for all x. If the mutant and wild-type have
unequal yields, then mutants in the quasi-neutral region
(Eq. 9, shaded green area in Fig. 2A) will coexist with
the wild-type, but only at a single frequency x̃ for which
s(x̃) = 0 (Eq. 10). Figure 4B shows the quasi-neutral
region of trait space colored according to the coexistence
frequency x̃. The stability of coexistence depends on

FIG. 4. Serial competitions and coexistence of two strains.
(A) Example growth curves of two strains over multiple
rounds of competition. Vertical dashed lines demarcate the
rounds. (B) Quasi-neutral region of growth-lag trait space
where coexistence occurs, colored by the coexistence fre-
quency x̃ (Eq. 10). Since ⌫2 > ⌫1 in this example, mutants
in the lower branch (� < 0) of the quasi-neutral region have
stable coexistence, while mutants in the upper branch (� > 0)
have unstable coexistence. Blue and red points mark exam-
ple mutants used in (C) and (D). (C) Examples of selection
s(x) as a function of frequency x for mutants with coexistence
at x̃ = 1/2, where one mutant has stable coexistence (blue)
and the other has unstable coexistence (red). Inset: e↵ective
selection potentials V (x) (Eq. 11) as functions of frequency
x. (D) Mutant frequency x(r) as a function of competition
round r for two mutants with coexistence, each starting from
two di↵erent initial conditions. The black dashed line marks
the coexistence frequency x̃ = 1/2. The yields are ⌫1 = 103

and ⌫2 = 104 in all panels.

whether the selection coe�cient increases or decreases
as a function of frequency, i.e., the sign of ds/dx. From
Fig. 3B we can deduce that the mutants in the lower
branch of the coexistence region have stable coexistence
(ds/dx < 0), while the mutants in the upper branch have
unstable coexistence (ds/dx > 0). In general, stable co-
existence requires a tradeo↵ between growth rate and
yield: the mutant must have faster growth rate and lower
yield, or slower growth rate and higher yield (SI Meth-

ods).
Given any two strains with di↵erent yields and a trade-

o↵ between growth and lag, in principle it is always pos-
sible to construct competition conditions such that the
two strains will coexist. That is, one may choose any
coexistence frequency x̃ and use Eq. 5 to determine the
critical value of the initial resources per cell R/N

0

; with
R/N

0

set to that value, the competition will have coex-
istence at precisely the desired frequency. Whether it is
stable or unstable depends on whether there is a tradeo↵
between growth and yield.
Figure 4C shows the selection coe�cients s(x) as func-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2016. ; https://doi.org/10.1101/096453doi: bioRxiv preprint 

https://doi.org/10.1101/096453


6

tions of frequency for two mutants with coexistence at
x̃ = 1/2, one that is stable (blue) and another that is
unstable (red). We also show the e↵ective selection “po-
tential” (Fig. 4C, inset), defined as

V (x) = �
Z

x

0

dx0 s(x0). (11)

This is defined in analogy with physical systems, where
selection plays the role of a force and V (x) is the corre-
sponding potential energy function. Stable coexistence
occurs at local minima of this potential, while unstable
coexistence occurs at local maxima. In Fig. 4D we show
example trajectories of the frequencies over rounds of
competitions for these two mutants. Regardless of its ini-
tial frequency, the mutant with stable coexistence (blue)
converges to coexistence with the wild-type, even though
it has rather di↵erent growth traits (slower growth rate
but shorter lag and higher yield). In contrast, the mutant
with unstable coexistence (red) can have opposite fates
depending on whether its initial frequency starts above
or below the coexistence frequency (Fig. 4D).

If the bottleneck population size N
0

at the beginning
of each round is small, then stochastic e↵ects of sam-
pling from round to round (genetic drift) may be sig-
nificant. We can gauge the robustness of stable coexis-
tence to these fluctuations by comparing the magnitude
of those fluctuations, which is of order 1/N

0

, with ds/dx
measured at the coexistence frequency x̃ (SI Methods).
Coexistence will be robust against random fluctuations
if

����
�(1� ⌫

1

/⌫
2

)

(1� x̃) + x̃(1 + �)⌫
1

/⌫
2

���� >
1

N
0

. (12)

This tells us the critical value of the bottleneck size N
0

,
which we can control experimentally, needed to achieve
robust coexistence.
Frequency-dependent selection and coexistence

sway the fixation of mutants. For a finite bottleneck
population size N

0

, the population dynamics over com-
petition rounds are equivalent to a Wright-Fisher pro-
cess with frequency-dependent selection coe�cient s(x)
and e↵ective population size N

0

[34] (Methods). The
frequency-dependence of s(x) means that a measured
value of the selection coe�cient at just one initial fre-
quency may not fully determine the evolutionary fate of
that mutation. In particular, it is common to measure
selection on a mutant by competing the mutant against a
wild-type starting from equal frequencies (x = 1/2) [25].
We therefore test how much this single selection coe�-
cient measurement s(1/2) can predict the fixation proba-
bility of the mutant. When selection is a constant across
frequencies, Kimura’s formula gives a simple relationship
between the selection coe�cient s and the fixation prob-
ability � of a single mutant [34]:

� =
1� e�2s

1� e�2N0s
. (13)

This assumes mutations are rare enough to neglect in-
terference from multiple de novo mutations. Deviations
from this relationship between � and s(1/2) are therefore
indicative of significant frequency-dependence.

Figure 5A shows � as a function of s(1/2) for sev-
eral sets of mutants. In orange are mutants obtained
by uniformly scanning a rectangular region of growth-
lag trait space (e.g., the trait space shown in Fig. 2A).
The fixation probabilities of these mutants appear to be
well-described by Kimura’s formula (black line) using a
constant selection coe�cient measured at x = 1/2. The
mean fixation times ✓ (Fig. 5B) for these mutants are
also well-described by assuming constant selection coef-
ficient s(1/2). This is because the frequency-dependence
for these mutants is weak, as shown in Fig. 3C,D. There-
fore a single measurement of the selection coe�cient for
these mutants at any initial frequency provides an accu-
rate prediction of the long-term population dynamics.

The plots of selection variation in Fig. 3C,D indicate
that the most significant frequency-dependence occurs
for mutants in the quasi-neutral region with unequal
yields, i.e., mutants with coexistence. We thus calcu-
late the fixation probabilities and times for mutants with
coexistence at particular frequencies, and compare these
statistics to their selection coe�cients at x = 1/2 as
would be measured experimentally. As expected, the fix-
ation statistics show significant deviations from the pre-
dictions for constant selection. In particular, mutants
with coexistence at x̃ = 1/2 have s(1/2) = 0 by defini-
tion, but they nevertheless show a wide range of fixation
probabilities and times, some above the neutral values
(� = 1/N

0

, ✓ = 2N
0

) and some below.

Figure 5C,D shows the fixation probabilities and times
of mutants with coexistence as functions of their relative
growth rates �, which separates mutants with stable co-
existence from those with unstable coexistence. Mutants
with unstable coexistence at x̃ = 1/2 fix with lower prob-
ability than would a purely neutral mutant (Fig. 5C), but
if they do fix, they do so in less time (Fig. 5D). We can un-
derstand this in analogy with di↵usion across an energy
barrier, using the e↵ective selection potential defined in
Eq. 11. The inset of Fig. 4C shows an example of such
a selection potential barrier (red). The mutant starts at
frequency 1/N

0

, and to reach fixation it must not only
survive fluctuations from genetic drift while at low fre-
quency, but it also must cross the e↵ective selection po-
tential barrier at the coexistence frequency. Indeed, the
mutant is actually deleterious at low frequencies (below
the coexistence frequency), and thus we expect the fixa-
tion probability to be lower than that of a purely neutral
mutant. If such a mutant does fix, though, it will do so
rapidly, since it requires rapid genetic drift fluctuations
to cross the selection barrier. This e↵ect is most pro-
nounced for coexistence at relatively high frequencies; for
low coexistence frequencies, such as x̃ = 1/4, the barrier
is su�ciently close to the initial frequency 1/N

0

that it is
easier to cross, and thus the fixation probability is closer
to the neutral value (Fig. 5C).
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FIG. 5. Mutant fixation probabilities and times. (A) Fix-
ation probability � as a function of the selection coe�cient
at frequency x = 1/2. Orange points correspond to mutants
uniformly sampled across a rectangular region of growth-lag
trait space: (�,!) 2 [�10�3

, 10�3] ⇥ [�5 ⇥ 10�3
, 5 ⇥ 10�3].

Other points correspond to mutants with coexistence at spe-
cific frequencies (blue for x̃ = 1/4, red for x̃ = 1/2, green for
x̃ = 3/4). The solid black line indicates the prediction from
Kimura’s formula (Eq. 13), assuming a frequency-independent
selection coe�cient. The horizontal dashed line marks the
neutral fixation probability � = 1/N0. (B) Same as (A), but
with the mean fixation time ✓ (conditioned on eventual fix-
ation) on the vertical axis. The solid black line marks the
prediction for a frequency-independent selection coe�cient
(Methods), and the horizontal dashed line marks the neu-
tral fixation time ✓ = 2N0. (C) Fixation probability � as a
function of the relative growth rate � for mutants with coex-
istence. Colors indicate the same coexistence frequencies as
in (A) and (B). Mutants with � < 0 have stable coexistence,
while mutants with � > 0 have unstable coexistence. Dashed
lines are the same as in (A). (D) Same as (C), but with the
mean fixation time ✓ on the vertical axis. Dashed lines are
the same as (B). In all panels, the relative yields are ⌫1 = 103

and ⌫2 = 104, and the initial population size is N0 = 103.

Mutants with stable coexistence, on the other hand,
are described by a potential well at the coexistence fre-
quency (blue line in Fig. 4C, inset). The fixation of these
mutants is determined by a tradeo↵ between the initial
boost of positive selection toward the coexistence fre-
quency, which helps to avoid immediate extinction, and
the stabilizing selection they experience once at coexis-
tence. In particular, once at the coexistence frequency,
the mutant must eventually cross a selection barrier to
reach either extinction or fixation (e.g., Fig. 4C, inset).
However, the barrier to fixation is always higher, and
thus the mutant has a greater chance of going extinct
rather than fixing. As we see for mutants with stable
coexistence at x̃ = 1/2, decreasing � from zero initially
improves the probability of fixation over neutrality, but
eventually it begins to decrease. Thus, the frequency-

dependence of mutants with coexistence plays a crucial
role in shaping their fixation statistics, and their ulti-
mate fates depend crucially on their individual traits (i.e.,
value of �).
Selection is non-additive and non-transitive. We

now consider a collection of many strains with distinct
growth traits. To determine all of their relative selec-
tion coe�cients, in general we would need to perform
binary competitions between all pairs. However, if selec-
tion obeys the additivity condition

s
ij

+ s
jk

= s
ik

, (14)

where s
ij

is the selection coe�cient of strain i over strain
j in a binary competition, then we need only measure se-
lection coe�cients relative to a single reference strain,
and from those we can predict selection for all other
pairs. The additivity condition holds, for example, if
selection coe�cients are simply di↵erences in scalar fit-
ness values (Malthusian parameters) for each strain (i.e.,
s
ij

= f
i

�f
j

). Therefore the extent to which Eq. 14 holds
is indicative of the existence of such a fitness landscape.
Based on the selection coe�cient definition (Eq. 1), the

additivity condition would hold if the time t at which the
selection coe�cient is measured is a constant, indepen-
dent of the two competing strains. In that case, there
is a scalar fitness value f

i

= g
i

(t � �
i

) for each strain,
and the selection coe�cients are just di↵erences in these
values (Methods). However, if we only measure selection
after the finite resources are exhausted, then the rele-
vant time is the saturation time t

sat

, which depends on
the traits of the two competing strains (SI Methods) and
is therefore di↵erent for each binary competition. This
means that the selection coe�cient in this model does
not obey additivity in general, although it will be ap-
proximately additive in the limit of small di↵erences in
growth traits between strains (SI Methods).
A condition weaker than additivity is transitivity,

which means that if strain 2 beats strain 1 and strain
3 beats strain 2 in binary competitions, then strain 3
must beat strain 1 in a binary competition as well [35].
This must also hold for neutrality, so if strains 1 and 2
are neutral, and strains 2 and 3 are neutral, then strains
1 and 3 must also be neutral. This essentially means that
Eq. 14 at least predicts the correct sign for each binary
selection coe�cient.
If all three strains have equal yields, then selection

in our model is always transitive (SI Methods). If the
yields are not all equal, then it is possible to find sets
of three strains with non-transitive selection: each strain
outcompetes one of the others in a binary competition (SI
Methods), forming a rock-paper-scissors game [36]. In
Fig. 6A,B we show two examples of non-transitive sets
of strains. The three strains may have arbitrary yield
values, and without loss of generality we label the strain
with smallest yield as strain 1. Given a choice of strain 1’s
traits (blue point), strain 2’s traits may lie anywhere in
the red shaded regions of Fig. 6A,B, which allows strain
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FIG. 6. Non-transitive selection over three strains. (A) An
example of three strains (blue, red, green) forming a non-
transitive set: in binary competitions, red beats blue, green
beats red, and blue beats green. The main panel shows the
three strains in the trait space of relative growth rate � and
lag time ! (all relative to the blue strain); the red and green
shaded regions indicate the available trait space for the red
and green strains such that the three strains will form a non-
transitive set. Insets: strains in the trait space of lag time
and yield ⌫ (upper left) and trait space of growth rate and
yield (lower right). Arrows indicate which strain beats which
in binary competitions. (B) Same as (A) but with a di↵erent
set of strains. (C) Dynamics of each strain’s frequency xi(r)
over competition rounds r for all three strains in (A) simul-
taneously competing. (D) Same as (C) but with the three
strains in (B).

2 to beat strain 1 while still making it possible to choose
strain 3 and form a non-transitive set. Once we fix strain
2 (red point), then strain 3’s traits may lie anywhere in
the green shaded regions.
These trait space diagrams reveal what patterns of

traits are conducive to non-transitive selection. The trait
space constraints favor a positive correlation between
growth rates and lag times across strains, indicating a
growth-lag tradeo↵. Non-transitive strains will generally
have no significant correlation between yield and growth
rate or between yield and lag time (Fig. 6A,B, insets);
furthermore, the cycle of selective advantage through the
three strains generally goes clockwise in both the lag-
yield and growth-yield planes.
Since each strain in a non-transitive set can beat one

of the others in a binary competition, what will be the
outcome in a competition with all three present? In
Fig. 6C,D we show the ternary population dynamics for
the two sets of non-transitive strains in Fig. 6A,B. In the
first example (Fig. 6C), we see that the dynamics are rel-
atively simple: one strain expands monotonically while
the other two diminish, eventually going extinct. In con-
trast, the second example (Fig. 6D) reveals more com-

plex dynamics resulting from the non-transitivity: strain
2 (red) rises at first, while strains 1 (blue) and 3 (green)
drop, but once strain 1 is out of the way, that allows
strain 3 to come back (since strain 3 loses to strain 1,
but beats strain 2) and eventually dominate over strain
2. Non-transitive selection in binary competitions there-
fore manifests itself as frequency-dependent selection in
multi-strain competitions. Note that we do not see oscil-
lations or coexistence in these ternary competitions, as
sometime occur with non-transitive interactions [35, 37].

DISCUSSION

Selection on multiple growth phases produces

complex population dynamics. Our model shows
how basic properties of microbial growth cause the stan-
dard concept of a scalar fitness landscape to break
down, revealing selection to be fundamentally multidi-
mensional [38]. Frequency-dependent selection and co-
existence arising from tradeo↵s between di↵erent phases
of growth have previously been investigated, both theo-
retically and experimentally [39–42]. Here we have ob-
tained explicit analytical results indicating the environ-
mental conditions and patterns of traits necessary to pro-
duce these phenomena, focusing especially on tradeo↵s
between growth and lag phases. We have also shown how
frequency-dependent selection shapes mutant fixation,
which was previously unexplored in this context [26].
Our model furthermore provides a simple mechanism
for generating non-transitive interactions, in contrast to
most known mechanisms that rely on particular pat-
terns of allelopathy [36, 43], morphology [37], or spa-
tial dynamics [44]. These results emphasize the need
for more comprehensive measurements of selection be-
yond competition experiments against a reference strain
at a single initial frequency [25]. As we have shown,
these measurements may be insu�cient to predict the
long-term population dynamics at all frequencies (due
to frequency-dependent selection), or the outcomes of all
possible binary and higher-order competitions (due to
non-transitive selection).
Pleiotropy and correlations between traits.

Tradeo↵s between growth and lag are necessary for co-
existence and non-transitivity, while a tradeo↵ between
growth and yield is necessary for coexistence to be stable.
Whether these tradeo↵s are commonly realized across
microbial strains depends on the pleiotropy of muta-
tions. Two theoretical considerations suggest pleiotropy
between growth and lag will be predominantly synergis-
tic (a > 0 in Eq. 6). First, cell-to-cell variation in lag
times [45] means that the apparent population lag time
is largely governed by the cells that happen to exit lag
phase first and begin dividing, which causes the popu-
lation lag time to be conflated with growth rate [28].
Second, mechanistic models that attempt to explain how
growth rate and lag time depend on underlying cellular
processes also predict synergistic pleiotropy [27, 30, 32];
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conceptually, this is because the product of growth rate
and lag time should be a positive constant correspond-
ing to the amount of metabolic “work” (equal to a in
Eq. 6) that the cell must perform to exit lag and begin
to divide. Pleiotropy between growth rate and yield, on
the other hand, is generally expected to be antagonistic
(b < 0 in Eq. 6) due to thermodynamic constraints be-
tween the rate and yield of metabolic reactions [29, 31],
although this constraint may not necessarily induce a cor-
relation [46].

Distributions of these traits have been measured for
both bacteria and fungi. Correlations between growth
rate and yield have long been the focus of r/K selection
studies; some of these experiments have indeed found
tradeo↵s between growth rate and yield [15–17, 31], but
others have found no tradeo↵, or even a positive correla-
tion [10, 11, 13, 14, 33]. Measurements of lag times have
also found mixed results [19, 21, 30, 32, 33]. However, the
genetic versus environmental bases of these tradeo↵s (or
lack thereof) remain unclear [15], especially since these
experiments are performed in di↵erent ways and make
di↵erent types of comparisons (e.g., comparing multi-
ple strains of the same species in the same environment,
or comparing one strain across multiple environments).
Furthermore, most of these data are for evolved pop-
ulations, which may not reflect the true pleiotropy of
mutations: distributions of fixed mutations may be cor-
related by selection even if the underlying distributions
of mutations are uncorrelated. Our model shows that
higher yield is only beneficial for faster growth rates,
and so selection will tend to especially amplify mutations
that increase both traits, which may explain some of the
observed positive correlations between growth rate and
yield. Indeed, data on the distributions of growth rates
and yields from individual clones within a population
shows a negative correlation [13]. The model developed
here will be useful for further exploring the relationship
between the underlying pleiotropy of mutations and the
distribution of traits in evolved populations.

Analysis of experimental growth curves and

competitions. Given a collection of microbial strains,
we can measure their individual growth curves and deter-
mine growth rates, lag times, and yields. In principle, we
can use the model (Eq. 2) to predict the outcome of any
binary competition with these strains. In practice, how-
ever, there are several challenges in applying the model to
this data. First, real growth dynamics are undoubtedly
more complicated than the minimal model used here.
There are additional time scales, such as the rate at which
growth decelerates as resources are exhausted [40]; other
frequency-dependent e↵ects, such as a dependence of the
lag time on the initial population size [47]; and more com-
plex interactions between cells, such as cross-feeding [41].
In addition, the measured traits and competition param-
eters may be noisy, due to intrinsic noise within the cells
as well as the extrinsic noise of the experiment.

Rather than making precise predictions, the model
should serve as a guide for identifying candidate strains

from a collection of individual growth curves that may
have interesting dynamics in pairs or in multi-strain com-
petitions, which can then be subsequently tested by ex-
periment. Existing technologies enable high-throughput
measurement of individual growth curves for large num-
bers of strains [48], but systematic measurements of com-
petitions are limited by the large number of possible
strain combinations, as well as the need for sequencing or
fluorescent markers to distinguish strains. The model can
therefore help to target which competition experiments
are likely to be most interesting by computationally scan-
ning all combinations and setting bounds on various pa-
rameters to be compared with experimental uncertain-
ties. For example, we can identify pairs of strains with
growth-lag tradeo↵s and predict a range of competition
conditions R/N

0

that will lead to coexistence. We can
also identify candidate sets of strains for demonstrating
non-transitive selection. The model will be valuable for
exploring these questions on large data sets of microbial
growth traits.

METHODS

Population growth model. Let each strain i have
lag time �

i

, growth rate g
i

, and initial population size
N

i

(0), so that its growth dynamics obey (Fig. 1)

N
i

(t) =

8
<

:

N
i

(0) 0  t < �
i

,
N

i

(0)egi(t��i) �
i

 t < t
sat

,
N

i

(0)egi(tsat��i) t � t
sat

.
(15)

The time t
sat

at which growth saturates is determined
by a model of resource consumption. Let R be the total
initial amount of resources. First we assume that each
strain consumes resources in proportion to its population
size, for example, if the limiting resource is space. Let
the yield Y

i

be the number of cells of strain i supported
by each unit of the resource. Therefore the resources are
exhausted at time t = t

sat

such that

X

i

N
i

(t
sat

)

Y
i

= R. (16)

We can alternatively assume that each strain consumes
resources in proportion to its total number of cell divi-
sions, rather than its total number of cells. The number
of cell divisions for strain i that have occurred by time t
is N

i

(t) � N
i

(0). Redefining the yield Y
i

as the number
of cell divisions produced per unit resource, saturation
therefore occurs at time t = t

sat

satisfying

X

i

N
i

(t
sat

)�N
i

(0)

Y
i

= R. (17)

For simplicity we use the first model (Eq. 16) through-
out this work, but it is straightforward to translate all
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results to the second model using the transformation
R ! R +

P
i

N
i

(0)/Y
i

. This correction will generally
be small, though, since

P
i

N
i

(0)/Y
i

is the amount of re-
sources that the initial population of cells consume for
their first cell division, which we expect to be much less
than the total resources R. It is also straightforward to
further generalize this model to include other modes of
resource consumption, such as consuming the resource
per unit time during lag phase.
Derivation of selection coe�cient expression. In

the minimal three-phase growth model (Eq. 15), the se-
lection coe�cient definition in Eq. 1 simplifies to

s = g
2

(t
sat

� �
2

)� g
1

(t
sat

� �
1

). (18)

(This excludes the trivial case where the time to satu-
ration is less than one of the lag times.) To determine
how s explicitly depends on the underlying parameters,
we must solve the saturation condition in Eq. 16 for t

sat

:

R =
N

0

x
1

Y
1

eg1(tsat��1) +
N

0

x
2

Y
2

eg2(tsat��2). (19)

While we cannot analytically solve this equation in gen-
eral, we can obtain a good approximation in the limit of
weak selection (|s| ⌧ 1). First we rewrite it in terms of
the selection coe�cient using Eq. 18:

R = N
0

eg1(tsat��1)

✓
x
1

Y
1

+
x
2

Y
2

es
◆
. (20)

We then solve for t
sat

and expand to first order in s:

t
sat

⇡ �
1

� 1

g
1

log


N

0

R

✓
x
1

Y
1

+
x
2

Y
2

◆�

� x
2

/Y
2

g
1

(x
1

/Y
1

+ x
2

/Y
2

)
s. (21)

We then substitute this into Eq. 18 for t
sat

and solve for
s, which gives the main result in Eq. 2. In SI Methods we
use this approximation to also derive explicit expressions
for the saturation time t

sat

and the total population size
at saturation N

sat

= N
1

(t
sat

) +N
2

(t
sat

).
Dynamics over serial competitions. Let x(r) be

the mutant frequency at the beginning of the rth round

of competition; the frequency at the end of the round
will be the initial frequency x(r + 1) for the next round.
Using Eq. 1, the selection coe�cient for this round is
s(x(r)) = log(x(r+1)/[1�x(r+1)])�log(x(r)/[1�x(r)]),
which we can rearrange to obtain the recursion relation

x(r + 1) =
x(r)es(x(r))

1� x(r) + x(r)es(x(r))
. (22)

If the selection coe�cient is small, we can approximate
these dynamics over a large number of rounds by the
logistic equation: dx/dr ⇡ s(x)x(1� x).
If the population at the end of a round is randomly

sampled to populate the next round, this is equivalent to
a Wright-Fisher process with frequency-dependent selec-
tion coe�cient s(x) and e↵ective population sizeN

0

. The
fixation probability of a mutant starting from frequency
x is [34]

�(x) =

R
x

0

dx0 e2N0V (x

0
)

R
1

0

dx0 e2N0V (x

0
)

, (23)

where V (x) is the e↵ective selection potential (Eq. 11).
The mean time (number of competition rounds) to fixa-
tion, given that fixation eventually occurs, is

✓(x) =

Z
1

x

dx0  (x0)�(x0)(1� �(x0))

+

✓
1� �(x)

�(x)

◆Z
x

0

dx0  (x0) (�(x0))
2

, (24)

where

 (x) =
2N

0

e�2N0V (x)

x(1� x)

Z
1

0

dx0 e2N0V (x

0
). (25)
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Supporting Information: Methods

Exact condition for neutrality. Here we derive an
exact condition on the parameters under which the mu-
tant is neutral with respect to the wild-type (s = 0). In
the nontrivial case of t

sat

> �
1

,�
2

(necessary for s = 0),
the selection coe�cient definition in Eq. 1 simplifies to

s = g
2

(t
sat

� �
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)� g
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(t
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). (S1)

If the growth rates are equal (g
1

= g
2

), then s =
�g

1

(�
2

� �
1

), and so s = 0 only when the lag times are
also equal. This agrees with the approximate expression
for s in Eq. 2.
If the growth rates are unequal (g

1

6= g
2

), we can
rewrite Eq. S1 as

t
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=
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. (S2)

Then s = 0 if and only if t
sat

= (g
2

�
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� g
1

�
1

)/(g
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�
g
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). By substituting this value of t
sat

into the two-strain
saturation condition
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we can show this condition is equivalent to
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The left-hand side of this equation is proportional to the
approximate expression for s (Eq. 2), up to an overall fac-
tor that is always positive. Thus the approximate result
in Eq. 2 gives the correct exact condition for neutrality.
Saturation time and total population size. We

now derive expressions for the saturation time t
sat

and
the total population size at saturation

N
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) +N
2

(t
sat

)

= N
0

x
1

eg1(tsat��1) +N
0

x
2

eg2(tsat��2).
(S5)

We assume the nontrivial case of t
sat

> �
1

,�
2

. First,
if the growth rates are equal (g

1

= g
2

), we can obtain
exact solutions since the two-strain saturation condition
(Eq. S3) is analytically solvable for t

sat

:
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If the growth rates are unequal (g
1

6= g
2

), then we
must rely on the small s approximation. To obtain an
approximate expression for t

sat

, we can substitute the
approximate expression for s (Eq. 2) into Eq. S2:
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To obtain an expression for N
sat

in this approximation,
we rewrite its definition (Eq. S5) in terms of s using
Eq. S2:

N
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where we have expanded to first order in s. If the mutant
is neutral (s = 0), N

sat

equals the following equivalent
expressions:

N
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where the last two follow from the neutrality condition
in Eq. S4 and RY

i

= N
sat,i

. Therefore in the case of
neutrality, the total population grows to the harmonic
mean of the saturation population sizes of the individual
strains.
Frequency-dependence of selection. Here we

show that the selection coe�cient s(x) is either a mono-
tonic function of the initial mutant frequency x, or it is
constant. We use an exact argument starting from the
original model because the approximate s(x) function
in Eq. 2 has spurious non-monotonic behavior in some
regimes. As in the main text, define the relative growth
rate � = (g

2

� g
1

)/g
1

, relative lag time ! = (�
2

� �
1

)g
1

,
and relative yields ⌫

1

= RY
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/N
0

and ⌫
2

= RY
2

/N
0

. If the
mutant and wild-type have equal growth rates (� = 0),
then we have previously showed that s(x) = �!, so it
is constant in x. Thus we must only consider � 6= 0. In
this case we can write the saturation condition in terms
of s(x) by substituting Eq. S2 for t

sat

in Eq. S3:
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We can di↵erentiate with respect to x and solve for ds/dx
to obtain the di↵erential equation

ds
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1� ⌫1

⌫2
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The only way s(x) can be non-monotonic is if ds/dx = 0
for some x without s(x) being constant. Since the de-
nominator of Eq. S11 is always positive, ds/dx = 0
only if s(x) = log(⌫

2

/⌫
1

) for some x. However, if
s(x) = log(⌫

2

/⌫
1

) for any x, then it must be constant
at log(⌫

2

/⌫
1

) for all x. We show this by substituting
s(x) = log(⌫

2

/⌫
1

) into the saturation equation (Eq. S10).
The x-dependence drops out and we are left with

⌫
1/�

2

⌫
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Therefore if the parameters satisfy this condition, then
s(x) = log(⌫

2

/⌫
1

) for all x. Therefore ds/dx only equals
zero when s(x) is constant, and so s(x) is always either
constant or a monotonic function of x. The boundaries
between signs of ds/dx in Fig. 3A,B are given by � = 0
and Eq. S12.
Relative variability of the selection coe�cient

over frequencies. We determine the maximum and
minimum values of the selection coe�cient s(x) over all
mutant frequencies x, and we use this to determine the
relative variability of s(x) over the domain of x. Since
s(x) is always a monotonic (or constant) function of x,
the maximum and minimum values are attained at the
endpoints x = 0 and x = 1. The selection coe�cient is
not technically defined for these values, but we can de-
termine its value in the limits x ! 0 and x ! 1. In
the limit of x ! 0, the saturation time must be the time
for the wild-type alone to consume all the resources, and
vice-versa for x ! 1:
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Using the relationship between s and t
sat

in Eq. S1 and
expressing in terms of dimensionless parameters, we have
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Hence the total range of selection strengths is
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Note that the approximate s(x) expression in Eq. 2 gives
identical limits.
By normalizing this total range of selection by its mag-

nitude at some intermediate frequency, such as x = 1/2,
we can measure the relative variation in s(x) over fre-
quencies (Fig. 3C,D). In the special case of equal yields
(⌫

1

= ⌫
2

), the relative variation simplifies to

����
s
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� s
min

s(1/2)
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Note that it does not depend on the yields ⌫
1

= ⌫
2

or the
relative lag time !, and for small � it is ⇡ |�| (Fig. 3C).
Additivity of the selection coe�cient. The ad-

ditivity condition (Eq. 14) is approximately satisfied if
the strains have only small di↵erences in growth rates,
lag times, and yields. Conceptually, this is because the
saturation times t

sat

for each binary competition are
all approximately equal, but we can also show this di-
rectly using the selection coe�cient formula. Let �
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=
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� g
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, and µ
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be the relative di↵erences in growth rate, lag time, and
yield for strains i and j. If these relative di↵erences are
all small, then they each approximately obey the addi-
tivity condition across strains:
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µ
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.

In this same limit, the total selection coe�cient for
strains i and j is approximately

s
ij

⇡ �
ij

log ⌫
j

� !
ij

. (S18)

Note that, to leading order, the change in yield µ
ij

does
not appear. Using Eq. S17 and ⌫

j

= (1+µ
jk

)⌫
k

, we have
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(S19)

Therefore the selection coe�cient is approximately addi-
tive when changes to traits are small.

Transitivity of the selection coe�cient. Since we
are only concerned with the sign of selection in determin-
ing transitivity, we focus on the signed component of the
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selection coe�cient in Eq. 2. It is also more convenient to
use growth times ⌧

i

= 1/g
i

rather than growth rates, and
the quantity h

ij

= log 1

2

H( ⌫j

1�x

, ⌫i
x

) for the logarithm of
the yield harmonic mean. The signed component of se-
lection for strain i over strain j is a linear function of
these quantities:

sgn(s
ij

) = sgn((⌧
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+ �
j
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). (S20)

We first consider whether neutrality is a transitive
property of strains. Three strains are all pairwise neutral
if their traits satisfy
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1
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(S21)

If all three strains have equal yields ⌫
1

= ⌫
2

= ⌫
3

(h
12

= h
23

= h
13

for all frequencies), then any two of
these equations imply the third (e.g., by adding them to-
gether), which means that neutrality is transitive when
all strains have equal yields. If two of the yields are equal
while the third is distinct, then transitivity only holds if
two of the strains are identical (equal growth and lag
times). For example, if ⌫

1

= ⌫
2

6= ⌫
3

, then we can add
together the last two equations in Eq. S21 to obtain

(⌧
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= 0, (S22)

(using h
23

= h
13

), but this is only consistent with the
first equation in Eq. S21 if ⌧

1

= ⌧
2

and �
1

= �
2

, i.e.,
strains 1 and 2 are identical in all traits.
If all the yields have distinct values, then transitivity

will generally not hold for arbitrary values of the growth
traits. However, it is still possible for three strains with
distinct yields to all be pairwise neutral, but only with
very specific values of the traits. Note that with un-
equal yields, neutrality at all frequencies is not possible,
so pairs of strains are only quasi-neutral, with coexistence
(stable or unstable) at some particular frequency. These
frequencies are encoded in the quantities h

ij

. We thus
fix the yields and the desired coexistence frequencies to
arbitrary values, and without loss of generality, we can
assume h

12

< h
13

< h
23

(e.g., by putting the strains in
order of increasing yields). We can also choose any val-
ues of ⌧

1

and �
1

since this amounts to a rescaling and
shift of time units. Therefore we are left with three lin-
ear equations (Eq. S21) for four unknowns: ⌧

2

, ⌧
3

,�
2

,�
3

.
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(S23)

(note the factor in parentheses is always positive by as-
sumption), then Eq. S21 has a unique solution for the
remaining quantities:
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The linear system actually has a unique solution regard-
less of Eq. S23, but without that condition ⌧

3

may be
negative. Therefore a set of three strains with unequal
yields can all be pairwise quasi-neutral only if the growth
traits for strains 2 and 3 satisfy Eqs. S23 and S24. For
example, one can construct three strains that all stably
coexist in pairs in this manner.
We now turn to constructing sets of three strains such

that there is a nontransitive cycle of selective advantage
in binary competitions, i.e., strain 2 beats strain 1 in a
binary competition, strain 3 beats strain 2, but strain 1
beats strain 3. Therefore the growth traits of the three
strains must satisfy
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All three yields cannot be equal; if they are, adding to-
gether any two of the inequalities in Eq. S25 gives an
inequality that is inconsistent with the third one. Other-
wise, the three yields can take arbitrary values, including
two of them being equal. Since we can cyclically permute
the strain labels, without loss of generality we assume
strain 1 has the smallest yield (⌫

1

< ⌫
2

, ⌫
3

). Therefore
the harmonic mean logarithms obey h

23

> h
12

, h
13

. We
can also choose any values of ⌧

1

and �
1

as before.
We must now choose the growth traits of strains 2 and

3 (⌧
2

, ⌧
3

,�
2

,�
3

) to satisfy the inequalities of Eq. S25. We
use a geometrical approach to understand the available
region of trait space for these strains. The lag time for
strain 3 is bounded from above and below according to
(combining the second and third inequalities in Eq. S25)
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The upper and lower bounds are both functions of ⌧
3

.
The upper bound will be above the lower bound as long
as ⌧

3

satisfies
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<
⌧
2

h
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� ⌧
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Since ⌧
3

must be positive, this upper bound of ⌧
3

must
also be positive. The denominator of the right-hand side
of Eq. S27 is positive by assumptions about the yields, so
therefore the numerator must be positive as well. This
leads to a lower bound on the lag time of strain 2 �

2

;

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2016. ; https://doi.org/10.1101/096453doi: bioRxiv preprint 

https://doi.org/10.1101/096453


4

we can combine this with an upper bound on �
2

from
the first equation of Eq. S25 (strain 2 beats strain 1) to
obtain

⌧
1

h
13

� ⌧
2

h
23

+ �
1

< �
2

< (⌧
1

� ⌧
2

)h
12

+ �
1

. (S28)

Finally, the upper bound for �
2

will be above the lower
bound as long as ⌧

2

satisfies

⌧
2

> max

✓✓
h
13

� h
12

h
23

� h
12

◆
⌧
1

, 0

◆
. (S29)

Altogether, we can construct a set of nontransitive strains
by choosing any yields ⌫

1

, ⌫
2

, ⌫
3

satisfying ⌫
1

< ⌫
2

, ⌫
3

,
and any values for the growth traits ⌧

1

,�
1

of strain 1; we
then choose ⌧

2

according to Eq. S29 and �
2

according to
Eq. S28; finally, we choose ⌧

3

according to Eq. S27 and
�
3

according to Eq. S26.
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